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1. Introduction

The main theme of this paper is that algebraic cycles provide interesting non-trivial

invariants for finite groups, as well as new equivariant cohomology theories which answer

natural questions in equivariant homotopy theory. Besides being quite computable, these

theories carry Chern classes for representations and have deep relations with usual Borel

cohomology theory. In fact their coefficients are simpler than standard group cohomology

and have a geometric interpretation of independent interest. Among their main properties,

we shall prove a full equivariant analogue of the Segal loop space conjecture proved in [3].

The genesis of the results is elementary and geometric. Nevertheless it directly yields

a fully structured theory, graded over the representation ring and Mackey-functor-valued.

Our construction is a natural extension of the standard construction of the classifying space

for equivariant K-theory, and it fits beautifully into the theory of I∗-functors, a machine

which builds (equivariant) operad actions and infinite loop space structures. However, due

to its elementary origins, the coefficients of the theory can be computed by geometric means.

For example, using techniques of degeneration by (C×)m-actions we are able to compute πG
0

of our spectra when the group G is abelian. Its description relies on a remarkably simple

and well-behaved graded ring H ∗(G) characterized by the following properties:

(1) H

0 (G) = Z and H

1(G) ∼= G.

(2) H

∗ (G1 ⊕ G2) = H

∗ (G1) ⊗ H

∗ (G2)

(3) If G is cyclic, then H

∗(G) = H2∗(G; Z) (group cohomology with coefficients in the

trivial G-module Z).

For example, if G is abelian and ZG denotes the first of our spectra, then the component ring

πG
0 (ZG) is exactly H

∗(G) localized with respect to the multiplicative system engendered by

the total Chern classes 1 + c1(ρ) ∈ {1} × H

1(G) of the irreducible complex representations

ρ of G. Some of the higher degree coefficients πH
k (ZG), H < G, may be computed by

combining a general equivariant algebraic suspension theorem from [12] and the equivariant

Dold-Thom theorem in [15].

Our basic constructions are modeled on the following “classical” one. Let G be a finite

group. Recall that the classifying space for G-equivariant K-theory is a limit BUG of

Grassmann manifolds Gr(W ) ≡ Grw(W ⊕W ) where w = dim(W ) and where W ranges over

a family of linear G-spaces for which the multiplicity of each irreducible representation tends

to infinity. This limit carries an H-space structure induced by the direct sum ⊕ : Gr(W )×

Gr(W ′) → Gr(W ⊕W ′). The internal coherence of this multiplication is succinctly captured

in the fact that (Gr(•),⊕) is an equivariant I∗-functor. Hence, by general theory [4], the

⊕-multiplication enhances to an equivariant infinite loop space structure, and thereby BUG

becomes the zero’th space in a G-spectrum KuG, which gives connective equivariant K-

theory.

We mimic this construction by considering an analogous family Zw(P(W ⊕ W )) of alge-

braic cycles of codimension w on P(W ⊕ W ). Each Z(W ) is a topological abelian group,

and the construction comes equipped with a biadditive “external” pairing on these groups
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defined by the algebraic join ♯
C

of cycles. Taking the analogous limit over W defines the

basic space of our theory Z(UG), the group of “algebraic cycles on P

∞”. This is a topo-

logical abelian group with a biadditive pairing induced by ♯
C

. Furthermore, at finite levels

(Z(•), ♯
C

) is an I∗-monoid. Our first main result, a combination of Propositions 2.4.2, 3.1.2

and 3.3.3 implies that

Z(UG) is a G-group complete equivariant E∞-ring space.

In particular, there is a G-equivalence ı : Z(UG) → ZG(0) with the degree-zero space of

an equivariant E∞-ring spectrum ZG. These spectra ZG form a coherent family over the

category of finite groups (see §2.3), and each ZG admits an augmentation δ : ZG → Z to the

“constant” ring spectrum Z.

The subset Z(UG)1 = ǫ−1δ−1(1) of cycles of degree one is closed under the (homotopy

commutative) join multiplication, and the same machinery tells us that there is a second

“multiplicative” G-spectrum MG and a map

ǫ1 : Z(UG)1 −→ MG(0)

which is a G-group completion with respect to join pairing. For the trivial group G = {1}

this is actually an equivalence. However, the calculation of coefficients alluded to above

shows that Z(UG)1 is not in general a group-like space over G, that is, π0(Z(UG)H1 ) is not

a group under ♯
C ∗ for non-trivial H < G. The completion MG(0) is a connected space

for which this is true. In a similar fashion to ZG, the spectra MG, for various G’s, form a

coherent family; cf. Theorem 4.1.4. As a consequence, both ZG and MG are split spectra,

in the sense of [14, I.8]; cf. Corollary 2.3.3.

We observe now that considering linear subspaces to be algebraic cycles of degree one

gives an equivariant inclusion Gr(W ) ⊂ Z(W ) for any finite-dimensional representation W

of G. Furthermore on linear subspaces the join pairing is simply the direct sum. Hence

there is a G-equivariant map

cG : BUG = lim−→W Gr(W ) −→ lim−→WZ(W ) = Z(UG) (1.1)

taking ⊕ to ♯
C

and having image in Z(UG)1. In fact, the inclusions above constitute a

natural transformation (Gr(•),⊕) → (Z(•), ♯
C

) of I∗-functors; cf. Proposition 3.2.1. From

this one can prove that the map BUG → Z(UG)1 enhances to a transformation of G-spectra

cG : KuG −→ MG. (1.2)

Suppose we take G to be the trivial group. Then it was proved in [11] that there is a

canonical homotopy equivalence

Z(W ) ∼= K(Z, 0)× K(Z, 2)× K(Z, 4)× · · · ×K(Z, 2w). (1.3)

Furthermore, in [13] it was shown that under (1.3) the join pairing ♯
C

: Z(W ) ×Z(W ′) →

Z(W ⊕W ′) classifies the cup product, and the inclusion Gr(W ) ⊂ Z(W ) classifies the total

Chern class of the tautological w-plane bundle over Gr(W ). In particular, if one drops the



4 LAWSON, LIMA-FILHO, AND MICHELSOHN

group in (1.1) by forgetting the G-action, then one finds the transformation of classifying

spaces

c : BU −→{1} ×
∏

k>0

K(Z, 2k) (1.4)

corresponding to the total Chern class. The compatibility of this map with ♯
C

corresponds

to the standard formula c(E ⊕ E′) = c(E)c(E′) for vector bundles over a compact space.

In 1975 G. Segal [23] conjectured that there exists an infinite loop space structure on

{1} ×
∏

k>0 K(Z, 2k) such that (1.4) becomes an infinite loop map. The assertion (1.2) in

the case where G = {1} constitutes a proof of this conjecture which was established in [3].

The general assertion (1.2) is the full equivariant analogue of Segal’s conjecture; see

Definition 4.2.1.

It is natural to ask if there are analogues of the results above for standard Borel coho-

mology theory. In a second set of results we establish such analogues. Indeed given any

G-spectrum kG there are an associated Borel spectrum bkG and a map of G-spectra

ǫ : kG −→ bkG

which is a non-equivariant homotopy equivalence; cf. [8]. The spectrum bkG is simply

defined by setting bkG = F (EG+,kG) where EG denotes as usual a contractible CW-

complex on which G acts freely, and where F (X,Y ) denotes the base-point preserving

continuous maps from X to Y . The transformation ǫ is induced from the map EG → pt.

In §4 we compute the Borel spectra bZG and bMG associated to our “algebraic cycle”

spectra ZG and MG above. It turns out that for any compact G-space X there are natural

isomorphisms

[X,bZG(0)]G ∼= H2∗
G (X; Z)Borel and [X,bMG(0)]G ∼= {1} ×

∏

k>0

H2k
G (X; Z)Borel;

see Theorems 4.1.5 and 4.1.6 and their corollaries.

A combination of Theorems 4.1.6 and 4.2.2 yields the following statement:

Theorem A. Let G be a finite group. The map of G-spectra

cbG : KuG −→bMG

obtained by composing ǫ with (1.2) above classifies the total Chern class

c : KG(X) −→{1} ×
∏

k>0

H2k
G (X; Z)

in Borel cohomology. The multiplications on the zero’th level, which are respected by this

map of spectra, correspond to the formula c(E ⊕ E′) = c(E)c(E′) for equivariant bundles

over a compact G-space X.

Said in another way, the multiplication of units in Borel cohomology, considered

as an H-space structure on the classifying space, enhances to to an equivariant

infinite loop space structure so that the total Chern class from KuG becomes an
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infinite loop map in the category of G-spaces. This is precisely the Segal loop space

conjecture for Borel cohomology.

We also obtain analogous results for equivariant KO-theory and Stiefel-Whitney classes,

by using real algebraic cycles and the work of T. K. Lam [10]; cf. §4.4. We construct

spectra Z
R,G and M

R,G, together with maps of spectra wG : KoG −→M

R,G, where KoG is the

spectrum of equivariant connective KO-theory. A similar combination of results yields the

corresponding statement:

Theorem B. Let G be a finite group. The map of G-spectra

wb

G : KoG −→bM
R,G

obtained by composing ǫ with (1.2) above classifies the total Stiefel-Whitney class

w : KOG(X) −→{1} ×
∏

k>0

Hk
G(X; Z/2Z)

in Borel cohomology with Z/2Z coefficients. The multiplications on the zero’th level, which

are respected by this map of spectra, correspond to the formula w(E ⊕E′) = w(E)w(E′) for

equivariant bundles over a compact G-space X.

There are several consequences of the naturality of these spectra and the maps relating

them, which remain to be fully explored. For example, these maps commute with the

transfers associated to equivariant bundles, for the various theories. In particular, one has

multiplicative transfers for even group cohomology which naturally compute Chern classes

of induced representations; one computes equivariant Chern classes for the push-forward of

bundles under finite equivariant covering spaces; naturality properties for the composition

of coverings follow trivially from the nature of the constructions, etc. See §4.3 for a brief

discussion.

With an aim at algebro-geometric applications, we end the paper with a generalization of

these constructions which associates to every complex algebraic variety X with a finite group

of automorphisms G, the morphic spectra ZX,G and MX,G. These spectra reflect both the

algebraic and topological properties of X and provide an extension of the notion of morphic

cohomology introduced and studied in [6]. In short, we obtain a natural transformation

from the category of algebraic varieties over C to the category of spectra, respecting actions

of finite groups of automorphisms and endowed with a natural theory of Chern classes.

The spectra studied in this paper are obtained from these more general objects by taking

X = pt. See §6.1.
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2. General Theory

In this chapter we recall the fundamental concepts of equivariant cohomology theories

and their associated Borel counterparts. This will include the equivariant theory of infinite

loop spaces, with emphasis on a “recognition principle” for detecting such spaces. The main

sources for background material are [14], [4] and [8].

2.1. Equivariant Cohomology Theories and G-Spectra. A universe U for a compact

Lie group G is a unitary (or orthogonal) representation containing countably many copies

of each of its irreducible subrepresentations. We fix, for every compact Lie group G, a com-

plete G-universe UG, in other words, a universe containing all irreducible representations

of G, including the trivial one. The universes UG will parameterize all representations we

deal with, and hence, whenever we refer to a G-module V or an indexing G-space V ,

we will be implicitly working with a finite dimensional unitary subrepresentation of UG.

Definition 2.1.1. We assume that all spaces are based with G-fixed base point, and use

the symbol X+ to denote the disjoint union X ∐ {∗} of X with a G-fixed base point. The

function space of based maps between G-spaces X and Y is denoted by F (X,Y ), and is

considered as a G-space under the standard action by “conjugation”. For a G-space X and

G-module V , the V -th suspension of X is the G-space ΣV X:=X ∧ SV , where SV denotes

the one-point compactification of V with base point at ∞, and the V -th loop space of X is

ΩV X:=F (SV ,X), both taken with their natural G-actions.

In this equivariant context, given an appropriate representation ring R, e.g. R = RO(G)

or R = R(G), we are going to construct natural R-graded cohomology theories. These are

equivariant cohomology theories h∗G satisfying well-known axioms, including contravariance

and invariance under equivariant maps and homotopies; exactness for equivariant cofiber

sequences etc. The reader is referred to [24, Defn. 6.8] for a full description of these

axioms, although we would like to emphasize that the main additional feature of these

theories, as opposed to the non-equivariant generalized cohomology theories, is the existence

of suspension isomorphisms associated to arbitrary G-modules. More precisely, the theories

h

∗
G considered here come equipped with natural isomorphisms σV : hα

G(X) −→ h

α+V
G (ΣV X)

for each α ∈ R and G-module V .

Equivariant theories have been the focus of intense investigation in recent years, and have

proven to be very useful in dealing with both equivariant and non-equivariant questions in

stable homotopy theory. The monographs [14] and [8] contain a myriad of examples as well

as an extensive bibliography. For further material, the reader may also consult [24] and [9].

Definition 2.1.2. Let U be a universe for G, not necessarily complete.

a: A G-prespectrum kG indexed on U , consists of a collection {kG(V ) | V ⊂ U} of

based G-spaces, together with a transitive system of G-maps σW
V : kG(V ) −→ΩW−V kG(W ),

where V is a G-submodule of W and W −V denotes the orthogonal complement of V in W ;

cf. [14, Defn. 2.1]. A morphism of G-prespectra f : kG −→ k′
G is a collection of G-maps

fV : kG(V ) −→k′
G(V ) which is strictly compatible with the corresponding structural maps.
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The collection of all G-prespectra indexed on U forms a category which we denote by GPU ,

in which the set of morphims from kG to k′
G is denoted by GPU(kG,k′

G).

b: A G-prespectrum kG, indexed on U is called a G-spectrum whenever the structural

maps σW
V are G-homeomorphisms. The category of G-spectra indexed on the universe U ,

denoted by GSU , forms a full subcategory of the category of G-prespectra.

c: Given a G-spectrum kG and a G-space X, the collection F (X,kG(V )) is again a

G-spectrum under the evident natural maps. In particular, one can define for every G-

spectrum kG and G-module V , the V -th loop spectrum ΩV kG:=F (SV ,kG) of kG.

Example 2.1.3. Let kG be a G-spectrum and let EG denote a contractible CW-complex

on which G acts freely. The associated Borel spectrum bkG to kG is the G-spectrum

F (EG+,kG). We shall see afterwards that this notion represents the adequate notion of

Borel cohomology associated to kG. Notice that the projection EG −→ {pt} induces a

natural map of G-spectra ǫ : kG −→bkG.

A G-prespectrum is automatically a G-spectrum, and hence there is a “forgetful” functor

ℓ : GSU −→ GPU . This functor admits a left adjoint L which solves the problem that the

category of G-spectra is not closed under basic space-level constructions, such as taking

smash products, wedges, cofibers, etc. This is the content of the following fundamental

result; cf. [14, Thm I.2.2].

Theorem 2.1.4. There is a left adjoint L : GPU −→GSU to the forgetful inclusion functor

ℓ : GSU −→ GPU . That is, GPU(kG, ℓhG) ∼= GSU(LkG,hG) for kG ∈ GPU and hG ∈

GSU . Let η : kG −→ ℓLkG and ǫ : LℓhG −→ hG be the unit and counit of the adjunction.

Then ǫ is an isomorphism for each G-spectrum hG, hence η is an isomorphism if kG = ℓhG.

The functor L allows one to perform constructions with spectra whose properties are

derived easily from the fact that L is a left adjoint. For example, given a G-space X

and kG ∈ GPU one defines a G-prespectrum X ∧ kG by sending V to X ∧ kG(V ). If

kG is a spectrum, then the G-spectrum X ∧ kG ∈ GSU is defined as L(X ∧ ℓkG). Similar

procedures allow one to define cones, suspensions and homotopies in the category of spectra.

In particular, the suspension spectrum Σ∞X of a G-space X is defined as L(S∞X),

where S∞X is the prespectrum V 7→ X ∧ SV .

Definition 2.1.5. Given a G-spectrum hG ∈ GSUG, one defines an R(G)-graded coho-

mology theory h∗
G on G-spectra by assigning to kG ∈ GSUG the groups

hα
G(kG):={ΣW kG,ΣV hG}G,

where one writes the virtual representation α ∈ R(G) as a formal difference of two G-

modules α = V − W . The symbol {ΣW kG,ΣV hG}G denotes equivariant homotopy classes

of maps of G-spectra, and ΣW kG, ΣV hG denote the appropriate suspension of the spectra

kG and k′
G, respectively. In particular, the V -th cohomology group hV

G(X) of a G-space

X of the homotopy type of a G-CW-complex is retrieved by hV
G(Σ∞X+) = [X,hG(V )]G,

where [X,hG(V )]G denotes equivariant homotopy classes of maps of G-spaces.

Changes of Universe



8 LAWSON, LIMA-FILHO, AND MICHELSOHN

Given a G-linear isometric embedding  : U −→ V between two G-universes U and V,

one can define a pair of adjoint change of universe functors ∗ : GSV −→ GSU and

∗ : GSU −→GSV as follows.

For kG ∈ GSV, one defines ∗kG ∈ GSU by ∗kG(V ) = kG((V )), where the adjoints of

the structural maps are given by the compositions

ΣW−V ∗kG(V ) = kG((V )) ∧ SW−V 1∧
−−→ kG((V )) ∧ S(W )−(V ) σ̃

−→ kG((W )) = ∗kG(W ).

It is evident that this construction takes spectra to spectra.

We first define the covariant functor ∗ in the level of prespectra. Given a G-prespectrum

kG indexed on U , the assignment V 7→ kG(−1V ) ∧ SV −(−1V ) naturally defines a G-

prespectrum ∗k ∈ GPV. In the level of spectra, one defines ∗(EG):=L(∗(ℓEG)), and it is

easy to see that ∗ is a left adjoint of ∗; cf. [14, I.1.2].

Näıve G-spectra

An important instance of change of universes is given by the G-linear isometry ı : UG −→

U , where UG is the G-fixed point space of U , considered as a “trivial” G-universe identifiable

with R

∞ . The G-spectra indexed on UG are simply ordinary spectra with actions of G on

their structural spaces. These spectra are called näıve G-spectra, and the usual, non-

equivariant spectra can be considered as näıve G-spectra with trivial G-action. Following

[8], we denote the category of näıve G spectra by GSUG, and recall the following result

from [14, II.1.8], which relates the passage from näıve to genuine G-spectra and vice-versa,

given by the change of universe functors induced by ı : UG −→U .

Lemma 2.1.6. For kG ∈ GSUG, the unit map η : kG −→ ı∗ı∗kG of the (ı∗, ı∗) adjunction

is a nonequivariant equivalence. For kG ∈ GSU , the counit map ǫ : ı∗ı
∗kG −→ kG is a

nonequivariant equivalence.

Split Spectra

Since the indexing sets for näıve G-spectra are trivial G-spaces, one can naturally asso-

ciate to kG ∈ GSUG its fixed point (nonequivariant) spectrum (kG)G ∈ SUG, which sends

V ⊂ UG to (kG(V ))G. If kG is an actual G-spectrum, one defines (kG)G = (ı∗kG)G.

Definition 2.1.7. A näıve G-spectrum is said to be split if there is a map of spectra

ξ : k −→ (kG)G, from the underlying nonequivariant spectrum k of kG to its fixed point

spectrum (kG)G, whose composition with the inclusion of (kG)G into k is homotopic to the

identity map. A G-spectrum kG ∈ GSU is called split if ı∗kG ∈ GSUG is split.

Split spectra play an important role in both equivariant and nonequivariant contexts,

and among their pleasant characteristics is the following result; cf. [14, I.8.4] or [9].

Proposition 2.1.8. Let kG be a split G-spectrum, and let X be a space on which G acts

freely. Then k∗
G(X) ∼= k∗(X/G), where k∗ is the nonequivariant cohomology theory associ-

ated with the underlying nonequivariant spectrum k of kG.
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Corollary 2.1.9. If kG is a split G-spectrum, and b(kG)∗ denotes the Borel cohomology

associated to kG, then for any G-space X one has

b(kG)∗(X) ∼= k∗(EG ×G X).

Remark 2.1.10. This corollary justifies the assertion that b(kG)∗ is the adequate Borel

cohomology associated to k∗G.

2.2. Equivariant infinite loop spaces. A good source of non-equivariant (connective)

spectra is the classical theory of infinite loop spaces [1], [18]. Unfortunately, to our knowl-

edge, in the equivariant context such machines are only well-understood in the case of finite

groups. Therefore, despite the fact that our constructions hold for arbitrary compact Lie

groups, we need to restrict ourselves to the case of finite groups in order to apply the exist-

ing equivariant infinite loop space machines. Throughout the rest of this section we work

with a fixed finite group G and its universe U = UG.

Definition 2.2.1. An equivariant infinite loop space, indexed by U , is a G-space X

such that for every indexing space V ⊂ U there is a G-space Y (V ) together with a home-

omorphism X ∼= ΩV Y (V ). Furthermore, if for a given submodule W ⊂ V one denotes by

V −W the orthogonal complement of W in V , then there are compatible G-homeomorphisms

Y (W ) ∼= ΩV −W Y (V ). It is evident that an infinite loop space X is the zero-th space X(0)

of an equivariant G-spectrum X.

Infinite loop space theories come equipped with a “recognition principle” which tells when

a space is an infinite loop space or, more generally, with an “infinite loop machine” which

produces infinite loop spaces out of spaces with a certain structure. The machine that we

use requires the notion of a G-operad acting on a G-space X. We refer the reader to [14, ]

or [4] for the precise definition of such object.

Presently we only need to introduce the linear isometries operad L(U) associated to

a G-universe U , which consists of the collection of spaces {L(U)k | k ∈ Z+} and structural

maps γ : L(U)k×L(U)j1 · · ·×· · · L(U)jk
−→L(U)j1+···+jk

, where L(U)k is the space I(U⊕k,U)

of linear isometries from U⊕k into U and γ is the natural map given by composition γ :

(f ; g1, . . . , gk) 7→ f ◦ (g1 ⊕ · · · ⊕ gk). The spaces L(U)k admit a natural action of G ×Sk,

where Sk is the symmetric group on k letters, and the structural maps satisfy suitable

equivariant compatibility conditions. Furthermore, L(U)k is a G-CW-complex on which Sk

acts freely and, if U is complete universe, the fixed point set L(U)Λk is contractible, for each

subgroup Λ ⊂ G × Sk such that Λ ∩ Sk is trivial. In other words, L(U)k is a universal

principal (G,Sk)-bundle in the sense of [24].

One says that a G-space X is an algebra over an operad L, or that L acts on X if there is

a collection of G×Sk-maps λ : Lk×(X× . . .×X) −→X satisfying appropriate compatibility

relations with the structural maps of the operad.

The relevance of the notion of L(U)-spaces for our work lies in the following recognition

principle, due to Hauschild, May and Waner, which generalizes earlier work of May [18],

[19].
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Theorem 2.2.2 ([4, Thm.1]). Let X be a group-like based G-space of the homotopy type of

a G-CW-complex. If X is algebra over L(U), where U is a complete G-universe, then X is

G-homotopy equivalent to an equivariant infinite loop space.

Now recall that a Hopf space1 map M −→ M̃ is a called a group completion (in

the homotopy-theoretic sense) if for any coefficient ring R, the induced homomorphism of

Pontrjagin rings H∗(M,R) −→H∗(M̃,R) is the localization of H∗(M,R) with respect to the

multiplicative subset generated by π0(M).

In the category of G-spaces, a G-map X −→ Y between two Hopf G-spaces is a G-group

completion if each induced map XH −→ Y H is a (non-equivariant) group completion, for

all H ≤ G.

In this framework, the proof of the previous theorem actually yields the following result,

where we assume that X is any space of the homotopy type of a G-CW-complex.

Theorem 2.2.3. Let X be a L(U)-space, where U is a complete G-universe. Then there is

an equivariant infinite loop space X(0), and a G-map of L(U)-spaces ı : X −→ X(0) which

is a G-group completion.

2.3. Coherence. In this section we shall analyze L(U)-spaces which have particularly nice

properties with respect to the subgroups of G. Our main result asserts that such spaces

yield spectra which are split, and whose Borel counterparts are therefore “classical” by

(2.1.9).

In the following exposition we emphasize the dependence of U on G by writing UG in

place of U .

Let G denote the category whose objects are the subgroups of G, and whose morphisms

are the inclusions αH′,H : H →֒ H ′, the projections βH : H −→{e}, and their compositions.

For each H ∈ G one can take UH = α∗
G,H(UG). To each inclusion α = αH′,H and each

projection β = βH in G we associate the H-isometries

jα : α∗UH′ −→UH and jβ : β∗Ue −→UH (2.1)

by letting jα be the identity map, and by defining jβ to be the composition Ue
∼=
−→ (UH)H →֒

UH . These homomorphisms and isometries induce change of group functors among

spectra, as follows; cf. [14].

A group homomorphism α : H −→G naturally defines a functor α∗ : GSUG −→HS(α∗UG)

which considers an indexing G-space V ⊂ UG as an indexing H-space via α. For α in our

category G we now define the first change of group functor α♯ : GSUG −→ HSUH to be

the composition GSUG
α∗

−→ HS(α∗UG)
jα∗

−−→ HSUH , where jα∗ is induced by the change of

universe jα : α∗UG −→UH defined above.

The functor α♯ has a natural “right homotopy adjoint” α♯ : HSUH −→ GSUG with

{α♯hG,kH}H
∼= {hG, α♯kH}G, defined as follows. Given an H-prespectrum tH ∈ HP(α∗UG),

one can define a G-prespectrum Fα[G, tH) which sends V ∈ UG to the function space

1An algebra over an operad (in the category of spaces) is automatically a Hopf space.



CYCLES AND EQUIVARIANT THEORIES 11

Fα(G+, tH(V )) of left H-maps G+ −→ tH(V ) with left action on Fα(G, tH(V )) induced by

the right action of G on itself. At the level of spectra, one then defines a functor α∗ :

HS(α∗UG) −→GSUG as α∗(k) = L(Fα[G, ℓk)). One finally introduces the desired change of

group functor α♯ : HSUH −→ GSUG as the composition HSUH
j∗α−→ HS(α∗UG)

α∗−→ GSUG,

where j∗α is the contravariant change of universe.

Now, let XG be a given L(UG)-space. Then, by “neglect of structure” one obtains an

L(UH)-space XH = α∗
G,HXG for each H ∈ G. Notice that the (non-equivariant) operad

L(UH)H of H-equivariant isometries acts on XH
H and can be thought of as a suboperad of

L(Ue) via the non-equivariant identification of UH with Ue. It follows that the inclusion

XH
H →֒ Xe is a map of L(UH)H-spaces.

Let us denote by kH the spectrum associated to XH via Theorem 2.2.3. The following

result applies to various situations in equivariant homotopy theory, as we shall see later on.

Proposition 2.3.1. Let X be an L(UG)-space and suppose that for each H ∈ G one has

a map fH : Xe −→ XH
H of L(UH)H- spaces so that the composition Xe

fH−→ XH
H

iH−→ Xe

is a homotopy equivalence in the category of L(UH)H-spaces. Then the family {kH ∈

HS(UH) | H ∈ G} of associated spectra to {XH | H ∈ G} satisfies:

a. For each map θ : H −→ H′ in G there is a map of spectra ηθ : θ♯kH′ −→ kH which is

the identity if θ is the identity and an equivalence if θ is an inclusion.

b. The diagram

β♯α♯kN
β♯ηα

−−−→ β♯kH

∼=

y
yηβ

(αβ)♯kN
ηαβ

−−−→ kK .

homotopy commutes for every α : H −→N and β : K −→H.

Proof. See Appendix A. �

Remark 2.3.2. A collection of spectra satisfying the properties described in Proposition

2.3.1 is called a coherent family of spectra indexed on G or a G-spectrum in [14, II.8].

Corollary 2.3.3. Under the hypothesis of the proposition, all spectra kH ∈ HS(UH), with

H ∈ G, are split.

Proof. This follows directly from the appropriate commutative diagram associated with the

maps H
β
−→ {e}

α
−→ H; cf. [14, Ex. 8.7(i)]. �

2.4. GI∗(U)-monoids. A simple, geometric way of constructing L(U)-spaces, for a fixed

G-universe U , is given by GI∗(U)-spaces. Start with the category I∗ of finite dimensional

hermitian vector spaces and linear isometries between them. Denote by GI∗ the subcategory

of I∗ consisting of G-modules and G-module morphisms and denote by GI∗(U) the full

subcategory of GI∗ consisting of finite dimensional G-modules isomorphic to submodules

of U .
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Definition 2.4.1. A GI∗(U)-space (T, ω) is a continuous covariant functor2

T : GI∗(U) −→G-T op

from GI∗(U) to the category of non-degenerately based G- spaces together with a (coher-

ently) commutative, associative, and continuous natural transformation

ω : T × T −→ T ◦ ⊕

satisfying:

(a) If x ∈ TV and if 1 ∈ T{0} is the basepoint, then ω(x, 1) = x ∈ T (V ⊕ {0}) = TV.

(b) If V = V ′⊕V ′′, then the map TV ′ −→ TV given by x 7→ ω(x, 1) is a homeomorphism

onto a closed subset.

(c) Each sum map ω : T (V ) × T (W ) −→ T (V ⊕ W ) is a G-map.

(d) Each evaluation map e : I∗(V,W ) × T (V ) −→ T (W ) is a G-map.

One can formulate the notion of morphisms of GI∗(U)-spaces as a compatible collection

of G-maps making the appropriate diagrams commute, and hence one obtains the category

GI∗-Top consisting of GI∗-spaces and their maps.

The output of the formalism of GI∗-spaces is the following simple, albeit very useful,

result of J. P. May [18].

Proposition 2.4.2. For any GI∗(U)-space T , the colimit T (U):= lim−→
V ⊂U

T (V ), is an L(U)-

space. Furthermore, the assignment T 7→ T (U) is functorial, i.e., sends maps of GI∗(U)-

spaces to maps of L(U)-spaces.

Remark 2.4.3. I∗-functors T : I∗ −→F may have values on any symmetric monoidal category

F which admits colimits, in which case the colimit T (U) becomes an L(U)-object with values

in F .

It is unnecessary to stress the relevance of ring spectra in homotopy theory and how

rich a theory becomes when one has an E∞-operad parameterizing the ring structure of a

spectrum. A precise formulation of the notion of E∞-ring spectra can be found in [19] and,

for our purposes, it suffices only to exhibit particular instances where such spectra occur.

We need only the concrete manifestation of multiplicative infinite loop space theory, which

is explained in the next few paragraphs.

Let G-Atom be the subcategory of G-Top whose objects are abelian topological monoids

on which G acts by monoid morphisms, and whose morphisms are equivariant continuous

monoid homomorphisms.

Definition 2.4.4. A GI∗(U)-monoid is a GI∗(U)-space (T, ω) with values in G-Atom,

where ω is distributive over the monoid operation. The collection of GI∗(U)-monoids,

together with those GI∗(U)-space morphisms which are spacewise monoid morphisms, form

a subcategory GI∗-Atom of the category of all GI∗(U)-spaces.

2Recall that a topological category is one where both the objects and the set of morphisms are spaces,

and whose structural operations such as composition and evaluation are continuous. A continuous functor

between topological categories is one which induces continuous maps between morphism spaces. See [21] for

details.
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In the same fashion as the nonequivariant case [19], the resulting G-monoid T (U) =

lim−→
V ⊂U

T (V ) becomes an equivariant L(U)-ring space. We summarize, for future convenience

the main consequences of this fact, which follow from the application of the infinite loop

space machines described above, in the following statements.

Proposition 2.4.5. Let G be a finite group, and let T be a GI∗(U)-monoid, where U is a

complete G-universe. Then there is an L(U)-ring spectrum kT
G, together with a morphism

η : T (U) −→ kT
G(0) of L(U)-ring spaces which is a G-group completion of the additive

structure of T (U). In particular, if T (U) is additively G-group-complete then η is a G-

homotopy equivalence.

Any commutative topological ring R yields a group-complete “constant” GI∗(U)-monoid

R, on which G acts trivially. We then say that a GI∗(U)- monoid T is augmented over R

if there is a morphism T −→R of GI∗(U)-monoids.

Proposition 2.4.6. Let φ : T −→Z be a GI∗(U)-monoid augmented over Z, and assume that

T (U) is additively G-group complete. Then φ induces a map of L(U)-ring spaces φ : T (U) −→

Z and T (U)1:=φ−1(1) is a L(U)-subspace of T . Therefore T (U)1 admits a multiplicative

G-group completion η : T (U)1 −→ mT
G(0) into the zero-th space of a G-spectrum mT

G. In

particular, if T (U)1 is a connected space, then η is a nonequivariant homotopy equivalence.

We have thus seen how the machinery of GI∗-monoids automatically produces examples

of highly structured equivariant ring spectra, and in the next chapter we will exhibit various

examples of such objects.

3. Constructions

In this chapter we present the central constructions of the paper. We introduce certain

concrete, geometric I∗(U)-functors with values both in G-Top and in G-Atom, the category

of abelian topological G-monoids and equivariant monoid morphisms. Our constructions

involve the use of algebraic cycles on complex projective spaces. Recall that an algebraic

p-cycle σ on P

n is a finite formal sum σ =
∑

niVi, ni ∈ Z, where Vi is an irreducible

p-dimensional subvariety of Pn. An algebraic cycle is said to be effective if its coefficients

are positive integers. The collection Cp,d(P
n), of effective p-cycles on P

n of degree d, forms

a projective variety called a Chow variety. The degree of a p-cycle σ =
∑

niVi is defined

as deg σ =
∑

ni deg Vi, where deg Vi ∈ Z is the topological degree of Vi determined as the

fundamental class [Vi] ∈ H2p(P
n,Z) ∼= Z, which coincides with the number of points in the

intersection of Vi with a generic linear subspace of Pn of complementary dimension. We

refer the reader to [11] and [17] for further details on topological properties of spaces of

algebraic cycles.

3.1. The Chow monoid functor. Let us fix, momentarily, a compact Lie group G and

its universe U = UG.
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Definition 3.1.1. A. Given an hermitian inner product space V of dimension v, let

C(V ):=
∐

d≥0

Cv
d(P(V ⊕ V )) (3.1)

be the Chow monoid Cv(P(V ⊕ V )) of effective algebraic cycles of codimension v in

P(V ⊕ V ), with distinguished element 1 = P(V ⊕ {0}). Here Cv
d(P(V ⊕ V )) denotes the

effective cycles of degree d and codimension v in P(V ⊕V ). In dimension 0 we set C(0) = N

with distinguished element 1.

B. For a linear isometric embedding f : V −→ W , we define C(f) : C(V ) −→ C(W ) on a

codimension v cycle c by

C(f)c = P (W − f(V ) ⊕ {0}) ♯
C

(f ⊕ f)∗(c), (3.2)

where W − f(V ) denotes the orthogonal complement of f(V ) in W and where ♯
C

denotes

the complex join, which is defined on any pair of cycles which live in disjoint linear subspaces

of P(V ⊕ V ). Recall that the complex join is given in homogeneous coordinates by taking

the direct product of the homogeneous (conical) varieties. In particular, it is a strictly

associative pairing. Note that C(f)(1) = 1.

C. Using the complex join we define a pairing ω : CV × CV ′ −→C(V ⊕ V ′) by setting

ω(c, c′) = τ∗(c ♯
C

c′) (3.3)

where τ : V ⊕ V ⊕ V ′ ⊕ V ′ → V ⊕ V ′ ⊕ V ⊕ V ′ is the shuffle map which interchanges

the two middle factors. The pairing ω is strictly associative, coherently commutative and

continuous.

The “diagonal” action of G in V ⊕ V induces an action of G on the Chow monoid

Cv(P(V ⊕ V )) which makes it into a G-Atom. For an element g ∈ G and V ∈ I∗(U) we let

g♯ : C(V ) −→C(V ) (3.4)

denote the action of g on the cycles of P(V ⊕ V ) via the given representation. We make

C0(P(0 ⊕ 0)) into a trivial G-set.

Proposition 3.1.2. For every compact Lie group G, the functor

(CG, ω) : GI∗(UG) −→G-Atom

V 7→ C(V )

is a GI∗(UG)-monoid which is augmented over Z.

Proof. The fact that C is an I∗-monoid in the nonequivariant situation is shown in [3], and

the degree map is easily seen to give the desired augmentation. Therefore we just need to

show the following:

Step 1: The points 0 and 1 in C(V ) are fixed by the action of G.

Since V ⊕ {0} is a subrepresentation of V ⊕ V then P(V ⊕ {0}) is an invariant subspace

of P(V ⊕ V ) under the action of G, and hence 1:=P(V ⊕ {0}) is fixed as a cycle in C(V ).

The fact that 0 is fixed under the action follows from its definition.
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Step 2: The evaluation maps

e : I∗(V,W ) × C(V ) −→C(W )

are G-maps.

Recall that G acts by isometries on V and W ∈ U and by conjugation on I∗(V,W ). In

other words, given f ∈ I∗(V,W ) and g ∈ G, then gf : V −→ W is given by the formula

(gf)(v):=g(f(g−1v)) for v ∈ V. As a consequence one immediately gets, for all g ∈ G :

g (W − f(V )) = W − (gf)(V ) (3.5)

Now, for f ∈ I∗(V,W ) , g ∈ G and c ∈ C(V ) one has:

g♯ (e(f, c)) = g♯ (C(f)(c)) = g♯ (P ((W − f(V )) ⊕ {0}) ♯
C

(f ⊕ f)∗(c))

= g♯P ((W − f(V )) ⊕ {0}) ♯
C

g♯ ((f ⊕ f)∗(c))

= P ((W − (gf)(V )) ⊕ {0}) ♯
C

((gf) ⊕ (gf))∗ (g♯c)

= e(gf , g♯c),

where the fourth equality follows from 3.5 and from the action by conjugation of G on

I∗(V,W ).

Step 3: The Whitney sum

ω : C(V ) × C(W ) −→C(V ⊕ W )

is a G-map, for all V , W ∈ I∗(U) and V ⊥ W.

Given c ∈ C(V ), c′ ∈ C(W ) and g ∈ G one has:

g♯ω(c, c′) = g♯

(
τ(c ♯

C

c′)
)

= τ(g♯c ♯
C

g♯c
′)

= ω(g♯c, g♯c
′)

�

The construction of the GI∗(UG)-monoid CG presents an exceptional behavior with

respect to subgroups. More precisely, if α : H →֒ G is the inclusion of a subgroup,

then α∗CG(UG) = CH(UH) under the identification of UH with α∗UG. Furthermore, if

V ⊂ UH
H then CH(V ) = CH(V )H and the isometry jβ : β∗Ue −→UH , associated to the map

β : H −→ {e} in (2.1), induces a natural map τH : Ce(Ue) −→ CH(UH)H of Z-augmented

L(UH)H -monoids.

Proposition 3.1.3. The composition Ce(Ue)
τH−→ CH(UH)H −→CH(UH) is a non-equivariant

homotopy equivalence for each subgroup H of G.

Proof. First recall that one can assume that the H-linear isometric embedding jβ : β∗Ue −→

UH is induced by a (non-equivariant) identification of Ue with UH
H , followed by an inclusion.

We use the letter C to denote the Chow monoid functor when no mention to group actions

is necessary, and identify Ce(Ue) with C(UH
H ). Therefore, one just needs to prove that the

map C(UH
H ) −→ C(UH) induced by the inclusion UH

H →֒ UH is a non-equivariant homotopy

equivalence.
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Let us denote UH by U and UH
H by Ue, and write U = U⊥

e ⊕ Ue. Fix an isometric

isomorphism l : Ue −→ Ue ⊕ Ue and observe that L:=1U⊥
e
⊕ l : U −→ U ⊕ Ue is an H-linear

isometric isomorphism. Let i0, i1 : Ue →֒ Ue⊕Ue denote the inclusions in the first and second

factors, respectively, and let γ0, γ1 : [0, 1] −→I(Ue,Ue⊕Ue) be paths in the contractible space

of linear isometries I(Ue,Ue ⊕Ue) joining i0 and i1 to l, respectively.

Notice that 1U⊥
e
⊕γ0 induces an equivariant homotopy from the inclusion j0 : U →֒ U⊕Ue

to the H-linear isomorphism L, introduced above. Furthermore, under the identification

of U with U ⊕ Ue via L, one sees that 1U⊥
e
⊕ γ1 induces a homotopy between the inclusion

Ue →֒ U and the inclusion in the second factor j1 : Ue →֒ U ⊕ Ue.

Given a linear isometry f ∈ I(U ,U ⊕ Ue), it naturally defines a monoid morphism f∗ :

C(U) −→ C(U ⊕ Ue), as follows. For each V ⊂ U , f induces a natural map f∗,V : C(V ) −→

C(f(V )) which is seen to be a map of directed systems, once one observes that for V ⊂ W ,

one has f(W − V ) = f(W ) − f(V ), since f is an isometry. It is not hard to see that the

assignment f 7→ f∗ induces a continuous map Γ : I(U ,U ⊕ Ue) × C(U) −→C(U ⊕ Ue).

The composition

[0, 1] × C(U)
1
U⊥

e
⊕γ1

−−−−−→ I(U ,U ⊕ Ue) × C(U)
Γ
−→ C(U ⊕ Ue)

l−1

∗−−→ C(U)

gives an equivariant homotopy between C(U) →֒ C(U ⊕ Ue) and C(U)
l∗−→ C(U ⊕ Ue) .

At this point we can identify, non-equivariantly, U with Ue and Ue with U⊥
e in the formula

above, to avoid repetition of arguments, and reinterpret the same homotopy as providing

the desired homotopy equivalence. �

Remark 3.1.4. Notice that CH(UH) is non-equivariantly identified with Ce(Ue) for every

H ∈ G, and any group G. In particular, the Proposition above shows that CG(UG) is an

L(UG)-space satisfying the conditions of Proposition 2.3.1.

3.2. The Grassmann functor and equivariant K-theory. We start by observing that

the Chow variety Cv
1 (P(V ⊕ V )) of cycles of degree 1 in P(V ⊕ V ) is precisely the Grass-

mannian variety Grv(V ⊕ V ), of v-planes in V ⊕ V , where v = dim
C

V.

In the setting of the previous constructions, the complex join, when restricted to linear

subspaces, becomes the direct sum of planes. As a consequence, the following result is just

an easy corollary of the previous Proposition.

Proposition 3.2.1. For each compact Lie group G, the assignment

(Gr,⊕) : GI∗(UG) −→G-Top

given by

V 7→ Cv
1 (P(V ⊕ V )) ∼= Grv(V ⊕ V ),

defines a GI∗(UG)-subspace of CG. Furthermore, the map τG of Proposition 3.1.3 restricts to

a map τG : Gr(Ue) −→ Gr(UG)G whose composition with the inclusion Gr(UG)G −→ Gr(UG)

is also a non-equivariant homotopy equivalence.
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Proof. The first assertion follows the nonequivariant analogue, cf. [3] once we observe

that Gr(V ) is a G-subspace of C(V ), for every G-module V and that the complex join

operation is equivariant. Furthermore, the homotopy equivalence obtained in Proposition

3.1.3 restricts to a homotopy equivalence in the level of the Grassmann subspaces, since it

preserves degrees. �

Remark 3.2.2. Notice that Gr is not a GI∗-submonoid of C, but only a subspace. However,

the assignment of the infinite symmetric product SP (Gr(V )) to V , is naturally identified

with a GI∗-submonoid of C. It is important to note that SP (Gr(V )G) is not necessarily

equal to SP (Gr(V ))G. Actually, after group completion this difference is explained in terms

of Bredon homology in [15].

Remark 3.2.3. It follows immediately from 3.2.1 and Theorem 2.2.3 that the direct limit

BUG := Gr(UG) = lim−→ V Gr(V )

is an L(UG)-space and therefore inherits the sturcture of an equivariant infinite loop space.

In particular, there is a G- spectrum KuG(∗) and a G-map

BUG −→ KuG(0)

into the zero’th space of the spectrum, which is a G-group completion.

The spectrum KuG corresponds to connective equivariant K-theory (cf. [14]). For com-

pleteness we show here directly that the zero’th space BUG classifies the functor KG(X). We

begin by recalling the basic definitions and results (cf. [22]). Let X be a compact G-space,

and denote by VG(X) the set of isomorphism classes of complex G-vector bundles over X.

Under the Whitney sum ⊕ this is an abelian monoid whose näıve group completion KG(X)

is called the equivariant K-theory of X. Given a G-module V , we denote by V the

“trivial” G- vector bundle X × V −→ X. Elements in KG(X) can be canonically identified

with stable equivalence classes in VG(X), where E, E′ are called stably equivalent if there

exist G-modules V , V ′ so that E ⊕ V

∼= E′ ⊕ V

′ . This is a consequence of the following.

Proposition 3.2.4. ([22], Prop. 2.4) If E is a G-vector bundle over a compact space X,

there is a G-module V and a G-vector bundle E⊥ such that E ⊕ E⊥ ∼= V.

There is an equivariant augmentation φ : KG(X) −→Z given by the virtual rank, and we

set KG(X)o = ker(φ).

Given a G-module W , let ξW denote the “universal” G- vector bundle over Gr(W ) whose

fibre at V is V ⊥. Given a GI∗- map j : U −→W , one has

j∗ξW
∼= ξU ⊕ (W − j(U)),

where W −f(U) is the “trivial” bundle associated to the orthogonal complement of {0}×j(U)

in {0} × W .

Consider now a G-map f : X −→BUG. Since X is compact and BUG carries the compactly

generated topology, there is a G-module W ⊂ UG and a G-map fW : X −→ Gr(W ) which
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represents f in the limit. We associate to f the element

f∗
W − W ∈ KG(X). (3.6)

This element depends only on the G-homotopy class of f ([22], Prop. 1.3). Furthermore,

this element restricts to zero at the base point. Thus, the assignment (3.6) determines a

well-defined homomorphism

i : [X+, BUG]G −→ KG(X), (3.7)

where X+ denotes the union of X with a disjoint base point.

Proposition 3.2.5. The following sequence is exact:

0 −→ [X+, BUG]G
i
−→KG(X)

φ
−→ Z−→ 0,

and hence [X+, BUG]G ∼= KG(X)o.

Proof. It is clear from its construction that image(i) ⊆ ker(φ). To show surjectivity onto

ker(φ), consider E − E′ ∈ ker(φ). Then rank(E) = rank(E′) = m and we extend E and

E′ to X+ by defining them to be the trivial representation of rank m at the disjoint base

point. By Proposition 3.2.4 there is a G-vector bundle E′⊥ over X+ and a G-module U so

that E′ ⊕E′⊥ ∼= U. By adding and subtracting this element in E −E′ we may assume that

E′ = U.

Similarly we may choose E⊥ over X+ with E ⊕ E⊥ ∼= W for some G-module W . The

inclusion E⊥ ⊂ W induces a G-map f : X −→ Grn(W ) (n = rank(E⊥)) which classifies E

in the sense that f∗ξW = E, where ξW is the universal bundle as above. Let φ : Grn(W ) −→

Gr(W ⊕U) be defined by φ(L) = L⊕{0}⊕{0}⊕U ⊂ (W ⊕U)⊕ (W ⊕U). Then one has

(φ ◦ f)∗ξW⊕U
∼= E ⊕W , and hence i([φ ◦ f ]) = (E ⊕W ) − (W ⊕U) = E −U (restricted to

X).

Proof of the injectivity of i is analogous to the non-equivariant case. �

Remark 3.2.6. One knows that R(G) is generated as an abelian group by the classes

ξ1, . . . , ξm of the irreducible representations of G. Later on, especially in Section 5, the

group ring of this abelian group will play an important role in our computations. For this

reason, we shall write R(G) multiplicatively, i.e., its elements will be expressed as Laurent

monomials ξn1

1 ξn2

2 · · · ξnm
m for ni ∈ Z.

Example 3.2.7. Let X = pt so that X+ = S0 and KG(X) = R(G) and KG(X)o = R(G)o =

the kernel of the augmentation map R(G) −→Z. Then the previous proposition shows that

π0((BUG)G) = [S0, (BUG)G] = [S0, BUG]G ∼= R(G)o. (3.8)

Note that in the multiplicative notation above we can write R(G)o as

R(G)o = {ξn1

1 · · · ξnm
m |

∑
ni dim ξi = 0} (3.9)

i.e., as the multiplicative group of “Laurent monomials of weighted degree zero” in the

irreducible representations of G.
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3.3. Topological groups of cycles. For any vector space V the monoid C(V ) completes,

in the näıve Grothendieck sense, to become the free abelian group Z(V ) of all codimension-v

cycles on P(V ⊕ V ) with topology induced from C(V ). In [16] it is proved that this näıve

topological group completion C(V ) −→ Z(V ) is equivalent to the homotopy-theoretic

one C(V ) −→ΩBC(V ).

In this section we carry this result over to the current context, proving that the in-

duced map of L(UG)-spaces C(UG) −→Z(UG) is a G-group completion equivalent to the one

constructed above. This result is useful for computations and localization.

To begin we note that the assignment V 7→ Z(V ), together with the join pairing as above,

defines a GI∗(UG)-monoid which is additively group complete. Furthermore, from [16] we

have the following.

Proposition 3.3.1. The induced map C(U) −→ Z(U) of direct limit spaces is a non-

equivariant additive group completion.

Proof. Homotopy and homology group functors commute with direct limits. �

Let us consider the equivariant case. The following result follows from the freeness of

C(V ):

Lemma 3.3.2. For every G-module V and subgroup H ≤ G, the näıve topological group

completion of the monoid C(V )H of effective cycles fixed by H is the group of fixed cy-

cles Z(V )H of the näıve group completion Z(V ) of C(V ). In particular, the näıve group

completion of C(V )H is a Hausdorff topological group with the natural quotient topology.

Proof. Obvious. �

For each h ∈ H, the action h : C(V ) −→ C(V ) preserves degree and is an algebraic

map. Therefore, the intersection Cv
d(P(V ⊕ V )) ∩ C(V )H is an algebraic variety, and the

restriction of the monoid operation to the pieces of bounded degree is an algebraic map.

This implies that C(V )H is a properly c-graded monoid in the sense of Definition 4.1 of

[16]. Algebraically C(V )H is a free monoid generated by H-orbits of irreducible subvarieties

of C(V ). Therefore, by [16, Thm. 4.4] the näıve group completion C(V )H −→ Z(V )H is

equivalent to the homotopy-theoretic one. Thus the assignment V −→ Z(V ) defines a Z-

augmented GI∗(UG)-space taking values in the category of abelian topological groups, and

the natural inclusions C(V ) →֒ Z(V ) induce a map of augmented GI∗(UG)-monoids so that

for every H ∈ G and V ⊂ UH , the map C(V )H →֒ Z(V )H is an additive group completion.

This gives the following.

Proposition 3.3.3. The map of L(UG)-spaces C(UG) −→Z(UG) is a G-group completion.

Remark 3.3.4.

a. The GI∗-functors (C, ♯) and (Z, ♯) determine G-spectra kC
G(∗) and kZ

G(∗) respectively.

Furthermore, the natural transformation (C, ♯) −→ (Z, ♯) induces a morphism j : kC
G(∗) −→
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kZ
G(∗) of G-spectra and a commutative diagram

C(U)
α0−−−→ kC

G(0)

j0

y
yj

Z(U)
α

−−−→ kZ
G(0)

where by Proposition 2.4.5, α0 is an additive G-group completion and α is a G-homotopy

equivalence. By 3.3.3 j0 is a G-group completion. It follows that j : kC
G(∗) −→ kZ

G(∗) is an

equivalence of G-spectra.

b. The functors ZG suffice for the construction of all spectra we shall deal with. Never-

theless, we need the properties of the Chow monoid functor as an algebraic geometric object,

together with the Proposition 3.3.3, in order to perform the computations in Chapter 5.

c. It is clear from its very definition that the homotopies introduced in the proof of

Proposition 3.1.3 extend to degree preserving homotopies in the level of ZG. In particular,

Proposition 3.1.3 remains true if one replaces CG by ZG in its statement.

Our next step is the analysis of the inclusion C(V )G ⊂ C(V )H for a subgroup H ≤ G. In

this case C(V )G is a closed submonoid of C(V )H , and C(V )G ∩Cv
d(P(V ⊕V )) is a subvariety

of C(V )H ∩ Cv
d(P(V ⊕ V )).

We prove the following

Proposition 3.3.5. The sequence

Z(V )G −→Z(V )H −→Z(V )H/Z(V )G

is a principal fibration. In particular, after taking limits, one gets a principal fibration

Z(U)G −→Z(U)H −→Z(U)H/Z(U)G

Proof. The proposition would be a straightforward consequence of Theorem 5.2 of [16] if the

following condition were satisfied: C(V )G is freely generated by a subset of the generators

of C(V )H . However, this assertion is not true.

On the other hand, the role played by such condition in the proof of the aforementioned

theorem was to show that the group completion Z(V )G is a closed subgroup of Z(V )H and

that the quotient Z(V )H/Z(V )G is filtered by cofibrations under the quotient topology.

This is clearly satisfied in the present situation.

Now, the proof of the existence of a local cross section for the quotient map Z(V )H −→

Z(V )H/Z(V )G follows mutatis mutandis the proof of Theorem 5.2 of [16]. �

3.4. Further constructions and KO-theory. Let T be a GI∗(UG)-monoid and let K be

a finite group which acts on T in the sense that it acts on T (V ) by monoid morphisms, for

all V ∈ I∗(UG), and its action commutes with the action of G and is compatible with the

structure maps of T .

Example 3.4.1. Let K be the center of G.

One can naturally define two I∗(UG)-submonoids of T associated to the action of K as

follows.
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Definition 3.4.2.

TKTKTK : (Fixed point functor) For every V ∈ I∗(UG) let TK(V ) denote the submonoid

of T (V ) consisting of those elements in T (V ) which are fixed by the group K.

KTKTKT : (Averaged elements functor) For every V ∈ I∗(UG) let KT (V ) denote the

submonoid of T K consisting of the “averaged” elements over K. More precisely,

KT (V ):={
∑

z∈K

z♯σ |σ ∈ T (V )}.

Proposition 3.4.3.

a: TK is a GI∗(UG)-submonoid of T.

b: KT is a GI∗(UG)-submonoid of TK . Furthermore, KT is an ideal of TK , in the

sense that

ω(TK(V ) , KT (W )) ⊆ KT (V ⊕ W ),

for all V,W ∈ I∗(UG).

Proof. a: Given g ∈ G and c , c′ ∈ T (V ) one has

g♯(c + c′) = g♯c + g♯c
′ (3.10)

and

g♯ ◦ ω(c, c′) = g♯

(
τ(c ♯

C

c′)
)

= τ ◦ g♯

(
c ♯

C

c′
)

= τ
(
(g♯c) ♯

C

(g♯c
′)

)

= ω(g♯c , g♯c
′).

(3.11)

The combination of (3.10) and (3.11) proves the assertion.

b: For c ∈ TK(V ) and c′ ∈ KT (W ) one has, by definition: h♯c = c for all h ∈ K and

c′ =
∑

h∈K h♯c
′′, for some c′′ ∈ T (W ).

Therefore, using 3.10 and 3.11 one obtains

ω(c, c′) = ω(c ,
∑

h∈K

h♯c
′′)

=
∑

h∈K

ω(c , h♯c
′′) =

∑

h∈K

ω(h♯c , h♯c
′′)

=
∑

h∈K

h♯ω(c, c′′) ∈ KT (V ⊕ W ).

�

Using the results above and the topological bar construction of [19, Defn. 2.2], one can

define the following I∗(UG)-monoid.

Definition 3.4.4. Given a group K acting on the GI∗(UG)-monoid T as above, and V ∈

I∗(UG), let (T/K)(V ) be the monoid defined as

(T/K)(V ):=B(TK(V ),KT (V ), ∗),

where B(−,−,−) denotes the toplogical triple bar construction, and where KT (V ) is acting

on TK(V ) by right translations.



22 LAWSON, LIMA-FILHO, AND MICHELSOHN

Proposition 3.4.5. The assignment V 7→ (T/K)(V ) naturally inherits the structure of a

I∗(UG)-monoid from T .

Proof. It follows straightforwardly from Proposition 3.4.3 and [19, §2]. �

A simple example of this set-up arises, in the same spirit of [3], when one uses the real

linear isometries operad and Chow monoids to construct RO(G)-graded theories.

We denote by I∗(UG) the category of real finite-dimensional inner product spaces of

a fixed real G-universe U and their linear isometries. Complexification (plus sesquilinear

extension of inner products) identifies I∗(UG) as a subcategory of I∗(UG⊗C ). In particular,

every GI∗(UG ⊗ C )-functor becomes a GI∗(UG)-functor.

Consider now the Chow GI∗-monoid C described in (3.1). Note that for any real orthog-

onal representation V ⊂ UG the G-monoid Cv
G(P(V

C

⊕ V
C

)) (where V
C

= V ⊗ C ) admits a

Z/2Z action induced by complex conjugation which commutes with the action of G. We

now invoke Definition 3.4.4 with K = Z/2Z.

Definition 3.4.6. By the real Chow functor we mean C
R

:=C/(Z/2Z) with its natural

structure of a I∗(UG)- monoid provided by 3.4.5.

In parallel fashion one can construct a real Grassmann functor Gr
R

together with a

natural transformation (Gr
R

,⊕) −→ C
R

, ♯) of GI∗(UG)- functors. This induces a map

Gr
R

(UG) −→ C
R

(UG) (3.12)

of L(UG)-spaces. One checks directly that Grv
R

(V ) is exactly the Grassmannian of real

codimension-v planes in V ⊕ V where v = dim
R

(V ). Therefore, just as in §3.2 we may

identify

BO(UG):=Gr
R

(UG) = lim−→ V Gr
R

(V )

with the classifying space for reduced KOG-theory. In fact we have the following analogue

of 3.2.5.

Proposition 3.4.7. For any compact G-space X, the following sequence is exact:

0 −→ [X+, BO(UG)]G
i
−→KOG(X)

φ
−→ Z−→ 0,

and hence [X+, BO(UG)]G ∼= KOG(X)o = the reduced KOG-group of X.

4. Main Results

In this chapter we apply the machinery and constructions developed above in order

to obtain the cohomology theories of primary interest in this paper, and to study their

properties.

4.1. The equivariant cohomology theories.

Definition 4.1.1. For each finite group G, let ZG be the L(UG)-ring-spectrum associated to

the GI∗(UG)- functor Z introduced in §3.3, and let MG denote the multiplicative spectrum

associated to Z(UG)1, as in Proposition 2.4.6. Denote by δG : ZG −→ bZG and ǫG : MG −→

bMG the natural maps into their associated Borel theories, respectively; cf. Example 2.1.3.
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Remark 4.1.2. It follows from Proposition 3.3.3 and universal properties of group comple-

tions that ZG is the same spectrum as the one associated with the Chow monoid functor of

Proposition 3.1.2.

We first describe the non-equivariant properties of our spectra.

Theorem 4.1.3.

a. The underlying non-equivariant spectra Z and M associated to ZG and MG, respec-

tively, are independent of the group G.

b. The zero-th space Z(0) of Z is a weak product
∏

j≥0 K(Z, 2j) of Eilenberg-MacLane

spaces whose additive structure is the usual one, and whose multiplicative structure is in-

duced by the cup product.

c. The map Z(U)1 −→M(0) is a homotopy equivalence and the underlying non-equivariant

spectrum M is the BLLMM spectrum of [3]. In particular, M(0) ∼= 1 ×
∏

j≥1 K(Z, 2j) and

its infinite loop space structure enhances the cup product operation.

Proof. a. Let α : {e} →֒ G be the inclusion. By definition, Z = α♯
ZG. On the other hand, it

follows from Propositions 3.1.3 and 2.3.1, and Remark 3.1.4 that α♯
ZG = Ze is the spectrum

associated to the non-equivariant Chow monoid functor C of Definition 3.1.1, independently

of the group G. Similar argument applies to M.

b. This follows from the previous item, together with [11] and [13].

c. This follows from item (a) and [3]. �

The coherence properties with respect of changes of groups are expressed in the following

result:

Theorem 4.1.4.

a. For every finite group G, the natural map ZG(UG) −→ ZG(0) is an equivariant homotopy

equivalence.

b. For a given finite group G, the collections of spectra {ZH | H ∈ G} and {MH | H ∈ G}

form coherent families of spectra, in the sense of Remark 2.3.2. In particular, if H ∈ G and

α : H −→ G is the inclusion, then α♯
ZG = ZH and α♯

MG = MH , and both ZG and MG are

split spectra.

Proof. a. This follows from Propositions 2.4.5 and 3.3.3.

b. This follows from Propositions 3.1.3, 2.3.1 and Remark 3.3.4(c). �

The cohomology theories Z∗G and M∗
G (see Definition 2.1.5) are quite rich and intriguing,

and even the computation of their coefficients present several technical difficulties. On the

other hand, their associated Borel theories are much more approachable and amenable to

calculations, as the following results indicate.

Theorem 4.1.5. Let X be a compact G-space.

a. The zero-th cohomology ring bZ0
G(X) is isomorphic to the completion at the augmen-

tation ideal of the ordinary even Borel cohomology ring of X, with coefficients in Z. In
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other words,

bZ0
G(X) ∼=

∏

j≥0

H2j
G (X,Z) (4.1)

with the multiplicative structure induced by the cup product.

b. If k > 0 is a positive integer, then

bZ−k
G (X) ∼=

∏

j≥0

H2j−k
G (X,Z) (4.2)

as a module over bZ0
G(X).

Proof. a. The usual adjunction gives [X+,bZG(0)]G ∼= [X+ × EG+,ZG(0)]G and the fact

that the spectrum is split shows that the latter group is [X+ ∧G EG+,Z(0)]. It follows from

Theorem 4.1.3(b) that bZ0
G(X) ∼=

∏
H2j(X ×G EG,Z), proving the assertion.

b. For k > 0, the same argument shows that bZ−k
G (X) ∼=

∏
H2j((SkX) ×G EG,Z), and

since (SkX+) ∧G EG+
∼= Sk(X+ ∧G EG+), the usual suspension isomorphism implies that

bZ−k
G (X) ∼=

∏
H2j−k

G (X,Z). The module structure is the evident one. �

Similarly, one has the following theorem.

Theorem 4.1.6. Let X be a compact G-space.

a. The zero-th cohomology group bM0
G(X) is isomorphic to the “units” of bZ0G(X). In

other words,

bM0
G(X) ∼= 1 ×

∏

j≥1

H2j
G (X,Z) (4.3)

under the cup product structure.

b. If k > 0 is positive integer, then

bM−k
G (X) ∼=

∏

j≥1

H2j−k
G (X,Z) (4.4)

with the usual additive structure.

Proof. a. The proof of this assertion follows the same steps of the proof of the corresponding

statement in the previous theorem.

b. Write an element x ∈ 1×
∏

j≥1 H2j(Sk(X×GEG),Z) as a formal sum 1+x1+x2+· · · ,

with xj ∈ H2j(Sk(X×GEG),Z), so that the group operation follows the usual mutiplication

law for formal power series. Notice that given x, y ∈ 1 ×
∏

j≥1 H2j(Sk(X ×G EG),Z) one

has xi∪yj = 0, for all i, j ≥ 1, since these are singular cohomology classes on the suspension

of some space. It follows that x ∪ y = 1 + (x1 + y1) + (x2 + y2) + · · · , and the theorem

follows. �

As a corollary one computes the coefficients of the associated Borel theories bZ∗G and

bM∗
G, namely, the cohomology groups bZk

G(G/K) and bMk
G(G/K), where k ∈ Z and G/K

denotes an orbit space for a subgroup K ⊆ G. Recall that for a G-space X, one denotes by

πK
n (X) the homotopy group [Sn

K ,X]G, where Sn
K is the “generalized sphere” G/K+ ∧ Sn;

cf. [14, I.1]. One can similarly define πK
n (kG) for any G-spectrum kG.
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Corollary 4.1.7. a. Given a subgroup K of the finite group G, there is a ring isomorphism

bZ0
G(G/K) = πK

0 (bZG) ∼=
∏

j≥0

H2j(BK,Z),

where the multiplicative structure is induced by the cup product on singular cohomology.

b. For k > 0, one has bZk
G(G/K) = 0 and

bZ−k
G (G/K) = πK

k (bZG) ∼=
∏

j≥0

H2j−k(BK,Z)

as a graded module over πK
0 (bZG).

c. The group bM0
G(G/K) = πK

0 (bMG) is isomorphic to 1 ×
∏

j≥1 H2j−k(BK,Z) un-

der the cup product operation. Furthermore, for k > 0, one has bMk
G(G/K) = 0 and

bM−k
G (G/K) = πM

k (bZG) ∼=
∏

j≥1 H2j−k(BK,Z) with its usual additive structure.

The results above show, in particular, that the “units” 1 ×
∏

j≥1 H2j
G (X,Z) of the even

Borel cohomology of X are the zero-th group of the R(G)-graded equivariant cohomology

theory bM∗
G.

4.2. Total Chern classes and equivariant Segal questions. Combining Propositions

3.2.1 and 3.3.3 one obtains a map of L(UG)-spaces BUG −→Z(UG)1 which in turn induces

a map cG : KuG −→MG of associated spectra. Passing to Borel counterparts then induces

maps of the associated Borel spectra. We collect the various transformations obtained by

this construction in the following definition.

Definition 4.2.1. For each finite group G, the map of spectra cG : KuG −→MG described

above is called the equivariant total Chern class. The composition KuG
cG−→ MG

ǫG−→

bMG, denoted by cb
G : KuG −→bMG, is called the total equivariant Borel-Chern class.

We denote by ĉG : bKuG −→bMG the map induced by cG. These maps fit into a commutative

diagram

MG bMG

KuG bKuG
✲

✲
❄ ❄

❩
❩

❩
❩

❩❩⑦

ǫ′G

ĉGcG
cb
G

ǫG

The next result represents an extension to the equivariant situation of a conjecture of

G. Segal [23], which was positively answered in the non-equivariant case in [3]. This result

justifies the terminology in Definition 4.2.1.

Theorem 4.2.2. The zero-th level map cbG : Ku0G(X) = KG(X)o −→bM0
G(X) coincides with

the total Chern class map from the equivariant K- theory of X to its Borel cohomology.

Proof. Let E −→X be an equivariant virtual vector bundle of degree zero over X. The pull

back bundle pr∗1E −→ X × EG, under the projection onto first term, descends to a virtual
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bundle (pr∗1E)/G over X ×G EG. The total Chern class c((pr∗1E)/G) ∈ 1×
∏

j≥1 H2j(X ×G

EG; Z) is, by definition, the total Chern class of E in Borel cohomology.

In order to compare c((pr∗1E)/G) with cb
G one has only to rephrase the previous para-

graph in terms of classifying maps into the appropriate spaces, and use the corresponding

definitions together with [13]. �

Corollary 4.2.3. The group of units in even Borel cohomology extends to a generalized

equivariant R(G)-graded cohomology theory bM∗
G, which has the property that the total

Chern class map extends to a map of equivariant cohomology theories.

4.3. Transfers. It is a general fact that whenever one has a coherent family of spectra, then

the ‘transfers’ associated to equivariant coverings for the various cohomology theories in the

family, are functorialy related; cf. [14, IV.4]. In general, given an equivariant spectrum kG

and an equivariant covering E
ξ
−→ X, we denote by τξ : k∗

G(E) −→ k∗
G(X) the associated

transfer homomorphism.

We illustrate the general picture with the following “classical” examples. Consider the

trivial bundles ξ : EG × G/H −→ EG and ζ : G/H −→ pt, together with the evident

equivariant bundle map ǫ : ξ −→ ζ, and let θ : BH −→BG denote the non-equivariant bundle,

with fiber G/H obtained as the quotient ξ/G : BH = EG ×G G/H −→EG/G = BG.

The following result summarizes the relations among the various transfer homomorphisms

associated with these bundles.

Theorem 4.3.1. Given a subgroup H ⊂ G, one has a commutative diagram

R(G)o = Ku

0
G(pt)

Ku

0(BG)

R(H)o = Ku

0
H(pt)

Ku

0(BH)✲

✲

M

0
G(pt) bM0

G(pt)

M

0
H(pt) bM0

H(pt)

✲

✲

✡
✡

✡✡✣

✡
✡
✡✡✣

✡
✡
✡✡✣

❄
❄

✡
✡

✡✡✣

❄❄

ǫ′∗G

ǫ∗G

ĉGcG

IndG
H

τθ

τξ

τξ

ǫ′∗H

ĉH

ǫ∗H

cH

✟✟✟✟✟✟✟✟✯

cbG

✟✟✯

cbH

where the horizontal maps in the front and back faces of the cube are natural maps into

respective Borel theories, the vertical maps are transfer homomorphisms and all the other

maps are Chern classes. In particular, IndG
H is the induction homomorphim in representa-

tion theory and the total Chern class cbH(IndG
H(V )) of an induced representation is given by

applying the transfer τξ to the Chern class cbg(V ) of V .

Proof. The groups appearing in the diagram and their relation with the bundles above are

explained by observing that if k∗
G denotes either Z∗G orM∗

G, and H ⊂ G, then one can identify
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k0
G(G/H) with k0

H(pt). This follows from the coherence properties of our spectra, which give

the isomorphisms k0
G(G/H) = [G/H+,kG(0)]G ∼= [S0, α♯kG(0)]H ∼= [S0,kH(0)]H = k0

H(pt),

where α : H →֒ G is the inclusion.

The commutativity follows directly from the coherence properties of our spectra. See [14,

IV.4.8]. The identification of the transfer in K-theory with IndG
H is given in [20]. �

Note that the transfers above, when restricted to zero-th cohomology groups are multi-

plicative, in the sense that they commute with the ordinary cup product. In general, there

are several other non-trivial properties which can be inferred from the fact that the transfers

come from a generalized cohomology theory. See [20].

4.4. Analogues in the real case. All the results established in this chapter can be carried

over to the real case by using the constructions and results of section §3.4 together with the

results of [10].

The real Chow functor C
R

defined in (3.4.6) has a näıve group completion Z
R

. This

functor determines an equivariant ring spectrum Z

R

and a multiplicative spectrum M

R

in

analogy with the complex case above. The underlying non-equivariant spectra are indepen-

dent of the group G. The zero’th space Z
R

(0) is non-equivariantly the weak product
∏

j≥0

K(Z/2Z, j)

with multiplicative structure induced by the cup product (cf. [10]). Furthermore, we have

the non-equivariant equivalence M

R

∼= {1} ×
∏

j≥1 K(Z/2Z, j) with infinite loop space

structure which enhances the cup product. The analogues of Theorems 4.1.4, 4.1.5, 4.1.6

and Corollary 4.1.7 hold for these theories.

The transformation

Gr
R

(UG) −→ Z
R

(UG)

of L(UG)-spaces induces a map of equivariant spectra

w : KoG −→ Z

R,G

called the equivariant total Stiefel-Whitney class. Composition with Z

R,G −→ bZ
R,G

gives an equivariant total Stiefel-Whitney class in the associated Borel theory. In the zero-th

level one has an equivariant total Stiefel-Whitney class with values in the Borel cohomology

with Z/2Z-coefficients, which coincides with the classical one. Thus the equivariant version

of the Segal question holds for this Borel Stiefel-Whitney class.

The results on transfers also hold in this case.

5. Coefficients

In this chapter we shall compute the coefficients Z0
G(pt) = [S0,Z(U)]G = π0(Z(U)G) of

our equivariant theory ZG in the case where G is abelian. Our main result, Theorem 5.2.5,

states that in this case the coefficients come from a simple graded ring functor H ∗ (G) with

particularly nice properties, and they always embed into
∏

k H2k(G; Z). To carry out these

computations we use techniques of degeneration by torus actions on Chow varieties.
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5.1. General results for abelian groups. In this section we derive general results relat-

ing π0(Z(U)G) of the theory to the representation ring of G, where U = UG stands for our

fixed complete G-universe. A key factor in this computation is Theorem 3.3.3 which allows

one to work with the Chow monoids C(W ) themselves in order to approximate Z(U). Our

main trick is to use the equivariant degeneration of varieties under action of a maximal

complex torus commuting with the action of G.

The first result is a basic reduction formula. Start with a compact abelian (Lie) group G

and a finite dimensional G-module W . Fix p ≥ 0 and denote by Grp(W ) the Grassmannian

of projective p-planes in P(W ). Let Cp(W ) denote the Chow monoid of effective p-cycles in

P(W ). The inclusion iW : Grp(W ) −→ Cp(W ) is a G-equivariant map and induces a contin-

uous monoid homomorphism jW : Z+
{
Grp(W )G

}
−→ Cp(W )G (where Z+Y =

∐
d SP dY

denotes the free abelian topological monoid on the space Y ). Elements of Grp(W )G are

invariant p-planes, and elements of Z+
{
Grp(W )G

}
are called invariant linear p-cycles.

For each (p+1)-dimensional invariant linear subspace U ⊂ W we consider the submonoid

D0(U):=ker (jU )∗ ⊂ π0Z
+

{
Grp(U)G

}

where (jU )∗ denotes the induced map on π0. These are the relations on homotopy classes

of sums of G-invariant hyperplanes induced by homotopy through invariant divisors. Let

D(U) ⊂ π0Z
+

{
Grp(W )G

}
(5.1)

be the image of D0(U) induced by the inclusion U ⊂ W .

Theorem 5.1.1. For any compact abelian group, the map

(jW )∗ : π0Z
+

{
Grp(W )G

}
−→ π0

{
Cp(W )G

}

induced by jW is a monoid surjection whose kernel is generated by the “divisor” relations

D(U) for U ∈ Grp+1(W )G.

To prove this result we need a preliminary lemma. Consider PN = P(C N+1 ) with ho-

mogeneous coordinates [w] = [w0 : w1 : · · · : wN ] and the canonical action of the complex

N -torus T = (C ×)N+1/∆× given by

φt([w]) = [t0w0 : t1w1 : · · · : tNwN ], (5.2)

where ∆× denotes the diagonal subgroup (t, t, . . . , t), for t ∈ C

× . This action on PN induces

an action on each component of the Chow monoid Cp(P
N ) for any p ≥ 0.

Fix each integer k ≥ 0 and for each multi-index I = {i0 < i1 < · · · < ip} of length k + 1

consider the linear subspace

C

I = {w ∈ C

N+1 : wi = 0 if i 6= ik for some k}.

The subspace Pp
I = P(C I ) is called the Ith coordinate k-plane. It is clearly T-invariant.

Proposition 5.1.2. Fix p ≥ 0 and d > 0. Then
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(1) The fixed-point set of T acting on Cp,d(P
N ) is finite and consists of coordinate linear

cycles
∑

I nIP
p
I where each nI ∈ Z

+ and
∑

nI = d.

(2) Let σ be an irreducible, T-fixed algebraic curve on Cp,d(P
N ). Then an open, dense

subset of σ can be written as a parameterized curve of the form

σ(t) =
∑

i

niσi(t) t ∈ S

where S is an irreducible algebraic curve, and where for each i, ni ∈ Z and
⋃

t

|σi(t)| ⊆ P

p+1
I

for some coordinate (p + 1)-plane Pp+1
I . In particular, each cycle σi(t) is a divisor

in P

p+1
I .

Proof. Let L ∼= C

N denote the Lie algebra of T and for each x ∈ P

N let L(x) ⊂ Tx(PN )

denote the tangent space to the T-orbit T(x) at x. Set

Σp = {x ∈ P

N : dim
C

L(x) ≤ p}.

then it is straightforward to see that

Σp =
⋃

I

P

p
I . (5.3)

Now if c ∈ Cp,d(P
N ) is T-fixed, then its support |c| is a T-invariant algebraic subset of

dimension p. Let V be an irreducible component of |c| and fix any x ∈ Reg(V ). Then V is

T-invariant and so

L(x) ⊂ TxV.

It follows (since dim(TxV ) = p) that x ∈ Σp. We conclude that |c| ⊂ Σp and (1) now follows

from (5.3).

For (2) we begin by observing that the subvariety

W :=
⋃

c∈σ

|c| ⊂ P

N

is T-invariant and of dimension p + 1. It therefore follows as above that

W ⊂ Σp+1 =
⋃

I

P

p+1
I . (5.4)

Now the irreducibility of σ together with the finiteness of the fixed-point set of T on Cp,d(P
N )

imply that σ is the closure of the T-orbit of a generic point c in its support. Thus W is the

closure of the set

W 0:=
⋃

t∈T/Tc

|t∗c| ⊂
⋃

I

P

p+1
I ,

where Tc is the isotropy subgroup of c. We set S:=T/Tc and note that S embeds as an

open dense subset of σ (as the T-orbit of c). Consequently σ can be written generically as
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the parameterized curve σ(t) = t∗c for t ∈ S. Write c =
∑

i niVi where the ni are positive

integers and the Vi are irreducible p-dimensional subvarieties of PN . Then

σ(t) = t∗c =
∑

nit∗Vi ≡
∑

i

niσi(t) for t ∈ S.

Each Vi is contained in some Pp+1
I by (5.4), and so the curve σi is also contained in Pp+1

I . �

Proof. [of Theorem 5.1.1] Choose homogeneous coordinates [w] = [w0 : w1 : · · · : wN ] so that

each coordinate line is G-invariant. (This is possible since the irreducible representations of

G are all 1-dimensional.) Let T be the complex N -torus acting on P(W ) via this coordinate

decomposition as in (5.2). Note that the actions of G and T commute. It follows for example

that T preserves the components of Z+(Grp(W ))G and Cp(W )G.

We first prove surjectivity. Fix c ∈ Cp(W )G. It is a basic result (cf. [2]) that the closure

of this orbit T(c) contains T-fixed points. (This result is usually stated for T-actions on

smooth varieties. However each component of Cp(W ) admits a T-equivariant embedding

into some projective space P

M . In fact the standard Chow embedding is T-equivariant.

One can then ignore Cp(W ) and apply the theorem to T-orbits in P

M .)

Now by Proposition 5.1.2(1) every T-fixed cycle is a sum of G-invariant coordinate planes.

This proves the surjectivity in Theorem 5.1.1.

We now prove the second assertion. Suppose a, b ∈ Z

+(Gr(W )G) lie in the same connected

component of Cp,d(W )G under the inclusion jW . Then they can be joined in Cp,d(W )G by

a connected algebraic curve σ. Consider σ as a 1-cycle in Cp,d(W )G, and hence as a point

in some Chow variety C1(Cp,d(W )G) ⊂ C1(P
M ). Choose a fixed-point σ0 in the orbit closure

T(σ) of σ in C1(P
M ). The point σ0 corresponds to a T-fixed 1-cycle in P

M . Now, since

T preserves the subvariety Cp,d(W )G ⊂ P

M , we have |t∗σ| ⊂ Cp,d(W )G for all t ∈ T, and

therefore |σ0| ⊂ Cp,d(W )G. Since each curve t∗σ is connected, so is σ0, and since a and b

are T-fixed, we have a, b ∈ |σ0|. Thus |σ0| is a connected, T-invariant algebraic curve in

Cp,d(W )G joining a to b. Each irreducible component of σ0 is T-invariant. Furthermore,

any point in the intersection of two distinct components must be a T-fixed point, i.e., an

element of Z+(Grp(W )G) by Proposition 5.1.2(1). The result now follows from Proposition

5.1.2(2) �

Suppose now that W is a complex linear G-space of dimension w. Then we can apply

Theorem 5.1.1 to the map

Gr(W ):=Grw−1(W ⊕ W ) −→ Cw−1(W ⊕ W ):=C(W ) (5.5)

Let Z(W ) = Zw−1(W ⊕ W ) denote the näıve group completion of C(W ). Note that for

any space Y there is an isomorphism Z

+π0(Y
G) ∼= π0Z

+(Y G). Therefore taking group

completions in (5.1) gives us the following.
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Corollary 5.1.3. For any invariant subspace W ⊂ U the natural inclusion induces a sur-

jective homomorphism of abelian groups

Zπ0

{
Gr(W )G

}
−→ π0

{
Z(W )G

}

whose kernel is generated by the “divisor” relations D(U) for U ∈ Grw(W ⊕ W )G.

We now consider the direct limits

BU := lim−→W⊂UGr(W ) and ZU := lim−→W⊂UZ(W ) (5.6)

and recall that under the join pairing, ZU and ZUG are homotopy-commutative rings.

Corollary 5.1.3 immediately gives the following result.

Theorem 5.1.4. For any compact abelian group G, the inclusion (5.5) induces a surjective

ring homomorphism

Zπ0

{
BUG

}
−→ π0

{
ZUG

}

whose kernel is generated by the images of the “divisor” relations D(U) in the direct limit.

5.2. Computations for finite groups. In this section we shall explicitly compute π0

{
ZUG

}

for finite G. The main point is to compute the relations D(U) given by invariant divisors; cf.

(5.1). We set the stage by recalculating π0(BUG) in a specific manner which is subsequently

generalized to cycles. This approach is similar to calculations in [22], and its relevance here

lies on its extension to arbitrary cycles.

Let G be a finite (not necessarily abelian) group of order γ and let BU be defined as in

(5.6). We want to compute

π0(BUG) = π0

{
lim−→W⊂UGr(W )G

}
.

Let ξ1, . . . , ξm denote the distinct irreducible complex representations of G and set |ξi| =

dim ξi. For each invariant w-plane P ⊂ W ⊕W there is a unique G-equivalence P ∼=
⊕

ξ⊕ai
i

where
∑

ai|ξi| = w. Furthermore, P is homotopic to P ′ ∼=
⊕

ξ
⊕a′

i
i through G-invariant

planes if and only if ai = a′i for all i. (this follows from the continuity of characters.) Thus

if W ∼=
⊕

ξ⊕ni
i we see that

π0

{
Gr(W )G

}
∼=

{
(a1, . . . , am) ∈ Z

m : 0 ≤ ai ≤ 2ni and
∑

ai|ξi| = w
}

.

We now set

V = ξ1 ⊕ · · · ⊕ ξm

and consider the cofinal family V ⊕n = V ⊕ · · · ⊕ V in U . Then

π0

{
Gr(V ⊕n)G

}
∼= Fn

:=
{
(a1, . . . , am) ∈ Z

m : 0 ≤ ai ≤ 2n and
∑

ai|ξi| = nv
}
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where v = dimV =
∑

|ξi|. Since U is a limit of V ⊕n ⊕ V ⊕n, we see that π0(BUG) = lim−→Fn

under the family of inclusion maps · · · ⊂ Fn ⊂ Fn+1 ⊂ . . . given by

(a1, . . . , am) 7→ (ai + 1, . . . , am + 1), (5.7)

since at each stage we sent P ∈ Gr(V ⊕n) to P ⊕ (V ⊕ {0}) ∼= P + (1, 1, · · · , 1) ∈ Gr(V ⊕n).

We now write R(G) as the free abelian group with generators ξ1, · · · , ξm, and we write this

multiplicatively as in 3.2.7. Recall the subgroup

R(G)0 =
{
ξa1

1 . . . ξam
m ∈ R(G) :

∑
ai dim ξi = 0

}
.

of representations of virtual dimension zero. Then we have the following; cf. (3.9).

Proposition 5.2.1. R(G)0 ∼= lim−→Fn = π0

(
BUG

)
.

Proof. The map Fn →֒ R(G)0 given by

(a1, · · · , am) 7→
m∏

i=1

ξ
(ai−n)
i

is compatible with the inclusions (5.7) and therefore induce a mapping lim−→Fn → R(G)0
which is easily seen to be an isomorphism. �

By Proposition 5.2.1 we have

Zπ0

{
(BU)G

}
= Z [R(G)0]

= Z

[
ξ1, · · · , ξm, ξ−1

1 , · · · , ξ−1
m

]

0

:=Z
[
ξ, ξ−1

]

0

(5.8)

where Z
[
ξ, ξ−1

]
0 denotes the ring of all Laurent polynomials in ξ1, · · · , ξm of degree zero,

i.e., integral linear combinations on monomials ξa1

1 . . . ξam
m with

∑
ai = 0.

We now assume that G is abelian so that m = γ. For convenience we shall reindex the

irreducible representations by ξρ for ρ ∈ Ĝ where Ĝ ∼= G denotes the character group of

G. Thus we have

V =
⊕

ρ∈Ĝ

ξρ.

Fix now an element
→
a = {aρ}ρ∈Ĝ

∈ Z

+Ĝ, and consider the corresponding invariant

subspace

U = U(
→
a ) =

⊕

ρ

ξ⊕aρ
ρ ⊂ V ⊕n ⊕ V ⊕n where

dim(U) = nγ + 1 =
∑

aρ

For fixed d let Divd(U) denote the set of divisors of degree d on P(U). Then Divd(U) =

P(Sd(U)) where Sd(U) is the dth symmetric tensor power of U . Note that Divd(U) is a
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G-space with fixed-point set

Divd(U)G =
∐

ρ∈Ĝ

P

(
Sd(U)ρ

)
(5.9)

where Sd(U)ρ ⊂ Sd(U) denotes the G-invariant subspace with character ρ. Observe also

that for σ ∈ Ĝ,

Sd(U)σ =
⊕

∑
dρ=d∑
dρρ=σ






⊗

ρ∈Ĝ

Sdρ

(
ξ⊕aρ
ρ

)




. (5.10)

Now the coordinate linear divisors lying in
⊗

ρ Sdρ

(
ξ
⊕aρ
ρ

)
correspond to monomials

∏
ρ t

dρ
ρ where tρ is the coordinate on ξρ. This divisor on P(U(

→
a )) can be written as the

linear sum of hyperplanes
∑

dρ Div(tρ) =
∑

dρP(U(
→
a −

→
eρ)) where

→
eρ = {δρρ′}ρ′ and where

δρρ′ = 1 if ρ = ρ′ and 0 otherwise. In the notation of (5.8) this is the coordinate linear cycle

∑

ρ

dρ

∏

σ

ξ(aσ−δσρ)
σ =

(∏

σ

ξaσ
σ

)(∑

ρ

dρξ
−1
ρ

)
.

By (5.9) we see that two such cycles are equivalent in π0{CU
G} if they correspond to the

same invariant subspace Sd(U)σ. By (5.10) this means that

ξ
→

a
∑

ρ

dρξ
−1
ρ ≡ ξ

→

a
∑

ρ

d′ρξ
−1
ρ in π0{CU} if

{ ∑
ρ dρ =

∑
ρ d′ρ and

∑
ρ dρρ =

∑
ρ d′ρρ

(5.11)

where ξ
→

a ≡
∏

σ ξaσ
σ . We now pass to the group completion ZU of CU . From (5.11) and

Theorem 5.1.4 it is straightforward to calculate the following.

Lemma 5.2.2. The homomorphism Zπ0{BUG} −→ π0{ZUG} descends to an isomorphism

Z[ξ, ξ−1]0/D ∼= π0{ZUG}

where D is the ideal generated by the elements

ξ1

∑

ρ

dρξ
−1
ρ for

{ ∑
ρ dρ = 0 and

∑
ρ dρρ = 0

.

We now make a change of variables by setting ζρ:=ξr/ξ1 for ρ ∈ Ĝ. Note that ζ1 = 1.

This change of variables induces an isomorphism

Z[ξ, ξ−1]0 ∼= Z[ζ, ζ−1].

The isomorphism of Lemma 5.2.2 now becomes the isomorphism

π0{ZUG} ∼= Z[ζ, ζ−1]/D (5.12)
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where D is the ideal generated by the elements

∑

ρ

dρζ
−1
ρ for

{ ∑
ρ dρ = 0 and

∑
ρ dρρ = 0

. (5.13)

Note that the ring π0{ZUG} is graded by the augmentation deg : π0{ZUG} → Z,

corresponding to projective degree, which sends
∑

dαζα to
∑

dα.

We now make a further change of variables by setting

ζ−1
ρ := 1 + xρ and ζρ := 1 + x̄ρ

with the convention that x1 = x̄1 = 0. The element xρ is called the first Chern class of

the representation ρ ∈ Ĝ in π0{ZUG} .

Proposition 5.2.3. In the variables xρ, x̄ρ the isomorphism of Lemma 5.2.2 becomes

π0{ZUG} ∼= Z[x, x̄]/D

where D is the ideal generated by the relations (1 + xρ)(1 + x̄ρ) = 1 for ρ ∈ Ĝ and
∑

ρ

dρxρ = 0 whenever
∑

ρ

dρρ = 0 in Ĝ.

Proof. The first set of relations reflect the fact that ζρζ
−1
ρ = 1. The second is deduced easily

from (5.13) �

Definition 5.2.4. Let H ∗ (G) ⊂ Z[x, x̄]/D ∼= π0{ZUG} denote the subring with unit gen-

erated by the classes xρ. Note that H ∗(G) = Z[x]/D0 where D0 is the homogeneous ideal

D0 :=
〈∑

dρxρ |
∑

dρρ = 0 in Ĝ
〉

. (5.14)

Note that H ∗ (G) inherits a natural grading from the usual one on Z[x].

Theorem 5.2.5. H ∗ (G) is a graded ring functor on the category of finite abelian groups

with the following properties.

(1) H

0 (G) ∼= Z and H

1(G) ∼= Ĝ.

(2) H

∗ (G ⊕ G′) = H

∗(G) ⊗ H

∗ (G′).

(3) If G is cyclic, then there exists a graded ring isomorphism

H

∗ (G) ∼= H2∗(G; Z)

with the cohomology of G with coefficients in the trivial G- module Z.

For any finite abelian group G there is a natural isomorphism

π0{ZUG} ∼= H

∗(G)M (5.15)

where M ⊂ H

∗(G) is the multiplicative system generated by the total Chern classes {1 +

xρ}ρ∈Ĝ
of the irreducible representations of G.
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Proof. For (1) consider the homomorphism φ : Z 〈xρ〉ρ 6=1 → Ĝ given by φ(
∑

dρxρ) =
∑

dρρ. By (5.14) this evidently descends to the desired isomorphism. To prove (3), suppose

G = Z/mZ and let x1, . . . , xm−1 be the generators of Z[x]. Then D0 is generated by the

relations xd = dx1 for d = 2, . . . ,m − 1. Thus setting x = x1, one sees directly that

H

∗(Z/mZ) = Z[x] 〈mx〉 ∼= H2∗(Z/mZ; Z).

For (2) we write H ∗(G) = Z[x]/D0 and H

∗ (G′) = Z[y]/D′
0 as in (5.2.4). Then H

∗(G ⊕

G′) = Z[x, y]/E′ where

E′ =
〈∑

dρxρ +
∑

d′ρ′yρ′ |
∑

dρρ +
∑

d′ρ′ρ
′ = 0 in Ĝ ⊕ Ĝ′

〉

=
〈∑

dρxρ |
∑

dρρ = 0 in Ĝ
〉

+
〈∑

d′ρ′yρ′ |
∑

d′ρ′ρ
′ = 0 in Ĝ′

〉
= D0 + D′

0.

This proves the first part of the theorem. The second part follows from Proposition 5.2.3. �

Note 5.2.6. For cyclic groups (in fact for products of cyclic groups whose orders are pairwise

coprime) the functors H (G) and H(G; Z) coincide, but in general H (G) is simpler. There

is however a canonical embedding of graded rings H ∗(G) ⊂ H2∗(G; Z).

Note 5.2.7. Let Ĥ ∗ (G) =
∏

k H
k (G) and Ĥ2∗(G; Z) =

∏
k H2k(G; Z) denote the completions

of H ∗ (G) and H2∗(G; Z) with respect to the augmentation ideals. Then there are natural

embeddings

H

∗ (G)M ⊂ Ĥ

∗(G) ⊂ Ĥ2∗(G; Z) (5.16)

Combining (5.14) and (5.15) gives an embedding π0

{
ZUG

}
⊂ Ĥ2∗(G; Z) which is par-

allel to the fact that non-equivariantly we have ZU ∼=
∏

j K(Z, 2j) and so ZU classifies the

functor Ĥ2∗(•; Z)

5.3. The general case. The calculations above indicate that π0 {ZU} might be a useful

functor for finite groups, and it would be interesting to compute it in some non-abelian

cases.

The higher coefficients πk {ZU} (and more generally πV {ZU} for representations V of

G) are also interesting and there are some tools in place for trying to compute them. In

particular, there is an Equivariant Algebraic Suspension Theorem proved in [12] which

asserts the following. Let G be a finite group of order γ, and suppose V is a complex G–

module. Let V0 denote the regular representation of G. Then for any p < dimV , there is a

sequence of continuous G-homomorphisms

Zp(P(V ))
Σ/ V0

−−→Zp+γ(P(V ⊕ V0))
Σ/ V0

−−→ . . .
Σ/ V0

−−→

Zp+nγ(P(V ⊕ V n
0 ))

Σ/ V0

−−→ Zp+(n+1)γ(P(V ⊕ V n+1
0 ))

Σ/ V0

−−→ . . . (5.17)

which associate to a cycle c the join Σ/V0(c) = P(V0)♯c. The theorem asserts that there is

an integer n, depending explicitly on V and p, so that after the nth iteration, all maps in

(5.17) are G-homotopy equivalences.
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If these maps were G-homotopy equivalences from the first iteration, then we would be

able to compute all higher coefficients in the theory, since this computation would be reduced

to the equivariant Dold-thom Theorem established in [15]. However, this is not true. The

integers n in the Suspension Theorem are nearly sharp as shown by many examples.

6. Embellishments and open problems

We now examine some extensions of the results developed above. We begin by showing

that our constructions can be carried out meaningfully on any algebraic variety. Thereby,

one enhances the total Chern class in morphic cohomology developed in [6]

6.1. Applications to algebraic varieties. The basic constructions of Chapter 3 can

be carried into algebraic geometry as follows. Let X be a projective algebraic variety of

dimension n with a finite group of automorphisms G. Fix a complete G-universe U . Then

to each G-module V ⊂ U we associate the abelian topological monoid

CX(V ) := Mor
(
X, C(V )

)

where C(V ) is Chow monoid defined in (3.1); cf. [6] and [7]. The mappings C(f) defined

in (3.2), and the biadditive join pairing defined in (3.3) extend in an obvious way to these

monoids, and the arguments of §3.1 carry over directly to prove that (CX , ♯) is a GI∗-functor.

Let ZX(V ) denote the näıve topological group completion of the monoid CX(V ). It is

proved in [7] that ZX(V ) is (non-equivariantly) homotopy equivalent to ΩBCX(V ). Just

as above we see that (ZX , ♯) is a GI∗-functor, and the obvious inclusion (CX , ♯) ⊂ (ZX , ♯)

yields a transformation of GI∗- functors. Therefore, passing to the direct limits gives a map

CX(U) −→ ZX(U)

of L(U)-spaces which can be shown to be an additive G-group completion as in 3.3.3.

Definition 6.1.1. The G-ring spectrum ZX associated to the L(U)-space ZX(U) is called

the morphic spectrum of X.

We denote by MX the associated multiplicative morphic spectrum with the property

that the map ZX(U)1 −→MX(0) is a G-group completion with respect to the cup product.

When G = e, the spectrum ZX corresponds to the morphic cohomology of X introduced

in [6]. In the notation of [6] we have

ZX(U) = lim
q→∞

Zq(X; Pq) = Z∞(X; P∞) ∼=
∏

s≥0

Zs(X)

and therefore

πiZX(U) =
⊕

s≥0

LsH2s−i(X)
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(cf. [6, Thm 2.10]). This direct sum is finite since LsHk(X) = 0 whenever k > 2n (see [6,

9.8]). Furthermore, if X is smooth, then LsH2s−i(X) ∼= H2s−i(X; Z) whenever s ≥ n by

[7]. When X is smooth we also have that

π0ZX(U) =
⊕

s≥0

LsH2s(X) ∼= A0 ×A1 ×A2 × · · · × An

where Ap denotes the group of algebraic p-cycles on X modulo algebraic equivalence (see [7,

Thm 5.1]). This shows that in general ZX(U) depends strongly on the algebraic structure

of X.

Note that by the above π0ZX(U) is a finitely graded, commutative ring with unit. It

follows that when G = e, the space ZX(U)1 is group-like with respect to the cup-product.

Thus, in this case, there is a homotopy equivalence MX(0) ∼= ZX(U)1. If X is smooth, then

by duality [7] we have π0MX(0) ∼= {1} × An−1 × · · · × A0.

From the discussion above we see that the coefficients in the theory ZX could be justifiably

called the equivariant morphic cohomology of X.

We now replace CX(V ) with the GI∗-subspace

GrX(V ) := Mor(X,Gr(V )),

and note that the direct limit GrX(U) is a L(U)-space.

Definition 6.1.2. The G-spectrum KuX associated to the L(U)-space GrX(U) is called the

Grassmann spectrum of X.

In the language of [6] we have that GrX(V ) = Vectv(X), and it is shown there that

π0GrX(V ) coincides with algebraic equivalence classes of algebraic vector bundles of rank v

on X which are generated by their global sections. Thus GrX(U) is the additive monoid of

stable equivalence classes of such bundles under Whitney sum. The map GrX(U) → KuX(0)

into the zero’th space of the spectrum is a G-group completion. In particular we see that

(non-equivariantly) π0KuX(0) represents the group completion Kalg(X)o of the monoid of

equivalence classes of algebraic vector bundles generated by their global sections.

Observe now that the inclusion

(GrX ,⊕) −→ (CX , ♯)

is a transformation of GI∗-functors, which induces a map

GrX(U) → ZX(U)1

of L(U)-spaces. This in turn induces a map

c : KuX −→ MX

of G-spectra, called the total Chern class in equivariant morphic cohomology

It is interesting to examine the “continuous analogue” of these constructions given by

the transformation Map(X,Gr(V )) −→ Map(X,Z(V )) of GI∗-functors. Here we use the



38 LAWSON, LIMA-FILHO, AND MICHELSOHN

notation Map(X,Y ) instead of F (X,Y ), for compatibility with [6]. Note that there is a

commutative diagram of GI∗-transformations

Mor(X,Gr(V )) −−−→ Mor(X, C(V ))
y

y

Map(X,Gr(V )) −−−→ Map(X,Z(V ))

leading to a commutative diagram of L(U)-spaces

GrX(U) −−−→ ZX(U)1
y

y

Map(X,Gr(U)) −−−→ Map(X,Z(U)1)

and therefore a diagram of G-spectra

KuX −−−→ MX
y

y

Map(X,Ku) −−−→ Map(X,M).

Suppose X is smooth and G = e. Then applying π0 at level zero in this diagram gives

Kalg(X)o −−−→ {1} ×
∏0

k=n−1 Ak(X)
y

y

K(X)o −−−→ H2∗(X; Z).

where the top horizontal map is the total Chern class map into algebraic cycles modulo

algebraic equivalence under intersection product [5], and the bottom horizontal arrow is the

standard total Chern class [6]. The preceding diagram of G-spectra is a full extension of

this classical diagram to equivariant theories.

Appendix A. The Coherence Theorem

The point of this appendix is to provide the following.

Proof. [of Proposition 2.3.1]

We first observe that any morphism θ : H −→ H ′ in G has one of the following three

forms:

(1) θ = αH′,H : H →֒ H ′ is an inclusion of subgroups;

(2) θ = βH : H −→{e} is a projection onto the trivial subgroup;

(3) θ is a composition of the type H
βH−−→ {e}

αH′,e
−−−→ H ′.

Therefore, we only need to define ηθ in the cases (1) and (2), satisfying suitable conditions,

and use the natural equivalence of functors β♯α′♯ ∼= (α′β)♯ = θ♯ to define ηθ in the third
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case by the commutativity of the diagram

β♯α′♯kH′

β♯ηα′

−−−→ β♯ke

∼=

y
yηβ

θ♯ = (α′β)♯kH′ −−−−−→
ηα′β=ηθ

kH ,

where α′ = αH′,e and β = βH .

Let us first recall how kH is defined. Given an H-module V ⊂ UH , let DH
V denote the

monad associated to the operad DH
V = CV ×L(UH), where CV is the little discs operad (cf.

[4, 2.2(b)]). By definition

kH(V ) = lim
W⊂UH
V ⊂W

ΩW−V B(ΣV ,DH
V ,XH). (A.1)

The first case (θ = αH′,H : H →֒ H ′) is quite simple, since jθ : θ∗UH′ −→UH is the identity

map regarded as an H-module map. We will define a map τθ : θ∗kH′ −→ j∗θkH in HS(θ∗UH′)

and then apply the functor jθ∗ to τθ to obtain ηθ : θ♯kH′ = jθ∗θ
∗kH′

jθ∗(τθ)
−−−−→ (jθ∗j

∗
θkH) = kH .

The last identification comes from the fact that jθ∗ = (j−1
θ )∗ in this particular situation.

The map τθ : θ∗kH′ −→ j∗θkH is defined as follows. Given V ⊂ θ∗UH′ then (θ∗kH′)(V ) =

kH′(V ) as an H-space. On the other hand, there is a natural identification of monads DH
V =

DH′

V in the category of H-spaces, when V is seen as an H-module and L(UH′) is identified

to L(UH) as an H-operad. Therefore the identification θ∗XH′ −→ XH induces compatible

homeomorphisms of H-spaces ΩW−V B(ΣW ,DH′

W ,XH′) −→ ΩW−V B(ΣW ,DH
W ,XH) for any

W ⊂ UH such that V ⊂ W . Furthermore, once one observes that the family of H′-

submodules of UH′ is cofinal in the family of H-submodules of UH′ , then the above maps

induce an isomorphism of spectra τθ : θ∗kH′ −→ jθ∗kH when one passes to the appropriate

limit; cf. (A.1). Therefore, ηθ = jθ∗(τθ) is also an isomorphism, in this case. It is a tautology

to check that when θ : H −→H ′ and θ′ : H ′ −→H ′′ are inclusions, then the desired diagram

commutes.

The definition of ηθ, when θ = βH : H −→ {e}, is a bit more involved. Given W ⊂ Ue,

denote by D̃H
W the operad CW ×L(UH)H , and let D̃H

W be its associated monad. The inclusion

D̃H
W −→De

W is a local equivalence (see [18, §3]) of E∞-operads which induces equivalences

of spaces:

B(ΣW , D̃H
W ,Xe)

∼=
−→ B(ΣW ,De

W ,Xe),

for all W ⊂ Ue. These equivalences assemble to define

ΦV : lim
W⊂Ue
V ⊂W

ΩW−V B(ΣW , D̃H
W ,Xe)

∼=
−→ lim

W⊂Ue
V ⊂W

ΩW−V B(ΣW ,De
W ,Xe):=ke(V ).

(A.2)

We now introduce a series of intermediate natural maps. The given map fH : Xe −→XH
H

of L(UH)H-spaces induces maps

B(ΣW , D̃H
W ,Xe) −→ B(ΣW , D̃H

W ,XH
H )
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for each W ⊂ Ue, which in turn define

fH∗ : lim
W⊂Ue
V ⊂W

ΩW−V B(ΣW , D̃H
W ,Xe) −→ lim

W⊂Ue
V ⊂W

ΩW−V B(ΣW , D̃H
W ,XH

H ). (A.3)

On the other hand, the inclusions L(UH)H →֒ L(UH) and jβ : β∗Ue −→UH induce maps

B(ΣW , D̃H
W ,XH

H ) −→ B(ΣjβW ,DH
jβW ,XH

H )H ,

for each W ⊂ Ue, with compatible associated maps

ΩW−V B(ΣW , D̃H
W ,XH

H ) −→
{
ΩjβW−jβV B(ΣjβW ,DH

jβW ,XH
H )

}H
.

One then obtains, by passing to limits on both sides, a map:

ΨV : lim
W⊂Ue
V ⊂W

ΩW−V B(ΣW , D̃H
W ,XH

H ) −→ lim
U⊂UH

jβ(V )⊂U

{
ΩU−jβV B(ΣU ,DH

U ,XH
H )

}H
.

(A.4)

Finally, one can use jβ to define a non-equivariant map

ΩW−V B(ΣW ,De
W ,Xe) −→ ΩjβW−jβV B(ΣjβW ,DH

jβW ,XH),

where Xe is identified with XH and De
W with DH

jβW when the action of H is ignored. This

induces the equivalence

ΞV : ke(V ) = (βα)♯ke(V ) −→ β♯α♯ke(V ) = lim
U⊂UH

jβ(V )⊂U

ΩU−jβV B(ΣU ,DH
U ,XH),

(A.5)

where we use the particular description of jα = jαH,e
to obtain the equality on the right

hand side of the equation. The following diagram commutes

lim
W⊂Ue

V ⊂W

ΩW−V B(ΣW , D̃H
W , Xe)

ΦV−−−−→
(A.2)

lim
W⊂Ue

V ⊂W

ΩW−V B(ΣW , De
W , Xe)

fH∗

y(A.3)

∥∥∥

lim
W⊂Ue

V ⊂W

ΩW−V B(ΣW , D̃H
W , XH

H ) ke(V )

ΨV

y(A.4) (A.5)

yΞV

lim
U⊂UH

V ⊂U

{
ΩU−jβV B(ΣU , DH

U , XH)
}H

−−−−→
⊂

lim
U⊂UH

jβV ⊂U

ΩU−jβV B(ΣU , DH
U , XH)

∥∥∥
∥∥∥

β♯kH(V )
β♯ξα

−−−−→ β♯α♯ke(V ),

where ξα : ke −→α♯kH is the adjoint of ηα, with α = αH,e.

Define ξβ,V :=ΨV ◦ fH∗ ◦ Φ−1
V and notice that we have proven that the diagram

ke(V )
id

−−−→ (βα)♯ke(V )

ξβ,V

y ∼=

yΞV

β♯kH(V ) −−−→
β♯ξα

β♯α♯ke(V )
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commutes. If ηβ : β♯ke −→ kH denotes the adjoint of the map of spectra defined by ξβ, we

conclude that the adjoint diagram

β♯(α♯ke)
β♯ηα

−−−→ β♯kH

∼=

y
yηβ

(αβ)♯ke
ηαβ

−−−→ ke

also commutes. A simple verification now shows the commutativity of all required diagrams.

�
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