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Abstract

Every α ∈ (0, 1) is associated to a Julia equivalence ≈α on the circle. For certain α, these Julia
equivalences provide a combinatorial model for the identifications made from the conformal map
from the disk to the exterior of a connected tree-like quadratic Julia set. We define a notion of
semihyperbolicity for the combinatorial parameter α, and we prove that the equivalences associated
to such parameters satisfy a regularity condition which is analogous to the quasisymmetry condi-
tion for weldings of quasicircles. We also relate combinatorial semihyperbolicity to the notion of
semihyperbolicity for polynomials introduced by Carleson, Jones and Yoccoz.
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1 Introduction

Let J ⊂ C be a dendrite (compact, connected, locally connected, contains at least two points, and contains

no simple closed curves) and let ϕ : D∗ → Ĉ\J be a normalized conformal map from the exterior of the
closed disk to the outside of J , extended continuously to the boundary. Julia sets of quadratic polynomials
provide many examples of such dendrites. Then ϕ makes certain identifications on the boundary ∂D of
D∗. For instance if J = [−1, 1] then ϕ(z) = 1

2 (z + z−1) and ϕ identifies each z ∈ ∂D with z̄. See Figure 1
for a more interesting example.

Conversely, let ∼ be an equivalence relation on ∂D ∼= T. We say that ∼ is weldable if it is induced by a
conformal map to the complement of a dendrite. It is easy to see from topological considerations that ∼
must be a lamination (see the introduction to Section 2 for definitions) in order to be weldable, but this is
not sufficient. Indeed, the term conformal welding often refers to the case of this problem when ∂D/ ∼ is
homeomorphic to an arc and ∼ is given by, say, a homeomorphism h from the top half ∂D to the bottom
half of ∂D. Even in this setting, it is difficult in general to determine whether ∼ is weldable [Bis07]. It is
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(a) The Julia set associated to the polynomial z2 + c where
c ≈ .228 + 1.115i is a solution to p◦4c (c) = p◦3c (c).

(b) The lamination ∼α associated to α = 1/4. The Riemann
map from the outside of the disk to the outside of the
Julia set of Figure 1a identifies the endpoints of chords
in this picture.

Figure 1

known that if h is quasisymmetric, then ∼ is weldable and the resulting arc is a quasiarc. The converse is
also true.

In [LR], it is suggested that the notion of a Gehring tree is the correct analog of a quasiarc in the dendritic
setting. A Gehring tree is a dendrite E ⊂ C for which the complement C\E is a John domain. A John
domain is a domain for which any two points can be joined by a arc that does not pass too close to the
boundary.

One of the main theorems of [LR] is a necessary and sufficient condition for a relation ∼ to have a Gehring
tree welding.

Theorem 1.1 ([LR, Theorem 1]). Suppose ∼ is a lamination and gs(∼) holds uniformly over x and N .
That is, there exists constants C,M, c, β, η such that for each x ∈ T and N ≥ 0 there is m ≤ M such
that gs(∼;x,N ;C,m, c, β, η) holds. Then ∼ is tree-weldable and the resulting dendrite J is unique up to
Mobius transformation. Moreover, J is a Gehring tree.

Conversely, if J is a Gehring tree and ∼ is the lamination induced by J , then gs(∼) holds uniformly over
x and N .

See the Section 3 for the definition of the ‘gs’ condition. Roughly speaking, ∼ has a good gluing at scale
N and at x ∈ T if one can find a chain of a bounded ‘chain’ of intervals surrounding x, where each interval
is glued to the next interval.

In this paper we show that the criterion can be applied to a certain class of combinatorially defined Julia
equivalences.

For each α ∈ T there is an associated Julia equivalence ≈α, which is defined a purely combinatorial fashion
and models the welding relation arising from certain quadratic Julia sets. See Figure 1b and Section 2.2
for examples and definitions.

We show directly that if α is combinatorially semihyperbolic (see Section 3 for the definition), then the
lamination ≈α associated to α satisfies the good gluing condition of Theorem 1.1.
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Theorem 1.2. If α ∈ T is combinatorially semihyperbolic then there exists uniformly good gluings at all
x ∈ T and all scales N > 0.

The notion of semihyperbolicity was introduced for polynomials in [CJY94], where it was shown (among
other things) that a polynomial p is semihyperbolic if and only if either of the following equivalent
conditions hold.

Theorem 1.3 ([CJY94, Theorem 1.1]). The following conditions are equivalent.

• p has no parabolic perioidic points and w /∈
⋃
t≥1 p

t(w) for all points w such that p′(w) = 0 (critical
points).

• The basin of attraction to ∞ is a John domain.

When the Julia set Jc of a quadratic polynomial pc is a dendrite, the lamination describing its welding is
equal to ≈α where α ∈ T is the landing angle of the critical value c.

We show in that in this sitaution, combinatorially semihyperbolicity of α is equivalent to semihyperbolicity
of pc.

Theorem 1.4. Suppose c ∈ C is a parameter for which Jc is a dendrite. Suppose c is semihyperbolic.
Let α ∈ T be the landing angle of the critical value, ϕ(α) = c. Then α is combinatorially semihyperbolic.

Conversely, if α is combinatorially semihyperbolic, there exists c ∈ C for which Jc is a dendrite and c is
semihyperbolic, and the angle α lands at c and ≈α=∼c .

The proof of this Theorem is at the end of this paper, in Section 5. All the arguments preceding this
section are purely combinatorial.

In future work, we would like to extend the results of this paper to cover the Collett-Eckmann (CE)
[PRLS03, Smi00, GS98] quadratic polynomials. The work of [GS98] characterizates polymomials with
Hölder Fatou components in terms of a dynamical condition on the critical points called Collett-Eckmann
(CE) [PRLS03, Smi00, GS98].

The ‘gs’ condition in Theorem 1.1 also has an analogue for Hölder domains. Roughly speaking, if a
lamination has good gluings at a positive density of scales, then the welding exists and the complement of
the resulting tree is a Hölder domain. M We expect that the techniques in this paper can be used to show
that laminations associated to CE quadratic polynomials satisfy the ‘positive density of good gluings’
condition.

Acknowledgements. I would like to thank Steffen Rohde for suggesting this project, for numerous
helpful discussions throughout, and for his comments on an early draft. I am also grateful to Huy Tran
for inspiring discussions in the early stages of the project.

2 The minimal and dynamical laminations ∼α and ≈α
Much of this material is in [Thu09] and [BK92]. Experts should skip to Section 3 and refer back as
needed.

We provide a mostly self contained review of the minimal and dynamical α-equivalences ∼α and ≈α in
Section 2.1 and 2.2. These equivalences are equal in our setting (see Theorem 2.4), and they provide
a family of conformal welding problems. In Section 2.3 we introduce the notion of M -closeness which
provides a simple characterization of the topology of quotient space T/ ≈α.

Even though it is known [BK92, Theorem 1] that ∼α=≈α, our construction will use some more detailed
results on the relationship between ∼α and ≈α, and this is the content of Section 2.4.

In Section 3 we define precisely the good gluing condition that appears in Theorem 1.2.
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Before moving on, we fix some notation. In this paper we make the identification T ∼= R/Z, and for
a, b ∈ T we write (a, b) to mean the counterclockwise open arc from a to b, and similarly for [a, b]. We
define the doubling map h : T→ T by h(x) = 2x mod 1. If I = (a, b) ⊂ T or I = [a, b] ⊂ T is an open or
closed interval, let |I| = b− a denote its length, normalized so that |T| = 1.

An equivalence relation ∼ on T is flat if whenever x ∼ y and z ∼ w, and the chord from x to y intersects
the chord from z to w , then x ∼ y ∼ z ∼ w. A lamination is a flat equivalence relation on T.1

If g ∈ A∗ is a finite word on some alphabet set A, we write |g| to denote the number of letters in g. If
in addition h ∈ A∗ ∪ A∞ is a finite or infinite word, gh denotes the concatenation. If k is in a positive
integer, gk denotes the k-fold concatenation and g∞ denotes the periodic infinite word ggg . . .. For
integer m ≥ 0, gm denotes the mth letter of g, and g|m denotes the subword of g of the first m letters
g0g1g2 . . . gm−1 ∈ Am.

If a, b, c, d ∈ T are distinct, we say that {a, b} crosses {c, d} if the chord joining a to b intersects (in D)
the chord from c to d. This is equivalent to saying that if U1 and U2 are the two components of T\{a, b},
then U1 and U2 each contain an element of {c, d}. We sometimes refer to two element subsets {a, b} ⊂ T
as chords. If a ∼ b for some relation ∼ (depending on context), we may refer to {a, b} as a leaf.

If ∼ is an equivalence relation on T and x ∈ T, we write [x] or [x]∼ to denote the equivalence class of x as
a subset of T.

To reduce clutter, we will drop subscripts, superscripts, and parentheses for function arguments when
they are clear from context.

2.1 Invariant Laminations and the Minimal α-Equivalence ∼α
Fix α ∈ T\{0}. We assume in the rest of the paper that α is not perioidic under iteration by h. The
preimages of α under the angle doubling map h are ∗1 := α/2 and ∗2 := α/2 + 1/2. These two points
divide the circle T into two semi-circular arcs, (∗1, ∗2) and (∗2, ∗1). Let L be the semicircle containing α
and let R be the other semicircle.

For x 6= α, there are two preimages of x under h. We let L̃x ∈ {x/2, x/2 + 1/2} ⊂ T be the pre-image

that lies in L. Similarly R̃x := L̃x + 1/2 is other pre-image of x, lying in R. Let ∼ be an equivalence
relation on T. Here are some proprerties that ∼ may have:

1. Forward invariant: x ∼ y =⇒ h(x) ∼ h(y)

2. Backward Invariant: For x, y 6= α, we have x ∼ y =⇒ L̃x ∼ L̃y and R̃x ∼ R̃y. If x ∼ α and x 6= α,
then L̃x ∼ ∗1 and R̃x ∼ ∗1.

3. Closed: If xn → x and yn → y and xn ∼ yn for all n then x ∼ y.

Following [Thu09], any equivalence relation satisfying properties 1) and 2) above is said to be invariant. The
minimal α-equivalence is the minimal closed invariant equivalence relation ∼α for which ∗1 ∼α ∗2.

The following general observation about invariant relations will be useful throughout the rest of the article,
and is easily proved by induction.

Lemma 2.1. Fix α ∈ T and suppose ∼ is a forward and backward invariant equivalence relation with
respect to α. Then for every x ∈ T and t ≥ 0, we have ht([x]∼) = [ht(x)]∼.

Backwards invariance of ∼α allows us to construct some chords of ∼α concretely. Recall that L̃ and R̃ are
the continuous inverse branches of h on T\{α}. Every finite word g ∈ {L,R}∗ encodes a composition of
such mappings, where we use the usual right to left ordering convention for function composition. Denote
this mapping by g̃.

1In the literature, for instance [Thu09], a lamination refers to a collection of noncrossing chords of the circle. The two
usages are clearly related, but in this paper a lamination will always be an equivalence relation.
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Since each function in the composition g̃ is only well defined away from α, the domain of g̃ is T\Ag where
Ag is some subset of the postcritical set Pα := {htα : 0 ≤ t ≤ |g|}. In fact, it is easy to see that

Ag = {x ∈ T : σ̃tg(x) = α for some 1 ≤ t ≤ |g|} (1)

where we recall that σ is the left shift operator on words. Notice that the derivative of g̃ is 2−|g| and g̃ is
linear on each component of T\Ag.

Since α is not periodic, ∗1, ∗2 are not in Pα. Therefore g̃∗1 and g̃∗2 are well defined for every choice of g.
The following observation follows immediately from backwards invariance, and gives us a way of describing
a dense subset of the relation ∼α.

Proposition 2.2. For all g ∈ {L,R}∗, we have g̃∗1 ∼α g̃∗2.

If g̃{∗1, ∗2} is a leaf of the minimal equivalence, and g̃ is finite, we say that |g| is the depth of that leaf.
The choice of g̃ used to represent the leaf is unique because α is not periodic, so this is well defined.

2.2 Itineraries and the Dynamical α-Equivalence ≈α
In the course of our construction we will need the following alternative description of the lamination
∼α, in terms of itineraries. Every point in T lies in either L,R or {∗1, ∗2}. For x ∈ T, the itinerary
Iα(x) ∈ {L,R, ?}∞ is an infinite sequence on a three letter alphabet, which keeps track of which half of
the circle the iterates of x lie in. It is defined as follows:

Iα(x)n =


L if hnx ∈ L
R if hnx ∈ R
? if hnx ∈ {∗1, ∗2}.

for n ≥ 0.

It follows immediately from the definitions that h : T→ T is semiconjugate to the left shift σ : {L,R, ?}∞ →
{L,R, ?}∞, which maps σ : u0u1u2 · · · 7→ u1u2 . . .. In other words Iα(hx) = σIα(x). We also have

LIα(x) = Iα(L̃x), RIα(x) = Iα(R̃x), for x ∈ T\{α}. (2)

The itinerary Iα(α) plays a special role and it is called the kneading sequence for α. We will assume that
Iα(α) is not periodic. This is stronger than assuming that α is not perioidic. This assumption is justified
by our Definition 1 of combinatorial semihyperbolicity.

The dynamical α-equivalence ≈α is the smallest equivalence relation such that points with the same
itinerary are identified, where the ? symbol is used as a wildcard when comparing two itineraries.

Formally, this is described as follows. We say that an infinite word g ∈ {L,R, ?}∞ is precritical if it can be
written as g = usIα(α) where u ∈ {L,R}∗ is a finite word and s ∈ {L,R, ?}. Note that by nonperiodicity
of Iα(α), such a decomposition, if it exists, is unique. If g is precritical and g = usIα(α) as above, then
define the infinite words gL = uLIα(α), gR = uRIα(α) and g? = u ? Iα(α). Then ≈α is defined as
follows:

x ≈α y ⇐⇒

{
Iα(x) = Iα(y), or Iα(x), Iα(y) are precritical and

Iα(x)? = Iα(y)?.
(3)

Note that Iα(x)? = Iα(y)? iff Iα(x)L = Iα(y)L iff Iα(x)R = Iα(y)R iff Iα(y) ∈ {Iα(x)L, Iα(x)R, Iα(x)?}.
In particular, if Iα(x) is precritical and y ∈ T, then x ≈α y iff Iα(y) ∈ {Iα(x)L, Iα(x)R, Iα(x)?}. If Iα(x)
is not precritical then the only way that y can be ≈α equivalent to x is if Iα(y) = Iα(x).

From this we see that ≈α as defined in (3) is an equivalence relation.

From (2) we see that ≈α is forward and backward invariant, in particular Lemma 2.1 applies to ≈α and
therefore ht[x]≈α = [htx]≈α for all x ∈ T and t ≥ 0.
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If Iα(x) is precritical then this is equivalent to saying that htx ∈ [∗1] for some t ≥ 0. By the above this is
also equivalent to saying that ht[x] = [∗1].

We see that Iα(α) is not precritical, because Iα(α) is not periodic. As a consequence, [α] is not periodic,
in other words ht[α] = [htα] 6= [α] for t ≥ 1.

This then implies that ht[∗1] 6= [∗1] for t ≥ 1. We will use these observations repeatedly throughout the
rest of this paper.

We will also need the following results.

Theorem 2.3 ([BK92, Proposition 6.2]). Suppose Iα(α) is nonperiodic. Then all equivalence classes of
≈α are finite.

Theorem 2.4 ([BK92, Theorem 1]). Suppose Iα(α) is nonperiodic. Then ∼α=≈α.

2.3 Convergence in T/ ≈α in terms of itineraries

In this subsection we will develop a useful characterization (Proposition 2.6) of the convergent sequences
in T/ ≈α in terms of itineraries of points in the sequence.

The idea is that nearby points should have itineraries that agree on long initial subwords. However, the
definition is a little complicated because ? needs to be treated as a wildcard; a good example to keep in
mind is the points ∗1 + ε and ∗1 − ε for ε > 0 small. They are close in T/ ≈α, that is [∗1 − ε] and [∗1 + ε]
converge to the same point in T/ ≈α as ε→ 0, but their itineraries differ at the first letter.

Motivated by this example, we say that two length M words g1, g2 ∈ {L,R, ?}M are M -close if g1 = g2 or

there exists a finite word u ∈
⋃M−1
k=0 {L,R}j of length at most M − 1 such that g1 = us1v and g2 = us2v,

where s1, s2 ∈ {L,R, ?}, and v is an initial subword of Iα(α) of length M − |u| − 1.

We can extend this definition to words of length greater than M , including infinite words, by saying that
two such words are M -close if their restrictions to the first M letters are M -close. We also say that two

points x, y ∈ T are M -close if their itineraries are M -close. We use the notation x
M� y and Iα(x)

M� Iα(y)
to denote M -closeness.

For each x ∈ T, we define the M -neighborhood BM (x) around x to be the set of points in T which are
M -close to x.

First we prove that if y is sufficiently close to x with respect to the standard topology on T, then y is
M -close to x. The nonperiodicity of [∗1] is crucial here.

Lemma 2.5. For each M > 0 and x ∈ T, there exists an open neighborhood UM (x) containing [x]≈α

such that y ∈ UM (x) =⇒ x
M� y. If in addition Iα(x) is not precritical, we can strengthen the conclusion

by replacing it with y ∈ UM (x) =⇒ Iα(x)|M = Iα(y)|M .

Proof. Recall that Iα(x) is not precritical if and only if ht[x] 6= [∗1] for t ≥ 0. From this we see that Iα(x)
is not precritical if and only if ht[x] = [htx] never intersects {∗1, ∗2} for t ≥ 0.

First suppose that the sets ht[x] never intersect {∗1, ∗2} for t ≥ 0. For each x′ ∈ [x] we can choose an open
arc Ix′ , containing x′, small enough that htIx′ ∩ {∗1, ∗2} is empty for 0 ≤ t ≤M . Now, for 0 ≤ t ≤M , we
have that htIx′ and htx′ lie in the same semicircle (either L or R). Therefore any y ∈ Ix′ has the same
itinerary as x′ for the first M letters. But every x′ ∈ [x] has the same itinerary as x for the first M letters
because Iα(x) is not precritical. Therefore every y ∈ UM :=

⋃
x′∈[x] Ix′ has the same itinerary as x for the

first M letters. Moreover, the first M letters of the common itinerary all lie in {L,R}.

Now suppose ht[x] = [∗1] for some 0 ≤ t ≤M . This can happen for at most one value of t because [∗1] is
not periodic.

Let T be the unique time such that hT [x] = [∗1], then we can write Iα(x)|M = usv where u ∈ {L,R}T ,
s ∈ {L,R, ?}, and v ∈ {L,R}M−T−1 is an initial subword of Iα(α). For each x′ ∈ [x], let Ix′ be an open
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interval containing x′ and small enough such that htIx′ does not intersect {∗1, ∗2} for 0 ≤ t ≤ T − 1 and
T + 1 ≤ t ≤M .

The same reasoning as in the previous case shows that if y ∈
⋃
x′∈[x] Ix′ then Iα(y) = Ia(x), except

possibly at the index t = T .

The converse to the previous Lemma is also true; if x is M -close to y for large M then y is close to [x]≈α
in T. This gives us the characterization of convergence we wanted.

Proposition 2.6. Suppose xn is a sequence on T, and suppose x ∈ T. Then [xn]→ [x] in the quotient
topology of T/ ≈α iff for all integer M , there exists N0 such that n > N0 implies Iα(xn) is M-close to
Iα(x).

Before proving this proposition, we need a few lemmas.

The next lemma says that if z is close to y and x ≈α z then x is close to y.

Lemma 2.7. For each M > 0 there exists K > 0 such that the following holds. If x
M+K� z and z

M+K� y

then x
M� z.

Proof. Suppose x
M+K� z and z

M+K� y. Then

Iα(x)|M+K = uav

Iα(z)|M+K = ubv (4)

Iα(z)|M+K = u′a′v′ (5)

Iα(y)|M+K = u′b′v′

where u, u′ ∈ {L,R}∗ are finite words, a, b, a′, b′ ∈ {L,R, ?} and v, v′ are initial subwords of Iα(α). Suppose
first that |u| ≥M . If |u′| ≥M too then we are done, because Iα(x)|M = u|M = Iα(z)|M = u′|M = Iα(y)|M .
On the other hand if |u′| < M , we have Iα(x)|M = u|M = Iα(z)|M = u′a′v′′ where v′′ is an initial subword

of v′, and hence v′′ is an initial subword of Iα(α). Also Iα(y)|M = u′b′v′′, so x
M� y.

The case where |u′| ≥M and |u| < M is then taken care of by the symmetric argument, so now suppose
|u′| < M and |u| < M . This is the only case where we use the fact that K is large and Iα(α) is nonperiodic.
Since Iα(α) is nonperiodic, every shift σiIα(α) must eventually disagree with Iα(α) if we look deep enough
into the sequence. We choose K to be the largest index we need to observe to find this disagreement,
when we restrict to shifts of length less than M . That is,

K = sup
0≤i≤M

inf{T : σiIα(α)|T 6= Iα(α)|T }.

It suffices to show that |u| = |u′| because then the two different ways of writing Iα(z) forces u = u′ and

hence x
M� y. So suppose for contradiction that, say, |u| < |u′| and write u′ = ucw for some c ∈ {L,R}

and some (possibly empty) word w ∈ {L,R}∗. Note that 0 ≤ |w| < |u′| < M .

Applying the shift σ|u|+1 to (4) and (5) gives

σ|u|+1(Iα(z)|M+K) = v

σ|u|+1(Iα(z)|M+K) = wa′v′

which shows σ|w|+1v = v′. But recall that v and v′ are initial subwords of Iα(α), and the lengths of v and
v′ are at least K, so this means that we actually have σ|w|+1Iα(α)|K = Iα(α)|K . This contradicts the
definition of K.

This lemma says that the topology induced by the BM is fine enough to distinguish ≈α classes.
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Lemma 2.8. For each x ∈ T and M > 0 there exists K > 0 such that BM+K(x) ⊂ BM (x). Therefore

[x]≈α =
⋂
M

BM (x) =
⋂
M

BM (x).

Proof. We begin by proving the first equality. If x ≈α y, it follows from the definitions that x
M� y for all M .

On the other hand, suppose x
M� y for all M . Let T be the smallest number that Iα(x)|T+1 6= Iα(y)|T+1,

if T = ∞ then we are done so suppose T < ∞. Let u = Iα(x)|T = Iα(y)|T . Then for each M > T we
have x|M = us1v and y|M = us2v where s1, s2 ∈ {L,R, ?}∞ and v is an initial subword of Iα(α). Letting
M →∞ shows that x = us1I

α(α) and y = us2I
α(α), which means x ≈α y.

Now we turn to the second equality. Fix M > 0 and x ∈ T and suppose K > 0 is large. Suppose
yi ∈ BM+K(x) is a sequence converging to y ∈ BM+K(x).

Lemma 2.5 implies that for sufficiently large i, we have yi
M+K� y. Taking z = yi in Lemma 2.7 implies that

x
M� y. Thus BM+K(x) ⊂ BM (x), and this proves the second equality in the statement of the lemma.

Proposition 2.6 now follows from the next lemma.

Lemma 2.9. Suppose x ∈ T, and let U ⊂ T be an open set containing [x]. For sufficiently large M , we
have BM (x) ⊂ U .

Proof. To prove the claim, suppose for contradiction that there is a sequence ymj ∈ T\U such that

ymj ∈ Bmj (x) and mj →∞, then by compactness we can assume that ymj → y ∈ T\U . Because BM (x) is

decreasing in M , we have for each M that the tail of the sequence (ymj ) is contained in BM (x). Therefore

y ∈
⋂
M BM (x) and by Lemma 2.8 we get y ∈ [x], which contradicts the fact that U contains [x].

Proof of Proposition 2.6. Assume [xn]→ [x] in T/ ≈α. Let M ≥ 0 be arbitrary. By Lemma 2.7 we can

choose K > 0 large enough that for all z, y, x ∈ T, we have that z ≈α y and y
M+K� x implies z

M� x.

By Lemma 2.5 we can let U be an open neighborhood of [x] in T such that y ∈ U =⇒ y
M+K� x. By

definition of the quotient topology, [U ] ⊂ T/ ≈α is an open neighborhood of [x] in T/ ≈α. The assumption

implies that [xn] ∈ [U ] for sufficiently large n. This means that xn ≈α y for some y ∈ U . But y
M+K� x,

so xn
M� x. Since M was arbitrary, this proves the ‘only if’ direction.

For the other direction, let W be an arbitrary open neighborhood of [x] in T/ ≈α, and let U be its
preimage under the quotient map x 7→ [x]. Then U is an open set containing [x] ⊂ T. By Lemma 2.9, we
have for sufficiently large M that BM (x) ⊂ U , and this completes the proof.

2.4 Cylinder Sets and Boundary Leaves

The material in this section appears can also be found in [BK92, Section 4].

If g ∈ {L,R}∗ a finite word, define the (open) cylinder C(g) ⊂ T to be the set of points whose initial
itinerary is equal g, that is C(g) = {x ∈ T : Iα(x)||g| = g}. These sets are closely related to the M -
neighbourhoods introduced in the previous section, indeed every M -neighbourhood is a union of finitely
many cylinder sets.

One important part of our proof of Theorem 1.2 is in finding leaves in the relation ∼α which have one
endpoint close to a given point x. We use this idea twice, in Lemma 4.2 and also in the Lemma 4.5. We
do this by considering cylinder sets containing x.
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1. By the results of the previous section, in particular Lemma 2.8, we see that C(Iα(x)|n) does actually
converge to [x] as n→∞. Actually this only makes sense for x that are not precritical, since we
have not defined the cylinder sets for words that contain the symbol ?. Proposition 2.10 deals with
this issue.

2. On the other hand, every boundary chord of a cylinder C(g) is actually a leaf of the lamination
(Proposition 2.11).

The combination of these results allows us to construct the desired approximations for every x. The rest
of this section contains the proofs of these two statements, and the approximation result is summarized in
Proposition 2.12.

Recall from section 2.2 that an itinerary g ∈ {L,R, ?}∞ is said to be precritical if it can be written
in the form g = usIα(α) where u ∈ {L,R}∗ and s ∈ {L,R, ?}. If g is precritical, gL = uLIα(α) and
gR = uRIα(α) are the words obtained from g by replacing the symbol ? with L and R respectively.

Proposition 2.10. Suppose x ∈ T and let g = Iα(x) ∈ {L,R, ?}∞. First suppose g is not precritical.
Then

[x]≈α =
⋂
n≥1

C(g|n) =
⋂
n≥1

C(g|n).

On the other hand, if g is precritical, then

[x]≈α =
⋂
n≥1

C(gL|n) ∪
⋂
n≥1

C(gR|n). (6)

Moreover, in this case, ⋂
n≥1

C(gL|n) ∩
⋂
n≥1

C(gR|n) = ũ{∗1, ∗2},

where u ∈ {L,R}∗ is defined implicitly via g? = usIα(α) for some s ∈ {L,R, ?}.

Proof. Consider first the case where g is not precritical. It is clear that C(g|n) ⊂ Bn(x). So by Lemma
2.8, the intersection

⋂
n≥1 C(g|n) is contained inside [x]≈α On the other hand, if y ∈ [x]≈α , this means

that Iα(y) = Iα(x). So y ∈ C(g|n) for all n. We have shown that
⋂
n≥1 C(g|n) ⊂ [x]≈α ⊂

⋂
n≥1 C(g|n),

so we are done.

Now consider the case where g is precritical and write g = usIα(α). Again we have for all n ≥ 1 that

C(gL|n) ⊂ Bn(x) and C(gR|n) ⊂ Bn(x), therefore
⋂
n≥1 C(gL|n) ∪

⋂
n≥1 C(gR|n) ⊂ [x]≈α .

For the other direction, suppose y ∈ [x]≈α . There are three cases to consider.

• If Iα(y) = uLIα(α) = gL then y ∈ C(gL|M ) for all M .

• If Iα(y) = uRIα(α) = gR then y ∈ C(gR|M ) for all M .

• It remains to check the case Iα(y) = u ? Iα(α). If this is the case, then y ∈ {ũ∗1, ũ∗2}. Assume that

y = ũ∗1, the other case y = ũ∗2 is similar. We claim that y = ũ∗1 ∈ C(gL|M ) for all M . To see this,
observe that ∗1 + ε is in L, for all small ε > 0. Also h(∗1 + ε) is close to α, so for sufficiently small ε
we have that Iα(∗1 +ε)|M = LIα(α)|M , see Lemma 2.5. Therefore we have by the conjugacy (2) that
ũ(∗1 + ε) ∈ C(u(LIα(α)|M )), and limε→0 ũ(∗1 + ε) = ũ∗1 = y. Here we have that ũ is continuous at
∗1 because ∗1 is not in the postcritical set Pα (see (1) and the surrounding dicussion). This proves
the claim, and completes the proof of (6).

In the last item above we showed that ũ∗1, ũ∗2 ∈ C(gL|M ) for all M . Similar arguments show that

ũ∗1, ũ∗2 ∈ C(gR|M ) for all M , and this proves that⋂
n≥1

C(gL|n) ∩
⋂
n≥1

C(gR|n) ⊃ ũ{∗1, ∗2}.

9
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(b) The collection of cylinders C(g) for g ∈ {L,R}3 parti-
tions T up to a finite set. The boundary leaves of C(LLL)

are {∗1 = 1/8, ∗2 = 5/8}, L̃{∗1, ∗2} = {5/16, 9/16} and

L̃L{∗1, ∗2} = {5/32, 9/32}, as we expect from Proposi-
tion 2.11.

For the reverse inclusion, suppose y ∈
⋂
n≥1 C(gL|n) ∩

⋂
n≥1 C(gR|n). Then y ∈ C(gL||u|+1) = C(uL),

therefore h|u|y ∈ h|u|C(uL) = C(L) = L by continuity of h. Similarly h|u|y ∈ R. This shows that
h|u|y ∈ L ∩R = {∗1, ∗2}.

On the other hand y ∈ C(gL||u|) = C(u), so y ∈ ũ{∗1, ∗2} as desired.

By (2), the cylinder C(g) can also be described as the image of T\Ag under g̃ (recall the definition of Ag
in (1)), that is C(g) = g̃(T\Ag). Since g̃ is continuous on each component of T\Ag, this shows that C(g)
is a finite union of disjoint open intervals. Induction on the length of g shows that the closure of these
intervals is disjoint too (nonperiodicity of α is needed here).

By keeping track of when a cylinder contains α, one sees that boundary chords of cylinders are always
leaves in the minimal equivalence (see Proposition 2.2).

Proposition 2.11. Suppose g ∈ {L,R}N is a finite word of length N. Then the boundary chords of C(g)

are all of the form g̃|t{∗1, ∗2} where 0 ≤ t ≤ N − 1. Moreover, g̃|t{∗1, ∗2} is a boundary chord iff σt+1g is
an initial subword of Iα(α).

Proof. We proceed by induction on N = |g|. For N = 1, the result is clear because {∗1, ∗2} is the boundary
leaf of LT and RT. Now suppose sg ∈ {L,R}N+1 where s ∈ {L,R} and g ∈ {L,R}N . By the induction

hypothesis, the boundary leaves of C(g) are precisely the leaves of the form g̃|t{∗1, ∗2} where 1 ≤ t ≤ N
is an integer such that σt+1g is an initial subword of Iα(α).

The images of the boundary leaves of C(g) under s̃ are always boundary leaves of s̃(C(g)) = C(sg). By

the induction hypothesis, all leaves arising in this way are of the form s̃ ◦ g̃|t{∗1, ∗2} where 1 ≤ t ≤ N

is an integer such that σt+1g = Iα(α)|N−t−1. Note that s̃ ◦ g̃|t = ˜(sg)|t+1, and σ(t+1)+1sg is an initial
subword of Iα(α).

If α /∈ C(g) then these are the only boundary leaves of C(sg). On the other hand if α ∈ C(g) then {∗1, ∗2}
is a new boundary leaf of C(sg) = s̃(C(g)). This new boundary leaf is equal to σ0{∗1, ∗2}, and indeed

10



σ0+1(sg) = g is an initial subword of Iα(α) because α ∈ C(g) means that Iα(α)|n = g.

This completes the induction.

As promised, combining the previous two propositions shows that every equivalence class in ≈α be
approximated by boundary leaves. In fact, in Lemma 4.2, we will need to construct several distinct
approximations to a certain chord, so it is important that the approximations can be chosen to be strict
approximations.

Proposition 2.12. Let g ∈ {L,R}∞ be an infinite word. Then C(g) :=
⋂
n C(g|n) = {x1, . . . , xm}

is finite. Assume the x1, . . . , xm are arranged in a counterclockwise order. Then for each i, and each

ε > 0 there is an integer n such that g̃|n{∗1, ∗2} is ε-close to {xi, xi+1} in the Hausdorff sense. The

approximations may be taken to be strict in the sense that g̃|n∗1 and g̃|n∗2} are not equal to any of the xi.

Proof. By Proposition 2.10, all the points of
⋂
n C(g|n) belong to the same ≈α class, so by Theorem 2.3,⋂

n C(g|n) is finite, and we can write
⋂
n C(g|n) = {x1, . . . , xm}.

Let U = ∪i(xi − ε, xi + ε) be the union of ε-balls around each point in C(g). Assume ε is small
enough that these balls are disjoint. By Lemmas 2.9 and 2.8, we have for sufficiently large M that
U ⊃ BM (x) ⊃ C(g|M ) ⊃ {x1, . . . , xm}.

Fix M sufficiently large as above, and let (a, b) be a component of T\{x1, . . . , xm}. Let z be a point of
T\U inside (a, b), and let I be the component of T\C(g|M ) containing z. By construction, the endpoints
of I are within distance ε of xi and xi+1, and by Proposition 2.11, the endpoints of I are of the form
{ũ∗1, ũ∗2} where u is an initial subword of g|M .

Now we need to show that ũ∗1 and ũ∗2 are not equal to any of the xi (at least if ε is sufficiently small.
There are two cases to consider, depending on whether xi and xi+1 are both in {∗1, ∗2} or not.

If either xi or xi+1 are not in {∗1, ∗2}, then wlog xi /∈ {∗1, ∗2}. By flatness, the approximating leaf
{ũ∗1, ũ∗2} does not intersect the leaf {xi, xi+1} unless ũ∗1 ∼α xi. But this cannot occur because applying
h|u|+1 to both sides yields [α] = h|u|[α], so since [α] is nonperiodic we must have |u| = 0. But this is
a contradiction because {ũ∗1, ũ∗2} = {∗1, ∗2} lies a bounded distance away from {xi, xi+1} (since we
assumed that xi /∈ {∗1, ∗2}.) Therefore {ũ∗1, ũ∗2} does not intersect {xi, xi+1}.

Now we consider the case where xi and xi+1 are both in {∗1, ∗2}. This implies that |[∗1]| = 2 and it
implies that g = LIα(α) or g = RIα(α). Assume first that g = LIα(α), the other case is similar.

We will go through the construction again. As above, fix M large enough that C(g|M ) is contained in an
ε-neighborhood of {∗1, ∗2}. Assume that ε is small enough that this neighbourhood does not contain α.

Let I be the component of T\C(g|M ) that contains α. Then I is contained inside L = (∗1, ∗2).

Consider the boundary chord l joining the endpoints of I, which by Proposition 2.11 is of the form
ũ{∗1, ∗2} where u is an initial subword of g|M . Note that I is not equal to L because C(g|M )∩L = C(g|M )
has positive total length, so ũ is not the identity and u is not the empty word. In particular, the boundary
chord l = ũ{∗1, ∗2} is a strict approximation (close, but not equal) of {∗1, ∗2}.

3 Combinatorial Semihyperbolicity and the good gluing condi-
tion

Our definition of combinatorial semihyperbolicity is clearly inspired by the characterization 1.3 and the
characterization of the topology of T/ ≈α (Proposition 2.6). See also the proof of Theorem 1.4.

Definition 1. We say that α ∈ T is combinatorially semihyperbolic if there exists Mα > 0 integer such
that for t ≥ 1, Iα(htα)|Mα 6= Iα(α)|Mα .
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In the rest of this subsection we explain the definition of the quasisymmetric gluing condition in the
hypothesis of Theorem 1.1. See also [LR].

First we recall the quasisymmetry condition in the classical conformal welding setting. If f : R→ R is
a homeomorphism, we say that we say that f is K-quasisymmetric [Hei01, Chapter 10] if diamf(I) ≤
Kdiamf(J) whenever I and J are adjacent subintervals of R of the same length. The same definition
holds for homeomorphisms f : ∂D→ ∂D and also homoeomorphisms f : I1 → I2 where I1, I2 are intervals.
All linear maps are quasisymmetric with K = 1, and in the rest of paper we will actually only encounter
linear maps.

A closed set A ⊂ T is uniformly perfect [Pom79] if there exists c > 1 such that no annulus B(x, cr)\B(x, r)
seperates elements of A. An important example is the middle thirds Cantor set (embedded into T in
the obvious way). In our construction, all our uniformly perfect sets will in fact be generalized Cantor
sets.

Given a pair of open intervals (I−, I+) in T, and points x1, x2 ∈ T, we say that the pair (I−, I+) is
adjacent to {x1, x2} if I− has one endpoint equal to x1 and I+ has one endpoint has one endpoint equal
to x2, or I+ has one endpoint equal to x1 and I− has one endpoint equal to x2.

Given m pairs of open intervals (I−j , I
+
j ) for j = 1, . . . ,m, we say that they form a cyclic chain (of degree

m) if:

1. The 2m intervals are mutually disjoint.

2. There exists m points x1, . . . , xm in T such that each component of T\{x1, . . . , xm} contains a single
pair (I−j , I

+
j ).

3. If U is a component of T\{x1, . . . , xm}, and (I−j , I
+
j ) is the pair that U contains, then (I−j , I

+
j ) is

adjacent to the two endpoints of U .

We say that a cyclic chain contains the point x ∈ T if one of the xi are equal to x.

Definition 2 (Good Scales). Let ∼ be a lamination and let I− and I+ be open subintervals of T. Suppose
β, η ∈ [0, 1] and c ∈ (1,∞).

We say that I− is (c, β, η)-glued to I+ if there exists uniformly c-perfect subsets A− ⊂ I− and A+ ⊂ I+
such that

• diam(A±) ≥ βdiam(I±).

• There exists an η-quasisymmetric bijection ϕ : A− → A+ such that for x ∈ A− we have x ∼ ϕ(x).

In this situation we say that the gluing is quasisymmetrically supported on A− and A+.

Now let N ≥ 1 be integer. For x ∈ T, a real number C ≥ 1, and integer m ≥ 1, we say that the condition
gs(∼;x,N,m;C, c, β, η) holds, or that x is (C, c, β, η)-glued at scale N with degree m, if: there exists a
cyclic chain (I−j , I

+
j ) of degree m containing x such that for each j = 1, . . . ,m, we have

• C−12−N ≤ diam(I±j ) ≤ C2−N .

• I−j is (c, β, η)-glued to I+j .

In our construction, it will be more convenient to construct almost cyclic chains instead of cyclic chains.
Given m pairs of open intervals (I−j , I

+
j ) for j = 1, . . . ,m, we say that they form a ε-almost cyclic chain

(of degree m) if:

1. The 2m intervals are mutually disjoint.

2. There exists m closed intervals x1, . . . ,xm such that the length of each interval is bounded by ε,
and each component of T\(x1 ∪ · · ·xm) contains a single pair (I−j , I

+
j ).

3. If U is a component of T\(x1 ∪ · · ·xm), and (I−j , I
+
j ) is the pair contained in U , then (I−j , I

+
j ) is

adjacent to the two endpoints of U .
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(a) The postcritical set Pα is in green. The diameter
D = {∗1, ∗2} is in blue. The hyperbolic geodesics
denote leaves in ∼α. Here I′ = [9/14, 1/7] and I′′ =
[4/7, 9/14]. Notice that [∗1] ⊂ I′ ∪ I′′.
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(b) Periodic leaves with endpoints in I′ and I′′ are con-
structed (Lemma 4.2).

Figure 3: The steps involved in the proof of Theorem 1.2, in the case α = 9/56. Continued in Figure 4.

We say that an almost cyclic chain contains the point x ∈ T if one of the xi contains x.

If C ≥ 1 and C is a C2−N -almost cyclic chain that contains x, where each interval in C has length between
C−12−N and C2−N , then we can expand each interval in C to get a cyclic chain C′ of the same degree
that still contains x. We can expand the intervals in such a way that the intervals of C′ still have length
at most 2C2−N . Therefore if the pairs of C are glued then the the pairs in C′ are still glued with some of
the constants differing by a factor of 2.

Let us define the gs′ condition to be exactly the same as the gs condition except in Definition 2 we replace
‘cyclic chain’ by ‘C2−N -almost cyclic chain’. The above discussion shows that gs′(∼;x,N ;C,m, c, β, η) =⇒
gs(∼;x,N ; 2C,m, c, β/2, η).

4 Gluing at Every Scale

In this section we prove Theorem 1.2, that is for α combinatorially semihyperbolic, we show that the
equivalence relation ∼α has the desired gluing at every scale.

The construction is sketched in Figure 3 and 4. The idea is to first construct a gluing between intervals
around ∗1 and ∗2 at scale N = 1, this is Proposition 4.3. To get the cantor set A for the gluing between ∗1
and ∗2, we will use periodic leaves near ∗1 and ∗2 to generate an iterated function system. The existence
of such periodic leaves is shown in Lemma 4.2. See Figure 3a. After this gluing at the large scale is
constructed, we use backwards iteration to get the cantor set around any point at any scale.

The construction will rely on the following fact that the class of the critical point [∗1] is contained in the
union of exactly two components I ′ and I ′′ of T\Pα, where we recall that Pα = {htα : t ≥ 0}. In particular
this means that I ′ and I ′′ are connected in T\Ag for all g ∈ {L,R}∗. It follows that all compositions g̃ of

L̃s and R̃s are well defined on I ′ and I ′′, and hence the images g̃(I ′) and g̃(I ′′) are connected intervals.
See Figure 3a. This guarantees that if we can construct the good gluing across the neighbourhoods I ′,I ′′,
then we can pull them back to different scales and locations via the inverse branches of hn.

Proposition 4.1. Let I ′ and I ′′ be the components of T′ := T\Pα containing ∗1 and ∗2 respectively.
Then I ′ and I ′′ are distinct, and [∗1] ⊂ I ′ ∪ I ′′.

Note that the combinatorial semihyperbolicity assumption on α, together with Lemma 2.5, implies that
∗1, ∗2 /∈ Pα. To see this, suppose for contradiction that htn(α) → ∗i for some sequence tn → ∞. From
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(a) We use the periodic leaves near to the diameter to
construct an IFS, resulting in a gluing between the in-
tervals I1 and I4 and between I2 and I3. (Proposition
4.3).

ææ x

g T

(b) We construct the gluing at x ∈ T and scale N ≥ 0
by pulling back the gluing from the previous step.
The cylinder of depth N containing x is bounded by

leaves of the form g̃|tjD for some integers tj ≤ N ,
where g = Iα(x)...

(c) ...so, as long as tj is not too small, g̃|tj I1 and g̃|tj I4
(and g̃|tj I2 and g̃|tj I3 ) are glued at scale N . Note
that even though there are gluings inside the cylinder,
we do not use them in this construction.

ææ x

g T
g
`

T

(d) Sometimes one of the boundary leaves (the red one)
is of the form gN−tD where t is too large, so that
pulling back the gluing from I1 to I4 and I2 and I3
results in a gluing at too large a scale. In this case
we use the leaves of the gap ĝT instead of the red
leaf.

Figure 4: The steps involved in the proof of Theorem 1.2, in the case α = 9/56. Continued from Figure 3.
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Lemma 2.5 this implies for sufficiently large n that σtnIα(α) = Iα(htnα)
Mα+1� Iα(∗i) = ?Iα(α). Therefore

σtn+1Iα(α)
Mα� Iα(α) and this contradicts combinatorial semihyperbolicity.

Therefore the components I ′ and I ′′ do exist.

Proof. Since the kneading sequence Iα(α) is not periodic, it is not LLL . . .. Therefore there exists a
postcritical point htα ∈ R. Then α and htα are in different components of T\{∗1, ∗2}, which means ∗1
and ∗2 are in different components of T\{α, htα}, which means ∗1 and ∗2 are in different components of
T\Pα. Thus I ′ and I ′′ are distinct.

Now we turn to the second statement, which is equivalent to saying that all the postcritical points Pα lie
in two components of T\[∗1].

The idea is that if a postcritical point ht∗1 lies in a component of T\[∗1], then by flatness the whole class
ht[∗1] of that point must lie in that same component. But since h is expanding on T, any component of
T\[∗1] that contains an iterate ht[∗1] of the critical class must necessarily be ‘large’. The desired result
follows if we can show that only two components are ‘large’.

More precisely, we will now show that if J is a component of T\[∗1] and J contains a postcritical point
htα, t ≥ 1, then the length of J satisfies |J | > 1/4.

For x, y ∈ T ∼= R/Z let |x − y| ∈ [0, 1/2] be the distance between x and y on T, or in other words the
(normalized) length of the shortest arc joining x to y. Then the distance between any pair of points
x, y ∈ T changes under the action of h according to the tent mapping:

|hx− hy| =

{
2|x− y| if |x− y| ≤ 1/4

1− 2|x− y| if |x− y| > 1/4.
(7)

Let ∗′ and ∗′′ be adjacent points of [∗1], bounding some component J of T\[∗1]. Let d = | ∗′ − ∗′′ | = |J |,
and suppose d ≤ 1/4. Then we have |h ∗′ −h ∗′′ | = 2d. By (7), iterating h on the leaf {∗′, ∗′′} will yield
longer and longer leaves until the length is greater than 1/4. (The length of a leaf is defined to be the
distance between its endpoints). After that point the length of the leaf may shrink.

However, the longest leaf in the lamination has length at most 1/2 − d. This is because by flatness
any leaf in the lamination must have both endpoints in the same component of T\[∗1]. The points
∗′ ≈α ∗′′ ≈α ∗′ + 1/2 ≈α ∗′′ + 1/2 are all in [∗1] (the easiest way to see this is by using the definition of
≈α and considering itineraries), and the largest component of T\{∗′, ∗′′, ∗′ + 1/2, ∗′′ + 1/2} has length
1/2− d, so the largest component of T\[∗1] has length at most 1/2− d.

So from (7), the iterates ht{∗′, ∗′′} of the leaf never get shorter than 2d = 2|J |. In particular, for t ≥ 1,
ht∗′ and ht∗′′ can never both be in J . By flatness of the lamination, neither of them can ever be in J ,
otherwise we would have ht∗′ ∼ ∗′. Thus, by flatness again, if |J | ≤ 1/4, ht[∗′] = ht[∗1] is never contained
in J , as desired.

Now let us use this fact to derive the desired result. Let J be the largest component of T\[∗1]. Then
|J | > 1/4, otherwise there would be no postcritical points. Since [∗1] = [∗1]≈α is invariant under
x 7→ x + 1/2 (again, by considering ≈α), the interval J + 1/2 is a component of T\[∗1] and also has
length equal to |J | > 1/4. This shows that components of length greater than 1/4 occur in pairs. Since
(|J |+ |J + 1/2|) + (1/4 + 1/4) > 1, there can only be one pair of components of T\[∗1] with length greater
1/4, namely J and J + 1/2. Therefore the postcritical points all lie in J ∪ (J + 1/2), and so we are
done.

A periodic leaf is a leaf such that both endpoints have periodic itineraries. We now show that we can
find a pair of periodic leaves spanning the intervals I ′ and I ′′. These leaves will be used to generate an
iterated function system, giving many leaves between I ′ and I ′′.
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Lemma 4.2 (Existence of periodic leaves across the circle). There exists infinitely many distinct periodic
leaves l′ with both endpoints in L with one endpoint in I ′ and the other endpoint in I ′′. The same statement
holds for R in place of L.

Proof. We will only construct such leaves in L, the argument for getting leaves in R is exactly the same.
First we prove that we can find a leaf l in L with one endpoint in I ′ and the other endpoint in I ′′. This
leaf will be of the form ũ{∗1, ∗2} for some u ∈ {L,R}∗. If u is sufficiently contracting then this tells us
that ũ◦2 maps I ′ into I ′ and I ′′ into I ′′. We then use the contraction principle to find fixed points a′, a′′

of ũ◦2 in I ′ and I ′′ respectively. By definition, a′ and a′′ will be periodic with periodic itinerary equal to
u∞. In particular a′ ≈α a′′. Now we provide the details.

1. Let g = Iα(∗1) = ?Iα(α). By Proposition 2.10, we have

[∗1] =
⋂
n

C(gL|n) ∪
⋂
n

C(gR|n) =
⋂
n

C(LIα(α)) ∪
⋂
n

C(RIα(α)).

Since, by definition, C(L · · · ) and C(R · · · ) are contained in L and R respectively, we conclude

that [∗1] ∩ L ⊂
⋂
n C(gL|n). Taking the closure of both sides yields [∗1] ∩ L ⊂

⋂
n C(gL|n). But the

reverse inclusion holds too, so we get

[∗1] ∩ L =
⋂
n

C(gL|n). (8)

Let [∗1] ∩ L = {y1, . . . , ym} where the yi are assumed to be indexed in counterclockwise order with
y1 = ∗1 and ym = ∗2. Let i be the maximal index such that yi ∈ I ′. Then yi+1 ∈ I ′′ by Proposition
4.1.

By Theorem 2.12 and (8), the leaf {yi, yi+1} is the limit of leaves of the form {g̃n∗1, g̃n∗2} for a
sequence of finite words gn ∈ {L,R}∗, all these words are initial subwords of the word gL = LIα(α),
and lim supn |gn| = ∞ because the approximations are strict. For simplicity we will pass to a
subsequence for which |gn| → ∞.

2. Now for all n, g̃n is a well defined contraction on the open sets I ′ and I ′′. For sufficiently large n,
we have that g̃n{∗1, ∗2} ∈ I ′ ∪ I ′′. Therefore for sufficiently large n, we have that g̃n maps ∗1 into I ′

and ∗2 into I ′′, or ∗1 into I ′′ and ∗2 into I ′.

Since limn |gn| =∞, we have limn 2−|gn| = limn |g′n| = 0, so for sufficiently large n we have that g̃n
maps I ′ into I ′ and I ′′ into I ′′, or I ′ into I ′′ and I ′′ into I ′.

For these n, we have that g̃n
◦2

= g̃n ◦ g̃n maps I ′ into I ′ and I ′′ into I ′′.

Also, g̃n
2

has constant derivative 2−2|gn| < 1, so by the contraction principle g̃n
◦2|I′ and g̃n

◦2|I′′
have fixed points a′, a′′ in I ′, I ′′ respectively. Using (2) we see that

Iα(a′) = Iα(g̃n
◦2
a′) = gngnI

α(a′),

and hence a′ has periodic itinerary Iα(a′) = Iα(a′′) = g∞n ∈ {L,R}∞. The same argument shows
that Iα(a′′) = g∞n too. Thus {a′, a′′} is a periodic leaf with one endpoint in I ′ and the other endpoint
in I ′′, and {a′, a′′} ⊂ L.

Step 2) shows that every sufficiently large n yields a periodic leaf with endpoints in I ′ and I ′′.

For our construction below we will need two different periodic leaves, to form an iterated function system.
We will now show that we can choose n′ 6= n such that the applying the construction in Step 2) to gn′ and
gn yields different periodic leaves. We do this by choosing n′ and n so that g∞n 6= g∞n′ . Then the periodic
leaves that result from applying step 3) to gn and gn′ will be different because they will have different
itineraries and hence will not intersect.

Suppose first that g := LIα(α) is eventually periodic (recall that g cannot be actually periodic), which
means there exists some preperiod t ≥ 1 such that Iα(htα) is periodic of some period K ≥ 1. Choose M
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large enough that M is greater than the preperiod t of Iα(α), and large enough that the first M letters of
LIα(α) are enough to ‘certify’ that g = LIα(α) is not periodic of period K. That is, choose M ≥ t large
enough that

LIα(α)|M is not of the form w∞|M for any w ∈ {L,R, ?}K .

Let n be large enough that |gn| ≥M , and let n′ be large enough that |gn′ | − |gn| ≥M . Write g′n = gnu
where |u| = |gn′ | − |gn| ≥ M (recall that gn and gn′ are initial subwords of g = LIα(α)). Suppose for
contradiction that g∞n = g∞n′ , then applying the shift σ|gn| to both sides yields g∞n = ug∞n′ .

Since gn is an initial subword of g of length at least M , and u has length at least M , the equality
g∞n = ug∞n′ implies g|M = u|M . However, u is an initial subword of something that is periodic of period K
(namely, σ|gn|g), so this contradicts the definition of M . Therefore g∞n 6= g∞n′ .

Now we consider the case where g = LIα(α) is not eventually periodic. Fix n, and choose M large enough
that the first M letters of σ|gn|g are enough to ‘certify that σ|gn|g is not periodic of period |gn|. That is,
choose M large enough that

(σ|gn|g)|M is not of the form w∞|M for any w ∈ {L,R, ?}|gn|}.

Then choose n′ large enough that |gn′ | − |gn| ≥M . Write g′n = gnu where |u| = |gn′ | − |gn| ≥M (recall
that gn and gn′ are initial subwords of g = LIα(α)). Suppose for contradiction that g∞n = g∞n′ , then
applying the shift σ|gn| to both sides yields g∞n = ug∞n′ .

Restricting to the first M letters yields the contradiction g∞n |M = u|M = (σ|gn|g)|M , where the last
equality holds because u is an initial subword of σ|gn|g. Therefore g∞n 6= g∞n′ .

The points ∗1 and ∗2 cut I ′ and I ′′ respectively into two open subintervals each, giving a total of four
intervals J−1 , J

−
2 , J

+
2 , J

+
1 (assumed to be in counterclockwise order). Here we choose the indexing on the

{Jj} such that ∗1 is the counterclockwise endpoint J−1 and the clockwise endpoint of J−2 , and ∗2 is the
counterclockwise endpoint of J+

2 and the clockwise endpoint of J+
1 . Thus J−1 ∪J

−
2 = I ′ and J+

1 ∪J
+
2 = I ′′,

and J−1 ∪ J
+
1 ⊂ R while J−2 ∪ J

+
2 ⊂ L.

Let l be a periodic leaf in ∼α of period p, where the period is defined as the smallest integer p such that
hp fixes both endpoints of l. Observe that the iterates of each endpoint never lie in [∗1], as this would
contradict nonperiodicity of [∗1]. In other words neither itinerary is precritical, therefore by (3) , the
itinerary of both points are equal, and we will use Iα(l) to denote this common itinerary.

The common itinerary of both points is periodic of period p, so we can write Iα(l) = w∞ where w = Iα(l)|p.
Observe that w̃ is a contraction that fixes the endpoints of l, indeed w̃ is just the inverse branch of hp

that fixes the endpoints of l. If we let w = Iα(l)|2p then w̃ is orientation preserving and still fixes the
endpoints of l.

The contractions arising from the periodic leaves we constructed in Lemma 4.2 generate an iterated
function system, giving us a Cantor set on which a gluing between I ′ and I ′′ is supported.

Proposition 4.3 (Existence of Cantor set around main leaf). J−1 is glued to J+
1 and J−2 is glued to J+

2 .
In other words, ∗1 is (C, 2, c, β, η)-glued at scale 0, for some constants C, c, β, η.

Proof. First we show that J−1 is glued to J+
1 . From Lemma 4.2 we get a pair of distinct periodic leaves

l, l′ each with one endpoint in J−1 and the other endpoint in J+
1 . Let a−, a+ be the endpoints of l in J−1

and J+
1 respectively, and let a′−, a′+ be the endpoints of l′ in J−1 and J+

1 respectively. Let H−1 be the
closed subinterval of J−1 with endpoints {a−, a′−} and H+

1 be the closed subinterval of J+
1 with endpoints

{a′+, a+}. Let ϕ : H−1 → H+
1 be the linear map that takes a− to a+ and a′− to a′+.

As in the above discussion, let w = Iα(l)|2p and w′ = Iα(l′)|2p′ where p and p′ are the periods of l and

l′ respectively. Recall that w̃ fixes a− and a+ while w̃′ fixes a′− and a′+, and w̃ and w̃′ are orientation
preserving.
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Consider the restrictions w̃|H−1 and w̃|H+
1

of w̃ to H−1 and H+
1 respectively. They are conjugate:

w̃|H+
1
◦ ϕ = ϕ ◦ w̃|H−1 . (9)

To see this, note that both sides of the equation are linear mappings with the same derivative, and they
are equal when evaluated at a−, and they are both of the same orientation class.

Similarly, w̃′|H+
1
◦ ϕ = ϕ ◦ w̃′|H−1 holds for the linear maps induced by the other periodic leaf, l′.

Consider the linear iterated function systems generated by the contractions w̃ and w̃′ on each of the
intervals H−1 and H+

1 . Let A−1 and A+
1 be the respective limit sets. That is, A−1 is the closure of the orbit

of the two endpoints ∂H−1 = {a−, a′−} of H−1 under arbitrary finite compositions of w̃|H−1 and w̃′|H−1 ,

and similarly for A+
1 . Since w̃, w̃′ are linear contractions on an interval, the limit set is a Cantor set and

it is an easy exercise to show that the limit sets are uniformly perfect.

We claim that x ∼ ϕ(x) for all x ∈ A−1 . This is true by definition when x = a− or x = a′−. On the other
hand, invariance of ∼ and the conjugacy (9) yields, for x ∈ H−1 :

x ∼ ϕ(x) =⇒ { w̃x ∼ w̃ϕ(x) = ϕ(w̃x) and w̃′x ∼ w̃′ϕ(x) = ϕ(w̃′x). }

By induction, we get x ∼ ϕ(x) for all images of a− and a+ under arbitrary finite compositions of w̃ and

w̃′. By topological closedness of ∼ we get x ∼ ϕ(x) for all x ∈ A−1 .

Thus we have constructed a gluing between J−1 and J+
1 where ϕ is not only quasisymmetric but linear,

and A−1 , A
+
1 are not only uniformly perfect, but are linear Cantor sets. A similar argument shows that

J−2 and J+
2 are glued together on some cantor sets A−2 and A+

2 . Thus ∗1 is (C, 2, c, β, 1)-glued at scale 0,
where the constants will depend on the relative sizes of I±1,2 and J±1,2 and also on the derivatives of w̃ and

w̃′.

To get the gluing at scale r = 2−N and x ∈ T, we will pull back the gluing we just constructed. For this
purpose it is useful to introduce the notion of a circular chain.

Definition 3 (Circular chain). For m ≥ 2, if l1, . . . , lm are mutually non-intersecting chords in the
lamination ∼, let Gap(l) be the component of D\ ∪i li that contains the convex hull of the 2m endpoints
of the li. We say that l1, . . . , lm form an ε-circular chain around x ∈ T if

• All the chords l1, . . . , lm lie on the boundary of Conv(l).

• All the components of Conv(l) ∩ T have length bounded above by ε.

• Gap(l) ∩ T contains x.

For m = 1, we say that l1 forms a ε-circular chain around x if both endpoints of l1 are within ε of x, and
if x is contained in the smaller of the two components of D\{l1}.

Recall that Mα is the quantitative parameter in the definition of combinatorial semihyperbolicity.

For each x ∈ T and each scale r = 2−N , we will construct a � 2−N circular chain around x by using
boundary leaves of cylinder sets. By Proposition 2.11, these boundary leaves are all pullbacks of the main
leaf (∗1, ∗2) under the doubling map h.

Thus for each leaf li of the circular chain, we can pull back the gluing around the main leaf (Proposition
4.3) to a gluing around li.

To make this work we need to ensure that we can construct the desired circular chain with a bounded
number of boundary leaves.

Lemma 4.4. Suppose g ∈ {L,R}N is a finite word of length N . There can be at most one integer

t < N −Mα such that g̃|t{∗1, ∗2} is a boundary leaf. In particular the number of boundary leaves of C(g)
is bounded by Mα + 1.
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Proof. Suppose for contradiction t, t′ ≤ N − Mα − 1 are distinct integers such that g̃|t{∗1, ∗2} and

g̃|t′{∗1, ∗2} are boundary leaves, and assume without loss of generality that t < t′. By Proposition 2.11,
we have g = g|tsv = g|t′s′v′ where s, s′ ∈ {L,R, ?} and v, v′ are initial subwords of kα(α). Applying the
shift σt+1 yields v = (σt+1g|t′)s′v′. This shows that σT v = v′ where T > 0. Since t′ ≤ N −Mα − 1, we
have that |v′| ≥Mα, so the last equality contradicts combinatorial semihyperbolicity.

With this lemma, we can now prove the existence of circular chains around x.

Lemma 4.5 (Existence of chains around x). There exists C > 0 such that the following holds. For each
x ∈ T and each N ≥ 0, there exists m finite words u(1), . . . , u(m) ∈ {L,R}∗ such that

• m ≤ 2Mα

• The lengths of the words satisfy N −Mα ≤ |u(i)| ≤ N

• The leaves li := ˜u(i){∗1, ∗2} form a C2−N -circular chain around x in the sense of Definition 3.

Proof. There are several cases to consider. Suppose x ∈ T and N ≥ 0. Let g = Iα(x) be the itinerary of
x. There are four cases to consider.

1. g = u ? Iα(α) for some finite word u ∈ {L,R}∗, and N −Mα ≤ |u| ≤ N − 1. The first part of
this condition is equivalent to saying that htx ∈ {∗1, ∗2} for some t, the second part says that
N −Mα ≤ t ≤ N − 1.

2. The symbol ? does not occur in g|N , and if 0 ≤ t ≤ N − 1 is an integer such that σt+1(g|N ) is an
initial subword of Iα(α), then t ≥ N −Mα.

3. The symbol ? does not occur in g|N and there exists an integer 0 ≤ t < N −Mα such that σt+1(g|N )
is an initial subword of Iα(α).

4. g = u ? Iα(α) for some finite word u ∈ {L,R}∗, and |u| < N −Mα.

In case 1), we can simply take m = 2 and u(1) = u(2) = u. Now we turn to the second case. The desired
leaves will be the boundary leaves of a certain cylinder containing x. Let g|N ∈ {L,R}∞ be the first N
letters in the itinerary of x. The cylinder C(g|N ) is a union of open intervals with disjoint closure, with
total length 2−N , that contains x. By Proposition 2.11, the boundary leaves of the cylinder are of the
form ũ{∗1, ∗2}, and they clearly form a circular chain around x. It remains to verify that these boundary
leaves satisfy the first two conclusions of Lemma. Let m be the number of boundary leaves of the cylinder
C(g|N ). By Lemma 4.4, m ≤Mα + 1. By Proposition 2.11, the assumption of case 2) implies that all the
boundary leaves have depth at least N −Mα, so we are done.

The idea for case 3) is similar. We would like to use the boundary leaves of C(g|N ), but the problem is
that not all the boundary leaves are deep enough: there exists j′ such that tj′ < N −Mα. See Figure
4d. However, Lemma 4.4 guarantees that there is only one j′ for which σt1+1(g|N ) is an initial subword
of Iα(α) and tj′ < N −Mα. Wlog assume j′ = 1. It suffices to find another cylinder C(ĝ|N ) such that

C(ĝ|N ) and C(g|N ) share the troublesome shallow boundary leaf g̃|t1{∗1, ∗2}. The boundary leaves of the
closed union C(g|N ) ∪ C(ĝ|N ) will all be deep since the shallow leaf is in the interior and is no longer on
the boundary.

If g|N = g1g2 . . . gN , let ĝ|N = g1g2 . . . gt1 ˆgt1+1 . . . gN where ˆgt1+1 = L if gt1+1 = R and vice versa. Then

C(ĝ|N ) is a cylinder that also has g̃|t1{∗1, ∗2} as a boundary leaf. This completes the proof for case 3).

For case 4), we consider the modified itinerary gL which is equal to g = Iα(x) except that the symbol ? is
replaced by the symbol L. The modified itinerary gL = uLIα(α) satisfies the hypotheses of case 3) with
t = |u|, and C(gL|N ) contains x by Proposition 2.10, so we can apply the construction of case 3) to gL to
obtained the desired circular chain.

Finally we show how to use the gluings from I−1 to I+1 and I−2 to I+2 to create gluings on all scales.
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Proof of Theorem 1.2. Suppose x ∈ T and N ≥ 0. Let g = Iα(x) be the itinerary of x. Let u(1), . . . , u(m)

be the finite words provided by Lemma 4.5, so that the leaves lj := ũ(j){∗1, ∗2} form a circular chain
around x. Let U = Gap(l) ∩ ∂D be the interior of this chain.

For each j = 1, . . . ,m, the mapping ũ(j) maps the two intervals I ′, I ′′ (containing ∗1, ∗2) to a pair of

neighborhoods ũ(j)I ′ and ũ(j)I ′′. Here it is crucial that I ′ and I ′′ do not contain any postcritical points.

By backward invariance and linearity of the ũ, the pair of good gluings between the intervals I−j and

I+j constructed in Proposition 4.3 are mapped via ũ(j) to a pair of good gluings adjacent to ũ(j)∗1 and

ũ(j)∗2. One of these gluings will lie in the exterior T\U of the circular chain. The derivative of ũ(j) is
between 2−N and 2−N+Mα , so the gluing is at scale N .

The collection of these gluings for j = 1, . . . ,m provides the good gluing at scale N at x.

5 Combinatorial Semihyperbolicity and concrete semihyperbol-
icity

So far in this paper we have worked only with ‘abstract’ or ‘combinatorial’ laminations. In this section we
relate our work to concrete Julia sets.

For c ∈ C let pc(z) = z2 + c and let Kc be its filled Julia set. If Kc is connected there is a unique Riemann
map ϕc : D∗ → C\Kc that fixes ∞ and ϕ′(∞) > 0. If, in addition, Kc is locally connected, then ϕc
extends continuously to the boundary ∂D ∼= T. Let γ : T→ Jc be the restriction of this extension to the
boundary, where Jc = ∂Kc is the Julia set of pc. We call γ the Caratheodory loop. The Caratheodory
loop induces an equivalence relation ∼c on T ∼= R/Z where points are identified if they have the same
image under γ.

Any equivalence relation induced by a homeomorphism from the outside of the disk D∗ to the complement
of a compact set K ⊂ C is flat, ([Thu09, Proposition II.3.2]).

The key observation which relates to ∼c to ≈α is that ϕc semiconjugates pc to the map z 7→ z2 on D∗,
this is because ϕc ◦ pc ◦ ϕ−1c : D∗ → D∗ is proper of degree 2 and fixes ∞, so ϕc ◦ pc ◦ ϕ−1c (z) = λz2 for
some |λ| = 1. But λ = 1, by considering what happens to large z. It follows that γ semiconjugates pc|Jc
to the doubling map h : T→ T:

pc ◦ γ = γ ◦ h. (10)

The semiconjugacy implies that ∼c is closed and invariant, and furthermore that if γ(α) = c, then ∗1 = ∗2.
We immediately get that ∼c contains the minimal α-equivalence defined in 2.1. It can also be shown that
∼c⊂≈α. When Iα(α) is not perioidic, it can be shown that ≈α is equal to the minimal α-equivalence,
and it follows that ∼c=≈α [BK92, Theorem 1].

Recall that c ∈ C is a semihyperbolic parameter if pc has no parabolic periodic points and if c is not in the
closure of its forward orbit [CJY94, Theorem 1.1]. This dynamical condition is equivalent to a condition
on the geometry of the Fatou set: c is semihyperbolic if and only if the basin of attraction to ∞ is a John
domain.

Our characterization of the topology of T/ ≈α in terms of itineraries shows that our notion of combinatorial
semihyperbolicity is equivalent to the notion of semihyperbolicity described above.

Proof of Theorem 1.4. For the first direction, we have from [BK92, Theorem 1] that T/ ≈α is homeomor-
phic to Jc via the map γ : T→ Jc. Since c is semihyperbolic we have c /∈

⋃
t≥1p

t
c(c). Because γ ◦h = pc ◦γ

on T, we have that [α] /∈
⋃
t≥1 h

t([α]). It follows from the characterization of the topology of T/ ≈α in
Proposition 2.6 that α is combinatorially semihyperbolic.
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For the other direction, if α is combinatorially semihyperbolic, then our construction Theorem 1.2 together
with [LR, Theorem 1] implies that there exists a conformally removable compact set J ⊂ Ĉ such that

conformal map ϕ : Ĉ\D→ Ĉ\J solves the welding problem ≈α, meaning ϕ(eiπx)) = ϕ(eiπy)) ⇐⇒ x ≈α y.
Suppose we chosen J so that ϕ satisfies the normalizations ϕ(∗1) = 0, ϕ(∞) =∞, and ϕ(z) = z + o(1) as
z →∞.

Now we show that J is the Julia set of z 7→ z2 + c.

Let h̃(z) = z2 be the extension of the angle doubling map to the exterior of the unit disk, h̃ : Ĉ\D→ Ĉ\D,

and let p(z) = ϕ ◦ h̃ ◦ ϕ−1 be its conjugate on Ĉ\Jc. Then p is holomorphic on Ĉ\J , and the invariance

properties of ≈α imply that p extends continuously to Ĉ to a topological degree two branched cover with
two critical values, at ∞ and at c := ϕ(α).

We would like to conclude from removability of J that p is holomorphic on Ĉ and is hence a polynomial.
However, p is not a homemorphism so we cannot apply conformal removability directly. Instead, we will
consider a lift of p.

The map pc : z 7→ z2 + c is a double sheeted cover of C\{c} by C\{0}. On the other hand, p : C\{0} →
C\{c} is also a double sheeted cover. The covers are therefore equivalent, meaning that there is a
homeomorphism π : C\{0} → C\{0} such that p = pc ◦ π. We have limz→∞ p(z) =∞ = limz→∞ pc(z), so
limz→c pc(z) = 0 and so π extends to a homeomorphism C→ C mapping 0 to 0 and c to c.

On the other hand, the holomorphicity of p on C\J , and holomorphicity of pc, implies that π is holomorphic
on C\J . By removability of J we conclude that π : C→ C is the identity.

We have thus shown that pc = p and it is clear that J is the Julia set of p. We have found a polynomial
pc for which T/ ≈α∼= Jc. It remains to show that c is semihyperbolic.

Since γ is a conjugacy between (T/ ≈α) and (Jc, pc), it suffices to show that [α] /∈
⋃
t≥1 h

t([α]). By

Proposition 2.6, we need to show that for all t ≥ 1, σtIα(α) is not 2Mα + 1 close to Iα(α). Suppose
Iα(htα) and Iα(α) are 2Mα + 1 close for some t, then we can write Iα(α)|2Mα+1 = usIα(α)|2Mα+1 and
Iα(htα)|2Mα+1 = us′Iα(α)|2Mα+1 for some finite word u ∈ {L,R}∗ and some s, s′ ∈ {L,R}. If |u| > Mα

then this shows that Iα(α)|Mα
= u|Mα

= kα(htα)|Mα
, and this is a contradiction. On the other hand if

|u| ≤ Mα, then by applying the shift σ|u|+1 to the equality Iα(α)|2Mα+1 = usIα(α)|2Mα+1 shows that
kα(h|u|+1α)|2Mα−|u| = Iα(α)|2Mα−|u|. Since 2Mα − |u| ≥Mα this again is a contradiction.
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