Lecture 25 Related Rates ch til
Key idea:

In symbols:
Relationship botureen

one determines the other

Last time we used

$$
V(t)=\frac{4 \pi r(t)^{3}}{3} \Rightarrow \frac{d V}{d t}=4 \pi r(t)^{2} \frac{d r}{d t}
$$

Today: more complicated examples
Review: Triangles

what is the relationship befireen x and s ?
$x^{2}+h^{2}=s^{2}$
(Pythagoras)
Problem (Example 4.2 of textbook).

Problem (Example 4.2 of textbook):

* Plane at height 4000 ft Constant speed $600 \mathrm{ft} / \mathrm{s}$ from man to tower.
* Radio lower es 3000 ft from nan.

Question: At what rate is the distance from man to plane changing when plane passes over tower

Step 7: Draw a picture.
give names to the things that are changing

Step 2. Write down into given, and what our goal is
in terms of the variables introduced in step. I.

$$
\frac{d x}{d t}=600 \quad \text { Goal: Find } \frac{d s}{d t}
$$ when $x(t)=3000$

Step 3 Find a relationship between $x(t)$ and $\delta(f)$

$$
x(t)^{2}+4000^{2}=s(t)^{2}
$$

4) Differentiate both sides Cappliy of to both sides) to get relationship loetwien $\frac{d x}{d f}$ and $\frac{d s}{d t}$

$$
2 x(t) \frac{d x}{d t}+0=2 s(t) \frac{d s}{d t}
$$

5) Solve for the goal.

$$
\begin{aligned}
\frac{d s}{d t} & =\frac{2 x(t) \frac{d x}{d t}}{\text { \&s(t) }} \\
& =\frac{(3000)(600)}{\delta(t)}
\end{aligned}
$$

Now $s(t)^{2}=3000^{2}+4000^{2}$
so $s(t)=5000$
so finally $\frac{d s}{d t}=\frac{3000-600}{5000}$

$$
=360 \mathrm{H} / \mathrm{s}
$$

$$
\begin{aligned}
s(t)^{2} & =3000^{2}+4000^{2} \\
& =9 \times 10^{6}+16 \times 10^{6} \\
& =25 \times 10^{6} \\
s(t) & =\sqrt{25 \times 10^{6}} \\
& =5 \times 10^{3}=5000
\end{aligned}
$$

Triangles Review

Relationship between θ and h ?

$$
\tan \theta=\frac{x}{h}
$$

Example 4.3
$6001+5\}$

Camera

5000 ft
Question: What is the rate of change of the angle of camera, when rocket at 1000 ff .

Step 1 Draw the picture:
Label things that are changing

Step 2
Given:
$G_{o a l}=\frac{d \theta}{d t}$ when

$$
\frac{d h}{d t}=600
$$

$$
h(t)=1000
$$

Step 3 Find rel between h and θ

$$
\tan \theta=\frac{h(f)}{5000}
$$

Fish problem by mimicing first example.

See hatbook to get unstuck

Next time: ch 4.2.

Question:
how do step 4 rz first example.
Step 3

$$
x(t)^{2}+4000^{2}=g(t)^{2}
$$

Step 4) Apply $\frac{d}{d t}$ to both sides

$$
2 x(t) \frac{d x}{d t}+0=2 s(t) \frac{d s}{d t}
$$

Why is $\frac{d}{d x} x\left(t^{2}=2 x(t) \frac{d x}{d t}\right.$?
Chain rule: $\quad \frac{d}{d x} x^{2}=2 x$

$$
\begin{aligned}
& \frac{d}{d x} \sin (x)^{2}=2 \sin (x) \cos (x) \\
& \frac{d}{d x} f(x)^{2}=2 f(x) \frac{d f}{d x} \\
& \frac{d}{d t} x(t)^{2}=2 x(t) \frac{d x}{d t}
\end{aligned}
$$

