Plan for next few lectures
(4.3) (Maxima and Minima)
(4.5) (Derivatives and shape of graph).
(4.8) (L Hopital's rule).

Exam will be on:

$$
3.3-4.3,4-5,4.8
$$

Practice exam out this week.

Last Lecture: We defined the sentence "f has an absolute minimien at c ". If means $f(c) \leqslant f(x)$ for all x Quiz

The abs min of t is at
a) -1 $\leftarrow 40 \%$
b) -0.5
c) 0
d) $0.5 \longleftarrow$ correct answer (35\%)
e) 1

Local Minimum
Example.

Definition f has a local minimum at e if
when you you zoom in af $(c, f(c)$), it looks like an abs_min.

In other words, in a local neighborhood around c, c is a minimum.

Similar definitions for local maximum and absolute maximum.

- (ocal minimum. Cand a(so
absoluate
minimin)

Some functions donct have absolute min:

Critical points
Definition:
cis a critical point for f if

$$
f^{\prime}(c)=0
$$

Example

$$
\begin{aligned}
& f(x)=(x-1)^{2}+1 \\
& f^{\prime}(x)=2(x-1)
\end{aligned}
$$

So $f^{\prime}(1)=0$
So 1 is a critical point for f

Theorem 4.2
if f has a local min. or local max at c.
Then c is a critical pt for f

Example

$$
f(x)=(x-1)^{2}+1
$$

* 1 is a local
- $\quad f^{\prime}(x)=2(x-1)$
$f^{\prime}(1)=0$.

min.

f is a critical polit-

Why this is useful:
if we want to the local min/max of a function, we only need to consider critical pts.

Examples
Example a)

$$
f(x)=\frac{1}{3} x^{3}-\frac{5}{2} x^{2}+4 x
$$

Find critical points:

$$
\begin{aligned}
& f^{\prime}(x)=x^{2}-5 x+4 \\
& f^{\prime}(x)=0 \Leftrightarrow x^{2}-5 x+4 x-0 \\
&\Leftrightarrow x-4)(x-1)=0 \\
& \Leftrightarrow x=4 \text { or } x=1
\end{aligned}
$$

So crit points ane 4 and 1
Theorem tells us that local min/max have to be at 4 or l

Verify via graph:

Why is this interesting:

* Finding the local minima/maxima. feels like a "geometric" operation
* Finding critical point a very algebraic operation.

It's reteresting that these 2 operations ane related.

