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The main object
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• Let  be the unit square 


• To generate  for each square of 


• Subdivide square  into  squares of side length  


• Choose  uniformly random non-corner squares and replace them with  

 copies of  glued to form a ‘cubical protrusion’


• This gives a random sequence  of Riemannian manifolds with conical singularities.


X0 [0,1]2

Xn+1, Xn,

L × L L−1

K /4

5 [0,L−1]2

X0, X1, X2, …

See http://math.stonybrook.edu/~bplin/subdivision-rule/ for  and K = 1 ⋅ 4 L = 4.

Proposition: Almost surely,  as metric spaces in the 

Gromov-Hausdorff sense.  is a fractal: .

Xn → X∞

X∞ dim(X∞) > 2

We are interested in the behavior of the conformal embeddings.

Uniformization Theorem  

There is a unique  and a unique 

conformal map  that 

sends the corners of  to the respective 

corners of the rectangle.

Hn > 0

φn : Xn → [0,1] × [0,Hn]

Xn

Definition:  

•  is the rectangular conformal embedding. 

•  is the (absolute) modulus of 

φn : Xn → [0,1] × [0,Hn]

mod(Xn) := max(Hn, H−1
n ) Xn .

(K = 4,   L = 4,   n = 2)

http://math.stonybrook.edu/~bplin/subdivision-rule/




Main results
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Theorem (L):  

For  , for sufficiently large ,     


• 


•

K > 0 L

sup
n

𝔼mod(Xn) < ∞

∃α > 0 : sup
n

𝔼eαmod(Xn)2 < ∞

Subdivision rule :ΣK,L

(K = 4,     L = 4)

Theorem holds in more generality: just need 

P large and rotationally invariant distribution.

(K = 4+2,   L = 8,   P = 6 )



Main results
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Theorem (L):  

Suppose . 


Let  be the rectangular conformal uniformization. 

Almost surely,


•  converges subsequentially to a homeomorphism 


• Any two subsequential limits are equal modulo quasiconformal map: 

 where  is quasiconformal.

∃α > 0 : sup
n

𝔼eαmod(Fn)2 < ∞

φn : Xn → [0,1] × [0,Hn]

φn X∞ → [0,1] × [0,H ]

φ = f ∘ φ̃ f

The theorems endow the fractal space  with a (quasi)conformal structure.X∞

Theorem (L):  

For , for sufficiently large ,     


• 


•

K > 0 L

sup
n

𝔼mod(Xn) < ∞

∃α > 0 : sup
n

𝔼eαmod(Fn)2 < ∞

 is -quasiconformal if it maps infinitesimal circles to 
 infinitesimal ellipses of eccentricity bounded by .
f K

K

 is the surface obtained by putting two i.i.d. copies 
of  next to each other  
to form a “domino”

Fn
Xn



Stochastic self similarity
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• Our  is a random sequence of metric measure spaces 

with boundary measure. 

• The spaces are stochastically self similar:





Xn In other words,   

• Where  where  




• Our theorem implies that iterates of  have subsequential limits.


• Central limit theorem: can we show that  has an attractive fixed 
point?


Xn+1 = ℛ(Xn)

ℛ : Prob(𝔛) → Prob(𝔛)
Prob(𝔛) = Probability distributions on conformal disks with boundary parameterization

ℛ

ℛ

• Similar identities hold for random planar maps, e.g. Mullin bijection 

for  and mating of trees for LQG. 


• Mating of trees implies that the corresponding  has a fixed point 
(LQG)


• fixed point sufficiently attractive  convergence of conformal 
embedding of RPM to LQG.

κ = 8,

ℛ

⟹



Deterministic subdivision rules

The conformal modulus of the following deterministic 
rule degenerates as n → ∞ :

Image from Bonk-Meyer 2017



Example: Flapped surface (Bonk Meyer)

z0 ∈ ℂ̂ − {0,1,∞}z1 ∈ ℂ̂ − {0,1,∞}z2 ∈ ℂ̂ − {0,1,∞}z3 ∈ ℂ̂ − {0,1,∞}Moduli Space

(ℂ̂, γ0)(ℂ̂, γ2) (ℂ̂, γ1)(ℂ̂, γ3)

f0f1f2f3

Teichmüller space

Riemannian 
manifolds

Subdivision/Thurston iteration

Thurston’s topological characterization of rational maps 

= 


criterion for nondegeneracy of iterates in moduli space



Blown up lattes maps (Bonk-Hlushchanka-Iseli)

All images from Bonk-Hlushchanka-Iseli paper.

Example 1.

Clearly nondegenerate in moduli 
space because subdivision is perfect.

Example 2.

Degenerates in moduli space 
due to Thurston obstruction.

Example 3. 

Theorem: Bonk-Hlushchanka-Iseli `21

As long as there are vertical and horizontal 
flaps, then moduli stay bounded under 
iteration.

Proof: Using Thurston’s criterion.



Proof ideas



Boundedness of moduli
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Theorem (L):  

For  , for sufficiently large ,     


•

K > 0 L

sup
n

𝔼mod(Xn) < ∞




• Recall  is the welding of i.i.d. copies of .


• View each  as inducing a deformation of the complex 

structure.


•  measures the magnitude of the deformation, but 

it is a very coarse measure. 


• In particular it does not work well with conformal welding:

Xn+1 Xn

Xn

mod(Xn)

Modulus of the deformed squares are both 1 
because the deformations are  invariant.


But modulus of rectangle can be arbitrarily large.

π /2



Boundedness of moduli
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Definition: The energy  of  is the Dirichlet energy of 


the harmonic extension  


of the boundary parameterization 

ℰ(Xn) Xn

Xn → [0,1]2

∂Xn → ∂[0,1]2

We have  because we can concatenate maps:ℰ(Xn+1) ≤
1
L2

L2+4K

∑
i=1

ℰ(X(i)
n )

1-Lip⊔L2+4K
i=1 X(i)

n →
1
L2

[0,1]2

So . 𝔼ℰ(Xn+1) ≤
L2 + 4K

L2
𝔼ℰ(Xn)



Boundedness of moduli
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So .


This is still exponentially increasing growth.

𝔼ℰ(Xn+1) ≤
L2 + 4K

L2
𝔼ℰ(Xn)

Theorem (L):  

For  , for sufficiently large ,     


•

K > 0 L

sup
n

𝔼ℰ(Xn) < ∞

However, we know from conformal 
deformations in a grid tend to cancel each 
other out: stochastic homogenization, 
random QC maps, random walk on random 
environment. 



Random QC maps

Image from Astala-Rohde-Saksman-Tao, 
with credit to David White.

Image of unit square under random quasiconformal map

Theorem: (Astala-Rohde-Saksman-Tao, Ivrii-Markovic):


Let  be a  valued random variable, with “rotationally 
invariant” distribution.


Let  be the random Beltrami coefficient on  
obtained by putting  
an i.i.d. copy of  on each  subsquare.


Let  be the solution to Beltrami equation fixing 
0,1, 


Then for all  .

λ 𝔻

μn [0,1]2

λ 1/n × 1/n

fn : ℂ → ℂ
∞ .

ϵ > 0, lim
n→∞

ℙ(∥fn − Id∥ > ϵ) = 0

n ≈ 35

  from ARST

No restrictions on  from Ivrii-Markovic
|λ | ≤ c < 1

λ



Cancellation of Beltrami coefficients
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Theorem (L):  

Let  be a random Beltrami coefficient on  with rotationally invariant 

distribution.  


Suppose .


If  are i.i.d. samples of  then


 


where  and .

∀ϵ > 0, ∀M > 0, ∃c0 > 0 :

μ [0,1]2

𝔼ℰ(μ)1+ϵ ≤ M

μ1, …, μ4 μ

𝔼ℰ([μ1 μ2
μ3 μ4]) − 1 ≤ E − c0T(E)

E = 𝔼(ℰ(μ) − 1) T(x) = min(x, x3)

Using this, we can prove the desired contraction: 


• Decompose  into sum of energy from   

large embedded subsquare and energy from the other squares.


• Obtain something like (with ) 

  ,       and 

 .


    This latter bound does not rely on any sort of cancellation.


• Boundedness of  and  follows. 

ℰ(Xn+1)

ϵ = 1

𝔼ℰ(Xn+1) ≤ (1 − c1)𝔼ℰ(Xn) + 1

𝔼(ℰ(Xn+1)2) ≤ (1 − c2)𝔼(ℰ(Xn)2) + C0(𝔼ℰ(Xn))2

𝔼ℰ(Xn) 𝔼ℰ(X2
n)



Proof of cancellation lemma
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Lemma (L):  

Suppose  are Beltrami coefficients on 


Then there exists rotations  and an injective  such 

that


 


where .

∃c0 > 0 :

μ1, …, μ5 [0,1]2 .

r1, …, r4 ∈ ℤ4 π : {1,2,3,4} → {1,2,3,4,5}

ℰ([r1μπ1 r2μπ2
r3μπ3 r4μπ4]) − 1 ≤

1
4

4

∑
i=k

(ℰ(μπk) − 1) − c0T(max
k

ℰ(μk) − 1)

T(x) = min(x−1, x3)

The random cancellation theorem follows from the following deterministic statement.

ℰ([r1μπ1 r2μπ2
r3μπ3 r4μπ4]) − 1 ≤

1
4

4

∑
i=k

(ℰ(μπk) − 1)

Proof:



Proof of cancellation lemma
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Lemma (L):  

Suppose  are Beltrami coefficients on 


Then there exists rotations  and an injective  such 

that


 


where .

∃c0 > 0 :

μ1, …, μ5 [0,1]2 .

r1, …, r4 ∈ ℤ4 π : {1,2,3,4} → {1,2,3,4,5}

ℰ([r1μπ1 r2μπ2
r3μπ3 r4μπ4]) − 1 ≤

1
4

4

∑
i=k

(ℰ(μπk) − 1) − c0T(max
k

ℰ(μk) − 1)

T(x) = min(x−1, x3)

The random cancellation theorem follows from the following deterministic statement.

Proof:

Reduce Dirichlet energy by perturbing in the right way



Proof of cancellation lemma
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Lemma (L):  

Suppose  are Beltrami coefficients on 


Then there exists rotations  and an injective  such 

that


 


where .

∃c0 > 0 :

μ1, …, μ5 [0,1]2 .

r1, …, r4 ∈ ℤ4 π : {1,2,3,4} → {1,2,3,4,5}

ℰ([r1μπ1 r2μπ2
r3μπ3 r4μπ4]) − 1 ≤

1
4

4

∑
i=k

(ℰ(μπk) − 1) − c0T(max
k

ℰ(μk) − 1)

T(x) = min(x−1, x3)

The random cancellation theorem follows from the following deterministic statement.

Proof:

By straightening the ellipse field,

there is a function with Dirichlet energy 1, 

and with translation and rotational symmetries.



Proof of cancellation lemma
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Lemma (L):  

Suppose  are Beltrami coefficients on 


Then there exists rotations  and an injective  such 

that


 


where .

∃c0 > 0 :

μ1, …, μ5 [0,1]2 .

r1, …, r4 ∈ ℤ4 π : {1,2,3,4} → {1,2,3,4,5}

ℰ([r1μπ1 r2μπ2
r3μπ3 r4μπ4]) − 1 ≤

1
4

4

∑
i=k

(ℰ(μπk) − 1) − c0T(max
k

ℰ(μk) − 1)

T(x) = min(x−1, x3)

The random cancellation theorem follows from the following deterministic statement.

Proof:

The symmetries imply that we can  
truncate the perturbation so that it doesn’t change the 
boundary values.


ℰ([r1μπ1 r2μπ2
r3μπ3 r4μπ4]) − 1 ≤

1
4

4

∑
i=k

(ℰ(μπk) − 1) − c0T(max
k

ℰ(μk) − 1)



Must be able to localize the “improvement” to one 
of the 2x2 squares

Cancellation lemma proof sketch

For the general case when  are distinct: 
 
Glue Beltrami coefficients in the following symmetric way 

μ1, …, μ5



Thank you!


