Lecture 30 * Information about exame April 22 8:30-10:15 * Do work on paper and then take a photo, then upload to gradescope.com. reither polf or images. Demostration: × Practice exam been posted. * Official instanctions to come from Prof-Andersen.

Last few lectures. critical point /+'(c) =0 | f'(c)= DNE local min local max Venn dragran. local mare "peale" Should be able to velation ships hold. explain why these

Today = Finish 4.5. Key fact: f1>0 increasing ("uphill"). mean s 55 ()de creasing ("downhill"). f'<0 means 12 (\rightarrow) So, if you know the signs of fl, you can sketch a graph of Ēg Suppose (-20,1) $\begin{cases} f'>0\\ f'(i)=0 \end{cases}$ on (42) J'20 5925=0 J'20 on (2,00) Sketch what the function looks like.

see that From this "technique" we determina if f'(c)=0, we can whether it is 4 local max × local min meither inflection

First derivative Lest if c is a critical point of f,) if f' changes from pos to mag, then c is local max. 25 if f' changes from neg to pos, then c is local min. 3) if f' doesn't change sign c is weither local min or local max.

Concar	ucty				· · · ·		· · ·	• •	• •
Vefe	nitron	84	f	is	fuc	creas	129	• •	• •
Øf	۲. S	000	ردمه	- v	P.	· · ·	· · · ·	• • • •	• •
	· dece Concau	reasi o d	ncg1 own.		e E	ĉ · S	· · · ·	• • • • • •	• • • • • •
•••••	• • • • • • • •			• • • •	• • •	• • •	• • •	• •	• •
(-xa ha		• • • •		• • • •	• • •	• • •	• • •	• •	• •
	<u>pres</u>	• • • •		• • • •	• • •	• • •	• • •	• •	••••
	• • • • • • •	• • • •		o o o o	• • •	0 0 0	• • •	• •	• •
				• • • •	• • •	• • •	• • •	• •	• •
	· · · · · · · ·			• • • •	• • •	0 0 0	• • •	• •	• •
	· · · · · · · ·		• • • •	o o o o	• • •	0 0 0	• • •	• •	•••
		• • • •	• • • •	• • • •	• • •	0 0 0	• • •	• •	• •
		• • • •	• • • •	• • • •	• • •	• • •	0 0 0	• •	• •
		• • • •	• • • •	· · · · ·	• • •	• • •	• • •	• •	• •
£	i-1creas	ineg	30	f.	ξ5	Cond	Land	Ч	>
• • • • •				• • • •	• • •	• • •	• • •	• •	• •
		• • • •	• • • •	• • • •	• • •	• • •	• • •	• •	• •
		• • • •	• • • •	• • • •	• • •	• • •	• • •	• •	• •
• • • • •		• • • •	• • • •	• • • •	• • •	0 0 0	• • •	• •	• •
		• • • •	• • • •	• • • •	• • •	0 0 0	0 0 0	• •	• •

Quiz 7100 b) concave up c) noither. increasing 50 Concave up. Quiz f 20. a) concave up (50/0,6) concave dovo c) neither. decreasing Ş S con cave doce

Quiza t 27 a) concave up 30% b) concave down Stora c) neither. Q » l'inflection point" F' decreasing concave down f' increasing 50 concave up. 07 (a, 20) · · ON · (-10, a) Note: f itself You have already always. Heard "inflection point" in relation to the number of coronovinus cases.

8 bservalion Concave of f' increasing of f' >0 decreasing & f"<0 Concave () 51 So now we can answer: f(x)=x3-6x2+9x+30 cohere is it concave up? it concave down? Soln. $f'(x) = 3x^2 - 12x + 9$ f''(x) = Gx - 1Z $\gamma > 2$ So (f"(4) 50 f X < 5. $\int f''(x) < 0$ $\int f''(x) = 0$ if x = S

concave up on (2,0°), is concave down og (0,2). You can combine this with the first derivative to get sketch of fo

f'(x)= 3x2-12x+q. $=3(x^{2}-4x+3)$ = 3(x-4)(x+1).x=4 and x=-1 are critical points. So 0 mendum f'(2) = 0.

Critica local mi. 5. local min. Inflection point also critical. fl increasing () f concave 5 creasing @f'>0 5'>0€ f increasies f decreases f<00

43 aether Concave down Con caus $f'(x) = 3x^2$ f'(6) = crit Port " Max

. 0 • ۰. ۰. • . 2 • . • • •