Lecture 23 ch 3.9
last time we found that if

$$
f(x)=e^{x} \quad \text { where } \quad e=2.718 \ldots
$$

then $f^{\prime}(x)=e^{x}$
List of derivatives:
$* \frac{d}{d x} x^{n}=n x^{n-1}$

* $\frac{d}{d x} \sin (x)=\cos (x)$
* $d x \cos (x)=-\sin (x)$
* $\frac{d}{d x} e^{x}=e^{x}$

Example: $\frac{d}{d x} \sin (x) \cdot e^{x}$
a) $e^{x} \cos (x) \quad 20 \%$
b) $e^{x} \sin (x) \quad 100(0$
c) $e^{x} \sin (x)+e^{x} \cos (x) 60 \%$

Answer c):

$$
\begin{array}{r}
\frac{d}{d x} \sin (x)-e^{x}=\left(\frac{d}{d x} \sin (x)\right) e^{x} \\
+\sin (x) \frac{d}{d x}\left(e^{x}\right) \\
\quad \begin{array}{r}
\text { product } \\
\text { rule }
\end{array} \\
=\cos (x) e^{x} \\
+\sin (x) e^{x}
\end{array}
$$

Today Derivative of $\log _{e}(x)$

$$
=\ln (x)
$$

Recall $\ln (x)$ is reverse of e^{x} i te

$$
e^{\ln (x)}=x \quad \ln \left(e^{x}\right)=x
$$

Wont to find $\frac{d}{d x} \ln (x)$.
One way:
use limit definition.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln (x)}{h}
$$

Recall implicit differentiation
if $\quad y^{2}=x$
differentiate both sides
a) $2 y=1$
3%
b) $2 y \frac{d y}{d x}=1$

$$
65 \circ 6
$$

c) $2 y \frac{d y}{d x}=1 \cdot \frac{d x}{d x} \quad 26 \%$

Back to derivative of $\log _{e}(x)$ $\ln (x)$
Suppose $y=\ln (x)$
Then

$$
\begin{gathered}
e^{y}=e^{\ln (x)}=x \\
e^{y}=x
\end{gathered}
$$

Now differentiate both sides.

$$
e^{y} \frac{d y}{d x}=1
$$

So

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{e^{y}} \\
& =\frac{1}{x}
\end{aligned}
$$

Summary:

$$
\frac{d}{d x} \ln (x)=\frac{1}{x}
$$

Makes sense:
When x is large,
slope is almost o
Egg \quad ff $x=20$

$$
\frac{d}{d x} \ln (x)=\frac{1}{20}=0.05
$$

Example
Find $\frac{d y}{d x}$ if

1) $y=\ln \left(x^{2}\right)=$
a) $\frac{1}{x^{2}} 530 \%$
b) $\frac{2}{x} 42010$
c) $\frac{1}{x} 2 \%$

Answer: b)
Chain rule.

$$
\begin{aligned}
\frac{d}{d x}\left(\ln \left(x^{2}\right)\right) & =\frac{1}{x^{2}} \cdot \frac{d}{d x} x^{2} \\
& =\frac{1}{x^{2}} 2 x \\
& =\frac{2}{x}
\end{aligned}
$$

$$
\begin{aligned}
& y=\ln \left(x^{2}\right) \\
&=f(g(x)) \quad \text { where } \quad g(x)=x^{2} \\
& f(x)=\ln (x)
\end{aligned}
$$

So from chain rule:

$$
\begin{aligned}
& y^{\prime}=f^{\prime}(g(x))+g^{\prime}(x) \\
& =\frac{1}{x^{2}} \cdot 2 x \\
& y=\sin \left(x^{2}\right) \\
& \text { then } \frac{d y}{d x}=\cos \left(x^{2}\right) \cdot 2 x .
\end{aligned}
$$

$$
y^{\prime}(x)=2 x
$$

$$
f^{\prime}(x)=\frac{1}{x}
$$

if $\quad y=\sin \left(x^{2}\right)$

$$
\frac{d y}{d x}=\cos \left(x^{2}\right) \cdot 2 x
$$

if $y=\sin (x)$

$$
\frac{d y}{d x}=\cos (x)
$$

$$
\begin{aligned}
\frac{d}{d x} \ln \left(x^{2}\right) & =\frac{1}{x^{2}}-\frac{d}{d x} x^{2} \\
& =\frac{1}{x^{2}} \cdot 2 x
\end{aligned}
$$

Logarithmic Differentiation.
Find $\frac{d y}{d x}$ ff

1) $\quad y=x^{x}$
or
2) $y=\frac{x(2 x+1)^{1 / 2}}{e^{x} \sin (x)}$

For 1):
Take ln of both sidles

$$
\begin{aligned}
& \ln (y)=\ln \left(x^{x}\right) \\
& \ln (y)=x \ln (x)
\end{aligned}
$$

Log lows:

$$
\ln \left(a^{b}\right)=b \ln (a)
$$

Differentiate both sides

$$
\begin{aligned}
\frac{1}{y} \cdot \frac{d}{d x} & =\left(\frac{d}{d x} x\right) \ln (x)+x\left(\frac{d}{d x} \ln (x)\right) \\
& =\ln (x)+x\left(\frac{1}{x}\right)
\end{aligned}
$$

$$
\frac{1}{4} \frac{d y}{d x}=\ln (x)+1
$$

Solve for $\frac{d y}{d x}$

$$
\begin{aligned}
& \frac{d y}{d x}=y(\ln (x)+1) \\
& \frac{d y}{d x}=x^{x}(\ln (x)+1)
\end{aligned}
$$

2)

$$
y=\frac{x(2 x+1)^{1 / 2}}{e^{x} \sin ^{3}(x)}
$$

1) Take ln of both sides
2) Use log laws to cinglify.

$$
\begin{aligned}
& * \log \left(a^{b}\right)=b \log (a) \\
& * \log (a \cdot b)=\log (a)+\log (b) \\
& * \log \left(\frac{a}{b}\right)=\log (a)-\log (b)
\end{aligned}
$$

3) Implicitly diff.
