Conformal structures on stochastic subdivision rules

Peter Lin Stony Brook University

October 31 2022

Edited version of talk given at <u>Random Geometry and Statistical Physics Workshop</u> @ UPenn Oct 2022.

- Let X_0 be the unit square $[0,1]^2$
- To generate X_{n+1} , for each square of X_n ,
 - Subdivide square into $L \times L$ squares of side length L^{-1}
 - Choose K/4 uniformly random non-corner squares and replace them with 5 copies of $[0, L^{-1}]^2$ glued to form a 'cubical protrusion'
- This gives a random sequence X_0, X_1, X_2, \ldots of Riemannian manifolds with conical singularities.

See <u>http://math.stonybrook.edu/~bplin/subdivision-rule/</u> for $K = 1 \cdot 4$ and L = 4.

Proposition: Almost surely, $X_n \to X_\infty$ as metric spaces in the

Gromov-Hausdorff sense. X_{∞} is a fractal: dim $(X_{\infty}) > 2$.

(K = 4, L = 4, n = 2)

We are interested in the behavior of the conformal embeddings.

Uniformization Theorem

There is a unique $H_n > 0$ and a unique

conformal map
$$\varphi_n : X_n \to [0,1] \times [0,H_n]$$
 that

```
sends the corners of X_n to the respective
```

corners of the rectangle.

Definition:

- $\varphi_n : X_n \to [0,1] \times [0,H_n]$ is the rectangular conformal embedding.
- $mod(X_n) := max(H_n, H_n^{-1})$ is the *(absolute) modulus* of X_n .

Theorem holds in more generality: just need **P** large and rotationally invariant distribution.

4

Theorem (L):

For K > 0, for sufficiently large L,

```
\sup_{n} \mathbb{E} \operatorname{mod}(X_{n}) < \infty\exists \alpha > 0 : \quad \sup_{n} \mathbb{E} e^{\alpha \operatorname{mod}(F_{n})^{2}} < \infty
```

Theorem (L):

Suppose
$$\exists \alpha > 0$$
: $\sup_{n} \mathbb{E}e^{\alpha \operatorname{mod}(F_n)^2} < \infty$

Let $\varphi_n : X_n \to [0,1] \times [0,H_n]$ be the rectangular conformal uniformization. Almost surely,

- φ_n converges subsequentially to a homeomorphism $X_{\infty} \to [0,1] \times [0,H]$
- Any two subsequential limits are equal modulo quasiconformal map:

 $\varphi = f \circ \tilde{\varphi}$ where f is quasiconformal.

f is K-quasiconformal if it maps infinitesimal circles to infinitesimal ellipses of eccentricity bounded by K.

The theorems endow the fractal space X_{∞} with a (quasi)conformal structure.

 F_n is the surface obtained by putting two i.i.d. copies of X_n next to each other to form a "domino"

- Our X_n is a random sequence of metric measure spaces with boundary measure.
- The spaces are stochastically self similar:

d

 X_{n+1}

X _n	X_n X_n X_n X_n	X _n	X_n
X _n	X_n	X_n	X _n
X _n	X_n	X _n	X _n
X _n	X _n	X_n	X _n

In other words, $X_{n+1} = \mathscr{R}(X_n)$

• Where $\mathscr{R}: \operatorname{Prob}(\mathfrak{X}) \to \operatorname{Prob}(\mathfrak{X})$ where

 $\operatorname{Prob}(\mathfrak{X}) =$ Probability distributions on conformal disks with boundary parameterization

- Our theorem implies that iterates of ${\mathscr R}$ have subsequential limits.
- Central limit theorem: can we show that ${\mathscr R}$ has an attractive fixed point?

- Similar identities hold for random planar maps, e.g. Mullin bijection for $\kappa = 8$, and mating of trees for LQG.
- Mating of trees implies that the corresponding ${\mathscr R}$ has a fixed point (LQG)
- fixed point sufficiently attractive \Rightarrow convergence of conformal embedding of RPM to LQG.

The conformal modulus of the following deterministic rule degenerates as $n \to \infty$:

Image from Bonk-Meyer 2017

Subdivision/Thurston iteration

Thurston's topological characterization of rational maps = criterion for nondegeneracy of iterates in moduli space

All images from Bonk-Hlushchanka-Iseli paper.

Clearly nondegenerate in moduli space because subdivision is perfect.

Example 2.

P

Degenerates in moduli space due to Thurston obstruction.

Example 3.

Theorem: Bonk-Hlushchanka-Iseli `21 As long as there are vertical *and* horizontal flaps, then moduli stay bounded under iteration.

Proof: Using Thurston's criterion.

Proof ideas

Theorem (L):

n

```
For K > 0, for sufficiently large L, 

\sup \mathbb{E} \operatorname{mod}(X_n) < \infty
```

X _n	X_n X_n X_n X_n	X _n	X _n
X _n	X_n	X _n	X _n
X _n	X_n	X _n	X _n
X _n	X _n	X_n	X _n

- Recall X_{n+1} is the welding of i.i.d. copies of X_n .
- View each X_n as inducing a deformation of the complex structure.
- mod(X_n) measures the magnitude of the deformation, but
 it is a very coarse measure.
- In particular it does not work well with conformal welding:

Modulus of the deformed squares are both 1 because the deformations are $\pi/2$ invariant.

But modulus of rectangle can be arbitrarily large.

 $\overset{d}{=}$ X_{n+1}

Definition: The energy $\mathscr{C}(X_n)$ of X_n is the Dirichlet energy of

the harmonic extension $X_n \rightarrow [0,1]^2$

of the boundary parameterization $\partial X_n \rightarrow \partial [0,1]^2$

We have $\mathscr{C}(X_{n+1}) \leq \frac{1}{L^2} \sum_{i=1}^{L^2+4K} \mathscr{C}(X_n^{(i)})$ because we can concatenate maps:

So
$$\mathbb{E}\mathscr{E}(X_{n+1}) \leq \frac{L^2 + 4K}{L^2} \mathbb{E}\mathscr{E}(X_n).$$

Theorem (L):

For
$$K > 0$$
, for sufficiently large L ,
 $\sup_{n} \mathbb{E}\mathscr{E}(X_n) < \infty$

So
$$\mathbb{E}\mathscr{C}(X_{n+1}) \leq \frac{L^2 + 4K}{L^2} \mathbb{E}\mathscr{C}(X_n)$$

This is still exponentially increasing growth.

However, we know from conformal deformations in a grid tend to cancel each other out: stochastic homogenization, random QC maps, random walk on random environment.

Theorem: (Astala-Rohde-Saksman-Tao, Ivrii-Markovic):

Let λ be a \mathbb{D} valued random variable, with "rotationally invariant" distribution.

Let μ_n be the random Beltrami coefficient on $[0,1]^2$ obtained by putting an i.i.d. copy of λ on each $1/n \times 1/n$ subsquare.

Let $f_n:\mathbb{C}\to\mathbb{C}$ be the solution to Beltrami equation fixing 0,1, ∞ .

Then for all $\epsilon > 0$, $\lim_{n \to \infty} \mathbb{P}(||f_n - \mathrm{Id}|| > \epsilon) = 0.$

 $|\lambda| \le c < 1$ from ARST No restrictions on λ from Ivrii-Markovic Image of unit square under random quasiconformal map

Image from Astala-Rohde-Saksman-Tao, with credit to David White.

Theorem (L): $\forall \epsilon > 0, \ \forall M > 0, \ \exists c_0 > 0$:

Let μ be a random Beltrami coefficient on $[0,1]^2$ with rotationally invariant distribution.

Suppose $\mathbb{E}\mathscr{E}(\mu)^{1+\epsilon} \leq M$. If μ_1, \dots, μ_4 are i.i.d. samples of μ then $\mathbb{E}\mathscr{E}(\begin{bmatrix} \mu_1 & \mu_2 \\ \mu_3 & \mu_4 \end{bmatrix}) - 1 \leq E - c_0 T(E)$ where $E = \mathbb{E}(\mathscr{E}(\mu) - 1)$ and $T(x) = \min(x, x^3)$.

Using this, we can prove the desired contraction:

- Decompose $\mathscr{C}(X_{n+1})$ into sum of energy from large embedded subsquare and energy from the other squares.
- Obtain something like (with $\epsilon = 1$)

 $\mathbb{E}\mathscr{E}(X_{n+1}) \leq (1-c_1)\mathbb{E}\mathscr{E}(X_n) + 1, \quad \text{and}$ $\mathbb{E}(\mathscr{E}(X_{n+1})^2) \leq (1-c_2)\mathbb{E}(\mathscr{E}(X_n)^2) + C_0(\mathbb{E}\mathscr{E}(X_n))^2.$

This latter bound does not rely on any sort of cancellation.

• Boundedness of $\mathbb{E}\mathscr{E}(X_n)$ and $\mathbb{E}\mathscr{E}(X_n^2)$ follows.

Lemma (L): $\exists c_0 > 0$: Suppose μ_1, \dots, μ_5 are Beltrami coefficients on $[0,1]^2$. Then there exists rotations $r_1, \dots, r_4 \in \mathbb{Z}_4$ and an injective $\pi : \{1,2,3,4\} \rightarrow \{1,2,3,4,5\}$ such that $\mathscr{C}(\begin{bmatrix} r_1\mu_{\pi 1} & r_2\mu_{\pi 2} \\ r_3\mu_{\pi 3} & r_4\mu_{\pi 4} \end{bmatrix}) - 1 \leq \frac{1}{4} \sum_{i=k}^4 (\mathscr{C}(\mu_{\pi k}) - 1) - c_0 T(\max_k \mathscr{C}(\mu_k) - 1)$ where $T(x) = \min(x^{-1}, x^3)$.

Proof:

Lemma (L): $\exists c_0 > 0$: Suppose μ_1, \dots, μ_5 are Beltrami coefficients on $[0,1]^2$. Then there exists rotations $r_1, \dots, r_4 \in \mathbb{Z}_4$ and an injective $\pi : \{1,2,3,4\} \rightarrow \{1,2,3,4,5\}$ such that $\mathscr{C}(\begin{bmatrix} r_1\mu_{\pi 1} & r_2\mu_{\pi 2} \\ r_3\mu_{\pi 3} & r_4\mu_{\pi 4} \end{bmatrix}) - 1 \leq \frac{1}{4} \sum_{i=k}^4 (\mathscr{C}(\mu_{\pi k}) - 1) - c_0 T(\max_k \mathscr{C}(\mu_k) - 1)$ where $T(x) = \min(x^{-1}, x^3)$.

Proof:

Reduce Dirichlet energy by perturbing in the right way

Lemma (L): $\exists c_0 > 0$: Suppose μ_1, \dots, μ_5 are Beltrami coefficients on $[0,1]^2$. Then there exists rotations $r_1, \dots, r_4 \in \mathbb{Z}_4$ and an injective $\pi : \{1,2,3,4\} \rightarrow \{1,2,3,4,5\}$ such that $\mathscr{C}(\begin{bmatrix} r_1\mu_{\pi 1} & r_2\mu_{\pi 2} \\ r_3\mu_{\pi 3} & r_4\mu_{\pi 4} \end{bmatrix}) - 1 \leq \frac{1}{4} \sum_{i=k}^4 (\mathscr{C}(\mu_{\pi k}) - 1) - c_0 T(\max_k \mathscr{C}(\mu_k) - 1)$ where $T(x) = \min(x^{-1}, x^3)$.

Proof:

By straightening the ellipse field, there is a function with Dirichlet energy 1, and with translation and rotational symmetries.

Lemma (L): $\exists c_0 > 0$: Suppose μ_1, \dots, μ_5 are Beltrami coefficients on $[0,1]^2$. Then there exists rotations $r_1, \dots, r_4 \in \mathbb{Z}_4$ and an injective $\pi : \{1,2,3,4\} \rightarrow \{1,2,3,4,5\}$ such that $\mathscr{E}(\begin{bmatrix} r_1\mu_{\pi_1} & r_2\mu_{\pi_2} \\ r_3\mu_{\pi_3} & r_4\mu_{\pi_4} \end{bmatrix}) - 1 \leq \frac{1}{4} \sum_{i=k}^4 (\mathscr{E}(\mu_{\pi k}) - 1) - c_0 T(\max_k \mathscr{E}(\mu_k) - 1)$ where $T(x) = \min(x^{-1}, x^3)$.

Proof:

For the general case when μ_1, \ldots, μ_5 are distinct:

Glue Beltrami coefficients in the following symmetric way

Must be able to localize the "improvement" to one of the 2x2 squares

Thank you!