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The main object

« Let X, be the unit square [0,1]?
- To generate X, , |, for each square of X,
. Subdivide square into L X L squares of side length L ™!
« Choose K /4 uniformly random non-corner squares and replace them with
5 copies of [0,L.71]? glued to form a ‘cubical protrusion’

« This gives a random sequence X, X, X5, ... of Riemannian manifolds with conical singularities.

See http://math.stonybrook.edu/~bplin/subdivision-rule/ for K = 1 - 4 and L = 4.

Proposition: Almost surely, X, — X_ as metric spaces in the

Gromov-Hausdorff sense. X is a fractal: dim(X_,) > 2.

We are interested in the behavior of the conformal embeddings.

Uniformization Theorem

There is a unique H, > 0 and a unique Definition:
conformal map ¢, : X, — [0,1] X [0,H,] that . ¢, : X, — [0,1] X [0,H ] is the rectangular conformal embedding.
sends the corners of X, to the respective - mod(X,) := max(H,, H, ") is the (absolute) modulus of X, .

corners of the rectangle.



http://math.stonybrook.edu/~bplin/subdivision-rule/
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Main results

Subdivision rule 2 ;:

Theorem (L):

For K > 0, for sufficiently large L,

. supEmod(X,) < oo — 0}

n

. da>0: sup Eeomod®)” < o

n

Theorem holds in more generality: just need
P large and rotationally invariant distribution.
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(K=4+2, L=8, P=6)



Main results

Theorem (L):
For K > 0, for sufficiently large L,

. supEmod(X,) < oo

n

Ja>0: sup Ee™dE) < oo

n

Theorem (L):

. amod(Fn)Z F, is the surface obtained by putting two i.i.d. copies
Suppose Ja>0: Sup Ee < ©0. of X, next to each other

h to form a “domino”

Let ¢, : X, = [0,1] X [0,H,] be the rectangular conformal uniformization.
Almost surely,

« @, converges subsequentially to a homeomorphism X, — [0,1] X [0,H ]
* Any two subsequential limits are equal modulo quasiconformal map:

@ = [ o ¢ where fis quasiconformal.

fis K-quasiconformal if it maps infinitesimal circles to
infinitesimal ellipses of eccentricity bounded by K.

The theorems endow the fractal space X, with a (quasi)conformal structure.



Stochastic self similarity

« Our X, is a random sequence of metric measure spaces In other words, X, ; = R(X)

with boundary measure.
y « Where & : Prob(¥X) — Prob(X) where

Prob(X) = Probability distributions on conformal disks with boundary parameterization

+ The spaces are stochastically self similar:

« Our theorem implies that iterates of % have subsequential limits.

e Central limit theorem: can we show that &£ has an attractive fixed

point?

|EY

Xn+ 1

« Similar identities hold for random planar maps, e.g. Mullin bijection

for k = 8, and mating of trees for LQG.

« Mating of trees implies that the corresponding & has a fixed point
(LQG)

 fixed point sufficiently attractive =— convergence of conformal
embedding of RPM to LQG.




Deterministic subdivision rules

The conformal modulus of the following deterministic
rule degenerates as n — oo .
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Image from Bonk-Meyer 2017



Example: Flapped surface (Bonk Meyer)

Subdivision/Thurston iteration

Riemannian .,
manifolds -
L
Teichmdller space (([A:, y3) (C, 72) (C, 7/1) ((]i VO)
Moduli Space  z; € C — {0,1,00} 2 € C—{0,1,00} z1€C—1{0,1,00) zo€ C - {0,1,00}

Thurston’s topological characterization of rational maps

criterion for nondegeneracy of iterates in moduli space



Blown up lattes maps (Bonk-Hlushchanka-Iseli)

All images from Bonk-Hlushchanka-Iseli paper.

Example 1.
T -
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Clearly nondegenerate in moduli
space because subdivision is perfect.

Example 2.
"; ', '. ......... l‘v --p .
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Degenerates in moduli space
due to Thurston obstruction.

Example 3.

Theorem: Bonk-Hlushchanka-Iseli 21
As long as there are vertical and horizontal

flaps, then moduli stay bounded under
iteration.

Proof: Using Thurston’s criterion.



Proof ideas



Theorem (L):
For K > 0, for sufficiently large L,

., sup Emod(X)) < oo

n

n—+

1

[l =

Boundedness of moduli

Recall X, . ; is the welding of i.i.d. copies of X,..

View each X, as inducing a deformation of the complex
structure.
mod(X, ) measures the magnitude of the deformation, but

it is a very coarse measure.

In particular it does not work well with conformal welding:

Modulus of the deformed squares are both 1
because the deformations are /2 invariant.

But modulus of rectangle can be arbitrarily large.
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Boundedness of moduli

Definition: The energy &(X,) of X, is the Dirichlet energy of
the harmonic extension X, — [0,1]°

of the boundary parameterization 0X, — d[0,1]?

L>+4K
We have &(X,,, ;) < = Z &(X'Y) because we can concatenate maps:
i=1

. 1
(D) . 2

L*+4K
SOEE(X,)) < ——5—EB(X,)
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Boundedness of moduli

Theorem (L):
For K > 0, for sufficiently large L,
.SupE&(X)) < o

n

L? + 4K
SoE&(X,, ) < — E&(X).

This is still exponentially increasing growth.

However, we know from conformal
deformations in a grid tend to cancel each
other out: stochastic homogenization,
random QC maps, random walk on random
environment.
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Random QC maps

Theorem: (Astala-Rohde-Saksman-Tao, lvrii-Markovic):

Let A be a D valued random variable, with “rotationally
invariant” distribution.

Let p,, be the random Beltrami coefficient on [0,1]?
obtained by putting

an i.i.d. copy of A on each 1/n X 1/n subsquare.

Let f, : C — C be the solution to Beltrami equation fixing
0,1, 0.

Then for alle > 0, lim P(|[f,, — Id|| > €¢) = 0.

n—oo

|A] <c <1 from ARST
No restrictions on A from lvrii-Markovic

Image of unit square under random quasiconformal map

. Ut = 0
G ﬁ%; i
n~ 35

Image from Astala-Rohde-Saksman-Tao,
with credit to David White.



Cancellation of Beltrami coefficients

Theorem (L): Ve > 0, VM > 0, 3¢, > O :

Let 14 be a random Beltrami coefficient on [0,1]? with rotationally invariant

distribution.

Suppose E&(u)'+¢ < M.

If jt, ..., 4y are i.i.d. samples of y then

E&( [Z; zj]) — 1 < E - T(E)

where E = E(&(u) — 1) and T(x) = min(x, x°).

Using this, we can prove the desired contraction:

« Decompose &(X, +1) into sum of energy from

large embedded subsquare and energy from the other squares.

« Obtain something like (with € = 1)

EEX,,) <(-c)EEX,)+1, and

E(&(X,11)°) < (1 = )E(E(X,)") + CEE(X,))

This latter bound does not rely on any sort of cancellation.

 Boundedness of E&(X,,) and [E%(X,f) follows.
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Proof of cancellation lemma

The random cancellation theorem follows from the following deterministic statement.

Lemma (L): ¢, > 0 :
Suppose }y, ..., 45 are Beltrami coefficients on [0,1]°.
Then there exists rotations ry, ..., r, € Z, and an injective 7 : {1,2,3,4} — {1,2,3,4,5} such

that

o 1
%([ e zuﬂz]) _1< n é (&) — 1) — COT(mIle &) — 1)

B3Hz3 TaMga

where T(x) = min(x~!, x°).

Proof:

(0,17

1 4
%( [mﬂnl rzﬂ:ﬂ]) —1< Z Z (%(,uﬂk) — 1)

3Hz3 TaMrpa
i=k
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Proof of cancellation lemma

The random cancellation theorem follows from the following deterministic statement.

Lemma (L): ¢, > 0 :
Suppose }y, ..., 45 are Beltrami coefficients on [0,1]°.
Then there exists rotations ry, ..., r, € Z, and an injective 7 : {1,2,3,4} — {1,2,3,4,5} such

that

B3Hz3 TaMga

o 1
%([ e zuﬂz]) _1< n é (&) — 1) — COT(mIle &) — 1)

where T(x) = min(x~!, x°).

Proof:

[0,1]?

Reduce Dirichlet energy by perturbing in the right way
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Proof of cancellation lemma

The random cancellation theorem follows from the following deterministic statement.

Lemma (L): ¢, > 0 :
Suppose }y, ..., 45 are Beltrami coefficients on [0,1]°.
Then there exists rotations ry, ..., r, € Z, and an injective 7 : {1,2,3,4} — {1,2,3,4,5} such

that

B3Hz3 TaMga

o 1
g([ o zuﬂz]) _1< n é‘: (&) — 1) — cOT(mlflx &) — 1)

where T(x) = min(x !, x?).

Proof:

N_ _~

By straightening the ellipse field,
there is a function with Dirichlet energy 1,
and with translation and rotational symmetries. 18



Proof of cancellation lemma

The random cancellation theorem follows from the following deterministic statement.

Lemma (L): ¢, > 0 :
Suppose }y, ..., 45 are Beltrami coefficients on [0,1]°.
Then there exists rotations ry, ..., r, € Z, and an injective 7 : {1,2,3,4} — {1,2,3,4,5} such

that

B3Hz3 TaMga

o 1
g([ e M]) _1< n é (&) — 1) — cOT(mlflx &) — 1)

where T(x) = min(x~!, x°).

Proof:

The symmetries imply that we can (0,117

truncate the perturbation so that it doesn’t change the
boundary values.

T3Hz3  TaHza

o I <
%([ e W]) —l1<o Z‘Z (g = D = eoT(max &) = 1)
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Cancellation lemma proof sketch

., U5 are distinct:

For the general case when y, ..

-~

-

L

oln|jv/lvn|leln|5|2].

SIZ|T|Z|T|2|S|vw|~

n

o

VlE|P|E|P
S|Z|T|2

S5vn|w|wn

D

winN

2|11|12|1|2|5|w|wjn|evn|w|(n|(5(2(1|2

Slula|ln|la|lv|aluvls|zZITIZITIZIS|vw|a]|wv

5o

T2 L B e e L R Ll A KA R K

femiNnilal Rl A

oln|einv|e|lnlS|21112(1]2

ARSEA R K B ) L e R e

Nmfn[mnimin|4](3[(4(3(4(3(4|N|m|N|m|n|m|v(4(3(4

o

--|'€VEVIE?NwNwNwNVEV€V€$

wiew | eivljerlnls5|21112]1112

206 |l|e |||~ ]l~]1512111211121F

"

el G(Z|T1Z2|T]1Z2IS|v|a|n|ae|n

-

q9|2|11|2|1|2)|5

51211

Glue Beltrami coefficients in the following symmetric way
qm|~N413/4(3(4|3|4

s~ 51211121112|5 |||~ |lx]le]l~]l51211121112|5]IH|e|~]le|lx|le|~«|5(2/1112

NmIN[4 34343 |4|N|m|NmNm|~N|4(3|4(3|4(3|4|NIr

wwnlen|S51211]12]11]2|5

MmN ImMINI4 314131413 (4IN|mo|N|mNuImIN]4I314(3(4|13|4INImNnIminlm|(N|(413|14]3]

e« 51211121112|5 |||~ |~]e]|<]5]1211121112|5IH]w]A]lw|~le|<|5|21112]

PILEIPIEIRIvIWINIWIVIwWINIPIEIPIEIFIEIPIVVIWIM | w|ND
Is]

Il1Z|T1|2Z2|S|v|lajlu|lalun|la|wn

SlIT|Z(T|Z|S|v|a|jun|ajunla|lv|S|Z(T|(Z|T|2

E|IP|E(P|E|FIMVIwINvIWIMIWINIFIE|FP|E|PIE|FIMVWINwINWINIFIEIFIE|FIE|P (VW
SIT|Z(T|2|S|=|a]|=]|a|=|»(=|S|Z|T|(Z|T|2|S|~|a|=|a|=|(s|=|S|Z|T|2|T|2]|S|~
E|P|E(P|E|FIvVIwIMvIWIVIWINIFPIE|FIE|P|E|FIMVIWIMwIMWINMIFIEITIE|V|E|P
ZiT(Z|t(2|S|=|a|=]|a|=|a>|=|S|Z|[T|2|T|Z|S|=|>|=|>|=|=|=|S|Z|T|2|T|Z

-

Must be able to localize the “improvement” to one

of the 2x2 squares



Thank you!



