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Abstract. We prove that Beltrami coefficients on the square that are con-
catenated with random orientations tend to cancel each other out. As an

application, we give a new perspective on stochastic homogenization.

1. Introduction

Let S ⊂ C be an open square. A Beltrami coefficient on S is a measurable
function µ : S → D. Such a coefficient specifies an alternate complex structure on
S. See Figure 1.

The rotation group of the square, Z4, acts on Beltrami coefficients µ : S → D in the
following way: if rπ/2 ∈ Z4 denotes rotation by π/2, then (rπ/2 · µ)(z) = −µ(r−1

π/2z).

This corresponds to a rotation of the square with its alternate complex structure.
We define the energy of a Beltrami coefficient on S:

ES(µ) = E(µ) =

ˆ
S

1 + |µ|2

1− |µ|2
dxdy −Area(S).

Remark 1. Recall that D is often identified with the space of ellipses in R2 centered at
the origin, modulo homotheties with respect to the origin. If Eλ denotes the ellipse

associated to λ ∈ D, then E−λ is the π/2 rotate of Eλ. We have 1+|λ|2
1−|λ|2 = Kλ +K−1

λ

where Kλ is the eccentricity of the ellipse Eλ associated to λ, so E(µ) measures the
mean eccentricity of the ellipse field µ. Clearly E(µ) = 0 if and only if µ = 0 almost
everywhere, i.e. each ellipse is a round circle.
E(µ) + Area(S) is also equal to the Dirichlet energy of h−1

µ where hµ is any
homeomorphic solution to the Beltrami equation, see (2) in Section 2.

The optimal energy is E∗(µ) = infµ′∼Teichµ E(µ′), where the Teichmüller equiva-
lence µ′ ∼Teich µ means that µ and µ′ induce the same conformal structure relative
to the boundary of S. See Figure 2 for an example, and see Section 2 for precise
definitions.

If µ1, . . . , µ4 : (0, 1)2 → D are Beltrami coefficients, we define the dyadic concate-
nation to be the Beltrami coefficient [ µ1 µ2

µ3 µ4 ] : (0, 2)2 → D obtained by dividing (0, 2)2

into 4 subsquares and then placing copies of µi into the appropriate subsquares.
Linearity of integration implies

E∗[ µ1 µ2
µ3 µ4 ] ≤ E [ µ1 µ2

µ3 µ4 ] =

4∑
i=1

E(µi).(1)

It is well known that equality can hold, for instance if the µi are constant and equal
to the same constant.
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Figure 1. If µ : [0, 1]2 → D is a Beltrami coefficient, it can be interpreted
as an ellipse field on [0, 1]2 (middle). This, in turn, can be interpreted
as a deformation of the standard complex structure on [0, 1]2, in which
the given ellipses are declared to be round. In particular, if µ has an
integrating map hµ, it defines a quadratic form Dirµ(f) := Dir(f ◦ h−1

µ )

on the space of functions f : [0, 1]2 → C. Equation (2) says that
E(µ) + 1 = Dir(h−1

µ ) = Dirµ(Id). In the case depicted above, when µ is
constant, hµ is given by an affine stretch.

Our main result says that if any collection of nontrivial Beltrami coefficients are
concatenated with randomly chosen orientations, then the inequality is likely to be
strict, in a quantititive way. A random Beltrami coefficient is a random variable
taking values in the space of Beltrami coefficients on [0, 1]2. See Section 2 for more
precise definitions.

Theorem 1.1. For k < 1 there exists a constant c > 0 such that the following is
true.

Let µ be a random Beltrami coefficient on (0, 1)2 with rotationally invariant
distribution, and assume that ‖µ‖∞ < k almost surely.

Let µ1, . . . , µ4 be i.i.d. samples of µ, and let r1, . . . , r4 be i.i.d. samples from Z4.
ν = [ r1µ1 r2µ2

r3µ3 r4µ4 ] be the concatenation of the µi. Then

EE∗ν ≤ 4EE∗(µ)− c · T1 (EE∗(µ)) ,

where T1(x) = min(x3, x).

Example 1. Suppose we take µ to be deterministically equal to a constant Beltrami
coefficient µ ≡ k0 < 1, so that µi ≡ k0 for each i. If the rotations ri are all
aligned, then E∗(ν) = E(ν) = 4E∗(µ). On the other hand, if the ri are not aligned
(see Figure 2), then E∗(ν) < E(ν). The conclusion of Theorem 1.1 quantifies the
strictness of the inequality.

Note that in this particular example, our theorem is not sharp. It can be
shown directly that there exists c > 0 such that whenever µ is constant, EE∗(ν) ≤
4EE∗(µ)− cE(µ).

In fact, we obtain quantitative control even away from the uniformly elliptic or
quasiconformal setting. The theorem below obviously implies the previous theorem.

In the theorem statement, self compatibility means that the concatenation [ µ1 µ2
µ3 µ4 ]

has a unique (up to postcomposition by conformal map) homeomorphic solution
almost surely. A simple class of self compatible random Beltrami coefficients are
those that satisfy ‖µ‖∞ < 1 almost surely.

Theorem 1.2. There exists c0 > 0 such that the following is true. Let µ be a self
compatible random Beltrami coefficient on (0, 1)2.

Assume that there exists ε > 0 such that M = 1 + EE(µ)1+ε is finite.
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Figure 2. In the middle, we have the concatenation, ν, of 4 constant
coefficient Beltrami coefficients (in fact, |µ| ≡ 1/2 and the ellipses have
eccentricity 3 here). The integrating map for this concatenation, hν is a
piecewise linear map to a rectangle. Even though ν is optimal on each
of the four subsquares, the coefficient as a whole is not optimal. Indeed,
the cofficient ν′ on the right satisfies E(ν′) < E(ν), and ν ∼Teich ν

′. In
other words, there exists g : [0, 1]2 → [0, 1]2 mapping the ellipse field ν′

to ν, and g = Id on ∂[0, 1]2.

Let µ1, . . . , µ4 be i.i.d. samples of µ, and let r1, . . . , r4 be i.i.d. samples from Z4.
ν = [ r1µ1 r2µ2

r3µ3 r4µ4 ] be the concatenation of the µi. Then

EE∗(ν) ≤ 4EE∗(µ)− c05−2(1+ε)/εM−2/ε · T1 (EE∗(µ)) ,

where T1(x) = min(x3, x).
More generally, if ψ : [0,∞) → [0,∞) is monotone, nonnegative, convex, and

vanishes at 0, then

Eψ(E∗(ν)) ≤ 4Eψ(E∗(µ))− c05−2(1+ε)/εM−2/ε · T1 (EψE∗(µ)) ,

where now M = 1 + EE(µ)εψ(E(µ)).

Proof of Theorem 1.1 from Theorem 1.2. If ‖µ‖∞ < k, then E(µ) ≤ 1+k2

1−k2 − 1. If

this holds almost surely, then EE(µ)2 is bounded by a constant only depending on
k. �

The theorem is an instance of the phenomenon that deformations of complex
structures tend to cancel each other out, unless they are ‘aligned’. We describe two
other instances where this phenomenon appears.

Thurston proved that rational maps (with hyperbolic orbifold) are combinatorially
rigid [DH84, Corollary 3.4] by showing that a certain map on a finite dimensional
Teichmüller space is strictly contracting. Roughly speaking, the mechanism for
this contraction can be interpreted in the following way: infinitesmal conformal
deformations undergo cancellation under a type of concatenation operation related
to the one we defined above.

Our theorem differs in that it is global, quantitative, and applies to an infinite-
dimensional space. It can be used to construct conformal uniformizations of subdi-
vision rules that do not arise from branched covers. Such subdivision rules are of
interest in relation to Cannon’s conjecture and the quasisymmetric uniformization
problem. These applications will be covered in a separate article.

Cancellation of conformal deformations is also illustrated in the study of stochastic
homogenization, or random walks on random environments. A prototypical result in
the area is that Brownian motion with respect to ergodic conformal deformations is
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well approximated by an affine Brownian motion. See, for example, [ARST20, IM19].
In Section 4 we demonstrate how one such statement follows easily from our theorem.

We now turn to the proof of Theorem 1.2. It is a corollary of the following
deterministic statement.

Theorem 1.3. There exists c0 > 0 such that the following is true. Let {µ1, . . . , µ5}
be a compatible collection of Beltrami coefficients.

There exists rotations r1, . . . , r4 ∈ Z4 and an injective map ι : {1, . . . , 4} →
{1, . . . , 5} such that

E∗
[ r1µι(1) r2µι(2)
r3µι(3) r4µι(4)

]
≤

4∑
k=1

E∗(µι(k))− c0T−1(max
i
E∗(µi)),

where T−1(x) = min(x3, x−1).

We conclude the introduction by showing how Theorem 1.2 follows from this
deterministic statement. Section 2 contains preliminary material about Beltrami
coefficients and some elementary observations about the Dirichlet energy. Section 3
is devoted to the proof of Theorem 1.3. Finally, Section 4 demonstrates how the
theorem applies to stochastic homogenization.

Proof of Theorem 1.2 from Theorem 1.3. Let {µ1, . . . , µ5} be a fixed collection of
self compatible Beltrami coefficients on (0, 1)2.

By Theorem 1.3, there exists an injective ι : {1, 2, 3, 4} ↪→ {1, 2, 3, 4, 5} and
r : {1, 2, 3, 4} → Z4 such that

E∗
[
r(1)µι(1) r(2)µι(2)
r(3)µι(3) r(4)µι(4)

]
≤

4∑
k=1

E(µ∗ι(k))− c0T−1(max
i≤5
E∗(µi)),

where Tp(x) = max(x3, xp). Thus if ι : {1, 2, 3, 4} ↪→ {1, 2, 3, 4, 5} is an uniformly
random injective function and r : {1, 2, 3, 4} → Z4 is a uniformly random choice of
rotation, we have

Eι,r

(
E∗
[
r(1)µι(1) r(2)µι(2)
r(3)µι(3) r(4)µι(4)

]
−

4∑
k=1

E∗(µι(k))

)
≤ −tc0 · T−1(max

i
E∗(µi)),

where t = 4
5·4·3·2·44 . On the other hand, if we now let µ1, . . . , µ5 be five i.i.d. copies

(and independent of the random functions ι and r) of some random Beltrami
coefficient µ satisfying the hypotheses of the theorem, then (r(1)µι(1), . . . , r(4)µι(4))
is equal in distribution to (µ1, . . . , µ4). So taking the expectation of the previous
inequality yields

EµE∗[ µ1 µ2
µ3 µ4 ] = Eµ,ι,rE∗

[
r(1)µι(1) r(2)µι(2)
r(3)µι(3) r(4)µι(4)

]
≤ Eµ

4∑
k=1

E∗(µι(k))− tc0EµT−1

(
max
i
E∗(µi)

)
.

In the rest of the proof we will use the notation a & b to mean that a ≤ Cb where
the constant C does not depend on µ or ε, and write a � b to mean a & b and b & a.

Set X = maxi E∗(µi) and note that X ≤
∑
i E∗(µi) so that EX1+ε ≤ 51+εM ,

and Tp(maxi E∗(µi)) � Tp(X) for p ∈ {−1, 1}.
The proof will be complete once we show that EµT−1(X) & 5−2(1+ε)/εM−2/εT1(EµX).
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Let Θ > 1 be a constant to be chosen later. By considering the events X < Θ−1,
X ∈ [Θ−1,Θ] and X > Θ separately, we get

EµX ≤ Θ−1 + Θ · P(X ∈ [Θ−1,Θ]) + EµX1{X ≥ Θ}
≤ Θ−1 + Θ · P(X ∈ [Θ−1,Θ]) + Θ−εEµX1+ε.

Thus, we can find Θ . max(5(1+ε)/εM1/ε, (EµX)−1) such that Θ · P(X ∈
[Θ−1,Θ]) & Eµ(X). For this Θ,

EµT−1(X) ≥ Θ−1P(X ∈ [Θ−1,Θ]) & Θ−2Eµ(X) � Θ−2Eµ(E(µ))

& 52ε/(1+ε)M−2/ε min(Eµ(E(µ))3,EµE(µ)).

as desired. �

2. Preliminaries

In this paper, Ω will always be an open Jordan domain in the complex plane, or
the complex plane itself, and S will always be an open rectangle in the plane. Let
C(Ω) be the space of continuous C-valued functions with continuous extension to
the boundary. Let C0(Ω) be the subspace of functions that vanish on the boundary.
For p ≥ 1, let W 1,p(Ω) be the Sobolev space of C-valued functions whose real and
imaginary parts have weak derivatives in Lp(Ω).

2.1. Beltrami Coefficients. See [Ast09] for detailed background on Beltrami
coefficients and the Beltrami equation, the following section is only intended to set
up terminology.

A Beltrami coefficient on S is a measurable function µ : S → D, considered up
to a.e. equivalence. An integrating homeomorphism for µ is a W 1,1(S,C) homeo-
morphism hµ : S → Ω with the following properties: Ω ⊂ C is a Jordan domain,
and hµ solves the Beltrami equation ∂̄hµ = µ∂hµ, and h extends continuously to a

homeomorphism S → Ω.
We say that µ is integrable if E(µ) < ∞ and there exists an integrating home-

omorphism for µ. Geometrically, µ can be interpreted as an infinitesimal ellipse
field, and an integrating homeorphism is simply a homeomorphism which maps each
ellipse of µ to a round circle. See Figure 1.

If h : S → Ω is an integrating homeomorphism and ϕ : Ω → Ω̃ is a conformal
map of Jordan domains, then ϕ ◦ h is also an integrating homeomorphism.

Therefore if µ is integrable, one can freely choose the codomain of the integrating
homeomorphism.

We say that µ is uniquely integrable if any two integrating homeomorphisms
h, h̃ are related in the preceding way: h ◦ h̃−1 is complex analytic on its domain of
definition. We say that µ is strongly uniquely integrable if µ|S′ is uniquely integrable
for all open rectangles S′ ⊂ S.

We now give the precise definition of Teichmüller equivalence used in this paper.

Definition 2.1. Let µ : S → D and µ′ : S → D be integrable Beltrami coefficients.
We write µ ∼Teich µ

′ if there exists integrating maps hµ and hµ′ that are equal on
∂S.

Teichmüller equivalence automatically implies the following stronger equivalence:
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Lemma 2.1. Suppose µ ∼Teich µ
′ and suppose µ is uniquely integrable. Let h̃µ : S →

Ω be an integrating map for µ. Then there exists an integrating map h̃µ′ : S → Ω̃

for µ′ such that h̃µ′ = h̃µ on ∂S.

Proof. Since µ ∼Teich µ
′, there exists integrating maps hµ : S → Ω and hµ′ : S → Ω

that are equal on ∂S. Since µ is uniquely integrable, h̃µ = ϕ ◦ hµ for some

conformal ϕ : Ω → Ω̃. By Carathéodory’s theorem, ϕ extends continuously to a
homeomorphism of the closures, so h̃µ′ := ϕ◦hµ′ is the desired integrating map. �

To avoid technicalities regarding measurability and σ-algebras for probability
measures, we will only consider random variables taking on a finite set of values.

Definition 2.2 (Random Beltrami Coefficient). A random Beltrami coefficient
on S is a random variable taking values in some finite set of uniquely integrable
Beltrami coefficients on S.

2.2. Compatibility of Beltrami coefficients. The dyadic concatenation of uniquely
integrable Beltrami coefficients is not necessarily uniquely integrable or even inte-
grable. This is related to the conformal welding problem. This presents a small
technical obstacle to iterating the dyadic concatenation operation (and the reader is
encouraged to ignore the notion of compatibility and skip this section on first read).

However, the only way that this can happen is if the ‘interface’ of the concatenation
is badly behaved.

Therefore, this issue can be avoided by making the minimal assumptions on the
local regularity of the boundary behaviour, which will automatically be preserved
under dyadic concatenation and Teichmüller equivalence. We clarify this below.

A quadruplet µ1, . . . , µ4 of Beltrami coefficients is said to be compatible if [ µ1 µ2
µ3 µ4 ]

is strongly uniquely integrable. It is said to be strongly compatible if for every
choice of rotations r : {1, 2, 3, 4} → Z4 and permutation ι : 1, . . . , 4, the quadruplet
(rµιi, . . . , rµιi) is compatible. A collection of Beltrami coefficients is said to be self
compatible if every quadruplet from that collection is strongly compatible.

A random Beltrami coefficient µ is said to be self compatible if it is almost
surely true that when µ1, . . . , µ4 are i.i.d. samples of µ, then (µ1, . . . , µ4) is strongly
uniquely integrable.

As an example, it is immediate from the measurable Riemann mapping theorem
that any collection of coefficients µ satisfying ‖µ‖∞ < 1 is a compatible collec-
tion, and any random Beltrami coefficient satisfying ‖µ‖∞ < 1 almost surely is
automatically self compatible.

Since this already covers many interesting applications, the reader is encouraged
to skip the rest of this section on first read.

To iterate Theorem 1.2, we need that self compatibility is closed under dyadic
concatenation.

Proposition 2.1. Suppose µ is a random Beltrami coefficient that is self compatible.
If µ1, . . . , µ4 are i.i.d. with distribution µ, then the random Beltrami coefficient
[ µ1 µ2
µ3 µ4 ] is also self compatible.

Proof. Let ν1, . . . , ν4 be i.i.d. copies of [ µ1 µ2
µ3 µ4 ]. Then the concatenated coefficient

ν := [ ν1 ν2ν3 ν4 ] may be thought of as the concatenation of 16 i.i.d. coefficients with
distribution µ. This 16-fold concatenation can be covered by a finite number of
overlapping open 2× 2 squares.
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By the self compatibility assumption on µ and the union bound, it is almost
surely true that the restriction of ν to each of these open squares is strongly uniquely
integrable. If this is the case, then Lemma 2.2 below implies that ν itself is uniquely
integrable, so we are done. �

Above, we used the following locality of strong unique integrability.

Lemma 2.2 (Locality of strong unique integrability). Let µ : S → D be a Beltrami
coefficient and let U be an open covering of S by rectangles. Suppose for each U ∈ U ,
µ|U is strongly uniquely integrable. Then µ is integrable and in fact strongly uniquely
integrable.

Proof. Let S′ be a subrectangle of S and let U ′ = {U ∩S′ : U ∈ U} be the restriction
of U to S′. For each U ∈ U , fix an integrating map hU : U → ΩU for µ|U . The
intersection between each U, V ∈ U ′ is either empty or a rectangle, so if all the µ|U
are strongly uniquely integrable, then the collection of maps {h|U} forms a complex
chart for S′. By the uniformization theorem, there exists a global homeomorphism
h : S′ → X where X is D or C. Extremal length considerations rule out this latter
possibility, so X = D.

This h is compatible with all the charts, that is, for each U , the map h ◦ h−1
U is a

conformal. Therefore h is an integrating homeomorphism for µ on S′.
Now let h, h̃ be any integrating homeomorphisms for µ|S′ . By strong unique

integrability of the µ|U , these homeomorphisms are compatible with the charts
(hU )U∈U ′ , and in hence with each other, on each U .

That is, h ◦ h̃−1 is conformal on each U , and hence is conformal on S′. �

In the proof of Theorem 1.3, we start by replacing each Beltrami coefficient with
its optimal representative. For this to be valid, we need to show that this operation
does not affect compatibility.

In the next two lemmas, suppose µ1, . . . , µ4 and µ̃1, . . . , µ̃4 are uniquely integrable
Beltrami coefficients on (0, 1)2. Let µ, µ̃ : (0, 2)2 → D be the respective dyadic
concatenations.

Lemma 2.3. Let hµ : [0, 2]2 → Ω be an integrating map for µ. Then there exists
an integrating map hµ̃ for µ̃ which is equal to hµ on ∪4

i=1∂Si.

Proof. Let hµ|1, . . . , hµ|4 be the restriction of hµ to each of the four subsquares of
(0, 2)2. Then each hµ|i is an integrating map for µi. By Lemma 2.1, there exists
hµ̃|i ∼∂ hµ|i which integrate µ̃i. These maps glue together to a homeomorphism
hµ̃ : [0, 2]2 → Ω, which integrates µ̃ and has the desired property. �

Lemma 2.4. Suppose µi ∼Teich µ̃i for each i.
Then µ ∼Teich µ̃, and µ is uniquely integrable iff µ̃ is uniquely integrable.

Proof. The first conclusion follows from the preceding Lemma 2.3. Now suppose
that µ̃ is uniquely integrable.

Let hµ and h′µ be integrating maps for µ. By postcomposition with a conformal
map, we can assume that they have the same codomain Ω and that they are equal
on 3 of the vertices of [0, 2]2. By the preceding lemma, we get integrating maps hµ̃
and h′µ̃ for µ̃ which are equal to hµ and h′µ respectively on ∪4

i=1∂Si. In particular,

hµ̃ is equal to h′µ̃ on three of the vertices of [0, 2]2. Since µ̃ is uniquely integrable,

this implies that hµ̃ = h′µ̃, which implies that hµ = h′µ on ∪4
i=1∂Si. Since the µi are
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uniquely integrable, this implies that the restriction of each hµ to each subsquare
Si is equal to the restriction of h′µ to Si. It follows that hµ = h′µ. �

2.3. Dirichlet Energy. For f, g ∈ C(Ω) ∩W 1,2(Ω) we have the Dirichlet inner
product :

DirΩ(f, g) =
1

2

ˆ
Ω

(∇Ref) · (∇Reg) + (∇Imf) · (∇Img) dxdy.

By abuse of notation we write DirΩ(f) := DirΩ(f, f) for the Dirichlet energy of f .
If Ω′ ⊂ Ω is a subdomain we write DirΩ′(f, g) to mean Dir(f |Ω′ , g|Ω′).

We define Dir∗Ω(f) = inf f̃∼f DirΩ(f) where the infimum is over f̃ ∈ C(Ω) ∩
W 1,2(Ω) such that f̃ = f on ∂Ω.

If the Beltrami coefficient µ : S → D is uniquely integrable, then it endows S
with the structure of a Riemann surface (S, µ), and all the definitions above relating
to the Dirichlet inner product and harmonic functions can be extended to such
surfaces.

Concretely, suppose hµ : S → Ω is any integrating homeomorphism for µ. Let
W 1,2(S, µ) be the space of functions f : S → C such that f ◦ h−1

µ ∈ W 1,2(Ω). For

f, g ∈W 1,2(S, µ), define the Dirichlet inner product

DirS,µ(f, g) := DirΩ(f ◦ h−1
µ , g ◦ h−1

µ ),

Since the Dirichlet energy is invariant under conformal precomposition, these defini-
tions do not depend on the choice of hµ.

If S′ ⊂ S is an open Jordan domain, we write (abusing notation) DirS′,µ(f, g) :=
DirS′,µ|S′ (f |S′ , g|S′).

A computation involving the chain rule shows that, formally, if hµ is any integrat-
ing homeomorphism for µ, then the mean dilatation of µ is equal to the Dirichlet
energy of h−1

µ :

ES(µ) = DirΩ(h−1
µ )−Area(S) = DirS,µ(IdS)−Area(S),(2)

where Area(S) is the Lebesgue measure of S. In fact, the identity holds under the
minimal regularity assumptions on µ and hµ, see [HKO05, Theorem 2.1] (see also
[AIMO05]),

From this we immediately conclude that E∗(µ) ≥ Dir∗S,µ(Id)−Area(S), because
the minimization problem on the right hand side is over a larger class of functions
(possibly non-homeomorphisms). However, the Radó-Kneser-Choquet theorem
[Dur04, Chapter 3] guarantees that if S is a convex Jordan region, and if f : Ω→ S
is extends to a homeomorphism of the boundaries, then the Poisson extension of f
is a smooth homeomorphism f : Ω→ S with nonvanishing Jacobian on the interior.
Hence we get the reverse inequality:

E∗(µ) = Dir∗S,µ(Id)−Area(S).(3)

In summary, the connection between L1 dilatation optimizers and Dirichlet energy
optimizers implies:

Lemma 2.5 ([HKO05, Theorem 1.1]). Let µ : S → D be a strongly uniquely
integrable Beltrami coefficient with E(µ) <∞.

There exists µ∗ : S → D with µ ∼Teich µ
∗ such that E∗(µ) = E(µ∗), and µ∗ is

strongly uniquely integrable.
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Proof. The only part left to explain is that µ∗ is uniquely integrable. By the inverse
function theorem, µ∗ is smooth. Smooth Beltrami coefficients are locally quasi-
conformal, so they are (strongly) uniquely integrable by the measurable Riemann
mapping theorem. �

Remark 2. Instead of using Beltrami coefficients to specify complex structures on S,
we may as well define a complex structure on S to be an equivalence class of homeo-
morphisms h : X → S where X is a simply connected hyperbolic Riemann surface,
and h1, h2 are considered equivalent iff h2 ◦ h−1

1 is a conformal homeomorphism.
Then the energy of a complex structure h defined simply as DirX(h, h)−Area(S).

This approach avoids issues such as the one considered above, and other dif-
ferentiability issues, which are immaterial to the content and proofs of our main
Theorems 1.2 and 1.3. The concatenation operator [ · ·· · ] can be interpreted as
isometric welding of the Riemann surfaces Xi induced by the homeomorphisms
h : ∂Xi → ∂S.

In the proof of Theorem 1.3 we show that the energy improves by finding useful
variations η of IdS with respect to DirS,µ. The following variational characterization
of the optimal energy clarifies exactly what is needed from our variations.

Lemma 2.6. Let µ : S → D be a uniquely integrable Beltrami coefficient. For
f ∈ C(S) ∩W 1,2(S, µ),

Dir∗S,µ(f) ≤ DirS,µ(f)− sup
η∈C(S)∩W 1,2

0 (S,µ)

DirS,µ(f, η)2

DirS,µ(η)
(4)

and

E∗(µ) ≤ E(µ)− sup
η∈C(S)∩W 1,2

0 (S,µ)

DirS,µ(IdS , η)2

DirS,µ(η)
.(5)

Proof. Bilinearity of the Dirichlet inner product implies that for all t ∈ R, we have

Dir(f + tη) = Dir(f) + t2Dir(η) + 2tDir(f, η).

Optimizing the right hand side over t ∈ R shows that

inf
t∈R

Dir(f + tη) = Dir(f)− Dir(f, η)2

Dir(η)
(6)

and that the infimum is attained. This immediately proves the first statement.
The second statement follows from taking f = IdS , subtracting Area(S) from

both sides, and applying (2) and (3), �

We will need the following improved version of the Cauchy-Schwarz inequality.

Corollary 2.1 (Cauchy-Schwarz). If µ : S → D is a Beltrami coefficient and

η ∈W 1,2
0 (S, µ), then

DirS,µ(η, Id) ≤ DirS,µ(η)1/2E(µ)1/2.

Proof. Rearrange (5), using the fact that E∗(µ) ≥ 0. �
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2.4. Localizing variations. A variation η ∈ C(S) ∩W 1,2(S, µ) which does not
vanish on ∂S can be localized so that it does vanish on ∂S by multiplying it by
a bump function. The chain rule controls how the Dirichlet energy may increase
under this localization:

Lemma 2.7. Suppose η ∈ C(S)∩W 1,2(S, µ) and let ρ : S → [0, 1] be a C2 function.
Then DirS,µ(η · ρ) ≤ DirS,µ(η) + C2

ρDirS,µ(Id) · ‖η‖2∞, where Cρ = ‖∇ρ‖∞.

Proof. By the product rule, DirS,µ(η · ρ) ≤ DirS,µ(η)‖ρ‖2∞ + DirS,µ(ρ)‖η‖2∞. The
chain rule then implies DirS,µ(ρ) = Dir(ρ ◦ h−1

µ ) ≤ ‖∇ρ‖2∞Dir(h−1
µ ), and the result

follows. �

3. Proof of Theorem 1.3

Let {µ1, . . . , µ5} be self compatible Beltrami coefficients on the unit square. We
may assume that they have finite energy, otherwise the conclusion of the theorem is
vacuous.

By Lemma 2.4, we can assume that µi are already optimal, that is E∗(µi) = E(µi).
Such optimal representatives exist by Lemma 2.5.

The idea of the proof is as follows. By concatenating the coefficients µ1, . . . , µ5

in a symmetric way, we get a symmetric coefficient on C. In this symmetric setting,
we can construct a variation that reduces the energy. Using a partition of unity,
and the pigeonhole principle, we can localize this variation so that it is supported
on one of the small 2× 2 subsquares. Thus we get the desired improvement on some
2× 2 subsquare.

Before presenting the details in the argument above, we fix some notation for the
rest of this section. Assume that the µi are indexed so that E(µ1) ≥ · · · ≥ E(µ5).
Fix N ≥ 15 odd and large. We write a . b to mean that a ≤ Cb where C is a
constant that does not depend on N,µ1, . . . , µ5. Similarly for a & b. We write a � b
to mean a & b and a . b.

3.1. Constructing a symmetric Beltrami coefficient. It is crucial that the
symmetric concatenation of the coefficients is done in such a way that each 2× 2
subsquare (with a few exceptions) contains 4 distinct coefficients.

We specify this concatenation pattern by defining a labelling of the square grid
in C.

Let Z1/2 = Z + 1/2 = {. . . ,−3/2,−1/2, 1/2, 3/2, . . . }, so that Z2
1/2 may be

identified with the collection of (centers of) unit length squares {[n, n+1]×[m,m+1] :
n,m ∈ Z}. Recall that Z4 is the rotation group generated by rπ/2. For notational

convenience, we identify Z2
1/2 with a subset of C in the standard way.

Lemma 3.1 (Alternating pattern). For N ≥ 15 odd there exists a function p :
Z2

1/2 → {1, 2, 3, 4, 5} × Z4 with the following properties. Below, i and r are the

components of p.

(1) p is doubly periodic of period 2N , that is p(z) = p(z + 2N) = p(z + 2Ni)
for all z.

(2) p is rotationally covariant, that is p(iz) = (i(z), rπ/2 · r(z)) for all z.

(3) There exists an exceptional set E ⊂ [−N,N ]2 ∩ Z2
1/2 with |E| = 16 such

that for p ∈ ([−N,N ]2 ∩ Z2
1/2)\E, the value of i at p is distinct from the

value at each of its 8 neighbours.
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Figure 3. The labelling of the lattice Z2
1/2 constructed in Lemma 3.1, for

N = 7. The large bold square is [−N,N ]2. The labelling is periodic of
period 2N , and also covariant with respect to π/2 rotations around the
origin. The symmetries of the labelling imply that it is determined by the
values on [0, N ]2, which is highlighted in blue. In [−N,N ]2, with a few
exceptions, each label is numerically distinct from its 8 neighbours. In
particular, with a few exceptions (marked with a red disk), the 4 labels
around any vertex are numerically distinct. In the proof of Theorem 1.3,
the Beltrami coefficients µ1, . . . , µ5 are concatenated according to this
pattern to form a Beltrami coefficient on C.

(4) For a ∈ {1, 2, 3, 4}, we have
|{z∈[−N,N ]2∩Z2

1/2:i(z)=a}|
|[−N,N ]∩Z2

1/2
|2 ≥ (N−1)2

(2N+1)2 ≥
1
5 .

Proof. It suffices to define p on the quadrant [0, N ]2∩Z2
1/2 because then the rotational

symmetry and periodicity determines the values of p on all other points.
In the definitions below, we restrict to points in this quadrant. In this quadrant,

we take r to be the identity element in Z4, and we define i as follows. See Figure 3.

• Define i(1/2, 1/2) = i(1/2, N−1/2) = i(N−1/2, 1/2) = i(N−1/2, N−1/2) =
5. This defines i on the four corners of the quadrant.
• For k ∈ {1/2, N − 1/2} and j /∈ {1/2, N − 1/2}, define i(j + 1/2, k) = 1

if j ≡ 0 mod 2, otherwise i(j + 1/2, k) = 2. This defines i on the top and
bottom edges of the quadrant.
• If j ∈ {1/2, N − 1/2}, define i(j, k) = 5 if k ≡ 0 mod 2, otherwise i(j, k) = 4.

This defines i on the left and right edges of the quadrant.
• On the remaining interior points of the quadrant, define (all equivalences

are mod 2)

p(x, y) =


1 if x− 1/2 ≡ 0 and y − 1/2 ≡ 0

2 if x− 1/2 ≡ 1 and y − 1/2 ≡ 0

3 if x− 1/2 ≡ 1 and y − 1/2 ≡ 1

4 if x− 1/2 ≡ 0 and y − 1/2 ≡ 0.

(7)
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Figure 4. The map g : C→ C is the integrating homeomorphism for the
coefficients µi that are concatenated in the pattern shown in Figure 3.
g is normalized so that it fixes the lattice (2NZ)2. The symmetries of
the concatenation pattern imply that g has the corresponding rotational
and translation symmetries. The image above depicts the restriction
of g to [−3N, 3N ]2. In particular, if S = [−N,N ]2 is the middle small
square, then Area(S) = Area(g(S)). In Lemma 3.3, the diameter of g(S)
is bounded in terms of the energy of the coeffients µi.

Let E′ be the four corner points of [0, N ]2∩Z2
1/2, together with its orbit under the

group generated by the translations and rotations {z 7→ z+2N, z 7→ z+2Ni, z 7→ iz}.
A case analysis verifies that for z /∈ E′, the value p(z) is distinct from the value of p
on each of its 8 neighbours. Since E := E′ ∩ [−N,N ]2 has 16 elements, this proves
the third item of the conclusion.

The last item in the conclusion follows immediately from (7), together with the
assumption N ≥ 15. �

Let p = (i, r) be the labelling of Z2
1/2 constructed by Lemma 3.1 above. Construct

a Beltrami coefficient ν on C by concatenating the Beltrami coefficients µ1, . . . , µ5

in the way prescribed by p, where the value of i corresponds to the the choice of
Beltrami coefficient µ1, . . . , µ5, and r describes a rotation applied to the Beltrami
coefficient. See Figure 3. More formally, if Sp is the unit square centered at
p ∈ Z2

1/2 ∩ S, then ν|Sp(z) = r(p) · µi(p)(z − p+ 1/2 + i/2).

The symmetries of the labelling p ensure that ν is rotationally covariant and doubly
periodic of period 2N . Therefore, there is a unique integrating homeomorphism
g : C→ C that solves the Beltrami equation, with the following additional properties:
g(0) = 0, g(·+w) = g(·) for w ∈ (2NZ)2, and g ◦ r = g whenever r is a π/2 rotation
around some point in (NZ)2. See Figure 4 for an illustration of the mapping g.

3.2. A variation for the symmetric coefficient. Let η = IdC − g and let S =
(−N,N)2. By definition, DirS,ν(Id−η, Id−η) = DirS,ν(g, g) = Dirg(S)(Id, Id). This
is equal to Area(g(S)), which is in turn equal to Area(S) because g is 2N -periodic
and g fixes (2NZ)2. Thus, from (6), we get

DirS,ν(Id, η)2

DirS,ν(η, η)
≥ DirS,ν(Id, Id)−Area(g(S)) = ES(ν).(8)

We will need the following lower bound on the numerator DirS,ν(Id, η).
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Lemma 3.2. With notation as above,

DirS,ν(Id, η) & N2E(µ1).

Proof. We have, by the AM-GM inequality,

DirS,ν(Id, η) = DirS,ν(Id, Id− g) = DirS,ν(Id, Id)−DirS,ν(Id, g)

≥ DirS,ν(Id)− 1

2
(DirS,ν(Id) + DirS,ν(g)) =

1

2
(DirS,ν(Id)−Area(S))

=
1

2

∑
U⊂S

DirU,ν(Id)−Area(U) =
1

2

∑
U⊂S
EU (ν).

where the sum is over the 4N2 unit subsquares U of S. Property 4 of the pattern in
Lemma 3.1 ensures that this last term is & N2E(µ1). �

Now choose a rotation and translation invariant partition of unity of the plane,
{ρv}v∈Z2 , with each ρv supported on the 2× 2 square Uv centered at v. Translation
invariance means that ρv(·) = ρw(· − v + w) for v, w ∈ Z2, and rotation invariance
means that ρv ◦ rv = ρv when rv is a rotation by π/2 around v.

Then ηv := ρv · η vanishes on the boundary of Uv.
Property 3) of the labelling p = (i, r) in Lemma 3.1 ensures that for all but a

small exceptional set of v ∈ Z2, the four subsquares of Uv have different i labels.
In particular, if v is not exceptional, ν|Uv ≡

[ r1µι(1) r2µι(2)
r3µι(3) r4µι(4)

]
for some choice of

rotations r : {1, 2, 3, 4} → Z4 and some injection π : {1, 2, 3, 4} → {1, 2, 3, 4, 5}.
Here µ ≡ ν means that the Beltrami coefficients µ and ν are equal up to translation
of the domain.

To apply the variational formula (Lemma 2.6), we need to give an upper bound
for DirUv,ν(ηv), then we need to find a non-exceptional v for which DirUv,ν(ηv, Id)2

is sufficiently large.

3.3. Upper bound for DirUv,ν(ηv). We use the product rule (Lemma 2.7), giving
DirUv,ν(ηv) . DirUv,ν(η) + ‖η|Uv‖2∞DirUv,ν(IdS). The first term is bounded by
DirUv,ν(η) . DirUv,ν(g) + DirUv,ν(Id) . DirUv,ν(Id). For the second term, we need
the following bound on ‖η|Uv‖∞.

Lemma 3.3. Let µi, η, Uv and N be as above. Then

‖η|Uv‖∞ . N(E(µ1) + 1)1/2.

Proof. Let S′ = (−3N, 3N)2 so that S = (−N,N)2 is a centered subsquare of S′,
and S′\S is the union of . N unit squares. See Figure 4.

Since Uv ⊂ S, it suffices to bound ‖η|S‖∞. Also recall that η = g − IdC. The
idea is that diam(g(S)) can be bounded in terms of ES′\S(ν) due to the well known
relation between conformal modulus and relative distances. The desired bound on
‖η|S‖∞ will then follow from the triangle inequality.

Since g is an integrating homeomorphism for ν, 1+|ν|2
1−|ν|2 =

‖Dg‖2HS

detDg a.e. Here ‖ · ‖HS

is the Hilbert-Schmidt norm, which is greater than the operator norm. By the
Cauchy-Schwarz inequality we get

¨
S′\S
‖Dg‖HSdxdy ≤

(¨
S′\S

1 + |ν|2

1− |ν|2
dxdy

)1/2

·

(¨
S′\S

detDg dxdy

)1/2

. (N2E(µ1) +N2)1/2 ·Area(g(S′\S))1/2 . N2(E(µ1) + 1)1/2.
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In the last inequality we used the fact that Area(g(S′\S)) = Area(S′\S) = 32N2.
Foliating S′\S by concentric boundaries of squares and applying Fubini’s theorem,
we find that there is at least one loop γ in the foliation such that

´
γ
‖Dg‖HSds .

N−1N2(E(µ1) + 1)1/2. We then get diamg(S) ≤ 1
2Length(g(γ)) . N(E(µ1) + 1)1/2.

Let p be a corner of S so that g(p) = p. Then for z ∈ S, we have |η(z)| =
|g(z)− z| = |g(z− p+ p)− g(p)− z+ p| ≤ diam(g(S)) + diam(S) . N(E(µ) + 1)1/2,
as desired. �

Combining the above, we get

DirUv,ν(ηv) . N
2(E(µ1) + 1)2.(9)

3.4. Finding nonexceptional v such that DirUv,ν(ηv, Id) is large. Let V be
the set of points v ∈ Z2 for which Uv ∩ S is nonempty, and let E ⊂ V be the
exceptional points; these are the v for which the labelling i is not injective on the 4
subsquares of Uv. By construction (Item 3 of Lemma 3.1), |E| . 1.

Our goal is to find v ∈ V −E for which DirUv,ν(ηv, Id) is large. Since
∑
v ηv = η,

this follows from a pigeonhole principle argument, which we detail below. Here we
need to pick N (the side length of the concatenation pattern) large, to overcome
the contribution from the exceptional set E.

From Lemma 3.2, we have

N2E(µ1) . DirS,ν(Id, η) =
∑

v∈V \E

DirUv,ν(Id, ηv)−
∑

v∈V \E

DirUv\S,ν(Id, ηv) +
∑
v∈E

DirUv∩S,ν(Id, ηv).

(10)

We first need to deal terms that are of the form DirV (·) where V is not a 2 × 2
square – they are in the second and third sums above.

For each nonzero term in the second sum, Uv\S is the union of two unit squares,
and the symmetries of ν and ρ imply that there is a matching term corresponding to
the union of two squares Uv′\S on the opposite side of S, such that DirUv\S,ν(Id, ηv)+
DirUv′\S,ν(Id, ηv′) = DirUv,ν(Id, ηv). Pairing up those terms, we get∑

v∈V \E

DirUv\S,ν(Id, ηv) =
1

2

∑
v∈V \E
Uv\S 6=∅

DirUv,ν(Id, ηv).(11)

A similar idea works for the terms in the third sum. The four terms in∑
v∈E DirUv∩S,ν(Id, ηv) corresponding to the four corners of (−N,N)2 can be col-

lected together, and their sum is equal to DirUv,ν(Id, ηv) where v is one of the four
corners. The remaining terms of

∑
v∈E lying on the edges of (−N,N)2 can be

paired together as in the proof of (11).
This expresses

∑
v∈E DirUv∩S,ν(Id, ηv) as a sum

∑
v DirUv,ν(Id, ηv), still con-

sisting of . 1 terms. Now that ηv vanishes on ∂Uv, we can use the improved
Cauchy-Schwarz inequality (Lemma 2.1) on each term, giving∑

v∈E
DirUv∩S(Id, ηv) . DirUv,ν(ηv)

1/2EUv (ν)1/2 . N(E(µ1) + 1)E(µ1)1/2.(12)

Substituting (11) and (12) into (10) yields
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N2E(µ1) .
∑

v∈V \E

DirUv,ν(Id, ηv)−
1

2

∑
v∈V \E
Uv\S 6=∅

DirUv\S(Id, ηv) +N(E(µ1) + 1)E(µ1)1/2.

Dividing through by N2, we see that it is possible to choose N . (E(µ1) +
1)E(µ1)−1/2 such that

E(µ1) .
1

N2

∑
v∈V \E

DirUv,ν(Id, ηv)−
1

2N2

∑
v∈V \E
Uv\S 6=∅

DirUv,ν(Id, ηv).

Viewing this a single sum containing � N2 terms, we conclude that there is at least
one v ∈ V \E for which |DirUv,ν(Id, ηv)| & E(µ1).

Combining with (9), we get v ∈ V \E such that

DirUv,ν(Id, ηv)
2

DirUv,ν(ηv)
&

E(µ1)3

(E(µ1) + 1)4
.

By considering the cases E(µ1) ≥ 1 and E(µ1) < 1 separately, we get
DirUv,ν(Id,ηv)2

DirUv,ν(ηv) &

min(E(µ1)3, E(µ1)−1). This completes the proof of Theorem 1.3.

4. Application to homogenization

In this section we use the improvement inequality Theorem 1.2 to prove the
following homogenization result, which is closely related to results found in [IM19]
and [ARST20].

Roughly speaking, it says that randomly oriented Beltrami coefficients on a
square lattice are, from a large scale perspective, indistinguishable from the standard
complex structure.

Let Dm be the collection of dyadic squares of side length 2−m in [0, 1]2, so that
|Dm| = 4m.

Theorem 4.1. Let λ : (0, 1)2 → D be a self compatible random Beltrami coefficient
on the unit square with rotationally invariant distribution. Assume that there exists
ε > 0 such that EE(λ)1+ε <∞.

Let µn be the Beltrami coefficient on (0, 1)2 obtained by placing an i.i.d. scaled
copies of λ on each of the squares in Dn.

Let hn : [0, 1]2 → [0, 1]2 be the unique integrating homeomorphism of µn which
fixes the vertices {(0, 0), (1, 0), (0, 1)}.

Then hn → Id[0,1]2 in probability, with respect to the uniform norm on C([0, 1]2).
That is,

For all ε > 0, lim
n→∞

P

(
sup

z∈[0,1]2
|hn(z)− z| > ε

)
= 0.

Our integrability condition EE(λ)1+ε <∞ is much less stringent than the uniform
ellipticity assumption λ ≤ c < 1 used in [ARST20]. Furthermore, the theorem stated
in [IM19] assumes that the random Beltrami coefficient λ is almost surely constant
on (0, 1)2, although they only assume existence of first moments rather than (1 + ε)
moments.

The proof of Theorem 4.1 will occupy the rest of this section.
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Jensen’s inequality immediately implies that EE(µn+1)1+ε ≤ EE(µn)1+ε for
all n. So, letting En = EE∗(µn) and iterating Theorem 1.2, we get En+1 ≤
En− cmin(E3

n, En), where c > 0 is a constant that only depends on the distribution
of λ.

Hence, limn→∞En = limn→∞ EE∗(µn) = 0. Thus, by Markov’s inequality,

lim sup
n→∞

P(E∗[0,1]2(µn) ≥ 3) = 0.(13)

If the λ are uniformly elliptic as in [ARST20], then the sequence of random
variables hn take values in a compact space, namely the space of K-quasiconformal
mappings with the uniform norm. Without uniform ellipticity, this is no longer
true in general, but the energy bound (13) can be used probabilistically at multiple
scales to give equicontinuity bounds and hence obtain subsequential limits.

Let X be the space of homeomorphisms [0, 1]2 → [0, 1]2 fixing the vertices
{(0, 0), (1, 0), (0, 1)}. Let d∞(f, g) = supz∈[0,1]2 |f(z) − g(z)| be the sup norm.

Consider the metric dX(f, g) = d∞(f, g) + d∞(f−1, g−1) on X.
Recall that a sequence of random variables Yn taking values in a metric space

(X, dX) is said to be tight if for all ε > 0 there exists a precompact K ⊂ X such that
supn P(Yn /∈ K) < ε.

Lemma 4.1. The sequence hn is tight with respect to dX.

Proof. Write dX = d1 + d−1 as the sum of two metrics. Fix ε > 0. Recall
that hn is an integrating homeomorphism for the Beltrami coefficient µn, and
EE(µn) = EE(λ) <∞ by assumption. By (2), EDir(h−1

n ) is bounded uniformly in n
too, so Markov’s inequality implies that there exists M2 > 0 such that P(Dir(h−1

n ) >
M2) < ε/2. The length-area method (see, e.g, the proof of the Courant-Lebesgue
lemma [Cou37, Lemma 5]), and the Arzela-Ascoli theorem implies that the set
BM2 := {h ∈ X : Dir(h−1) ≤M2} is precompact with respect to the metric d−1.

Now we consider the metric d1. Fix an integer m ≥ 0 and a dyadic square S ∈ Dm
at level m, of side length 2−m. The three marked vertices of ∂[0, 1]2 separate ∂[0, 1]2

into three components, I1, I2 and I3. We will inductively construct a sequence of
disjoint sets B1, . . . , BM , each of which separates Q from a fixed arc Ii, in the sense
that any path from Q to Ii must cross each of the Bj . See Figure 5 for an example
of this procedure. The Bi will either be topological annuli or topological rectangles.
Let m1 = m, and let B1 be the union of all dyadic squares at level m that are
adjacent, but not equal to, Q. Subsets of C are considered adjacent if their closures
intersect in a nonempty set of zero interior.

Once Bk is chosen, let mk+1 be the largest integer such that diamL∞Bk ≤ 2−mk+1 ,
where diamL∞ is the diameter with respect to the Chebyshev metric on [0, 1]2, so
that there is an axes-aligned square (not necessarily dyadic) of length 2−mk+1

containing Bk.
It is possible to cover Bk by at most 4 dyadic squares of side length 2−mk+1 , call

the minimal such covering Q(Bk). Let Bk+1 be the union of all dyadic squares in
[0, 1]2 of level mk+1 that are adjacent to, but not equal to, the squares in Q(Bk).
There are at most 4 · (4− 1) = 12 such squares.

This process generates a sequence of sets Bk, which we continue running while
Bk touches at most two edges of ∂[0, 1]2, which ensures that they separate Q from
at least one of the three arcs Ij .
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Figure 5. The three marked points on ∂[0, 1]2 divide ∂[0, 1]2 into
three arcs. Let Q be the small dark blue square on the middle
right of side length 2−5. The image depicts the ‘exploration process’
B1,Q(B1), B2,Q(B2), B3, which consists of 8, 4, 8, 2, 2 squares at scales
5, 5, 3, 3, 1, 1 respectively. Each of the red sets B1, B2, B3 separate Q
from the arc I1. The moduli of crossing path families in the images
hn(Bk) can be bounded by putting together bounds on the energy for
each individual dyadic square, (13). These moduli estimates translate to
bounds on the diameter of hn(S).

Since diam(Bk+1) ≤ 12diam(Bk), we can continue for at least & m steps, because
as long as diam(Bk) ≤ 1

2 then Bk touches at most two edges of ∂[0, 1]2.
Each Bk is either a topological annulus or a topological rectangle. If Bk is an

annulus, let Γk be the path family joining the inner boundary of hn(Bk) to the
outer boundary of hn(Bk). Otherwise, Bk is a rectangle with two sides lying on
∂[0, 1]2. We let Γk be the family of paths in Bk joining the other two sides.

The point of this definition is that every path from Q to Ij contains a path in
each Γk.

We now estimate the extremal length [Ahl10, Chapter 4] of the path families
EL(Γk). Here it is convenient that for each dyadic square Q, we have estimates on
the energy E∗(µn|Q) rather than the extremal length of the path families joining
opposite sides of Q.

Reciprocal energy is a lower bound for the extremal length:

EL(Γk) & (2−mk)2Dir∗(h−1
n |hn(Bk))

−1 = (2−mk)2(Area(Bk) + E∗Bk(µn))−1.(14)

To see this, let gn be the Poisson extension of h−1
n |hn(Bk), then take ρ = |∇gn| on

hn(Bk) as a test function in the variational definition of extremal length. If γ ∈ Γk
then

´
γ
ρds is the length of gn(γ), which is at least 2−mk , and

´
hn(Bk)

ρ2dxdy =

Dir∗(h−1
n |hn(Bk)). (This is closely related to the proof of Lemma 3.3).
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In addition, energy, unlike modulus, is trivially additive (see (1)) under concate-
nation. Thus (14) implies

EL(Γk) ≥ C0

 ∑
Q⊂Bk

(2mk)2(Area(Q) + E∗Q(µn))

−1

(15)

where the sum is over the (at most 12) dyadic squares Q of level mk constituting
Bk.

If Q is a dyadic square of side length 2−m, then up to translation and scaling,

µn|Q
d
= µn−m for n ≥ m. In particular, (2m)2E∗(µn|Q)

d
= E∗(µn−m). So by (13),

For Q dyadic of level m, lim inf
n→∞

P((2m)2(Area(Q) + E∗(µn|Q)) < 4) = 1.

Taking the union bound over the (at most 12) squares Q in the sum (15) gives

lim inf
n→∞

P(EL(Γk) > C0/48) = 1.

Large deviations estimates for binomial random variables (e.g. Chernoff’s in-
equality [Ver18, Theorem 2.3.1]) can be used to show that with for sufficiently small
c0 > 0, we have with probability at least 1− 5−m, that EL(Γk) > C0/48 for at least
c0m of the scales k. On this event, the series rule ([Ahl10, Theorem 4.2]) implies
that the extremal length of the path family joining hn(S) to hn(Ij) = Ij is bounded
below by C0c0m/48.

On the other hand, log diam(hnS)−1 & EL(hn(S), Ij), which can be seen by
considering the associated extremal problem (see e.g. [Ahl10, Theorem 4.7]).

Combining the above yields

For δ0 sufficiently close to 1, lim sup
n→∞

P (diam(hnS) > δm0 ) < 5−m.

Taking the union bound over the 4m dyadic squares S of level m in [0, 1]2 gives

lim sup
n→∞

P
(

sup
S∈Dm

diam(hnS) ≥ δm0
)
. (4/5)m.

Every subset K ⊂ [0, 1]2 of diameter less than 2−m can be covered by a union of at
most 4 squares in Dm, so

lim sup
n→∞

P

(
sup

K⊂[0,1]2, diam(K)≤2−m
diam(hnK) ≥ 4δm0

)
. (4/5)m.

Choose M1 large enough that the sum over m ≥M1 of the right hand side is smaller
than ε/2. The Arzela-Ascoli theorem implies that the set

AM1 :=

{
h ∈ X : ∀m ≥M1, sup

K⊂[0,1]2, diam(K)≤4δm0

diam(hK) < 2−m

}
is precompact with respect to d1.

By the union bound, P(h /∈ (AM1
∩ BM2

)) < ε. Furthermore, AM1
∩ BM2

is
precompact with respect to dX, because if d∞(fn, f) → 0 and d∞(f−1

n , g−1) → 0,
then f = g.

Since ε was arbitrary, we are done. �
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The space of homeomorphisms (X, dX) is complete and separable, and we just
proved tightness of the random variables hn. So by Prokhorov’s theorem, there is a
subsequence hnj which converges weakly to a random homeomorphism h : [0, 1]2 →
[0, 1]2.

To pass from information about the energy of hnj to the energy of the limit h,
we need:

Lemma 4.2. For each square S ⊂ [0, 1]2, the functional h 7→ Dir∗h(S)(h|−1
S ) is lower

semicontinuous on (X, dX).

Proof. For X,Y metric spaces, let Hom(X,Y ) be the space of homeomorphisms
with the uniform norm d(f, g) = supx∈X dY (f(x), g(x)).

Fix 3 ordered points on ∂S in counterclockwise order. Define the operator
CS : X → Hom(S,D) via the following procedure. For h ∈ X, let (Ω, p1, p2, p3)
be the image of S with its three marked boundary points under h. Let ψ be the
conformal map taking (ΩS , p1, p2, p3) to (D, 1, i,−1). Then define CS [h] = ψ ◦ h|S .

By conformal invariance of Dirichlet energy, Dir∗h(S)(h|−1
S ) = Dir∗D(CS [h]−1). So

the desired semicontinuity will follow once we verify that h 7→ Dir∗D(CS [h]−1) is
composed of (semi)continuous maps.

The operator CS is continuous by continuity properties of the Riemann mapping
(see [Pom92, Theorem 2.11]). The inversion operator h 7→ h−1 is also continuous
Hom(S,D) → Hom(D, S). Finally, the optimal energy operator u 7→ Dir∗D(u) =
DirD(PD[u]) is lower semicontinuous. This is a consequence of Fatou’s lemma and the
fact that if harmonic functions converge uniformly then their derivatives converge
uniformly too. �

Let k ≥ 0 be an integer and suppose S ∈ Dk is a dyadic square at level k. The
semicontinuity above allows us to conclude that

EDir∗h(S)(h|−1
S ) ≤ lim inf

k→∞
EDir∗hnj (S)(hnj |−1

S ) = Area(S).

Hence Dir∗h(S)(h|−1
S ) = Area(S) almost surely, which means that the h|S has the

boundary values of a conformal map:

Lemma 4.3. Let Ω be a Jordan domain and suppose g : Ω→ S is harmonic, with
DirΩ(g) = Area(S). Then g is conformal.

Proof. By (2), ES(µg−1) = 0, so the Beltrami coefficient of g−1 vanishes, so g−1 is
conformal. �

Taking the union bound over the squares S ∈ Dk, we can modify h on each
S ∈ Dk so that it is conformal on S. Call this modified homeomorphism h̃, so that
h̃ = h on

⋃
S∈Dk ∂S. By (the proof of) Morera’s theorem, h̃ is conformal on [0, 1]2.

It also fixes three points on ∂[0, 1]2, so in fact h̃ = Id[0,1]2 .
Since k was arbitrary and h is continuous, we get h = Id[0,1]2 . The subsequential

limit was arbitrary, so hn → Id[0,1]2 weakly. Since the limit is deterministic, this
implies that hn → Id[0,1]2 in probability. This concludes the proof of Theorem 4.1.
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