Lecture 36
For most of the course:
Take derivative
Given $f \xrightarrow{\text { Take derivative } \text { Get } f \text { ? }}$
function values \longrightarrow Rate of change of f

Today (Antiderivatives) Chi 4.10
Going in the opposite direction:
function values
Rate of change of f
Take antiderivative
leet f \qquad Given f^{\prime}

Example
if $f^{\prime}(x)=2 x$, what is f ?
Answer:

$$
f(x)=x^{2}
$$

(because

$$
f^{\prime}(x)=2 x
$$

by power
Another answer?

$$
f(x)=x^{2}+1
$$

(becaure

$$
\left.f^{\prime}(x)=2 x+0\right)
$$

More answers:

$$
\begin{aligned}
& x f(x)=x^{2}-2 \\
& 7 f(x)=x^{2}+10000 \\
& x f(x)=x^{2}+\pi \\
& x f(x)=x^{2}+30 \\
& x f(x)=x^{2}+\sqrt{2}
\end{aligned}
$$

More generally:

$$
f(x)=x^{2}+C
$$

where $\underbrace{C \in \mathbb{R}}_{l}$
C is amy number.

Are all answers actually of the form $x^{2}+c$?

Q: if $\quad f^{\prime}(x)=2 x$
does $f(x)=x^{2}+c$?
COR rs there a completely different function which also worlds?).

Definition if $C^{\prime}(x)=g(x)$
Then l es called the antiderivative of g
$E g$

$$
x^{2}
$$

is on antiderivative of $2 x$.
(because $2 x$ is the deriu of r^{2}.

Theorem 4.14
Let a be an antielerivative of g.

1) For $c \in \mathbb{R}, G+c$ is another antidenivective.
2) if F is another antiderivative.

$$
\begin{array}{cc}
F=a+c \quad \text { for } \operatorname{som} 0 \\
& c \in \mathbb{R}
\end{array}
$$

Will come back to explain 2).
Example Find all the antiderivatives of $f(x)=\frac{1}{x}$.

Ans:

$$
F(x)=\ln (x) \text { is an antideriv. }
$$

All autiderivatives are of the

$$
F(x)=\ln (x)+C, c \in \mathbb{R}
$$

Verity:

$$
\begin{align*}
& F^{\prime}(x)=\frac{1}{x}+0 \\
&=\frac{1}{x} \text { denis of } \\
& \text { const, }
\end{align*}
$$

Koa can always add $D \in \mathbb{R}$ to a function without changing the derivative.
To take antiderivatives, you should be good at taking derivatives.

Example

$$
\text { if } \quad \frac{d y}{d x}=\sin x
$$

what are the possible choices y ?
for

Soln: (because $\left.\frac{d}{d x} \cos x=-\sin x\right)$.

$$
y=-\cos x \quad \text { is one }
$$

because $\frac{d y}{d x}=-(-\sin x)=\sin x$.
All other choices are of the form $y=-\cos x+C$.

Verify $\quad \frac{d y}{d y}=\sin x+0$

Sou can always verify that you the correct antiderivative, by taking the derivative.

Initial Valine Problems
Continuing on from example, Suppose youire also told

$$
y=5 \text { when } x=0
$$

What are the possible chores for y?

Answer: Already know:

$$
y=-\cos x+C
$$

But

$$
\begin{aligned}
& \Rightarrow \quad 5=-\cos 0+C \quad y=-\cos x+6 \\
& \quad 5=-1+C \\
& \Rightarrow C=6
\end{aligned}
$$

Just $\quad \frac{d x}{d f}=20 \mathrm{~m}=/ \mathrm{h}$
knowing
doesn't allow wo to figure out x at $t=10$

But if ra addition, you know $x=A$ when $t=0$, the n you can figure out where x is at $t=10$.

Example
if $f^{\prime}(x)=3 x^{-2}, \leftarrow$
and $f(1)=2,<$
What is $f(x)$?
Solus
Because $\quad f^{\prime}(x)=3 x^{-2}$

$$
f(x)=-3 x^{-1}+C, C_{-2} \text { derives }
$$

Verify:
Take $f(x)=-3\left(-x^{-2}\right)+0$

$$
=3 x^{-2}
$$

To find C use $f(r)=2$
Plug into $f(x)=-3 x^{-1}+c^{\prime}$

$$
\begin{aligned}
& \quad 2=-3(1)^{-1}+c \\
& \text { So } \quad c=2+3=5 .
\end{aligned}
$$

So

$$
\begin{aligned}
& f(x)=-3 x^{-1}+5 \\
& \binom{Z_{n}}{n}=1 \operatorname{Pr}_{n}\left(\mathbb{N}_{2 n}\right)\left(\longrightarrow\left\{1,2, \ldots R_{n}\right\}\right. \\
& z=\binom{n}{0}\binom{n}{n} * \\
& \uparrow \\
& \begin{array}{l}
\mathbb{P}_{0}\left(\mathbb{N}_{n}\right) \times \mathbb{P}_{n}\left(\mathbb{N}_{n}\right) v \cdots \\
\{1,2,3,4\}
\end{array} \\
& \begin{array}{c}
\frac{d}{L}=4 \\
P_{0}\left(N_{0}\right) \times \mathbb{P}_{4}\left(N_{4}\right)
\end{array} \\
& =\{(\phi,\{1,2,3,4\rangle)\}
\end{aligned}
$$

$$
\begin{aligned}
& P_{1}\left(N_{3}\right) \times P_{3}\left(N_{2}\right) \\
& Z(\{1\},\{1,2,4\}), \\
& (\{12,\{1,2,3\})\} \\
& f(\{2,3,7,9,12,3,4,14\}) \\
& =(\{2,5,9,9,3,3,4,6\})
\end{aligned}
$$

$$
\begin{aligned}
& (\{2,5,7,9,9,\{2,17\}) \\
& \text { 逗 } \\
& \{2,5,7,1,4,10,9,15,\} \\
& \text { Lf } \\
& f(A)=(\{x \in A 0 x \sin ,\{,\}) \\
& \{x \in A=x>3\} \\
& \{x \in A: x \leq n\} \\
& \{x+1 \quad x \in+\}
\end{aligned}
$$

$$
\begin{aligned}
& A \times B \quad(3,3) \\
& \neq(5,3) \\
& \in \mathbb{R}^{2} \\
& \{x-n: x \in A n\{n+1, \ldots, 2 n\}\} \\
& f(\{1,2,3, \ldots, 8\}) \\
& =(\{1,-1,8\}, \phi) \\
& f(\{a,\} \ldots) \\
& (\$, 21,-8\rangle) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
(1,3), & (8)(4),(2,2) \\
& (3,1)
\end{aligned}
$$

$$
\{1\},\{2\},\{3\}
$$

triple/ 3-tuple
$(x z)$

$$
\begin{aligned}
& L(1,2,2),(2,1,2), \\
& (3,2,1) \\
& (1,3,1), \\
& (1,1,3)\}
\end{aligned}
$$

d

$$
P_{k}(x)=\text { subsets of }_{\text {with }} x
$$

P

$$
P_{Z}\left(M_{4}\right)=\text { subsets }_{\text {with }} 2 \text { elements }
$$

= subsets of $\{1,2,3,4\}$. with 2 elements

$$
\begin{aligned}
& =\{\{1,2\},\{1,3\},\{1,4\}, \\
& \{3,43,-1,\} \text {. } \\
& \binom{4}{2}=\frac{4!}{2!2!}=\frac{4 \times 3 \times 2 \times 1}{2 \times 2} \\
& =6
\end{aligned}
$$

$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
0010010
$010010010 \begin{array}{ll}k^{2} \\ 3,5)\end{array}$
0010100

$$
\begin{aligned}
& 7!=7 \times 6 \times 5 \times 4 \times 3 \times 2 \\
& \binom{n}{1}=\frac{n!}{1!(n-1)!} \\
& \binom{n}{1}=\left|P_{1}\left(N_{n}\right)\right|
\end{aligned}
$$

$=$ sissets of $\$ 1, \ldots, n 3$. with k elements

$$
\begin{aligned}
&\binom{n}{1}=\frac{n!}{11}(n-1)!=\frac{n \times(n-1)}{1(n-1)(n-2)) 1} \\
&=n \\
& P_{1}(n-3)-1
\end{aligned}
$$

$$
\begin{aligned}
& \binom{n}{2}=\left|P_{2}(\mathbb{N} n)\right| \\
& n=4 \text {. } \\
& P\left(\mathrm{~N}_{4}\right)^{N} \\
& P_{2}\left(N_{4}\right)=\{\{1,2\},\{1,3\},\{1,4\}\} \\
& \{2,3\}, 22,43,\{3,4\}\} \\
& \binom{4}{2}=\frac{4!}{2!2!}=\frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1} \\
& =\frac{12}{2} \\
& =6 \\
& \binom{\eta_{k}}{k}=\left|P_{k}\left(N_{n}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& \binom{n}{k}=\left|P_{k}\left(N_{n}\right)\right| \\
& \binom{2 n}{n}=\left|P_{n}\left(N_{2 n}\right)\right| \begin{array}{r}
P_{1}\left(N_{4}\right) \\
=\left\{s_{n}\right.
\end{array} \\
& 3 \\
& \binom{n}{1}^{2}=1 P_{1}\left(N_{n}\right)^{2} \\
& P_{i}\left(\mathbb{N}_{4}\right)^{2}=\delta \\
& 3 \\
& P_{1}\left(\mathbb{N}_{4}\right) \times P_{1}\left(\mathbb{N}_{4}\right)=\{(s, \xi(\xi), \\
& \{1,2\} \times\{3\} \\
& A \times B=\{(1,3),(2,3)\} .
\end{aligned}
$$

$$
\begin{aligned}
& \binom{n}{k}^{2}=\left|P_{k}\left(N_{n}\right)^{2}\right| \\
& \binom{n}{0}^{2}+\binom{n}{1}^{2}+-\cdots+\binom{n}{n}^{2} \\
& =\left|P_{0}\left(N_{n}\right)^{2} \cup P_{1}\left(N_{n}\right)^{2} \cup-\cdots P_{n}\left(N_{n}\right)^{2}\right| \\
& Z= \\
& (A \cup B|=|A|+(B) \\
& f=P_{n}\left(N_{2 n}\right) \rightarrow\left(P_{0}\right) \\
& \left.P_{0}\right)
\end{aligned}
$$

$$
n=2
$$

* List all the elements of

$$
\mathbb{P}_{2}\left(\mathbb{N}_{4}\right)
$$

* List all elems of $z=u \ldots u$
$n=3$.
$*$ List $\quad \mathbb{P}_{3}\left(\mathbb{N}_{6}\right) \&$

$$
\times \text { List } \quad z=\sqrt[P_{0}\left(N_{3}\right)^{2}]{ } \cup \mathbb{P}_{1}\left(N_{n}\right)^{2} \cup \ldots
$$

