Lecture 30

* Information about exam e

April 22 8:30-10:15

* Do work on paper and then take a photo, then upload to gradescopecom. neither pdf or images.
* Demostration:
* Practice exain been posted.
* Official cinstanctions to come frown Prof- Andersen.

Last few lectures.

Vern diagram
Local min: "valley":

should be able to explain why these relationships hold.

Today = Finish 4.5
Key fact:

$$
\begin{aligned}
& f^{\prime}>0 \text { means } f \text { is increasing } \\
& (\text { ("uphill") }
\end{aligned}
$$

So, if you know the signs of fl, you can sketch a graph of f
Eng Suppose

$$
\begin{cases}f^{\prime}>0 & \text { on } \\ f^{\prime}(1)=0 & (-\infty, 1) \\ f^{\prime}<0 & \text { on }(1,2) \\ f^{\prime}(2)=0 & \text { on }(z, \infty) \\ f^{\prime}>0 & \end{cases}
$$

Sketch what the function looks like.

From this "technique" we see that if $f^{\prime}(c)=0$ we can determine $\frac{\text { whether it is }}{\text { \& beat max }}$

* local mia neither 2

First derivative lest
if c is a critical point of fl

1) if f changes from pos to neg, then c is local max.
2) if f' changes from neg to pos, then c is local min.
3) it fl desalt change sign c rs neither (ocal min or local max.

Concavity
Definition if f^{\prime} is increasing $\Leftrightarrow f$ is concave up.
f' decreasing, f is concave down.

Examples

f' increasing so f is concave up

Quiz

f is
a) concave up concave down.
c) neither.
$-01>-3$
So f' increasing
is concave

f is
a) Concave up
${ }^{650} 9$ b) concave dow
c) neither.
f^{\prime} is decreasing f is concave dowson

Quiz:

so concave up.

○の (a, ∞)
on

$$
(-\infty, a)
$$

$$
\text { Note: } f \text { itself }
$$

Is increasing
deli rays
You have already heard urflection point" in relation fo the number of coronouinus cases.

Obsenvalion
$\underset{\text { Concave }}{\text { Cup }} \Longleftrightarrow f^{\prime}$ increasing $\Leftrightarrow f^{\prime \prime}>0$
Concave
dion $\Rightarrow f^{\prime}$ decreasing $\Leftrightarrow f^{\prime \prime}<0$
So now we can answer:

$$
f(x)=x^{3}-6 x^{2}+9 x+30
$$

where is if concave up? It concave down?

Soln:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 x+9 \\
& f^{\prime \prime}(x)=6 x-12 \\
& \text { So }\left\{\begin{array}{l}
f^{\prime \prime}(x)>0 \\
f^{\prime \prime}(x)<0 \quad \text { if } x>2 \\
f^{\prime \prime}(x)=0 \quad \text { if } x<2
\end{array}\right.
\end{aligned}
$$

f is concave up on $(2, \infty)$.
f is concave down on $(-\infty, 2)$.

You can combine this with the first derivative to get sketch of f.

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-12 x+9 \\
& =3\left(x^{2}-4 x+3\right) \\
& =3(x-4)(x+1)
\end{aligned}
$$

So $x=4 \quad$ and $x=-1$ are critical points.

$$
\begin{aligned}
& f^{\prime \prime}(4)=0 \text { positive, } \\
& f^{\prime \prime}(-1)=-18
\end{aligned}
$$

$$
f^{\prime \prime}(2)=0
$$

f increasing.

$$
\Leftrightarrow f^{\prime}>0
$$

$$
\begin{aligned}
& f^{\prime}>0 \Leftrightarrow f \text { increases } \\
& f^{\prime}<0 \Leftrightarrow f \text { decreases }
\end{aligned}
$$

