Lecture 22 Derivatives of exponential and logarithm functions.
Problem: Suppose

* 1 person is infected on day 0
* Every day, each rifected person rifects 2 new people, and then recovers:

How many infected people ane there on day 3 ?
day 30? day x^{3}

Solution:

Event, number of infected is doubling:

- day $3 \div 1 \times 2 \times 2 \times 2=2^{3}=8$
* day $30=2^{30} \approx 1000,000,000$

$$
\underbrace{2 \times 2 \times 2-\times 2}_{30 \text { times }}
$$

* if $f(x)$ is the number of infected on day x,

$$
f(x)=2^{x}
$$

This is cen example of an exponential function.
Note: This is obviously a vency simplistic model and inaccurate stall a good starting point for other models:

Exponential Functions
For $\quad b>0$,

$$
f(x)=b^{x}
$$

is the exponential function. with base lo.
observations about the exponential function?

* For b large, b is growing quickly
* For $b<1, b^{x}$ rs decreasing
* For $b>1, b^{x}$ is increasing:

Basic facts about exponential:
Recall:

$$
\begin{aligned}
& \text { *(bah } b^{x+h} b^{x} b^{h} \\
& \underbrace{2^{3+5}}_{8+2-2}=2^{3} 2^{5}
\end{aligned}
$$

Today: Derivative of b^{x} Let $f(x)=b^{x}$
Then

$$
\begin{aligned}
f^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{b^{x+h}-b^{x}}{h} \\
= & \lim _{h \rightarrow 0} \frac{b^{x} b^{h}-b^{x}}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\left(b^{x}\left(b^{h}-1\right)\right.}{h} \left\lvert\, \begin{array}{l}
\operatorname{limith}^{\text {law }} \\
=b^{x} \lim _{h \rightarrow 0} 3(h) \\
3 \lim _{h \rightarrow 0} \frac{b^{h}-1}{h}(h) \\
=b^{x} \lim _{h \rightarrow 0} \frac{b^{h}-b^{0}}{h} \\
f_{h}
\end{array}\right. \\
& f^{\prime}(x)=b^{x} f^{\prime}(0)
\end{aligned}
$$

Eg
ff $f(x)=2^{x}$

$$
f^{\prime}(x)=2^{x} \quad f^{\prime}(0)
$$

Using graphing calculator, can est inmate $f^{\prime}(0) \approx 0.69$

$$
f^{\prime}(x)=0.69-2^{x}
$$

Doing some experiments, we see that

* $f^{\prime}(0)$ is increasing as b increasing
* Thenés a spectal value of b where $f^{\prime}(0)=1$

$$
\begin{aligned}
& \text { The is at } \\
& b \approx 2.718=e
\end{aligned}
$$

$$
0
$$

Euler's number.

$$
\begin{aligned}
& \text { Summary: } \\
& \text { For } f(x)=e^{27} \quad f^{2} \quad f^{\prime}(0)=1 \\
& \qquad f^{\prime}(x)=e^{x} \cdot I=e^{x}
\end{aligned}
$$

Example Find derivative of

1) $f(x)=3 e^{x}$
t) $f(x)=e^{3 x}$
2) $f(x)=e^{x^{2}}$
3) $f(x)=2^{x}$
4) $f^{\prime}(x)=3 \frac{d}{d x} e^{x}=3 e^{x}$
$2 f^{\prime}(x)=e^{3 x}\left(\frac{d}{d x} 3 x\right)=e^{3 x} \cdot 3$
chair rule
5) $f^{\prime}(x)=e^{x^{2}}\left(\frac{d}{d x} x^{2}\right)=e^{x^{2}}-2 x$
6) Recall: $\left(a^{b}\right)^{c}=a^{b c}$

Also $=e^{\ln (a)}=a$
So $f(x)=2^{x}=\left(e^{\ln (2)}\right)^{x}$ by ii)

$$
\begin{aligned}
f(x)=2^{x} & =\left(e^{\ln (2)}\right)^{x} \\
& =e^{\ln (2) x \quad \text { by }} \text {) }
\end{aligned}
$$

Same as ex 2)

So

$$
\begin{aligned}
f^{\prime}(x) & =e^{\ln (2) x} \cdot \frac{d}{d x}(\ln (z) \cdot x) \\
& =e^{\ln (2) x_{0} \ln (z)} \\
& =2^{x} \cdot \ln (z) \\
& \approx 2^{x} \cdot 069
\end{aligned}
$$

Check buebsite for notes t recordings:

$$
\begin{aligned}
& f(x)=e^{3 x} \\
& f^{\prime}(x)=?
\end{aligned}
$$

Need to ese chair rule
Recall:
if $f(x)=g(h(x))$

$$
f^{\prime}(x)=g^{\prime}(h(x)) h^{\prime}(x)
$$

Chain rule
In oui example,

$$
\begin{array}{r}
f(x)=g(h(x)) \\
g(x)=e^{x} \\
h(x)=3 x
\end{array}
$$

So

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(h(x)) h^{\prime}(x) \\
& =e^{3 x}-3
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=e^{\ln (z)-x} \\
& f^{\prime}(x)=e^{\ln (z) \cdot x}=\ln (z)
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=e^{3 x} \\
& g^{\prime}(x)=e^{3 x} \cdot 3
\end{aligned}
$$

