Lecture 32

- Midterm grades next monday.

Plan for rest of the semester * Finish Ch 4

Quiz Find maximum of

$$
f(x)=50 x-x^{2} \quad \text { on }[0,50]
$$

a) 825
b) 250
c) 375
d) 0
(e) $625 \leftarrow 35 \%$

Recall the steps.

1) Find candidates:
a) Endpoints $x=0, x=50$
b) critical points: $f^{\prime}(x)=0$
cor indef?
2) Plug candidates canto f to find biggest
3) Find candidates:
a) Endpoints $x=0,=50$
b) critical points: $f^{\prime}(x)=0$ (or indef)

$$
f^{\prime}(x)=50-2 x
$$

crit posit at $x=25$
2) Plug candidates ta to f to find biggest.

x	$50 x-x^{2}=x(50-x)$
0	0
50	0
25	$25^{2}=625$

Ch 4.7 Today.
Applied optimization
Finding "best" lie. Findiry brggest/smallest

Optimization
General problem

* Wort to maximize (or min) something.
* But we have constraints.

Gig:

* Make a rectangular garden have biggest area possible.
\square
\square

Not interesting unless we add constraints.

* Suppose we only have loft of Fencing.
skald I do:
a)

b)

Which sue has bigger area?
a) Area $=48.1=48$.
b) Area $=25 * 25=625$

What about

Calculus/derivatives allows is to fad max without testing all possibiliters
Soln STunning application into a computation).
(1) Draw picture / Label quantities

(2) Write down goal ir tamis of variables?
Maximize $\quad A=x-y$
(3) Write down constraint (ir terms of variables)

$$
x+x+y+y=2 x+2 y=100
$$

(4) Sabstitue constraint into "goal") to get function of only one variable.

$$
\begin{aligned}
2 x+2 y & =100 \\
\text { so } 2 y & =100-2 x \\
y & =50-x
\end{aligned}
$$

So

$$
A=x y=x(50-x)
$$

write domain:

$$
\begin{aligned}
& x \geq 0 \\
& x \leq 50
\end{aligned}
$$

5). Maximize goal, on domain.

Maximize $\quad x(50-x)=50 x-x^{2}$ on [0,50].

Did this in quiz: max at $x=25, \quad A=625$.

Example * Male rect us big as possible

* coff of fence
* One side of garden is rodencell, doesnlt need fence.
(1)

(2) Goal: Maximize $A=x \cdot y$
(3) Constraint: $\quad 2 x+y=100$
(4) Sub. Constraint into goal:

$$
\begin{aligned}
& 2 x+y=100 \Rightarrow y=100-2 x \\
& \text { so } \quad A=x(100-2 x)
\end{aligned}
$$

5).

Maximize

$$
A=x(100-2 x)
$$

$$
x \geq 0
$$

$$
x \leq 50
$$

Cofhervise
Using procedive in $\quad y=100-2 x \leq 0$.
Max at $x=25$ quiz at start:

$$
\begin{aligned}
& y=100-2 x=100-50=50 \\
& A=1250
\end{aligned}
$$

Example
0

but needs to touch River at some point.
Best path?
What point on che river should she ain towards?
(2) Minimize

$$
d=\sqrt{x^{2}+2^{2}}+\sqrt{(10-x)^{2}+1^{2}}
$$

Use procedure in quiz to find offimal $x_{\left(\text {sol: } x=\frac{20}{3}\right) \quad \text { Excercise. }}$

