Lecture 27 hast time." estimate f(x) near x=aby its linear approximation $y = f'(\alpha)(x - \alpha) + f(\alpha)$ Example: $f(x) = x^2$, then f'(x) = 2x, f'(a) = 2alinear approx at x=a is 20 $y = 2\alpha(x - \alpha) + \alpha^2$ Choosing different values of a, gives different lines See graph/animation

.

.

.

Today: differentials (Ch.4.2). What we just did: Usød linear approx function values to estimate Another perspective: Using derivatives to estimate the change in a function. Warmup Excercise $A = x_5 + 5x$ x = 3 "What is My and · · A(· · · · · · change in y $\Delta x = 0.1$ change on x is the change in y, if "What you change x from 8=3 to X= 3+0.1 (1

Pol(: a) 15 6) 0.81 50 0/0 < c) 15-81 250/0 d) 15.04 "What is the approximate Ay from x=3 to x=3.1 $(y = X^2 + 2x)$ $\frac{dy}{dx} = 2x + 2$ approx. Change in x dy = (2x+2)dx, differential So dy= 8 dx at x=3SO dy = 0.8 Tf dx = 0.1So

Example 4.86) $y = e^{x} + sin(x)$ a) What is My when X = 0 $\Delta x = 0.2^{\prime\prime}$ b) Use differentials to estimate Ay. a) $\left(e^{0.2} + \sin(0.2)\right) - e^{0} + \sin(0)$ $\Delta y = 0.42007...$ b) $dy = e^{x} + cos(x)$ dy=[ex+cos(x)]dx dy= 2 dx a + x = 0dy = 0.4 $\dot{q} = d\kappa = 0.2$

Maxima	and	mining	Ch	4.2	· · · · ·	
Quiz:		· · · · · ·	· · · · · ·	· · · · ·	· · · · · ·	· · · ·
Where	is.	the	minin	m	6	
$f(\mathbf{x})$	=~ ² t		· · · · · ·		· · · · · ·	
(a) 0	F		<=0.	· · · ·	· · · · · ·	· · · ·
P) 1				830	(0	
c) s d) D) NE			 	· · · · · · · · · · · · · · · · · · ·	
Q Nha f(x)	$f is = x^2 t$		mini	uur.	• • • •
Aus:	1					
	· · · · · ·	· · · · · ·		· · · ·	· · · · · ·	
· · · · · · · · · · ·				· · · · ·	· · · · · ·	
	· · · · ·	· · · · ·	· · · · · ·	· · · ·	· · · · ·	• • • •

Definition An absolute minimum at 'c' means f(c) is smaller for equal to) than every other g(x). Example: Absolute minsuum is at x=0 for $f(x)=x^2+1$. Example: absolute minimum of f(x) = sm(x) is at $\frac{3\pi}{2} + k 2\pi$, $k \in \mathbb{H}$ There are infinitely many locations for the absolute minimum.

Example y=x2+ X=0 So abs min is at x=0. Motivating question: Minimum for $y = x^{7} + sin(x) + e^{x}$ $- \tan(x)$ (x log(r) See next lecture.

= 2 - 1, 0, 1,KE integers