Lecture 26 (Ch 4.2) Linear Approximations and differentials

Recall: if $f(x)$ is a function, * $f^{\prime}(a)$ is the foslope

$$
\begin{array}{l}\text { *inst chare of at at } \\ \text { * derivative }\end{array}
$$

* The tangent line at $x=a$ is

$$
y=f^{\prime}(a)(x-a)+f(a)
$$

(The line with slope $f^{\prime}(a)$ and passing through $(a, f(a))$)

The "tangent line" is also called the "linear approximation"

Example 4.5

* Find the linear approximation of $f(x)=\sqrt{x} \quad$ at $\quad x=9$.
* Use the approx to estimate $\sqrt{9 \cdot 1}$

Sol

$$
\begin{aligned}
& f(x)=\sqrt{x}=x^{1 / 2} \\
& f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 x^{1 / 2}} \\
& f^{\prime}(a)=\frac{1}{2 \cdot a^{\prime / 2}}=\frac{1}{6}
\end{aligned}
$$

So the linear approx at $\begin{aligned} & x=9 \\ & y=3\end{aligned}$ $y=3$

$$
y=\frac{1}{6}(x-9)+3
$$

$$
f(9)=\sqrt{9}=3
$$

See graph. $\quad y=\frac{1}{6}(x-a)+3$
is an approximation to

$$
y=\sqrt{x}
$$

$y=\frac{1}{6}(x-9) \quad$ is not the tangent line because at $x=q \quad y=0$.

$$
y=\frac{1}{6}(x-9)+3 \quad \text { passes }
$$

through $(9,3)$:
at $x=a, \quad y=\frac{1}{6}(q-q)+3$

$$
\begin{aligned}
& =0+3 \\
& =3 .
\end{aligned}
$$

* Estimate $\sqrt{9-1}$ using linear. $\begin{gathered}\text { approx. }\end{gathered}$

Plug in $x-9.1$ ito

$$
\begin{aligned}
y & =\frac{1}{6}(x-9)+3 \\
& =\frac{1}{6}(9.1-9)+3 \\
& =\frac{1}{6}(0.1)+3 \\
& =3.0166666
\end{aligned}
$$

See that the estimate is ven good:

$$
\sqrt{9.1}=3016620625
$$

Poll Let $f(x)=(1+x)^{n}, \quad n \neq 0$

$$
f^{\prime}(0)=\frac{\text { b) }}{} 0
$$

c) 1
d) $n-1$

Answer a):

$$
\begin{aligned}
f^{\prime}(x) & =n(1+x)^{n-1} \cdot 1 \\
f^{\prime}(0) & =n(1+0)^{n-1} \\
& =n
\end{aligned}
$$

$$
\begin{aligned}
& x f(0)=(1+0)^{n}=1 \\
& x f^{\prime}(0)=x
\end{aligned}
$$

Example 4.7
a) Find the linear approx for

$$
f(x)=(1+x)^{n} \quad \text { at } x=0
$$

b) Use this to estimate $(101)^{3}$

Sola.
a) We already know $f(0)=1$

$$
f^{\prime}(0)=n .
$$

So the linear approx is

$$
\begin{aligned}
& y=n(x-0)+1 \\
& y=f(a)(x-a)+f(a)
\end{aligned}
$$

b)

Approx to $f(x)=(1+x)^{3}$ for tangent line. is

$$
y=3 x+1
$$

To approximate $(1001)^{3}$ lien f(0.01) plug in $x=0.01$ into $y=3 x+1$.

$$
\begin{aligned}
y & =3(0.01)+1 \\
& =0.03+1 \\
& =1.03
\end{aligned}
$$

Why $x=0.01$ and not $x=1.01$
Goal: (1.0) ${ }^{3}$.

$$
\begin{aligned}
& f(x)=(1+x)^{3} \\
& f(1.01)=(1+1.01)^{3}=(2.01)^{3} \\
& f(0.01)=(1+0.01)^{3}=(1-01)^{3}
\end{aligned}
$$

Where did $3 k+1$ come from? In part a), we found approx to $f(x)=(1+x)^{n}$ is

$$
y=n x+1
$$

Therefore, approx to

$$
\begin{aligned}
& f(x)=(1+x)^{3} \\
& y=3 x+1-
\end{aligned}
$$

Again, plot

$$
\begin{aligned}
& y=3 x+1 \\
& y=(c+x)^{3}
\end{aligned}
$$

Very close for x near 0 .

Next time $=42,4.3$

Questions (After Lecture)
Linear approx to

$$
\left.\begin{array}{rl}
y & =(1+x)^{n} \quad \text { af } \quad x=2 \\
\frac{d y}{d x} & =n(1+x)^{n-1} \\
& =n(3)^{n-1}
\end{array}\right] \text { slope }
$$

$\begin{aligned} A l \text { so } \quad y & =3^{n} \quad \text { at } \quad x=2 \text {. } \\ & =(1+2)^{n}\end{aligned}$
So Linear approx is

$$
y=n 3^{n-1}(x-2)+3^{n}
$$

Question: $3 x+1$?
As suming:
if $f(x)=(1+x)^{n}$ then approx

$$
\begin{gathered}
=5 \\
y=n x+1
\end{gathered}
$$

if $f(x)=(1+x)^{3}$ then approx is

$$
y=3 x+1
$$

