Lecture $\quad 33$

* Medfeim graded
* See grade scope.
* You coon view which rubric items were applied.
* Grading questions should go to your TA.

More optimization prodems Ch 4.7
Example
Want Box with volume 216 in 3

* Open top box
* (square base)

Want oninimize surface area of $60 x$

Why? you might be a company making container and you want to mimize
(1) Piclura /Cabels

(2) Goal: minimize
sidectangle
(3) Constraint:

$$
V=216=x \cdot x \cdot y=x^{2} y
$$

(4) Salo Ronstraint reto yoal

$$
\begin{array}{r}
216=x^{2} y=y=\frac{216}{x^{2}} \\
S_{0} \quad S=x^{2}+4 x\left(\frac{216}{x^{2}}\right) \\
\end{array}
$$

(5) Find min

$$
S=x^{2}+\frac{4-216}{x}
$$

Domain: $\quad x>0$

$$
=(0, \infty)
$$

$<$ unlike other examples, where domain bounded
(1) Find candidates: (ag. $[-5,50]$

$$
S=x^{2}+4 \cdot 216 x^{-1}
$$

critical points:

$$
\begin{array}{r}
S^{\prime}=0 \Rightarrow 2 x-4-216 x^{-2}=0 \\
2 x=4.216 x^{-2} \\
x^{3}=2.216 \\
x=(2.216)^{1 / 3}
\end{array}
$$

boundary behaviour es

$$
\begin{aligned}
x: & \lim _{x \rightarrow \infty}\left(x^{2}+\frac{4+216}{x}\right) \\
& =\lim _{x \rightarrow \infty} x^{2}+\lim _{x \rightarrow \infty} \frac{4 \cdot 216}{x} \\
& =\infty+0
\end{aligned}
$$

Q: Why do we know that this doesn't happen?

A: There would be an extra coital points.

Minimum surface area is

$$
\delta=(2 \cdot 26)^{2 / 3}+\frac{4.26}{(-216)^{3}}
$$

attained at

$$
\begin{aligned}
& x=(2.216)^{1 / 3} \\
& y=\frac{216}{(2.216)^{2 / 3}}
\end{aligned}
$$

Ex
A rectangle es inscribed ri the ellipse

$$
\frac{x^{2}}{4}+
$$

$$
\text { dist }=\sqrt{x^{2}+4}+\sqrt{(10-x)^{2}+1}
$$

min dest is altained at

$$
x=\frac{20}{3} \approx 6.66
$$

$$
f(x)=\text { (x) }
$$

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}+1}=0
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\ln x}{x} \\
& \lim _{x \rightarrow \infty} \frac{1}{x}
\end{aligned}
$$

