Lecture 29
Last time :
Local minima: "valley"

Local maxima: "peak"

Example

Theorem: if f has local nin/max at C_{1} thee C is a critical point. Definition c is crit point if $f^{\prime}(c)=0$ or $f^{\prime}(c)$ DNE.

$$
f(x)=1 x
$$

In this example, loci min at $x=0$, but $f^{\prime}(0)$ ONE

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{|h|}{h}
$$

DNE because

$$
\begin{aligned}
& \lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=1 \\
& \lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=-1
\end{aligned}
$$

Definition: local extroma \Rightarrow local maximin.

Today Fincling absolute extrema
Q: Given a function f, how to find the absolute min/max: on interval I?

Key observation abs mim/max must be of

* one of the local ming
* one of the endpoints of I

Wecar use this to create a procedure for finding abs minmax:

Example: Find the absolute max and absolute min of

$$
f(x)=-x^{2}+3 x-2 \text { over }[1,3]
$$

Soln: -

1. Find the candidates:
(a) The critical points:

$$
\begin{aligned}
& f^{\prime}(x)=-2 x+3 \\
& f^{\prime}(x)=0 \quad \text { at }-2 x+3=0
\end{aligned}
$$

at $x=3 / 2$
bb) Endpoints: 1 and 3 .
2. Evaluate f or the candidates

x	$f(x)$	Conclude
$\frac{3}{2}$	$\frac{1}{4}$	abs max
1	0	
3	-2	abs min.

$$
\begin{aligned}
& f(3 / 2)=-\left(\frac{3}{2}\right)^{2}+3\left(\frac{3}{2}\right)-2=\frac{1}{4} \\
& f(1)=-1^{2}+3(1)-2=0
\end{aligned}
$$

Answer: abs min at $x=3$
abs max at $x=3 / 2$

Ch 4. 5 what of tells us about Shape of graph

Recall?
$f^{\prime}(x)>0$ means f is increasing ("uphill")
$f^{\prime}(x)<0$ means f is decreeing ("downhill(").

Example

$$
\begin{aligned}
f(x)= & \frac{1}{3} x^{3}-\frac{5}{2} x^{2}+4 x \\
f(x) & =x^{2}-5 x+4 \\
& =(x-4)(x-1)
\end{aligned}
$$

$$
f^{\prime}(x)=\underbrace{\left.\frac{101}{l}-4\right)}_{\text {positive }}\left(x_{\text {negation }}^{x^{1 / 1}}\right.
$$

If $x<4$ and $x>1$, then

$$
f^{\prime}(x)<0 \text {. }
$$

