Leclure 31
Exam prep:
* Do the midtern "Practice Submission;
to submit to gradescape.com
By 10 pm touight.
You need
* phone (camera) * paper + pencil-
* You should have email from gradescope. (after lecture).
* Video on how to submit
in chat
* See bluckboard for detailed
* See bluckboard for detailed trafundions & practice submissions
* It's your responsibility to
make come you can submit

Mat 125 Review Se sion 5:30 por - 7 pour Tuesday 200m bb, prazza, Link will be posted on my website.
Will be recorded. Last few lectures: * applications of derivatives: * Tangent line (linear approximation * Using derivative to find min (max * Using deriv. to sketch graph. Today: Ch 4.8 L'Hopitals Rule Usang derivatives La ovaluate limits. Eval

(ranit

(ranit

(ranit

(ranit

(ranit)

(ranit)

(ranit) L'Hopital's mile (today).

Recall

ling
$$f(x) = f(a)$$
 $x \Rightarrow a \quad g(x) = g(a)$, if $f(a) = g(a)$, if $f(a) = g(a)$ and $g(a) \neq 0$.

E.g. $\lim_{x \to 2} \frac{x^2 - 4}{x - 1} = \frac{4 - 4}{2 - 1} = 0$.

(in
$$\frac{x^2-4}{x-2}$$
 (in $\frac{(x-2)x+2)}{x-2}$
 $\frac{1}{x-2}$ (in $\frac{(x-2)x+2)}{x-2}$
 $\frac{1}{x-2}$ (in $\frac{1}{x+2}$ can't plugin2, $\frac{1}{x-2}$

L'Hopitals rule:
if
$$\lim_{x\to a} f(x) = 0$$
, (ion $g(x) = 0$,

Applying this to simple example

lim
$$x^{2-\alpha} = \lim_{x \to 2} \frac{2x}{1} = 4$$

Example

lim $\frac{3nx}{x} = \lim_{x \to 0} \frac{\cos x}{1} = \cos(0) = 1$.

Why does it work?

(Idea: use (inear approximation).

Suppose $\lim_{x \to 0} f(x) = 0$ $\lim_{x \to 0} g(x) = 0$

then $\lim_{x \to 0} \frac{g(x)}{x} \approx \lim_{x \to 0} \frac{f(a) + f'(a)(x-a)}{g(a)(x-a)}$
 $= \lim_{x \to 0} \frac{f'(a)(x-a)}{g'(a)(x-a)}$
 $= \lim_{x \to 0} \frac{f'(a)(x-a)}{g'(a)(x-a)}$
 $= \lim_{x \to 0} \frac{f'(a)(x-a)}{g'(a)(x-a)}$

g'(a).

(L'Hopitals works for many indeberminate forms, such as Example $\frac{3}{2+5} = \frac{1}{2} = \frac{3}{2}$ Example ample lin = lin = lin = lin = lin = 5 $\sqrt{5} = \sqrt{5} = 5$ Warning: Only works of the form 15 Indeterminate. E.g. (; m x2+5 7-71 3x+4

 $\frac{1}{3}$ $\frac{2}{3}$ $\frac{2}$

What went wrong?

L'hopital's rule closs not apply

because \(\text{im} \) \(\text{x} + 5 \neq 0. \)

\(\text{(im} \frac{3}{4} \text{x} + 4 \neq 0. \)

* Try to do it bey direct sub.

if you don't get %, etc, done.

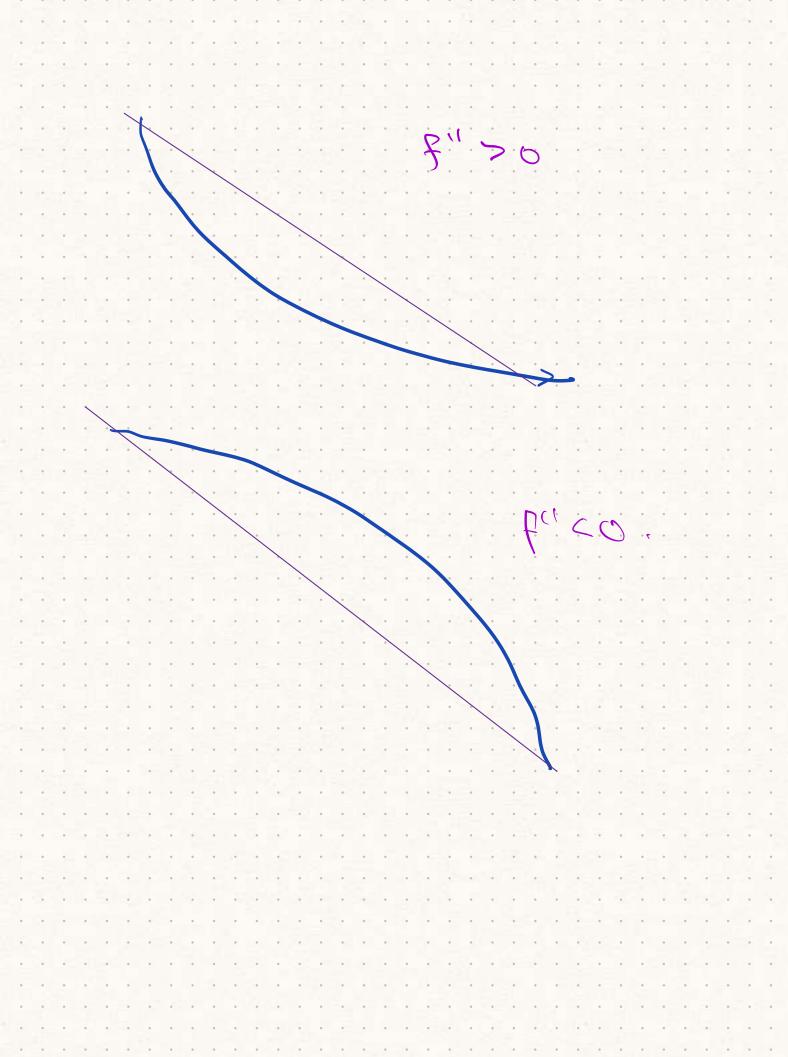
if you do,

use l'hopitals.

Example: lim x. (n(x) • (-00) Use L'hopstâls: Lim x > ot x = lim
x > ot $\frac{1}{\sqrt{x}} = \lim_{x \to 0^+} \frac{1}{\sqrt{x}} = \lim_{x \to$ multiplying box x on numerator/denonal

[nx = x - (nx = Explanation:

Explanation: $\frac{1}{2x} = \frac{1}{2x}$


77 Example 15m 5x-4 x - 2x Example lem (Sinx - X x-20t (XSinx - XSinx) = 1=m (sink - x) (hopital: COSK - (SINK + X COS XUse L'hopital Cegain: = 1;~~

x alny

$$\frac{5}{x^2-2x}$$

$$2x-2$$

£ 11 > 0 -0.)

