Lecture 27
hast time:
estimate $f(x)$ near $x=a$ by its linear approximation

$$
y=f^{\prime}(a)(x-a)+f(a)
$$

Example : $f(x)=x^{2}$, then

$$
f^{\prime}(x)=2 x, \quad f^{\prime}(a)=2 a
$$

So (inear approx at $x=a$ is

$$
y=2 a(x-a)+a^{2}
$$

Choosing different values of a_{i} gives different lines
See graph/ animation.

Today: differentials (Ch.4.2).
What we just did:
Used linear approx- to estimate function values

Another perspective: Using derivatives to estimate the change in a function.

Warmup Excercise

$$
y=x^{2}+2 x
$$

"What is Δy if $x=3$ and

$$
\underbrace{\Delta x=0.1^{11}}_{\text {change in } x}
$$

"What is the change in y i if you change x from $x=3$ to $x=3+0.1 \quad$,

Poll:
a) 15
b) $0.81<30 \%$
c) $15.81<25 \%$
d) 15.04

What is the approximate Δy from $x=3$ to $x=3.1$!

Soln

$$
\left(y=x^{2}+2 x\right)
$$

$$
\frac{d y}{d x}=2 x+2
$$

approver inge in x
so $\quad d y=(2 x+2) d x$
so $d y=8 d x \quad$ at $x=3$
So $d y=0.8 \quad$ if $d x=0.1$

Example 4.8 b)

$$
y=e^{x}+\sin (x)
$$

a) What is Δy when $x=0$

$$
\Delta_{x}=0.2^{\prime \prime}
$$

b) Use differentials to estimate Δy.
a) $\left(e^{0.2}+\sin (0-2)\right)-e^{0}+\sin (0)$

$$
\Delta y=0.42007
$$

b)

$$
\begin{aligned}
& \frac{d y}{d x}=e^{x}+\cos (x) \\
& d y=\left[e^{x}+\cos (x)\right] d x \\
& d y=2 d x \quad \text { at } x=0 \\
& d y=0.4 \text { if } d x=0.2
\end{aligned}
$$

Maxima and minima ch $4: 2$
Quiz:
Where is the minimum of

$$
f(x)=x^{2}+1
$$

a) $0{ }^{\leftarrow}$

$$
x=0 .
$$

b) 1
c) s
d) $\triangle D N E$
Q
What is the minimum of

$$
f(x)=x^{2}+1
$$

Ans: 1

Definition
An absolute minimum at 'c' means $f(c)$ is smaller for equal to) than even other $f(x)$

Example: Absolute minimum is at $x=0$ for $f(x)=x^{2}+1$

Example: absolute minimum of $f(x)=\sin (x)$ is af $\quad \frac{3 \pi}{2}+k 2 \pi, k \in \mathbb{Z}$

There are infinitely many locations for the absolute minimenn.

Example $\quad y=x^{2}+1$

So abs min is at $x=0$.

Motivating question:
Minimum for

$$
\begin{aligned}
y=x^{7} & +\sin (x)+e^{x}-\tan (x) \\
& +\frac{x}{\log (x)}
\end{aligned}
$$

See next lecture

$$
\begin{aligned}
& \mathbb{Z}=\{-1,0,1, \ldots\} \\
& k \in \mathbb{Z} \\
& \text { in integers. }
\end{aligned}
$$

