Lecture 24
Last tine $\frac{d}{d x} \ln (x)=\frac{1}{x}$
Logarithmic Differentiation
if wo want to differentiate, sag

$$
y=\frac{x(2 x+1)^{1 / 2}}{e^{x} \sin ^{3}(x)}
$$

we could use product (chain rule/ quotient rule:

On the other hand, we can take of these log lours:

$$
\begin{aligned}
& * \log \left(a^{b}\right)=b \log (a) \\
& * \log (a \cdot b)=\log (a)+\log (b) \\
& * \log (a / b)=\log (a)-\log (b) \\
& * \log (1)=0
\end{aligned}
$$

1. Take in of both sides

$$
\ln y=\ln \left(\frac{x(2 x+1)^{1 / 2}}{e^{x} \sin ^{3}(x)}\right)
$$

2 Use log lows to expand the eq.

$$
\begin{aligned}
& \ln y=\ln \left(x(2 x+1)^{1 / 2}\right)-\left(\left(\ln \left(e^{x} \sin ^{3}(x)\right)\right)\right. \\
& =\ln (x)+\ln \left((2 x+1)^{1 / 2}\right)-\left(\ln \left(e^{x}\right)+\ln \left(\sin ^{3}(x)\right)\right) \\
& \ln (y)=\ln (x)+\frac{1}{2} \ln (2 x+1)-x-3 \ln (\sin (x))
\end{aligned}
$$

3. Differentiate beth sides (implicitly)

Apply $\frac{d}{d x}$ to both sides?

$$
\begin{array}{r}
\frac{1}{y} \cdot \frac{d y}{d x}=\frac{1}{x}+\frac{1}{2} \frac{1}{2 x+1} \cdot 2-1 \\
-3 \frac{1}{\sin (x)} \cos (x)
\end{array}
$$

$$
\ln \left(e^{x}\right)=x
$$

4. Solve for $\frac{d y}{d x}$, plugin y.

$$
\begin{aligned}
\frac{d y}{d x} & =y\left(\frac{1}{x}+\frac{1}{2 \pi+1}-1-3 \frac{\cos (x)}{\sin (x)}\right) \\
& =\frac{x(2 x+1)^{v_{2}}}{e^{x} \sin ^{3}(x)}\left(\frac{1}{x}+\frac{1}{2 \pi+1}-1-3 \frac{\cos (x)}{\sin (x)}\right)
\end{aligned}
$$

Related Rates Ch 4.1
Blowing up balloon, putting in $2 \operatorname{cm}^{3}$ of air per second

As the balloon gets bigger, the rale of which the radius changes, gets smaller.
(Even though, radius is gelling bigger)

How to say this using the language we've developed:

Let $r(f)=$ radius of balloon at time t

$$
\left[\begin{array}{r}
\text { As }(t) \text { gets bigger, } \\
r^{\prime}(t) \text { gets smaller }
\end{array}\right.
$$

We can use calculus to quantify this.

Wet $v(f)=$ volume of balloon at time t

Then "patting in $2 \mathrm{~cm}^{3}$ of air 1 second" means "Volume is increasing 6 g 2 every secondic
lie.

$$
V^{\prime}(t)=2 \quad \mathrm{~cm}^{3} / \mathrm{s}
$$

not

$$
\begin{aligned}
& V^{\prime}(t)=2 t \\
& V^{\prime}(0)=0 \\
& V^{\prime}(2)=4
\end{aligned}
$$

How to use this to find $s^{\prime}(f)$.
Use relationship between volume and radius.

$$
\begin{aligned}
V & =\frac{4 \pi r^{3}}{3} \\
V(t) & =\frac{4 \pi r(t)^{3}}{3}
\end{aligned}
$$

Can use relationship between
V and r
to find relationship between V^{l} and $r l$ -
By differentiating:

$$
V(t)=\frac{4 \pi r(t)^{3}}{3}
$$

Diff both sides: (Apply ot)

$$
V^{\prime}(t)=\frac{4 \pi}{3} \cdot 3 r(t)^{2} \cdot r^{\prime}(t)
$$

(or)

$$
\left(\frac{d}{d t} v\right)=\frac{4 \pi}{3}-3 r^{2}\left(\frac{d r}{d t}\right)
$$

relationship between $\frac{d U}{d t} ; \frac{d r}{d f}$

So

$$
\begin{aligned}
r^{\prime}(t) & =\frac{v^{\prime}(t)}{4 \pi r(t)^{2}} \\
& =\frac{2}{4 \pi r(t)^{2}} \\
r^{\prime}(t) & =\frac{1}{2 \pi r(t)^{2}}
\end{aligned}
$$

Egg When radius is 6 cm , how quidely es the radius increasing?

Ans:

$$
\begin{aligned}
r^{\prime}(t)=\frac{1}{2 \pi 6^{2}} & =\frac{1}{72 \pi} \\
& \approx 0004
\end{aligned}
$$

