Lecture 23 Ch 3.9 has time we found that if $f(x) = e^{x}$ where e= 2.718... then f'(x)=ex List of derivatives: * dx x = n × n - 1 $x = \frac{d}{dx} \sin(x) = \cos(x)$ * $g_{x} \cos(x) = -\sin(x)$ $* \frac{d}{dx} e^{x} = e^{x}$ Example: de sin(x) . ex a) $e^{x} cos(x)$ 20% b) ex sin(x) 1 D 0 (D C) $e^{x} s(n(x) + e^{x} cos(x))$ 60 0/0

Answer c): d sin(x) - ex = d sin(x) ex T+ sink) of (ex) productorel $\cos(x) e^{x}$ t sin(x) ex Today Derivative of loge(x) =ln(x)Recal In(x) is inverse of ex t e e lu(x) $lu(e^{\times}) = X$

Want to find $\frac{d}{dx}$ $\ln(x)$. Oue way: use limit definition. $f'(x) = \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h}$ implicit differentiation Recall $i \int y^2 = x$ differentiate both sides a) 2y = 30/0 6) $2y \frac{dy}{dx} = 1$ 65010 c) $2y \frac{dy}{dx} = 1 \cdot \frac{dx}{dx}$ 26 %

Back to derivative of log(x) ln (x) Sappose y = ln(x)Then $e^{y} = e^{\ln(x)} = \chi$ 64=4 differentiate both sides. Nov ev dy = 1 $\frac{dy}{dx} = \frac{1}{e^{y}}$ 50

Summary : $\frac{d}{dx}$ $\ln(x)$ Makes sense: When x is large, slope is almost E.g. H- x= 20. d In(x)= $\frac{1}{20} = 0.05$ Example Find dy $y = \left| x(x^2) \right| =$ 530/0 42010 2 %

Auswer: b) Chain rule. $\frac{d}{dx}\left(\ln(x^2)\right) = \frac{1}{x^2} \cdot \frac{d}{dx}x^2$ $=\frac{\chi_2}{1}Z\chi$ \overline{x} $y = \ln(x^2)$ $d(k) = \chi_5$ where = f(g(x))f(x) = lu(x)So from chain rule: g'(x) = 2x $\mathcal{G}' = f'(g(x)) - \mathcal{G}'(x)$ $f'(x) = \frac{1}{2}$ $\frac{1}{\chi^2} \cdot 2\chi$ $if y = sin(x^2)$ then $\frac{dy}{dx} = \cos(x^2) \cdot 2x$.

if y= sin(x2) $\frac{dy}{dx} = \cos(x^2) \cdot 2x$ if y = sin(x)dy = cos(x)d dx ln(x2) $=\frac{1}{\chi^2} \cdot \frac{d}{dx} x^2$ $=\frac{1}{x^2} \cdot 2x$

Logarithmic Differentiation. Find dy of $) \quad y = x^{\pi}$ z) $y = \frac{\chi(2x+i)^{1/2}}{e^{\chi}S^{2}T(\chi)}$. For (): Take In both sides of log lows: $log(a^{b}) = bln(a)$ $ln(y) = ln(x^{x})$ $luly) = \chi lu(x)$ Differentiale both sides $\frac{1}{y} \cdot \frac{d_y}{dx^2} = \left(\frac{d}{dx^2}\right) \left[u(x) + \gamma\left(\frac{d}{dx}\right)u(x)\right)$ $= \left| u(x) + \chi\left(\frac{x}{2}\right) \right|$

 $\frac{1}{4} \frac{dy}{dx} = \ln(x) t$ Solve for dy dy dy = $y\left(\left(n(\kappa)+1\right)\right)$ dy dy X^{X} ($l_{n}(x) \neq 1$) $X(2x \in I)^{N_2}$ 2) $e^{\kappa} sin^{3}(\kappa)$ D) Take In of both sides 2) Use log laws to cimplify $* \log(a^b) = b\log(a)$ * $log(a\cdot b) = log(a) + log(b)$ $\times \log\left(\frac{a}{b}\right) = \log(a) - \log(b).$ 3) Implicitly diff.