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Introduction

The problem of Plateau was to show the existence of a minimal surface given a boundary. In lower dimensions,
this problem can be studied with classical tools of differential geometry. However, these tools are insufficient in
extending the problem to arbitrary dimensions and co-dimensions.

Singularity formation is inevitable in higher dimensions. This has been the motivation for a new type of geometry.
In their landmark paper [FF60], Herbert Federer and Wendell Fleming established the area of Geometric Mea-
sure Theory. This theory extends differential geometry to account for singularities - to have n-surfaces where we
can talk about it being almost everywhere differentiable in a measure theoretic sense.

The Compactness Theorem is a fundamental theorem in Geometric Measure Theory. It is an elegant solution to
the extended problem of Plateau. However, the original proof [FF60] involved the use of the Structure Theorem.
This dictates that every set A ⊆ Rn+k (which can be written as a union of finite measure sets) can be decomposed
into A = R∪ P, where R is rectifiable (the surfaces of Geometric Measure Theory) and P purely unrectifiable
(contains only zero measure rectifiable sets). While this result maybe an interest in itself, it is a difficult fact to
swallow and makes the proof of compactness difficult to digest.

There have been other proofs of this theorem. Bruce Solomon provided a proof [Sol84] that circumvents this hard
fact. However, it uses multivalued functions which are difficult in themselves. The more elegant solution came
from Brian White in 1987, where he provides a direct, elegant argument - relying on density facts, deformations,
boundary rectifiability, and other more tangible features of Geometric Measure Theory.

Although White’s proof is simpler and more elegant than its previous counterparts, the argument in [Whi89] is
still terse and inaccessible to a reader who does not have a deep understanding of Geometric Measure Theory.
The purpose of this thesis has been to provide, to the extent possible, a self-contained exposition of these facts.
Geometric Measure Theory has deep ideas, and in many places it is extremely technical. This thesis aims
provides the sufficient background to shed light on the argument.

Other than results proved by White in [Whi89], only a few proofs provided here are taken from books. Most
arguments are constructed to justify the important facts of White’s proof which maybe lacking in detail. These
arguments use non-trivial facts from point-set topology, measure theory, functional analysis and differential ge-
ometry. The sources of any theorems used have always been referenced. For that reason, it is recommended
that the references are kept in close proximity. In particular, [Sim83], [Mat95], and [Mun96] are important. For
convenience, a table of notation has also been included.
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Chapter 1

Preliminaries

In this chapter, we develop some preliminary constructs of Geometric Measure Theory. Many results in this
section are included for completeness and consequently, only relevant proofs are included.

1.1 Hausdorff Measure

The Hausdorff measure is the central tool of analysis in Geometric Measure Theory. The central motivation be-
hind the Hausdorff measure is to make sense of the measure of an n dimensional subset of an n+k dimensional
space.

Definition 1.1.1 (Hausdorff Measure) Let n ∈ R+. Let A ⊆ Rn+k. Then we define the Hausdorff δ-approximation
measure by:

H n
δ (A) = inf

 ∞∑
i=1

ωn

(
diam(Ci)

2

)n

: A ⊆
∞⋃

i=1

Ci ,diam(Ci) < δ


where wn = Vol (Bδ) (volume of an n-ball of radius δ) if n ∈ N.

Then, the Hausdorff measure is defined by:

H n(A) = lim
δ→0

H n
δ (A)

The following properties of the Hausdorff measure illustrate some important facts:

Theorem 1.1.2 (Properties of Hausdorff measure)

1. H n is Borel Regular

2. H n(A) = L n(A) for A ⊆ Rn, n ∈ N

3. For each m< n, H m(A) < ∞ =⇒ H n(A) = 0

4. For each m< n, H n(A) < ∞ =⇒ H m(A) = ∞

The last two properties tell us that when the Hausdorff measure is positive, then it is non-zero for a unique
n ∈ R+. This is often used as a motivation to develop a notion of Hausdorff dimension, which agrees with our
definition of dimension in the case where n ∈ N.
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1.2 Lipschitz Functions

Differentiable functions are the functions of differential geometry. Lipschitz functions are the key to the geometry
we develop in GMT. We begin with the following definition.

Definition 1.2.1 (Lipschitz Function) A function f : Rn→ Rm is Lipschitz if for all x, y ∈ Rn,

‖ f (x) − f (y)‖ ≤ M‖x− y‖

The least such constant M is denoted Lip ( f ).

Next, we quote the famous Rademacher’s theorem. The proofs of these results are found in [Sim83, 5.2, 5.3].

Theorem 1.2.2 (Rademacher’s Theorem) Let f : Rn+k → Rm be Lipschitz. Then f is differentiable L n−a.e. x ∈
Rn.

We have the following important consequence:

Lemma 1.2.3 Let f : Rn→ Rm be a Lipschitz function. Then, ess sup‖∇ f (x)‖ ≤
√

n+ k(Lip ( f )).

Proof Since f is Lipschitz, for h > 0, we have:

f (x+ hei) − f (x)
h

≤
| f (x+ hei) − f (x)|

h
≤

(Lip ( f )) |x+ hei − x|
h

≤ (Lip ( f ))

So, by the definition of partial derivative [Spi65, p25], we have that

∂ f
∂xi
≤ Lip ( f )

whenever the limit exists. It follows that:

‖∇ f (x)‖ =

√√√n+k∑
i=1

(
∂ f
∂xi

(x)

)2

≤

√√√n+k∑
i=1

(Lip ( f ))2 =
√

n+ k(Lip ( f ))

This implies that ess sup‖∇ f (x)‖ ≤
√

n+ k(Lip ( f )). �

The next is an important C1 approximation result for Lipschitz functions:

Theorem 1.2.4 ( C1 approximation theorem) Let f : Rn → Rm be a Lipschitz function. Then for every ε > 0,
there exists a g ∈ C1(Rn,Rm) such that:

L n
({

x ∈ Rn+k : f (x) , g(x)
}
∪

{
x ∈ Rn+k : D f (x) , Dg(x)

})
< ε

1.3 Rectifiability

We commence our discussion with the following definition.

Definition 1.3.1 (Countably n-Rectifiable) A set M is called countably n-Rectifiable if it can be written as:

M = M0 ∪

 ∞⋃
i=1

Mi


where H n(M0) = 0 and for each i > 0, Mi = fi(Ωi) with each fi Lipschitz and each Ωi ⊆ R

n.
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For convenience, we will usually call such sets n-rectifiable or simply rectifiable (when the dimension context is
clear).

Rectifiable sets are the surfaces of Geometric Measure Theory. Intuitively, such surfaces should be H n−a.e.
smooth (in light of the Rademacher’s Theorem, Theorem 1.2.2).

The set M0 is the singular set - it allows the surface to behave sufficiently “badly” up to a set of measure zero.
Since the properties of H n guarantees that for all sets B ⊆ Rn with dim(B) < n, H n(B) = 0, the surface
can contain any lower dimensional sets with null contribution. Since each Mi = fi(Ωi) is H n−a.e. smooth,
subadditivity of measures ensures that the total set of singular points is a H n null set.

The following theorem gives a rigorous formulation of our discussion.

Theorem 1.3.2 (Submanifold Embeddings of Rectifiable Sets) A set M ⊆ Rn+k is n-rectifiable if and only if:

M ⊆ N0 ∪

 ∞⋃
i=1

Ni


where H n(N0) = 0 and for i > 0, Ni is an n-dimensional C1 embedded submanifold of Rn+k.

Corollary 1.3.3 (Rectifiable Decomposition Property) Let M be a rectifiable set. Then, we can write M =

M0 ∪
(⋃∞

i=1 Mi
)
, where each Mi ⊆ Ni is H n-measurable, pairwise disjoint, and H n(M0) = 0.

Proof Let M ⊆ N0∪
(⋃∞

i=1 Ni
)
, with Ni as guaranteed by Theorem 1.3.2. Now, define M0 = M \

⋃∞
i=1 Ni . Trivially,

H n(M0) = 0. Now for i > 1, we define Mi =
(
Ni \

⋃i−1
j=1 Mi

)
∩ M. Measurability of Mi is an easy exercise in

induction. �

This decomposition is indeed convenient and its usefulness will become apparent later. We define it formally for
convenience.

Definition 1.3.4 (Disjoint Decomposition) Let M ⊆ Rn+k be a rectifiable set. Then the decomposition promised
by Theorem 1.3.3 is called the Disjoint Decomposition of M.

Before we continue with a discussion of the properties of this geometry, we recall the following important measure
theoretic definition.

Definition 1.3.5 (Locally Summable) Let X be a metric space, and µ a measure on X. Let f : X → R be a
µ-measurable function. If for every W b U, ∫

W
| f | dµ < ∞

then we say that f is locally summable.

An important property of submanifolds is that they have a tangent space at every point. The following definition
gives a generalisation of a tangent space in the rectifiable setting [FX02, 3.3.3, 3.3.4]. This definition is indeed
equivalent in the submanifold setting.

Definition 1.3.6 (Approximate Tangent Space) Let M ⊆ Rn+k be a H n measurable subset, and let θ : M →
R+, locally H n-summable. Given an n-dimensional subspace P ⊆ Rn+k, we say that P is the approximate tangent
plane with respect to multiplicity θ(x) at x if

lim
λ→0

∫
ηx,λM

f (y)dH n(y) = θ(x)
∫

P
f (y)dH n(y)

holds for all f ∈ C0
c(Rn+k), with ηx,λ(y) = λ−1(y− x). We write P = TxM.
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We make a remark that θ is unique only up to a set of measure zero. That is, given a function θ′ which satisfies
the above definition, then the tangent spaces TxM and TxM′ agree H n−a.e. x ∈ M [Sim83, 11.5].

The following important results allows us to characterise rectifiable sets in terms of its tangent properties. This
result is another confirmation that rectifiable sets are indeed a generalisation of submanifolds.

Theorem 1.3.7 (Existence of Tangent Planes) Let M ⊆ Rn+k be H n measurable. Then M is n-rectifiable if
and only if there exists a locally H n-summable θ : M → R+, such that the tangent plane TxM exists with respect
to θ for H n−a.e. x ∈ M.

Corollary 1.3.8 (Uniqueness of Tangent Planes) Let M ⊆ Rn+k be n-rectifiable, and let M = M0 ∪
(⋃∞

i=1 Mi
)

be the disjoint decomposition with Mi ⊆ Ni , with Ni a C1 submanifold. Then, for H n−a.e. x ∈ M, TxM = TxNi

whenever x ∈ Mi .

It is worth noting here that if we indeed choose another decomposition N′j , then whenever x ∈ N′j ∩ Ni , ∅, we
must have TxNi = TxN′j .

1.4 Gradients, Area, Co-area

Recall that for an n-submanifold N in Rn+k, with orthonormal tangent basis ν1, . . . , νn, we can define the N-
gradient of a differentiable function f : N→ R by:

∇N f (y) =
n∑

i=1

(Dνi f )νi

Then, we can make the following definition.

Definition 1.4.1 ( M-gradient) Let M ⊆ Rn+k n-rectifiable and let M = M0∪
(⋃∞

i=1 Mi
)

be the disjoint decomposi-
tion, with Mi ⊆ Ni , where Ni is C1 submanifold for i > 0. Let f : U → R, where M ⊆ U open in Rn+k. Then, we
define:

∇M f (x) = ∇Ni f (x)

for H n−a.e. x ∈ M whenever x ∈ Mi .

Such a gradient exists by Rademacher’s Theorem, since we are guaranteed that a Lipschitz f |Ni is differentiable
H n−a.e. x ∈ Ni . Also, we emphasise that ∇M f is independent of the particular decomposition up to a set of
measure zero.

We can now proceed to define the differential of Lipschitz functions:

Definition 1.4.2 ( M-Differential) Let M ⊆ Rn+k be an n-rectifiable set, and let f : U → Rm, where M ⊆ U open
in Rn+k, be a function with each component f i locally Lipschitz. Then, we define dM

x f : TxM → Rm by:

dM
x f (ν) =

m∑
i=1

〈∇M f j(x), ν〉ei

where ei is the standard basis for Rm, and 〈·, ·〉 = 〈·, ·〉Rm the usual inner product in Rm.

This machinery allows us to start talking about Jacobians.

5



Definition 1.4.3 Suppose M and f are as given by Definition 1.4.2, with M an n-rectifiable set. Then, we define
the Jacobian and Co-Jacobian respectively for H n−a.e. x ∈ M by:

JM f (x) =
√

det D∗M f (x) ◦ DM f (x) ,m≥ n

J∗M f (x) =
√

det DM f (x) ◦ D∗M f (x) ,m< n

where D∗M f (x) denotes the adjoint of DM f (x).

By virtue of the preceding results and definitions, we know the Jacobian and Cojacobian exists H n−a.e. The
characterisation of these quantities allow us to talk about the Area and Co-area formula in the rectifiable setting.

Theorem 1.4.4 (Area and Coarea) Let M ⊆ Rn+k be n-rectifiable, and suppose f : U → Rm is Lipschitz with
M ⊆ U open in Rn+k. Further, let A ⊆ M be H n-measurable and suppose g : M → R+ H n-measurable. Then

1. If m≥ n then ∫
M

gJM f dH n =

∫
Rm

(∫
f −1(x)

gdH 0

)
dH m(x) (Area)

2. If m< n then ∫
A

gJ∗M f dH n =

∫
Rm

(∫
f −1(x)∩M

gdH n−m

)
dL m(x) (Co-Area)

6



Chapter 2

Currents, Varifolds, Densities and Slices

In this chapter, we present some theory and proofs which will be of later use.

2.1 Forms and p-Vectors

We will begin by introducing Einstein Summation Convention:

aiei =
∑

i

aiei

That is exactly - whenever there is a raised and lowered index, there is always an implied summation unless
otherwise stated. This will prove to be a useful simplification later when we deal with large indices. In general,
the significance is the symbol itself, and not its index. That is, we will liberally raise and lower indices on the
symbol to assume Einstein Summation.

Let V be a vector space. We denote the p-vectors of V by ∧pV, and the p-forms of V by ∧pV.

We define an inner product on ∧pRn.

Definition 2.1.1 (Product in ∧pRn) Let ω, η ∈ ∧pRn. Then we write ω = ωi1,...,ipdxi1 ∧ . . . ∧ dxip and η =
η j1,..., jpdxj1 ∧ . . . ∧ dxjp. We define:

〈ω, η〉∧p = ωi1,...,ipη
i1,...,ip

We now prove that this is indeed an inner product on ∧pRn.

Lemma 2.1.2 The product 〈·, ·〉∧p defined in Definition 2.1.1 is indeed an inner product on ∧pRn.

Proof Let ω, η be written as in Definition 2.1.1. For simplicity, let 〈·, ·〉 = 〈·, ·〉∧p.

Trivially we have 〈η, ν〉 = 〈ν, η〉.

Let ν = νk1,...,kpdxk1 ∧ . . . ∧ dxkp ∈ ∧p. Fix a,b ∈ R.

〈aω + bη, ν〉 =
(
aωi1,...,ip + bηi1,...,ip

)
νi1,...,ip

= aωi1,...,ipν
i1,...,ip + bηi1,...,ipν

i1,...,ip

= a〈ω, ν〉 + b〈η, ν〉

7



Also, trivially, 〈ω,ω〉 ≥ 0 and 〈ω,ω〉 = 0 if and only if ω = 0.

By [PG96, 4.1], 〈·, ·〉∧p is an inner product. �

We point out the following topological consequence.

Corollary 2.1.3 The inner product 〈·, ·〉∧p induces the usual metric on ∧pRn.

Proof Trivially,

〈ω,ω〉 = ‖ω‖2

where ‖ω‖ is the usual norm on ∧pRn. �

This following result is fundamental in the theory we develop later. It gives an important representation of the
inner product in the space of forms.

Lemma 2.1.4 Let ω, η ∈ ∧pRn. Then there exists an η̃ ∈ ∧pR
n such that

〈ω, η〉∧p = 〈ω, η̃〉

where 〈ω, η̃〉 is the usual pairing of a form with a vector. And conversely.

Proof Trivially, we put η̃ = ηi1,...,ipei1 ∧ . . . ∧ eip, where η = ηi1,...,ipdxi1 ∧ . . . ∧ dxip. �

In light of this result, we can consider the usual paring of a form with a vector “to behave” as the inner product in
the space of forms. This notion will be assumed throughout this document.

2.2 Currents

Convergence is best talked in the language of functional analysis. Currents are a way of representing rectifiable
sets as linear functionals. In this section we will expose some aspects of the theory of currents.

Definition 2.2.1 ( n-Current) Let U open in Rn+k. Define:

DnU =
{
ω : U → ∧nRn+k, ω smooth , sptω compact in U

}
DnU = DnU∗

We call DnU the set of n-currents of U.

Naturally, DnU = C∞c (U,∧nRn+k) is equipped with the standard norm ‖ω‖ = maxx∈U ‖ω(x)‖.

We now define an appropriate semi-norm on the space of n-Currents.

Definition 2.2.2 (Mass Norm) Let U open in Rn+k, and let T ∈ DnU. Let W b U. The mass of T in W is defined
by:

MW(T) = sup
{
T(ω) : ω ∈ DnU, sptω ⊆W, ‖ω‖ ≤ 1

}
and MU(T) = M(T).

8



Definition 2.2.3 (Locally Finite Mass) Let U open in Rn+k, and let T ∈ DnU. If for every W b U, MW(T) < ∞,
then we say that T has locally finite mass.

We introduce the following important notion.

Definition 2.2.4 (Measure Functional) Let U open in Rn+k, and let µ be a Radon measure on U. Then, given
some n-vectorfield ν : Rn+k → ∧nR

n+k, we define µ ∧ ν by:

(µ ∧ ν)(ω) =
∫

U
〈ω(x), ν(x)〉 dµ(x)

where ω ∈ DnU.

Theorem 2.2.5 Let µ be a Radon measure on U open in Rn+k, and let ν : Rn+k → ∧nR
n+k be a locally µ-summable

n-vectorfield. Then (µ ∧ ν) ∈ DnU has locally finite mass.

Proof Fix W b U. Let ω ∈ DnU with ‖ω‖ ≤ 1 and sptω ⊆ W. We write ω(x) = ωi1,...,in(x)dxi1 ∧ . . . ∧ dxin and
ν(x) = ν j1,..., jn(x)ej1 ∧ . . . ∧ ejn. Also, we have 〈ω(x), ν(x)〉 = ωi1,...,in(x)νi1,...,in(x). In the light of Lemma 2.1.4, we
can apply the Cauchy-Schwartz Inequality [PG96, Prop. 1], and it follows that:∫

W
〈ω(x), ν(x)〉 dµ(x) ≤

∫
W
‖ω(x)‖‖ν(x)‖ dµ(x)

≤

∫
W
‖ν(x)‖ dµ(x)

=

∫
W

√ ∑
i1<...<in

(νi1,...,in(x))2 dµ(x)

< ∞

(Since ν is locally µ-summable)

Since this holds for every such ω, MW(T) < ∞. �

We quote the following important theorem. Its proof can be found in [Sim83, 4.1].

Theorem 2.2.6 (Simon’s Reisz Representation Theorem) Let X be locally compact and separable, and let H
be a Hilbert space. Let L : Cc(X,H)→ R be a linear functional such that for every K compact in X,

sup
{
L( f ) : f ∈ C0

c(X,H), ‖ f ‖ ≤ 1, spt f ⊆ K
}
< ∞

Then there exists a Radon measure µ on X and µ-measurable ν : X→ H with ‖ν(x)‖ = 1 µ−a.e. x ∈ X and

L( f ) =
∫

X
〈 f (x), ν(x)〉 dµ(x)

for all f ∈ C0
c(X,H).

Now we prove this important Corollary to the previous theorem.

Corollary 2.2.7 Let µ be the promised Radon measure, and further suppose that X is Hausdorff. Then for V
µ-measurable,

µ(V) = sup
{
L( f ) : f ∈ C0

c(X,H), ‖ f ‖ ≤ 1, spt f ⊆ V
}

9



Proof Fix f ∈ C0
c(X,H) with ‖ f ‖ ≤ 1 with spt f ⊆ V, V µ-measurable. We apply the Cauchy-Schwartz Inequal-

ity [PG96, 4.1] and find |〈 f (x), ν(x)〉| ≤ ‖ f ‖‖ν‖ ≤ 1 for µ−a.e. x ∈ X.

It follows that,

L( f ) =
∫

X
〈 f (x), ν(x)〉 dµ(x)

=

∫
V
〈 f (x), ν(x)〉 dµ(x)

(since spt f ⊆ V)

≤

∫
V
|〈 f (x), ν(x)〉| dµ(x)

≤

∫
V

dµ(x)

= µ(V)

It follows that sup
{
L( f ) : f ∈ C0

c(X,H), ‖ f ‖ ≤ 1, spt f ⊆ V
}
≤ µ(V).

Let K ⊆ V be compact in X. Since µ is Radon, K is µ-measurable, and further, µ(K) < ∞. Fix ε > 0. By Lusin’s
Theorem [Fed96, 2.3.5], there exists compact Cε ⊆ K compact in X, with µ(K \ Cε) < ε and ν|Cε continuous.
Now, by definition sptν|Cε is closed in Cε and by the Hausdorff hypothesis on X, we have that Cε is Hausdorff,
and it follows that sptν|Cε compact in Cε [Mun96, 26.3]. By definition of subspace topology on Cε, this implies
that sptν|Cε is compact in X.

So, we can compute:

L(ν|Cε ) =
∫

Cε

〈ν|Cε (x), ν|Cε (x)〉 dµ(x) =
∫

Cε

dµ(x) = µ(Cε)

Since Cε is µ-measurable, µ(K) = µ(Cε) + µ(K \ Cε), and so it follows that µ(K) ≤ L(ν|Cε ) + ε. This implies
µ(K) = sup

{
L( f ) : f ∈ Cc(X,H), ‖ f ‖ ≤ 1, spt f ⊆ K

}
. By [Sim83, 1.4], µ(V) = sup{µ(K) : K ⊆ V,K compact in X},

and the result follows immediately. �

This following corollary illustrates a way to represent currents as an integral against a Radon measure. This
result is of central importance and we shall use this representation frequently.

Theorem 2.2.8 Let U open in Rn+k. Let T ∈ DnU with locally finite mass. Then T = µT ∧ ξ, where ξ : Rn+k →

∧nR
n+k, µT a Radon measure on U, and µT(W) = MW(T).

Proof We apply Simon’s Reisz Representation Theorem (Theorem 2.2.6), with X = U ⊆ Rn+k, H = ∧nRn+k. Triv-
ially, we have DnU ⊆ C0

c(U,∧nRn+k). Then, we have a radon measure µT on U, and in the light of Lemma 2.1.4,
an n-vectorfield ξ : U → ∧nR

n+k such that for ω ∈ DnU,

T(ω) =
∫

U
〈ω(x), ξ(x)〉 dµT(x)

Now, for any W ⊆ U µT-measurable, Corollary 2.2.7 gives us that

µT(W) = sup
{
T(ω) : ω ∈ DnU, ‖ω‖ ≤ 1, sptω ⊆W

}
= MW(T)

�

We shall always adhere to the convention that µT will represent the Radon measure associated with a locally
finite mass current T.

Now we consider representing rectifiable sets as currents. This will allow us to interchange between rectifiable
sets and currents under the appropriate conditions.
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Definition 2.2.9 (Integral Representation) Let M ⊆ Rn+k be an n-rectifiable set with M ⊆ U, with U open in
Rn+k. Let ξ be an orientation n-vectorfield for M. Then, we define ~M� ∈ DnU by:

~M�(ω) =
∫

M
〈ω(x), ξ(x)〉 dH n(x)

for all ω ∈ DnU.

Motivated by Stokes’ Theorem [Spi65, p122], we define the boundary of a current:

Definition 2.2.10 (Boundary of a Current) Let U open in Rn+k, and let T ∈ DnU. Then, we define ∂T ∈ Dn−1U

∂T(ω) = T(dω)

for all ω ∈ Dn−1U.

2.3 Varifolds

Since we allow a set M0 of measure zero in our definition of a rectifiable set, we allow the possibility that many
distinct rectifiable sets may agree up to a set of measure zero. This motivates the notion of a varifold.

Definition 2.3.1 (Varifold) Let M ⊆ Rn+k be an n-rectifiable set, and θ : Rn+k → R+ be locally H n-summable
with θ(x) = 0 whenever x < M. Let:

V (M, θ) =
{
(M̃, θ̃) : H n(M M M̃) = 0, θ = θ̃H n−a.e.

}
where M is the symmetric set difference. Then V (M, θ) is called the Rectifiable n-Varifold associated with M. If
θ : Rn+k → Z+, then it is called an Integer Rectifiable n-Varifold.

We associate a special measure and notion of mass to varifolds. In light of our previous concepts of mass and
the abstract Radon measure associated with a current, a link will be made in our discussion to follow.

Definition 2.3.2 (Measure of a Varifold) Let V (M, θ) be an n-varifold. Then, we define the measure on V as
µV =H n�θ.

Definition 2.3.3 (Mass of a Varifold) Let V (M, θ) be a varifold. Then, we define mass to be MW(V) = µV(W).

This following measure theoretic result will be of use later.

Lemma 2.3.4 Let θ : Rn+k → R+ be a locally H n-summable function. Then, H n�θ is a Radon measure.

Proof Let K ⊆ Rn+k be compact. Let C =
{
Up open in Rn+k :

∫
Up
θ dH n < ∞, p ∈ Up ∩ K

}
. Such a collection

exists by our locally H n-summable hypothesis. Now, trivially, C is an open covering of K. By the compactness
of K, we find a finite subcover F ⊆ C . Let F = {F1, . . . , Fm}. Then,

H n
�θ(K) =

∫
K
θ dH n ≤

∫
⋃m

i=1 Fi

θ dH n ≤

m∑
i=1

∫
Fi

θ dH n < ∞

�
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Definition 2.3.5 (Tangent Space of µ) Let µ be a Radon measure on Rn+k and θ : Rn+k → R+. For λ > 0, let
µn,λ(A) = λ−1µ(x + λA). Suppose that for µ−a.e. x ∈ Rn+k, we have an n-dimensional subspace Px ⊆ R

n+k such
that:

lim
λ→0

∫
M

f (y) dµ(y) = θ(x)
∫

Px

f (y) dH n(y)

for every f ∈ C0
c(Rn+k). Then we say that Px is the tangent space of µ at x with multiplicity θ(x).

Definition 2.3.6 (Varifold Tangent Space) Let V (M, θ) be a Varifold. If the tangent space Px of µV exists with
multiplicity θ, we define the tangent space TxV = Px.

The following result gives a justification to the way in which we defined mass and the measure associated to a
varifold.

Theorem 2.3.7 Let V (M, θ) be a Varifold. Then, if µ is any other Radon measure for V (M, θ), then µ = µV if and
only if µ has an approximate tangent space Px with multiplicity θ for µ−a.e. x ∈ Rn+k.

Proof Suppose that µ has a tangent plane with multiplicity θ. Then by [Sim83, 11.8], µ = µV, since by definition,
θ(x) = 0 for x < M. �

Now we consider the relationship between varifolds and currents. This important notion justifies us dealing
almost exclusively with currents.

Definition 2.3.8 (Integer Multiplicity Rectifiable Current) Let T ∈ DnU, for U open in Rn+k. Suppose there
exists a countably n-rectifiable H n-measurable set M ⊆ Rn+k, a θ : Rn+k → Z+ with θ(x) = 0 for x < M, a simple
n-vectorfield ξ : M → ∧nR

n+k, which can be written as ξ(x) = ξ̃(x)τ1 ∧ . . . ∧ τn, with τ1, . . . , τn an orthonormal
basis for TxM, and for all ω ∈ DnU, we can write:

T(ω) =
∫

M
〈ω(x), ξ(x)〉θ(x) dH n

Then, we say that T is an integer multiplicity rectifiable current (or simply rectifiable current), and we write
T = T(M, θ, ξ). We call θ the multiplicity, and ξ the orientation for T.

And now, we present the following important result, although trivial in proof.

Theorem 2.3.9 If T(M, θ, ξ) ∈ DnU is an integer multiplicity rectifiable current, then there is an associated integer
rectifiable varifold V(M, θ).

Proof Simply, we have that M is countable n-rectifiable. Then, by definition, we can construct the integer
rectifiable varifold V = V(M, θ). �

2.4 Slicing

Here, we consider the way in which we could naturally talk about (n − 1)-dimensional slices of an n-rectifiable
set. We begin with a few preliminary results.

We begin by quoting the following important fact. See [Sim83, 28.1].
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Theorem 2.4.1 Let f : Rn+k → R be Lipschitz, and let M be countably n-rectifiable. Then for L 1−a.e. t ∈ R,

Mt = f −1(t) ∩ M

is countably (n− 1)-rectifiable.

Corollary 2.4.2 Let M+ =
{
x ∈ M :

∣∣∣∇M f (x)
∣∣∣ > 0

}
. Then f −1(t) ∩ M+ is L 1−a.e. t ∈ R (n− 1)-rectifiable.

Proof M+ is trivially n-rectifiable, and the result follows. �

Since such sets f −1(t) ∩ M+ are countably (n− 1)-rectifiable, they have tangent properties. The following result
makes a useful connection to the tangent plane of M.

Theorem 2.4.3 Let M be n-rectifiable, f : Rn+k → R Lipschitz, and let Mt = f −1(t) ∩ M+. Then for L 1−a.e. t ∈ R
and H n−1−a.e. x ∈ Mt, TxM,TxMt exist with TxMt an (n− 1) dimensional subspace of TxM, and

TxM =
{
y+ λ∇M f (x) : y ∈ TxMt, λ ∈ R

}
Proof Since by Theorem 2.4.1, Mt is (n− 1)-rectifiable, we write M = M0 ∪

(⋃∞
i=1 Mi

)
and Mt = Mt

0 ∪
(⋃∞

i=1 Mt
i

)
with each {Mi} and

{
Mt

i

}
pairwise disjoint.

Now, for each i > 0, we can find C1 submanifolds Ni n-dim and Nt
i (n−1)-dim respectively, with each Mi ⊆ Ni and

Mt
i ⊆ Nt

i . By [Sim83, 11.6] we have that that TxMi = TxNi ,H n−a.e. x ∈ M and TxMt
i = TxNt

i ,H
n−1−a.e. x ∈ Mt.

Now, for x ∈ Mt
i ∩ M j , ∅ where TxMt

i exists, we consider τ ∈ TxMt
i . So, there is a curve γ : I → Nt

i with
γ(0) = x, γ̇(0) = τ. Now, we can restrict this to γ : I ′ → Nt

i ∩ N j . Trivially then, τ ∈ TxM j . This establishes that
TxMt is an (n− 1)-dimensional subspace of TxM.

Now, consider the original curve. Then, it follows that:

d
dt
|t=0( f ◦ γ)(t) =

∂ f
∂xi
|xγ̇i(0) =

∂ f
∂xi
|xτ

i = 〈∇ f (x), τ〉

By construction, f (x) = t for all x ∈ Mt. It then follows that 〈∇ f (x), τ〉 = 0.

Now, we can write ∇M f (x) = ∇ f (x) −
∑k

i=1〈∇ f (x), νi〉νi , where νi ⊥ TxM. Then, it follows that:

〈∇M f (x), τ〉 = 〈∇ f (x) −
k∑

i=1

〈∇ f (x), νi〉νi , τ〉 = 〈∇ f (x), τ〉 −
k∑

i=1

〈νi , τ〉νi

and since we have established that TxMt ⊆ TxM, the result follows immediately. �

We now introduce the following important notion.

Definition 2.4.4 (Restriction of a p-vector) Let N be an n-manifold and let v ∈ ∧pN, w ∈ TxN. Then, we define
v�w ∈ ∧p−1N by 〈v�w, α〉 = 〈v,w∧ α〉 for all α ∈ ∧p−1N with 〈·, ·〉 as the usual inner product in ∧pN.

Lemma 2.4.5 Let N be an n-manifold, and let ξ : N → ∧pN be a simple, unit length p-vectorfield. Then for
ω ∈ TxN, ξ�ω̃ is a simple, unit length (p− 1)-vectorfield, where ω̃ = ω

‖ω‖
.

Proof Trivially, by definition, ξ�ω is simple. To prove that it has unit length, consider:

〈ξ�ω̃, ξ�ω̃〉 = 〈ξ, ω̃ ∧ ξ�ω̃〉 = 〈ξ, ξ〉 = 1

�
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We now introduce the notion of an (n− 1)-dimensional “slice” of an n-dimensional current.

Definition 2.4.6 (Current Associated with Slice) Let U open in Rn+k, and let f : Rn+k → R be Lipschitz. Fur-
ther, let T(M, θ, ξ) ∈ DnU be an integer multiplicity rectifiable current. Then, we define:

Mt = f −1(t) ∩ M+

θt(x) =

0 if ∇M f (x) = 0 or x < Mt

θ(x) otherwise

ξt(x) = ξ�
∇M f (x)
‖∇M f (x)‖

We define 〈T, f , t〉 ∈ Dn−1U by:

〈T, f , t〉 = T(Mt, θt, ξt)

In the light of Lemma 2.4.5, ξt does indeed orient 〈T, f , t〉.

We now make a connection to the Co-Area formula.

Lemma 2.4.7 For M ⊆ Rn+k n-rectifiable, f : Rn+k → R Lipschitz and Mt as defined previously, the following
equation holds: ∫ ∞

−∞

(∫
Mt

g dH n−1

)
dt =

∫
M

∣∣∣∇M f
∣∣∣ g dH n

for any g ≥ 0 and H n-measurable.

Proof We note that J∗M f =
∣∣∣∇M f

∣∣∣, since f : Rn+k → R. So, we apply the Co-Area formula (Theorem 1.4.4), and
the result follows. �

Lemma 2.4.8 Let M ⊆ Rn+k be n-rectifiable, f : Rn+k → R Lipschitz. Define At =
{
x ∈ Rn+k : f (x) < t

}
for t ∈ R.

Then, ∫
M∩At

∣∣∣∇M f
∣∣∣ g dH n =

∫ t

−∞

∫
Ms

g dH n−1 ds

for g ≥ 0 and H n-measurable.

Proof We associate gχAt with g in Lemma 2.4.7. Consider∫ ∞

−∞

∫
Ms

gχAt dH n−1 ds=
∫ t

−∞

∫
Ms

gχAt dH n−1 ds+
∫ ∞

t

∫
Ms

gχAt dH n−1 ds

Now, note that for x ≥ t, χAt (x) = 0. This implies that∫ ∞

t

∫
Ms

gχAt dH n−1 ds= 0

and the result follows. �

Lemma 2.4.9 Let µ be a measure on X and let f : X→ R be a µ-measurable function. Then,∫
X

f dµ ≤ (ess supf )µ(X)
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Proof If µ(X) = ∞ or ess supf = ∞, then the result is trivial. So, we assume µ(X) < ∞ and ess supf < ∞. For
every α with f ≤ α µ−a.e. , we define Hα = {x ∈ X : f (x) ≤ α}. Let H′α = X \ Hα. By construction, µ(H′α) = 0.
Now, µ(X) ≤ µ(Hα) + µ(H′α) = µ(Hα), and so it follows that µ(X) = µ(Hα). Then,∫

X
f dµ ≤

∫
Hα

f dµ +
∫

H′α

f dµ ≤
∫

Hα

α dµ = αµ(Hα) = αµ(X)

Now, taking an inf over all α, we attain the desired result. �

We tally these results together to obtain the following important result.

Theorem 2.4.10 Let U open in Rn+k, T(M, θ, ξ) ∈ DnU, and W open in U. Then,∫ ∞

−∞

MW(〈T, f , t〉) dt =
∫

M∩W

∣∣∣∇M f
∣∣∣ θ dH n ≤ (ess supM∩W

∣∣∣∇M f
∣∣∣)MW(T)

Proof We put θ+(x) = θ(x) whenever
∣∣∣∇M f (x)

∣∣∣ > 0, and θ+(x) = 0 otherwise. By invoking Lemma 2.4.7, and
identifying θ+χW with g in the lemma, we find that∫ ∞

−∞

(∫
Mt∩W

θ+ dH n−1

)
dt =

∫
M∩W

∣∣∣∇M f
∣∣∣ θ dH n

The result follows by definition of MW(〈T, f , t〉) (since 〈T, f , t〉 is integer rectifiable for L 1−a.e. t ∈ R), and by
invoking Lemma 2.4.9. �

The following result illustrates an important algebraic expression for slices. The proof can be found in [Sim83,
28.5].

Theorem 2.4.11 (Slicing Formula) Let U be open in Rn+k, and let T(M, θ, ξ) ∈ DnU. Let f : Rn+k → R be
Lipschitz, and suppose MW(T) +MW(∂T) < ∞. Then:

1. 〈T, f , t〉 = ∂ (T�R) − (∂T)�R, where R= {x : f (x) < t}

2. 〈∂T, f , t〉 = −∂〈T, f , t〉

Motivated by this, we can now define slicing for a general current. We define the upper and lower slices:

Definition 2.4.12 (Slice of a Current) Let U open in Rn+k and suppose T ∈ DnU with MW(T)+MW(∂T) < ∞, for
all W b U. Let f : Rn+k → R be Lipschitz. For t ∈ R, let Sl =

{
x ∈ Rn+k : f (x) < t

}
, and Su =

{
x ∈ Rn+k : f (x) > t

}
.

Then, we define the upper and lower slices respectively by:

〈T, f , t〉− = ∂(T�Sl) − (∂T)�Sl

〈T, f , t〉+ = −∂(T�Su) + (∂T)�Su

And we write 〈T, f , t〉 when we have 〈T, f , t〉− = 〈T, f , t〉+.

It is important to note that we have 〈T, f , t〉− = 〈T, f , t〉+ for all but countably many values of t. So, indeed, we
can write 〈T, f , t〉, for L 1−a.e. t ∈ R. See [Sim83, p161].

2.5 Densities

We begin our discussion of measure theoretic densities by considering some facts about coverings.
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Definition 2.5.1 (Fine Covering) Let X be a metric space. Let C be a covering of X with closed balls. Then, if
inf {diam(B) : B ∈ C } = 0, then C is called a fine covering of X.

The following two are important covering facts. Their proofs can be found in [Sim83, 3.3, 3.4].

Lemma 2.5.2 Let B a family of closed balls in a metric space X. Suppose R = sup{diam(B) : B ∈ B} < ∞.
Then there exists a pairwise disjoint subcollection C ⊆ B such that⋃

B ⊆
⋃

5C

such that if B ∈ B, there exists an C ∈ C such that B∩C , ∅ and B ⊆ 5F.

Corollary 2.5.3 Suppose B covers A ⊆ X. For every such subcover C as given in Lemma 2.5.2, given a finite
subcollection {F1, . . . , Fn} ⊆ C , we have:

A \
n⋃

i=1

Fi ⊆
⋃

5(C \ {F1, . . . , Fn})

We now present the following important result.

Corollary 2.5.4 Let µ be a Borel measure on X such that µ(X) < ∞. Suppose that for each B ∈ B, µ(X∩B) > 0.
Then the disjoint subcollection C is countable.

Proof Suppose C is uncountable. For each ε > 0, we define:

Cε = {B ∈ C : µ(X ∩ B) > ε}

Now, we can find a δ > 0 such that Cδ is uncountable. Such a collection must exist, because otherwise, we can
consider

⋃
C 1

n
= C , a countable union of countable sets which is again countable.

Now, let {C1,C2, . . .} ⊆ Cδ be a countably infinite subset. Since µ is Borel and Cδ pairwise disjoint, we have:

µ

X ∩ ∞⋃
i=1

Ci

 = ∞∑
i=1

µ(X ∩Ci) = ∞

since each µ(X ∩Ci) > δ > 0. But, we have that:

µ

X ∩ ∞⋃
i=1

Ci

 ≤ µ (X ∩⋃
C

)
≤ µ (X) < ∞

which is a contradiction. �

Now, we consider densities and some important facts about densities.

Definition 2.5.5 (Upper/Lower Density) Let µ be a Borel Regular measure on Rn+k. Let A ⊆ Rn+k. For x ∈ Rn+k,
we define

Θ∗n(µ,A, x) = lim sup
σ→0

µ(A∩ Bσ(x))
ωnσn

Θn
∗(µ,A, x) = lim inf

σ→0

µ(A∩ Bσ(x))
ωnσn

where ωn is the volume of an n-ball in X. We call Θ∗n(µ,A, x) the upper n-density of x in A, and Θn
∗(µ,A, x) the

lower n-density. Where these quantities agree, we simply call it the density Θn(µ,A, x).
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We now illustrate some important density results.

Theorem 2.5.6 Let µ a Borel Regular measure on Rn+k. Fix t ≥ 0. Then, if A1 ⊆ A2 ⊆ R
n+k, and Θ∗n(µ,A2, x) ≥ t

for all x ∈ A1, then tH n(A1) ≤ µ(A2).

Proof Our proof is essentially the same as [Sim83, 3.2].

Now, if µ(A2) = ∞ or t = 0, there’s nothing to do. So, suppose µ(A2) < ∞, and t > 0. Now, fix ∞ > ε > 0, and we
construct:

Bε =
{
Bδ(x) closed in Rn+k : x ∈ A1,0 < δ <

ε

2
, µ(A2 ∩ Bδ(x)) > tωnδ

n
}

Now, trivially, Bε , ∅, since Θ∗n(µ,A, x) > t. By construction, Bε is a fine covering and
R= sup{diam(B) : B ∈ B} < ε < ∞.

We invoke Corollary 2.5.3 and Lemma 2.5.4 (since µ(Rn+k ∩ B) > 0, for B ∈ B) to find a countable pairwise
disjoint subset C = {C1,C2, . . .} ⊆ B such that:

A1 ⊆

n⋃
i=1

Ci ∪

∞⋃
i=n+1

5Ci

Now, by the definition of the Hausdorff measure,

H n
5ε(A1) ≤

n∑
i=1

ωn

(
diam(Ci)

2

)n

+ 5n
∞∑

i=n+1

ωn

(
diam(Ci)

2

)n

→

∞∑
i=1

ωn

(
diam(Ci)

2

)n

under the limit as n→ ∞. By the construction of Bε, we have

H n
5ε(A1) ≤

∞∑
i=1

ωn

(
diam(Ci)

2

)n

≤

∞∑
i=1

t−1µ(A2 ∩Ci) ≤ t−1µ

 ∞⋃
i=1

A2 ∩Ci

 ≤ t−1µ(A2)

We let the limit ε→ 0, and the result follows. �

Theorem 2.5.7 Let A ⊆ Rn+k with H n(A) < ∞. Then Θ∗n(H n,A, x) ≤ 1 for H n−a.e. x ∈ A.

Proof This proof is similar to [Sim83, 3.6].

Fix ε, t > 0. Define:

At = {x ∈ A : Θ∗n(H n,A, x) ≥ t}

By [Sim83, 1.3], we find an Uε open in X with At ⊆ Uε with

H n(A∩ Uε) ≤H n(At) + ε

By Theorem 2.5.6, with A1 = At,A2 = A∩ Uε, we have that

tH n(At) ≤H n(A∩ Uε) ≤H n(At) + ε

Let {ti} be a decreasing sequence with ti → 1. Trivially, A1 =
⋃∞

i=1 Ati . So, we have the estimate:

H n(Ati ) ≤ tiH
n(Ati ) ≤H n(A∩ Uε) ≤H n(A1) + ε

=⇒ H n(A1) ≤H n(A∩ Uε) ≤H n(A1) + ε

Now, as ε→ 0, we have H n(A∩ Uε)→ 0, and it follows that H n(A1) = 0. �
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2.6 Lebesgue Points

We begin with the following definition.

Definition 2.6.1 (Lebesgue Point) Let X be a metric space, and µ a Radon measure on X. Let f : X → R be
µ-measurable. If for some x ∈ X,

lim
r→0

1
µ(Br (x))

∫
Br (x)
‖ f (y) − f (x)‖ dµ(y) = 0

then x is called a Lebesgue point of f .

Our aim in this section is to introduce enough theory to prove an important fact about Lebesgue points of f in
Rn+k.

Definition 2.6.2 (Symmetric Vitali Property) Let X be a metric space and µ a Radon measure on X. Let B be
a collection of closed balls in X, and let C = {x ∈ X : Bε(x) ∈ B} denote the centres of B. If whenever µ(C) < ∞
we can find a countable subcollection B′ covering µ−a.e. x ∈ C, then we say that X has the Symmetric Vitali
Property with respect to µ.

Definition 2.6.3 (Absolutely Continous) Let µ, ν be measures on a set X. If whenever µ(F) = 0 we have
ν(F) = 0, then we say that ν is absolutely continuous with respect to µ. We write ν � µ.

Now we prove a series of necessary results.

Lemma 2.6.4 Let X be a metric space, and let µ be a Borel Regular measure on X. Let f : X → R+ be a
µ-measurable function. Define:

ν(B) =
∫

B
f dµ, B Borel

ν(A) = inf {ν(B) : A ⊆ B, B Borel}

Then ν is:

1. Borel Regular measure and absolutely continuous w.r.t µ

2. Radon if f is µ-summable.

Proof Trivially, ν(∅) = 0, and if A ⊆ B, ν(A) ≤ ν(B) since f ≥ 0. Equally as trivially, we have
∫⋃∞

i=1 Ai
f dµ ≤∑∞

i=1

∫
Ai

f dµ which illustrates that ν is subadditive. These facts establish that ν is indeed a measure.

We now show that ν is Borel. Let A, B ⊆ X be such that d(A, B) = inf {ρ(x, y) : x ∈ A, y ∈ B} > 0, where, ρ is the
metric on X. Since µ is Borel Regular, we find A′, B′ ⊆ X Borel such that µ(A) = µ(A′) and µ(B) = µ(B′).

Now, we can assume that A′ ∩ B′ = ∅. This follows from the fact that d(A, B) = d(A, B) > 0 which implies
A∩ B = ∅, and since A, B are Borel, so are A′ ∩ A and B′ ∩ B.

Now, since µ is Borel, we have that A′, B′ are measurable and it follows that since A′ ∩ B′ = ∅ and f is µ-
measurable, ∫

A′∪B′
f dµ =

∫
A′

f dµ +
∫

B′
f dµ

Now, ν(A∪ B) = inf
{∫

A′∪B′
f dµ

}
, since if A ⊆ C ⊆ A′ ∪ B′ with C Borel, then A ⊆ A′ ∩C and B ⊆ B′ ∩C, so under

infimum over such A′, B′, we have ν(A ∪ B) = ν(A) + ν(B). By application of Caratheodoré’s criterion [Fed96,
2.3.2], we establish that ν is Borel.
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Next, we prove that ν is Borel Regular. Let A ⊆ X. Define,

FA =

{∫
B

f dµ : A ⊆ B, B Borel

}
If ν(A) = inf FA = ∞, then we can simply take X as our Borel set and we’re done. So, assume that ν(A) =
inf FA < ∞. Now FA ⊆ R bounded, and since inf FA is a limit point, by the fact that R is first countable we invoke
the Sequence Lemma [Mun96, 21.2] and find a sequence of Borel Bi such that∫

Bi

f dµ→ ν(A)

By construction,
∫

Bi
f dµ ≥ ν(A) and since each Bi is Borel, and the space of Borel sets is a σ-algebra, B =⋂∞

i=1 Bi is Borel. It follows then that: ∫
Bi

f dµ ≥
∫

B
f dµ

=⇒ lim
i→∞

∫
Bi

f dµ ≥
∫

B
f dµ

=⇒ ν(A) ≥
∫

B
f dµ

From the fact that A ⊆ B, it follows that ν(A) = ν(B).

Now, suppose F ⊆ X Borel with µ(F) = 0. Then trivially,

ν(F) =
∫

F
f dµ = sup

 n∑
i=1

aiµ(φ
−1(ai)) : φ < f , φ simple

 = sup{0} = 0

which establishes the absolute continuity conclusion.

Lastly, if f is µ-summable, ν attains a finite measure on all sets, and it follows that ν is Radon. �

Now we have the following result for positive locally summable functions.

Lemma 2.6.5 Let X be a second countable metric space, and µ a measure on X having Symmetric Vitali Prop-
erty with respect to µ. Let f : X→ R+ be locally µ-summable. Then,

lim
r→0

1
µ(Br (0))

∫
Br (0)

f (y) dµ(y) = f (x)

Proof Since X is second countable, let B be a countable basis for X. By the locally summable hypothesis, for
each x ∈ X, there exists a basis Bx ∈ B such that f |Bx is µ-summable. Let,

C =
{
Bx ∈ B : f |Bx is µ-summable, x ∈ X

}
Trivially, C is a countable open covering of X.

Now define ν(A) = inf
{∫

B
f dµ : A ⊆ B, B Borel

}
. Then, for every Bi ∈ C , since f |Bi is µ-summable, we invoke

Lemma 2.6.4, to find ν�Bi Radon measure and ν�Bi � µ. By Radon-Nikodym Theorem [Sim83, 4.7], we find:

Dµν�Bi(x) = lim
r→0

ν(Br (x)
µ(Br (x)

ν�Bi(A) =
∫

A
Dµν�Bi(x) dµ(x),A Borel

for µ−a.e. x ∈ Bi . Since

ν�Bi(A) =
∫

A∩Bi

f (x) dµ(x) =
∫

A
lim
r→0

1
µBr (x)

(∫
Br (x)

f (y) dµ(y)

)
dµ(x)
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for every Borel A, it follows that

f (x) = lim
r→0

1
µ(Br (x))

∫
Br (x)

f (y) dµ(y)

Now, for each Bi , let Ci be the largest set for which this equality does not hold. Since we are guaranteed that
equality holds for µ−a.e. x ∈ Bi , it follows that µ(Ci) = 0. By the fact that C is an open covering of X, it follows
that equality fails on

⋃∞
i=1 Ci and subadditivity of µ ensures that this is a set of measure zero. Then, we have that

the required result holds for µ−a.e. x ∈ X. �

We now prove this important fact about Lebesgue points of locally summable functions in Rn+k.

Theorem 2.6.6 (Lebesgue Points) Let µ be Radon in Rn+k, and let f : Rn+k → Rm be locally µ-summable. Then
µ−a.e. x ∈ Rn+k is a Lebesgue point of f .

Proof Since µ is Radon by hypothesis, by [Sim83, 4.6], we have that Rn+k has Symmetric Vitali Relation w.r.t. µ.
Define gz : Rn+k → R by:

gz(x) = ‖ f (x) − z‖

for z ∈ R. Now, gz is trivially locally µ-summable. We apply Lemma 2.6.5 to gz to find that

gz(x) = lim
r→0

1
µ(Br (x))

∫
Br (x)

gz(y) dµ(y)

⇐⇒ ‖ f (x) − z‖ = lim
r→0

1
µ(Br (x))

∫
Br (x)
‖ f (y) − z‖ dµ(y)

for µ−a.e. x ∈ Rn+k. But z ∈ R was arbitrary, and so we put z= f (x) and the result follows. �
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Chapter 3

Some Important Lemmas

3.1 The Slicing Lemma

We now continue to prove an important result regarding convergence in sequences of slices. Firstly, we present
two lemmas.

Lemma 3.1.1 Let U open in Rn+k and let T ∈ DnU. Then MW(T) ≥ 0 for W b U.

Proof Assume that MW(T) < 0. So, for every ω ∈ ∧nRn+k with ‖ω‖ ≤ 1 and sptω ⊆ W, T(ω) < 0. We note that
‖ − ω‖ = ‖ω‖, and trivially, spt (−ω) ⊆ W. By linearity of T, we have T(−ω) = −T(ω) > 0. But clearly, this is a
contradiction. �

Lemma 3.1.2 Let U open in Rn+k and T ∈ DnU. Further, assume MW(T)+MW(∂T) < ∞. Then for f : Rn+k → R
Lipschitz,

MW(〈T, f , r〉) ≤
√

n+ k(Lip ( f ))MW(T)

Proof By Lemma 3.1.1 and by the lower semicontinuity of mass [Sim83, 26.13], for some ε > 0,

MW(〈T, f , r〉) ≤
∫ r+ε

r−ε
MW(〈T, f , t〉) dt

Now, for ω ∈ DnU, and ‖ω‖ ≤ 1 with sptω ⊆W, with 〈ω(x), ξ(x)〉 ≥ 0, we have that:

T� {x : r − ε < f (x) < r + ε} (ω) =
∫

T∩{x:r−ε< f (x)<r+ε}
〈ω(x), ξ(x)〉 dµT

≤

∫
T
〈ω(x), ξ(x)〉 dµT

= T(ω)

So, it follows then that MW(T� {x : r − ε < f (x) < r + ε}) ≤ MW(T).

Now, since f is Lipschitz, we apply Lemma 1.2.3, to find ess supW‖∇ f (x)‖ ≤
√

n+ k(Lip ( f )). The result follows
by combining our previous estimates, in the light of [Sim83, 28.10]. �

Now we present the important Slicing Lemma:
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Theorem 3.1.3 (Slicing Lemma) Let U open in Rn+k, and f : U → R be Lipschitz. Let {Ti} ⊆ DnU be a
sequence of currents such that for every W b U,

sup{MW(Ti) +MW(∂Ti) : i ∈ N} < ∞ (and)

Ti ⇀ T

Then, for L 1−a.e. r ∈ R, there is a subsequence i′ such that:

〈Ti′ , f , r〉⇀ 〈T, f , r〉 (and)

sup{MW(〈Ti′ , f , r〉) +MW(∂〈Ti′ , f , r〉) : i ∈ N} < ∞

Further, if for some W0 b U lim i→∞
(
MW0(Ti) +MW0∂Ti)

)
= 0, then we can chose i′ such that

lim
i′→∞

(
MW0(〈Ti′ , f , r〉) +MW0∂〈Ti′ , f , r〉

)
= 0

Proof We firstly note that the convergence ⇀ is in the sense of pointwise convergence of measures µ( f ) =∫
X

f dµ.

Since Ti , ∂Ti are currents, we invoke Theorem 2.2.8, to find measures µTi , µ∂Ti , and ξ, ξ′ respectively n and
(n − 1)-vectorfields such that we can represent Ti and ∂Ti as an integral. Now, by [Sim83, 4.4], we can find
a subsequence i′ such that µTi′

⇀ µT and µ∂Ti′
⇀ µ∂T . Now, fix ω ∈ Dn−1U, and set f = 〈dω, ξ〉χR and

g = 〈ω, ξ′〉χR, where R= {x : f (x) < r}. Note from our construction that:

µTi′
( f ) =

∫
Mi′

〈dω(x), ξ(x)〉 dµTi′
= ∂(Ti′�R)(ω)

µ∂Ti′
(g) =

∫
M̃i′

〈ω(x), ξ′(x)〉 dµ∂Ti′
= (∂Ti′ )�R(ω)

It follows then that:

lim
i′→∞
〈Ti′ , f , r〉(ω) = lim

i′→∞
(∂(Ti′�R) − (∂Ti′ )�R) (ω)

= lim
i′→∞

(
µTi′

( f ) − µ∂Ti′
(g)

)
= µT( f ) − µ∂T(g)

= ∂(T�R)(ω) − (∂T)�R(ω)

= 〈T, f , r〉(ω)

and 〈Ti′ , f , r〉⇀ 〈T, f , r〉 is established.

Fix W b U. Then by Lemma 3.1.2,

MW(〈Ti′ , f , r〉) +MW(〈∂Ti′ , f , r〉) ≤
√

n+ k(Lip ( f )) (MW(Ti′ ) +MW(∂Ti′ , f , r)) < ∞

and trivially follows that sup{MW(〈Ti′ , f , r〉 +MW∂〈Ti′ , f , r〉 : i′ ⊆ i} < ∞.

Now suppose for some W0 b U, we have lim i→∞
(
MW0(Ti) +MW0∂Ti)

)
= 0. Then, we can choose a monotonically

decreasing subsequence i′′ such that:

MW0(Ti′′+1) +MW0(∂Ti′′+1) ≤ MW0(Ti′′ ) +MW0(∂Ti′′ )

Then we apply our earlier construction to this sequence i′′, and the conclusion follows. �

3.2 The Lower Density Lemma

We begin with an important result relating the mass of a current to its cone. A general treatment of cones can
be found [Sim83, 26.26]. Now we introduce the notion of a cone over a point.
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Definition 3.2.1 (Cone over a point) Let U open in Rn+k with T ∈ DnU and MW(T) +MW(∂T) < ∞. Let q ∈ U,
then the cone centred at q is given by:

q[]]T = 0[]] f]T

where f (x) = x− q.

Now we present the following important results.

Lemma 3.2.2 Let id : Rn→ Rn be the identity function. Then, ‖d(idx)‖ = 1, for all x ∈ Rn.

Proof We write d(idx) explicitly. Note, we have D(id)(x) = I for all x ∈ Rn. It follows then that: d(idx) =
∑n

i=1 dxi .
It follows that:

‖d(idx)‖ = sup{〈d(idx), ν〉 : ‖ν‖ ≤ 1, ν ∈ ∧nR
n} = 1

�

Lemma 3.2.3 Let U open in Rn+k, and let T ∈ DnU. Further suppose that MW(T) +MW(∂T) < ∞ for all W b U.
Let Br (q) be a ball of radius r > 0. Then,

M(q[]]T�Br (q)) ≤ rM(T�Br (q))

Proof Let f (x) = x − q. We firstly prove that M( f]T) ≤ M(T). Fix W b f (U). We note that D f = I , and
ess supf −1(W)‖D f ‖ = 1. The conclusion follows by applying [Sim83, 26.25], since spt f is trivially proper [Sim83,
p137].

Now, define h : [0,1] × U → Rn+k by h(t, x) = tx. We have k(x) = h(0, x) = 0 and g(x) = h(1, x) = x = idx, and by
definition:

q[]]T�Br (q) = h](~0,1� × f]T�Br (q)) = h](~0,1� × ( f]T)�Br (0))

Now, we note that ‖ddx‖ = 0 and ‖dgx‖ = 1 for all x ∈ U by Lemma 3.2.2. Also, sup
{
‖(k− g)(x)‖ : x ∈ spt (f]T)�Br (0)

}
≤

r. Then:

M(q[]]T�Br (q)) = M(0[]]( f]T)�Br (0))

≤ sup
{
‖(k− g)(x)‖ : x ∈ spt (f]T)�Br (0)

}
sup

{
‖dkx‖ + ‖dgx‖ : x ∈ spt (f]T)�Br (0)

}
M(( f]T)�Br (0))

(By [Sim83, 26.23])

= rM(( f]T)�Br (0))

≤ rM(T�Br (q))

�

The following topological result is useful in the discussion to follow.

Lemma 3.2.4 Let X be a second countable, Hausdorff, locally compact space. Then,

X =
∞⋃

i=1

Vi

where each Vi b X.

Proof Since X is Hausdorff and locally compact, we invoke [Mun96, 29.2] and for each x ∈ X, we can find Vx

open in X and Vx compact in X. Let C =
{
Vx open in X : Vx compact in X, x ∈ X

}
. Trivially, C is an open covering

for X.

Now, by the second countable hypothesis on X, we apply [Mun96, 30.3] to find that X is Lindelöf. So, there exists
a countable subcover C ′ = {V1,V2, . . .} ⊆ C . By construction of C , the result follows. �
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Lemma 3.2.5 Let U open in Rn+k, and let T ∈ DnU. Suppose MW(T) + MW(∂T) < ∞ for all W b U. Then for
µT−a.e. x ∈ U,

lim
r→0

λ(x, r)
µT(Br (x))

= 1

where λ(x, r) = inf {M(S) : ∂S = ∂(T�Br (x)),S ∈ DnU}.

Proof Our proof is a detailed exposition of [Whi89, p210]. For contradiction, assume that for µT−a.e. x ∈ U,

lim
r→0

λ(x, r)
µT(Br (x))

, 1

We firstly note that for any r > 0, µT(Br (x)) = MBr (x)(T) = M(T�Br (x)). Then, since
M(T�Br (x)) ∈ {M(S) : ∂S = ∂(T�Br (x)),S ∈ DnU}, we have λ(x, r) ≤ M(T�Br (x)) = µT(Br (x)).

So, this implies that there exists X ⊆ U, with µT(X) > 0 such that for all x ∈ X:

lim
r→0

λ(x, r)
µT(Br (x))

< 1

Take an ε ∈ (0,1− limr→0
λ(x,r)
µT (Br (x)) )., and it follows that there exists an R> 0 such that whenever r < R implies:

λ(x, r)
µT(Br (x))

< (1− ε) ⇐⇒ λ(x, r) < (1− ε)M(T�Br (x))

Now, we show that X can be chosen X ⊆ W for some W b U. Trivially, Rn+k is second countable, locally
compact, and Hausdorff. Since U open in Rn+k, it is also locally compact, second countable, and Hausdorff in
the subspace topology. So, by Lemma 3.2.4, we can write:

U =
∞⋃

i=1

Vi

with each Vi b U. So,

µT(X) = µT(U ∩ X) ≤
∞∑

i=1

µT(Vi ∩ X)

and since µT(X) > 0, there must exist a Vi with µT(Vi ∩ X) > 0. So, we can identify X with Vi ∩ X ⊆ Vi b U.

Now, let

B =
{
Br (x) : r < R, x ∈ X

}
Then, by the Besicovitch Covering Lemma [Sim83, 4.6], there exists a countable subcollection B′ ⊆ B, such
that

⋃
B′ covers µT−a.e. x ∈ X.

We show that for each Bi ∈ B′ (note: i is an index and not a radius), there exists an Si ∈ DnU such that
∂Si = ∂(T�Bi) with M(Si) < (1 − ε)M(T�Bi). Now, by construction, for all Bi ∈ B′, diam(Bi )

2 < R, and so by
previous argument,

inf {M(S) : ∂S = ∂(T�Bi)}
M(T�Bi)

< (1− ε)

By definition, for all δ > 0, we have MS with M(S) < inf {M(S) : ∂S = ∂(T�Bi)} + δ. So, we choose δ ∈ (0, (1−
ε)M(T�Bi) − λ(x, r)) and we have a Si such that M(Si) < (1− ε)M(T�Bi).
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Now, let TR = T −
∑∞

i=1 T�Bi(qi) +
∑∞

i=1 Si . Then, for all ω ∈ DnU,

(T − TR)(ω) =
∞∑

i=1

(T�Bi(qi) − Si)(ω)

=

∞∑
i=1

(∂(qi[]](T�Bi(qi) − Si)))(ω)

(By [Sim83, 26.26], since ∂(T�Bi − Si) = 0)

=

∞∑
i=1

(qi[]](T�Bi(qi) − Si))(dω)

≤

∞∑
i=1

M(qi[]](T�Bi(qi) − Si))sup{‖dω‖ : ‖ω‖ ≤ 1}

≤

∞∑
i=1

diam(Bi(qi))
2

M(T�Bi(qi) − Si)sup{‖dω‖ : ‖ω‖ ≤ 1}

(By Lemma 3.2.3)

≤ R
∞∑

i=1

M(T�Bi(qi) − Si)sup{‖dω‖ : ‖ω‖ ≤ 1}

≤ 2R
∞∑

i=1

M(T�Bi(qi))sup{‖dω‖ : ‖ω‖ ≤ 1}

(Since M(S) < (1− ε)M(T�Bi))

≤ 2RMW(T)sup{‖dω‖ : ‖ω‖ ≤ 1}

(Since each Bi , Bj disjoint)

So, as R→ 0, TR⇀ T.

By [Sim83, 26.13], we have that mass is lower semicontinuous with respect to weak convergence, and MW(T) ≤
lim inf R→0 MW(TR). But by construction,

MW(TR) ≤ MW(T −
∞∑

i=1

T�Bi(qi)) +
∞∑

i=1

MW(Si)

≤ MW(T) −
∞∑

i=1

MW(T�Bi) + (1− ε)
∞∑

i=1

MW(T�Bi)

≤ MW(T) − εMW(T)

= MW(T) − εµT(X)

But this implies that MW(TR) + εµT(X) ≤ MW(T) with ε > 0 and µT(X) > 0, contradicting the lower semicontinuity
of mass. �

We now establish a few more auxiliary results.

Lemma 3.2.6 Let U open in Rn+k, and let MW(T) +MW(∂T) < ∞ for all W b U. Let f : Rn+k → R be Lipschitz,
and let R(t) =

{
x ∈ Rn+k : f (x) < t

}
. Then:

1. MW(T�R(t)) is differentiable L 1−a.e. t ∈ R

2. MW(〈T, f , t〉−) ≤ (ess supW|D f |) d
dtMWT�R(t)

Proof 1. Fix W b U. Trivially, if t < s, then MW(T�R(t)) ≤ MW(T�R(s), so MW(T�R(t)) is monotone. Define
f : R → R+ by f (t) = MW(T�R(t) − 0. So, f is the difference of two monotone functions, and by [Roy88, §5
(p103)], whenever a < b, f is of bounded variation on [a,b].
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Now, fix ε > 0. Then for each qi ∈ Q, f is bounded variation on [qi − ε,qi + ε]. Now, by [Roy88, 6 (p104)], f is
differentiable L 1−a.e. t ∈ [qi − ε,qi + ε]. Since Q is a countable dense subset of R, we have

⋃
[qi − ε,qi + ε] = R.

Now, let Fi ⊆ [qi − ε,qi + ε] be the the null set where f fails to be differentiable. It follows that f fails to be
differentiable on

⋃∞
i=1 Fi ⊆ R. The conclusion follows by the countable subadditivity of L 1.

2. We note that by the translation t 7→ t − h, the definition of differentiability becomes:

d
dt

f = lim
h→0

f (t) − f (t − h)
h

Now, since MW(T) < ∞, we have µT(W) = MW(T). It follows that MW(T�R(t)) = µT(W∩ R(t)), and it follows that
since f is µT-measurable,

µT(W∩ R(t)) = µT(W∩ R(t) ∩ R(t − h)) + µT(W∩ R(t) \ R(t − h))

= µT(W∩ R(t − h)) + µT(W∩ {x : t − h < f (x) < t})

which implies that MW(T� {x : t − h < f (x) < t}) = MW(T�R(t) −MW(T�R(t − h)).

Since we’ve established that MW(T�R(t)) is differentiable L 1−a.e. t ∈ R, for such a point t,

lim inf
h→0

MW(T� {x : t − h < f (x) < t})
h

= lim
h→0

MW(T� {x : t − h < f (x) < t})
h

= lim
h→0

MW(T�R(t) −MW(T�R(t − h))
h

=
d
dt

MW(T�R(t))

The result follows by [Sim83, 28.9].

�

Lemma 3.2.7 Let x ∈ Rn, and gx : Rn→ Rn be defined by gx(y) = ‖x−y‖. Then |∇gx(y)| = 1 for L n−a.e. y ∈ Rn+k.

Proof Trivially, gx is Lipschitz, so ∇gx(y) exists L n−a.e. y ∈ Rn+k by Rademacher’s Theorem, Theorem 1.2.2.
Write x = (x1, . . . , xn), and y = (y1, . . . , yn). Then, for gx(y) , 0,

∂g
∂yi

(y) =
∂

∂yi
|y

 n∑
j=1

(x j − y j)2


1
2

=
1
2

 n∑
j=1

(x j − y j)2

−
1
2
∂

∂yi
|y(x

i − yi)2

= −
1

gx(y)
(xi − yi)

It then follows that:

∇gx(y) =
∂g
∂yi

(y)ei = −
1

gx(y)
(xi − yi)ei

=⇒ |∇gx(y)| =
1

gx(y)
gx(y) = 1

�

We now present the important Theorem of this section. Our proof is a detailed description of [Whi89, p211].
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Theorem 3.2.8 (Lower Density Lemma) Let U open in Rn+k, and MW(T) < ∞ for all W b U. Further, suppose
that ∂T = 0. Then if ∂(T�Br (x)) is rectifiable for every x ∈ Rn+k and L 1−a.e. r ∈ R+, then there exists δ > 0 such
that:

Θn
∗(µT , x) > δ

for µT−a.e. x ∈ U.

Proof Recall from Lemma 3.2.5, λ(x, r) = inf {MS : ∂S = ∂T�Br (x)}. Now, let x be a point where:

lim
r→0

λ(x, r)
M(T�Br (x)

) = 1

Firstly, we claim that there exists an R > 0 such that for all r < R, M(T�Br (x)) < 2λ(x, r). Assume the converse.
That is, suppose that for all r > 0, M(T�Br (x)) ≥ 2λ(x, r). Then,

1 ≥
2λ(x, r)

M(T�Br (x))

=⇒ 1 ≥ 2 lim
r→0

λ(x, r)
M(T�Br (x))

=⇒ 1 ≥ 2

which is a contradiction.

Trivially, Br (x) = {y : ‖x− y‖ < r}. Let g : Rn+k → R+ be given by g(y) = ‖x − y‖. Now, since ∂T = 0, we have
〈T,g, t〉− = ∂(T�Br (x)). By Lemma 3.2.7, we have ess sup|∇g| = 1 for L n−a.e. x ∈ Rn, and by Lemma 3.2.6, we
have:

M(T�Br (x)) ≤ f ′(r)

where f (r) = M(T�Br (x)).

Now, since ∂(T�Br (x)) is rectifiable L 1−a.e. r ∈ R+, we apply the Isoperimetric Inequality [Sim83, 30.1] to find a
constant c = c(n, k) such that

M(R)
n−1

n ≤ cM(∂(T�Br (x)))

for R ∈ DnU with ∂R= ∂(T�Br (x)). It follows that:

M(R) ≤ [cM(∂(T�Br (x))])
n

n−1

=⇒ λ(x, r) ≤ [cM(∂(T�Br (x))])
n

n−1

=⇒ λ(x, r)
n−1

n ≤ cM(∂(T�Br (x)))

for L 1−a.e. r ∈ R+.

Further note (by the chain rule):

d
dr

f (r)
1
n =

1
n

f (r)
1
n−1 d

dr
f (r)
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Now, we compute for r < R:

f (r) < 2λ(x, r) ⇐⇒
1
2

f (r) < λ(x, r)

⇐⇒

[
1
2

f (r)

]1− 1
n

≤ λ(x, r)1− 1
n

=⇒

[
1
2

f (r)

]1− 1
n

≤ c f ′(r)

=⇒
1
2c
≤ f (r)

1
n−1 f ′(r)

=⇒
1

2nc
≤

1
n

f (r)
1
n−1 f ′(r)

=⇒
1

2nc
≤

d
dr

( f (r))
1
n

=⇒
r

2nc
≤ f (r)

1
n

=⇒ rn

(
1

2nc

)n

≤ f (r)

Now, f (r) = M(T�Br (x)) = µT(Br (x)). Now, set:

δ =

(
r

2nc

)n

ωn

and by definition of lower density, the result follows. �

3.3 Constant Vectorfield Lemma

We begin with the following measure theoretic results.

Lemma 3.3.1 Let X be a metric space, and let µ be a Radon measure on X. Let f : X → [−1,1] be a µ-
measurable function. Then, µ� f = µ� f + − µ� f − with at least one of µ� f + or µ� f − finite, and both measures
Radon.

Proof By [dB00, 8.1], µ� f is a signed measure, and by [dB00, 4 (p137)], we fine a unique µ� f −, µ� f + measures
mutually singular, which establishes that at least one is finite. In fact, µ� f − = µ�( f −) and µ� f + = µ�( f +).

Trivially, we have f +(x), f −(x) ∈ [0,1], and since µ is Borel Regular, Lemma 2.6.4 gives us that each µ� f + and
µ� f − is Borel Regular. Let K be compact in X. Then,

µ� f +(K) =
∫

K
f + dµ ≤

∫
K

dµ = µ(K) < ∞

which establishes that µ� f + is indeed Radon. Similarly for µ� f −. �

We now introduce some notation from Mollification theory.

Definition 3.3.2 (Mollification of a Radon Measure) Let X be a metric space with a Radon measure µ. Let f
be a µ-measurable function. Then, we define:

( f ∗ µ)(x) =
∫

X
f (x− y) dµ(y)

as the mollification of µ by f .
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Definition 3.3.3 (Standard Symmetric Mollifier) For ε > 0, define ηε : Rn→ R,

ηε(x) =

c(ε) exp 1
ε2−|x|2

|x| < ε

0 |x| ≥ ε

We call ηε the standard symmetric mollifier.

Now, we present some important facts about mollification of currents. The general theory is discussed at length
in [EG92, §4], and [Mat95, §1.25].

Theorem 3.3.4 (Current Mollification) Let U be open in Rn+k, and let T ∈ DnU with locally finite mass. Then,
there exists a θε : Rn+k → ∧nR

n+k, with θi1,...,inε ∈ C∞C (Rn+k) with

Tε(ω) =
∫

U
〈ωx, θε(x)〉 dL n+k(x)→

∫
U
〈ωx, ξx〉 dµT(x) = T(ω)

where:

θi1,...,inε = (ηε ∗ µT�ξ
i1,...,in)

with ηε the standard symmetric mollifier, and where ξ(x) = ξi1,...,inei1,...in.

Proof Fix ω ∈ DnU. We write: ω(x) = ω j1,..., jndx j1,..., jn. So, we have, 〈ω(x), ξ(x)〉 = ωi1,...,in(x)ξi1,...,in(x), and it
follows that:

T(ω) =
∫

U
ωi1,...,in(x)ξi1,...,in(x) dµT(x) =

∫
U
ωi1,...,in(x) dµT�ξ

i1,...,in(x)

We note that ‖ξ‖ = 1 for µT−a.e. x ∈ Rn+k, which implies ξi1,...,in ∈ [−1,1]. Now, for the signed measure µT�ξ
i1,...,in,

by Lemma 3.3.1, we have:

µT�ξ
i1,...,in = µ+T�ξ

i1,...,in − µ−T�ξ
i1,...,in

with µ+T�ξ
i1,...,in, and µ−T�ξ

i1,...,in guaranteed to be Radon measures.

Now, for each multi-index i1, . . . , in, by [Mat95, 1.26], we have:

lim
ε→0

∫
U
ωi1,...,in(x)(ηε ∗ µ+T�ξi1,...,in)(x) dL n+k(x) =

∫
U
ωi1,...,in(x) dµ+T�ξi1,...,in(x)

lim
ε→0

∫
U
ωi1,...,in(x)(ηε ∗ µ−T�ξi1,...,in)(x) dL n+k(x) =

∫
U
ωi1,...,in(x) dµ−T�ξi1,...,in(x)

Combining these, we obtain:

lim
ε→0

∫
U
ωi1,...,in(x)(ηε ∗ µ+T�ξi1,...,in)(x) dL n+k(x) − lim

ε→0

∫
U
ωi1,...,in(x)(ηε ∗ µ−T�ξi1,...,in)(x) dL n+k(x)

=

∫
U
ωi1,...,in(x) dµ+T�ξi1,...,in(x) −

∫
U
ωi1,...,in(x) dµ−T�ξi1,...,in(x)

⇐⇒ lim
ε→0

∫
U
ωi1,...,in(x)(ηε ∗ µT�ξi1,...,in)(x) dL n+k(x) =

∫
U
ωi1,...,in(x) dµT�ξi1,...,in(x) =

∫
U
ωi1,...,in(x)ξi1,...,in(x) dµT(x)

Now, summing over all multi-indices, we conclude:

lim
ε→0

Tε(ω) = lim
ε→0

∫
U
ωi1,...,in(x)(ηε ∗ µT�ξ

i1,...,in)(x) dL n+k(x) =
∫

U
ωi1,...,in(x)ξi1,...,in(x) dµT(x) = T(ω)

29



Trivially, by construction:

Tε(ω) =
∫

U
〈ω(x), θε(x)〉 dL n+k(x)

By [Mat95, 1.26], we are guaranteed that for every ε > 0, (ηε ∗ µ+T�ξi1,...,in) ∈ C∞C (Rn+k) and (ηε ∗ µ−T�ξi1,...,in) ∈
C∞C (Rn+k) which implies that θi1,...,inε ∈ C∞C (Rn+k). �

Corollary 3.3.5 We can write:

Tε(ω) = T(ηε ∗ ω)

where ηε ∗ ω = (ηε ∗ ωi1,...,in)dxi1,...,in

Proof

Tε(ω) =
∫

U
〈ω(x), θε(x)〉 dL n+k(x)

=

∫
U
ωi1,...,in(x)(ηε ∗ µT�ξ

i1,...,in)(x) dL n+k(x)

=

∫
U
ωi1,...,in(x)

∫
U
ηε(x− y)ξi1,...,in(y) dµT(y) dL n+k(x)

=

∫
U

∫
U
ωi1,...,in(x)ηε(x− y)ξi1,...,in(y) dµT(y) dL n+k(x)

=

∫
U

∫
U
ωi1,...,in(x)ηε(x− y)ξi1,...,in(y) dL n+k(x) dµT(y)

(By Fubini Theorem [EG92, 1.4])

=

∫
U
ξi1,...,in(y)

∫
U
ηε(y− x)ωi1,...,in(x) dL n+k(x) dµT(y)

(Since ηε is an even function)

=

∫
U

(ηε ∗ ωi1,...,in)(y)ξi1,...,in dµT(y)

=

∫
U
〈ηε ∗ ω(y), ξ(y)〉 dµT(y)

= T(ηε ∗ ω)

�

We conclude this section by proving the following result, its proof taken from [Whi89, p213].

Theorem 3.3.6 (Constant Vectorfield Lemma) Let T ∈ DnR
n+k with locally finite mass and with ∂T = 0. Write

T = µT ∧ ξ, and suppose for all x ∈ Rn+k, we have ξ(x) = τ ∈ ∧nR
n+k. Let V ⊆ Rn+k be a subspace of vectors

such that T is invariant in the direction of v ∈ V. Then τ ∈ ∧nV.

Proof As with the proof given by [Whi89], we assume V has a basis consisting of a sub collection of the standard
basis for Rn+k, by an orthogonal basis transform.

Now, it suffices to show that if ei < V implies τ has no ei ∧ ej1,..., jn coefficients.

Fix ε > 0. Suppose ei < V. Let f ∈ C∞C (Rn+k). For 1 ≤ l ≤ n + k with el ∧ ej1,...,î,..., jn ∈ ∧nV, let τl denote the
coefficients of τ of basis el ∧ ej1,...,î,..., jn. Now, by Corollary 3.3.5 and since ∂T = 0, we have 0 = ∂T = ∂Tε. Let
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φε = η
ε ∗ µT , it follows that:

0 = ∂Tε( f dx j1,...,î,..., jn)

= Tε

(
∂ f

∂xl
dxl ∧ dx j1,...,î,..., jn

)
=

∫
∂ f

∂xl
θlε dL n+k

=

∫
∂ f

∂xl
(x)

(∫
ηε(x− y)τl dµT(y)

)
dL n+k(x)

=

∫
τl
∂ f

∂xl
(x)(ηε ∗ µT)(x) dL n+k(x)

=

∫
τl
∂ f

∂xl
(x)φε dL n+k(x)

= −

∫
τl
∂φε

∂xl
f dL n+k(x)

(Integration by Parts, and by [Mat95, 1.26], φε ∈ C∞C )

Since f was chosen arbitrarily, this implies:

τl
∂φε

∂xl
= 0

and so Tε is invariant in the direction τlel . Since this holds for all ε > 0, by invoking Theorem 3.3.4, we can
conclude that T is invariant in the direction τlel . It follows then that τi = 0. �
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Chapter 4

Closure and Compactness

In this chapter, we give an exposition of Brian White’s proof of the Closure Theorem and the Compactness
Theorem.

4.1 Preliminary Results

For the convenience of the reader, we prove some parts of the theorem as the following general results.

Lemma 4.1.1 Let U be open in Rn+k, T ∈ DnU with MW(T) +MW(∂T) < ∞ for all W b U. Suppose E closed in
U and H n(E) = 0. Then µT(E) = 0.

Proof We write ξ(x) = ξi1,...,inei1,...,in. Define:

ωε(x) = (ηε ∗ ξi1,...,in)dxi1,...,in

where ηε is the standard symmetric mollifier. Trivially, ωε ∈ DnU. Since H n(E) = 0, we invoke [Sim83, 26.29,
26.30] and:

0 = T�E(ωε) =
∫

E
〈ωε, ξ〉 dµT

Now, by [EG92, Theorem 1, §4.2], we have:

0 = lim
ε→0

∫
E
〈ωε, ξ〉 dµT =

∫
E
‖ξ‖ dµT = µT(E)

�

Corollary 4.1.2 We have further that µT �H n.

Proof Let A ⊆ Rn+k be an arbitrary set with H n(A) = 0. Since H n is Borel Regular we find a Borel B such that
A ⊆ B and H n(B) =H n(A) = 0. If C ⊆ B closed, we have H n(C) = 0, and by Lemma 4.1.1, we find µT(C) = 0.
By Borel Regularity of µT , B is µT-measurable, and by [Sim83, 1.3], we have

µT(B) = sup
{
µT(C) : C ⊆ B,C closed in Rn+k

}
= 0

By construction, A ⊆ B which implies µT(A) = 0. �
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Lemma 4.1.3 Let T ∈ DnR
n+k, ∂T = 0 and M(T) < ∞. Suppose further that for every Lipschitz f : Rn+k → R,

〈T, f , r〉 is (n − 1)-integer rectifiable for L 1−a.e. r ∈ R. Then, there exists a δ > 0 such that letting M ={
x ∈ Rn+k : Θn

∗(µT , x) ≥ δ
}
, we have µT(Rn+k \ M) = 0, µT �H n�M, and H n(M) < ∞.

Proof Put fy(x) = ‖y − x‖ trivially Lipschitz, and we have 〈T, f , r〉 = ∂(T�Br (x)), since ∂T = 0. We can then
invoke the Lower Density Lemma (Theorem 3.2.8), to find a δ > 0 such that Θn

∗(µT , x) ≥ δ for µT−a.e. x ∈ Rn+k.
Then, by construction of M, we have that µT(Rn+k \ M) = 0.

Now, note that Θ∗n(µT , x) ≥ Θn
∗(µT , x) ≥ δ > 0 So, we can apply Theorem 2.5.6 with A1 = A2 = M, H n(M) ≤

δ−1µT(M) = δ−1M(T) < ∞.

Now, since M(T) +M(∂T) = M(T) < ∞, we invoke Corollary 4.1.2, and since by construction µT(Rn+k \ M) = 0,
we have that µT �H n�M. �

Lemma 4.1.4 Let U be open in Rn+k, and let T ∈ DnU be locally finite mass. Further, suppose µT � H n�M,
for some M ⊆ Rn+k. If ‖ξ‖ = 1, for µ−a.e. x ∈ Rn+k, then

τ = ξDH n�Mµ

is locally H n�M summable.

Proof Fix W b U. Then,

∞ > MW(T) = µT(W) =
∫

W
‖ξ‖ dµT =

∫
W
‖ξ‖DH n�MµT dH n

�M =
∫

W
‖τ‖ dH n

�M

�

Lemma 4.1.5 Let µ be a Radon measure on Rn+k, and let M =
{
x ∈ Rn+k : Θn

∗(µ, x) > 0
}
, and µ(M) > 0. Further,

suppose that H n�M is Radon, and µ � H n�M. Let f be such that ‖ f ‖ = 1 µ−a.e. , and τ = f DH n�Mµ. Then
for a ∈ M a Lebesgue point of τ,

‖τ(a)‖Θn
∗(H

n,M,a) = Θn
∗(µ,a) > 0

Proof We firstly note that τ is locally µ-summable by Lemma 4.1.4. So, we can apply the Lebesgue points
formula Theorem 2.6.6 which trivially implies Lemma 2.6.5 since we are in Rn+k. So, we can write:

‖τ(a)‖ = lim
r→0

1
H n(M ∩ Br (a))

∫
M∩Br (a)

‖τ(x)‖ dH n = lim inf
r→0

µ(Br (a))
H n(M ∩ Br (a))

since µ �H n�M, and ‖ f ‖ = 1, µ−a.e. x ∈ Rn+k.

Firstly, we show that τ(a) , 0. For contradiction, assume the converse. Our observation above implies that
µ(Br (a)) = 0, which implies that Θn

∗(µ,a) = 0. But then, a < M which is a contradiction.

Now, we compute:

‖τ(a)‖Θn
∗(H

n,M,a) =

(
lim inf

r→0

µ(Br (a))
H n(M ∩ Br (a))

) (
lim inf

r→0

H n(M ∩ Br (a))
ωnrn

)
= lim inf

r→0

µ(Br (a))
H n(M ∩ Br (a))

H n(M ∩ Br (a))
ωnrn

(Since τ(a) , 0 and H n(M ∩ Br (a)) , 0)

= lim inf
r→0

µ(Br (a))
ωnrn

= Θn
∗(µ,a)

> 0

The result follows immediately. �
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Lemma 4.1.6 Let M ⊆ Rn+k, and let ηλ,a = λ−1(x− a) for λ > 0. Then,

H n(ηλ,aM ∩ Br (0)) = λ−nH n(M ∩ Bλr (a))

Proof Fix λ > 0. Define Mλ = {x− a : x ∈ M}. Then, observe that:

λ−1(Mλ ∩ Bλr (0)) = ηλ,aM ∩ Br (0)

λ−1(Mλ ∩ Bλr (0)+ a) = λ−1(M ∩ Bλr (a))

By the translation invariance of the Hausdorff measure,

H n(ηλ,aM ∩ Br (0)) =H n(λ−1(M ∩ Bλr (a)))

= λ−nH n(M ∩ Bλr (a))

�

Lemma 4.1.7 Let T ∈ DnR
n+k such that T = H n�M ∧ τ(x) where M ⊆ Rn+k. Further, let ηλ,a(x) = λ−1(x − a),

and let Λ be a positive sequence converging to zero. Suppose that a ∈ M is a Lebesgue Point of τ, and
Θ∗n(H n,M,a) ≤ 1. Then,

lim
λ∈Λ

MBR(0)(ηλ,a]T − (H n
�ηλ,aM) ∧ τ(a)) = 0

Proof We firstly make note of an important density estimate. Fix δ > 0 and let:

Lδ =

{
H n(M ∩ Br (a))

ωnrn
: 0 < r < δ

}
In light of this notation, we note that Θ∗n(H n,M,a) = limδ→0 supLδ ≤ 1. It follows then that for δ < γ, we have
supLδ ≤ supLγ. So, it follows that there must exist a small δ > 0 such that for all 0 < r < δ, H n(M∩Br (a)) ≤ ωnrn.
So, we have:

ωn

H n(M ∩ Br (a))
≥

1
rn
=⇒

ωn

H n(M ∩ Br (a))

∫
M∩Br (a)

‖τ(x) − τ(a)‖ dH n ≥
1
rn

∫
M∩Br (a)

‖τ(x) − τ(a)‖ dH n

Now, fix 0 < R< ∞. For λ > 0 such that 0 < λR< λ, we associate r with λR, and it follows that:

Rnωn

H n(M ∩ BλR(a))

∫
M∩BλR(a)

‖τ(x) − τ(a)‖ dH n ≥
1
λn

∫
M∩BλR(a)

‖τ(x) − τ(a)‖ dH n

Fix R> 0. Now, we compute the mass:

MBR(0)(ηλ,a]T −H n
�ηλ,aM ∧ τ(a)) ≤ MBR(0)(ηλ,a]T − ηλ,a]H

n
�M ∧ τ(a))

(Since τ(a) is a constant)

≤ (ess sup‖Dηλ,a‖)
nMBλR(a)(T −H n

�M ∧ τ(a))

(By [Sim83, 26.25])

≤ λ−nMBλR(q)(T −H n
�M ∧ τ(a))

≤ λ−n
∫

M∩BλR(a)
‖τ(x) − τ(a)‖ dH n

(Since T =H n
�M ∧ τ(x))

≤
Rnωn

H n(M ∩ BλR(a))

∫
M∩BλR(a)

‖τ(x) − τ(a)‖ dH n

Since a ∈ M is a Lebesgue point of τ,

lim
λ∈Λ

MBR(0)(ηλ,a]T −H n
�ηλ,aM ∧ τ(a)) ≤ Rnωn lim

λ∈Λ

1
H n(M ∩ BλR(a))

∫
M∩BλR(a)

‖τ(x) − τ(a)‖ dH n = 0

and the conclusion follows. �
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Lemma 4.1.8 Let T ∈ DnR
n+k, and let ∂T = 0. If for every Lipschitz f : Rn+k → R, and L 1−a.e. r ∈ R, 〈T, f , r〉 is

(n− 1)-integer rectifiable, then so is 〈ηλ,a]T, f , r〉, where ηλ,a = λ−1(x− a).

Proof Fix f Lipschitz, and let r ∈ R be a point where 〈T, f , r〉 is (n− 1) integer rectifiable. Since ∂T = 0, we note
that we can write the slice as: 〈T, f , r〉 = ∂(T�R) where R =

{
x ∈ Rn+k : f (x) < r

}
. Now, by [Sim83, 26.21], we

have:

ηλ,a]〈T, f , r〉 = ηλ,a]∂(T�R) = ∂(ηλ,a]T�R) = 〈ηλ,a]T, f , r〉

�

Lemma 4.1.9 Let T = µ ∧ τ ∈ DnR
n+k with M(T) < ∞, where τ ∈ ∧nR

n+k, with ∂T = 0, and 〈T, f , r〉 integer
(n− 1)-rectifiable for L 1−a.e. r ∈ R. Then T is translation invariant in exactly n directions

Proof Let V ⊆ Rn+k be the maximal vector subspace of Rn+k such that T is translation invariant. Since ∂T = 0,
we invoke the Constant Vectorfield Lemma (Theorem 3.3.6) to find τ ∈ ∧nV. So T is invariant in at least n
directions.

Since our hypothesis satisfies Lemma 4.1.3, we invoke the lemma. So there exists a δ > 0, with M ={
x ∈ Rn+k : Θn

∗(µ, x) ≥ δ > 0
}

and H n(M) < ∞. So, by Theorem 1.1.2, H n+k(M) = 0 for k > 0, and H n−k(M) =
∞, for k < n. Together with these facts, and since µ � H n�M, we can represent T as an H n�M integral, it
follows that T is translation invariant in at most n directions. �

Lemma 4.1.10 Let M ⊆ Rn+k, and ηλ,a(x) = λ−1(x− a). Suppose µ =
∑p

i=1αiH n�Pi , 1 ≤ p ≤ ∞ where each Pi is
a parallel n-plane. If for some a ∈ M, H n�ηλ,aM ⇀ µ, where λ ∈ Λ a positive sequence converging to zero, and
Θn
∗(µ, x) > δ > 0 for µ−a.e. x ∈ M and

∑p
i=1 ai ≤ Θ

∗n(H n,M,a) ≤ 1, then p < ∞.

Proof Suppose p = ∞. We make a lower density observation. Let x ∈ P j such that δ < Θn
∗(µ, x). Then,

0 < δ < Θn
∗(µ, x) = lim inf

r→0

∑n
i=1αiH n�P j(Br (x))

ωnrn
= lim inf

r→0

H n�P j(Br (0))

ωnrn
= α j

since {Pi} are distinct and parallel, and Pi ∩ Br (x) yields an n-ball since Pi is an n-plane. Now note that:

p∑
i=1

αi = pδ = ∞

Now, since H n�ηλ,aM ⇀ µ, for some sequence Λ:

µ(Br (0)) = lim
λ∈Λ

H n
�ηλ,aM(Br (0))

= lim sup
λ∈Λ

λ−nH n(M ∩ Bλr (a))

(By Lemma 4.1.6)

≤ ωnrnΘ∗n(H n,M,a)

= ωnrn

Since we assume p = ∞, we can take r large enough so that for i > N (by rearranging index),

H n�Pi(Br (0))
ωnrn

>
1
i

which implies that

p∑
i=1

αi ≤
µ(Br (0))
ωnrn

≤ 1

which contradicts our previous estimate. �
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Lemma 4.1.11 Let {Ti} ⊆ DnR
n+k, each with locally finite mass, ∂Ti = 0, and Ti ⇀ T, with ∂T = 0. Suppose f is

Lipschitz with ess sup‖D f ‖ < ∞. Let Ra,b =
{
x ∈ Rn+k : a < f (x) < b

}
where a < b. Suppose further that:

lim
i→∞

MW(Ti�Ra,b) = 0

for some W b Rn+k. Then, there exists a t ∈ (a,b) and a subsequence i′ such that Ti′�R⇀ T�Rt, and

lim
i′→∞

MW(∂(Ti′�Rt)) = 0

where Rt =
{
x ∈ Rn+k : f (x) < t

}
Proof Trivially, Ti ⇀ T implies Ti�Rt ⇀ T�Rt, by considering forms ω with sptω ⊆ Rt, for any t ∈ (a,b).

By the Slicing Lemma (Theorem 3.1.3), we can choose a subsequence i′ such that:

lim
i′→∞

MW(∂(Ti′�Ra,b)) = 0

since ∂Ti = 0.

Now, by [Sim83, 28.10], and since ‖D f ‖ < ∞,

lim
i′→∞

∫
[a,b]

MW(Ti�Rt) dL 1(t) ≤ lim
i′→∞

ess sup‖D f ‖MW(Ti�Ra,b) =⇒ lim
i′→∞

∫
[a,b]

MW(Ti�Rt) dL 1(t) = 0

Now, suppose for contradiction that for all t ∈ (a,b), lim i′→∞MW(∂(Ti′�Rt)) , 0. But then, by the lower semiconti-
nuity of mass [Sim83, 26.13], this would imply lim i′→∞

∫
[a,b]

MW(Ti�Rt) dL 1(t) , 0, which is a contradiction.

We observe that Ti�Rt ⇀ T�Rt implies Ti′�Rt ⇀ T�Rt. �

Lemma 4.1.12 Let U be open, bounded and convex in Rn. Let T ∈ DnU, with MW(T) + MW(∂T) < ∞ for all
W b U. Then, for W b U, there exists a β ∈ R and a constant c > 0 such that:

MW(T − β~W�) ≤ cMW(∂T)

Proof For ω ∈ C∞c (U), we note that we can write:

T(ωdx1 ∧ . . . ∧ dxn) =
∫

U
ωη dL n

where η ∈ BV loc(Rn) by mollification of the measure and MW(∂T) = |Dη| (W) (see [Sim83, 26.28]).

Now, fix θ ∈ (0,1). Then, by [Sim83, 6.4], there exists a β ∈ R and a c > 0 such that∫
U
‖η − β‖ dL n ≤ cMW(∂T)

Fix ω ∈ C∞c (U), with ‖ω‖ ≤ 1, with sptω ⊆W. We note that:

(T − β~W�)(ωdx1 ∧ . . . ∧ dxn) =
∫

U
ωη − βω dL n ≤

∫
U
‖η − β‖ dL n ≤ cMW(∂T)

The result follows by taking a sup over all such ω. �

Lemma 4.1.13 Let M ⊆ Rn+k, and ηλ,a(x) = λ−1(x− a). Suppose µ =
∑p

i=1αiH n�Pi , 1 ≤ p ≤ ∞ where each Pi is
a parallel n-plane. If for some a ∈ M, H n�ηλ,aM ⇀ µ, for λ ∈ Λ, a positive sequence converging to zero, then:

Θn
∗(H

n,M,a) ≤
p∑

i=1

αi
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Proof Fix 0 < r < ∞. We observe that since H n�ηλ,aM ⇀ µ,

µ(Br (0)) = lim
λ∈Λ

(H n
�ηλ,aM)(Br (0))

= lim inf
λ∈Λ

(H n(ηλ,aM ∩ (Br (0))

≥ ωnrnΘn
∗(H

n,M,a)

(By applying Lemma 4.1.6)

Since each Pi is parallel and distinct and since each Pi ∩ Br (0) is an n-ball, we can choose r sufficiently small
such that:

H n�Pi(Br (0))
ωnrn

≤ 1

By definition of µ, the result follows. �

4.2 The Closure Theorem

Theorem 4.2.1 (The Lesser Closure Theorem) Let {Ti} ⊆ DnR
n+k be a sequence of n-integer rectifiable cur-

rents with

sup{M(Ti) +M(∂Ti)} < ∞

Suppose Ti ⇀ T, and ∂T = 0. Then T is an n-integer rectifiable current.

Proof We proceed by induction. Note that the base case n = 0 is trivial, since every 0 dimensional current is an
integer rectifiable current.

Now, assume that the theorem holds for the (n− 1) dimensional case. Firstly, we notice that for every Lipschitz
f : Rn+k → R, and for L 1−a.e. r ∈ R, 〈Ti , f , r〉 is (n− 1)-rectifiable by the definition of a slice for integer rectifiable
currents (Definition 2.4.6). By the Slicing Lemma (Theorem 3.1.3), we are guaranteed a subsequence i′ such
that

sup{M(〈Ti′ , f , r〉) +M(∂〈Ti′ , f , r〉)} < ∞

〈Ti′ , f , r〉⇀ 〈T, f , r〉

for L 1−a.e. r ∈ R. By the induction hypothesis, we have that 〈T, f , r〉 is indeed (n− 1)-integer rectifiable. Since
∂T = 0, we note that 〈T, f , r〉 = ∂(T�Rr ), where Rr =

{
x ∈ Rn+k : f (x) < r

}
.

Now, we have that T ∈ DnR
n+k, M(T) < ∞ since sup{M(Ti) +M(∂Ti)} < ∞, and that for every Lipschitz f ,

and L 1−a.e. r ∈ R, 〈T, f , r〉 is (n − 1)-integer rectifiable. So we invoke Lemma 4.1.3 to find a δ > 0, and for
M =

{
x ∈ Rn+k : Θn

∗(µT , x) > δ
}
, µT(Rn+k\M) = 0. Further we are guaranteed that µT �H n�M and H n(M) < ∞.

Note that this implies that H n�M is a Radon Measure.

Then, by Radon-Nikodym Theorem [Sim83, 4.7], by letting θ(x) = DH n�Mµ(x), we can write

T(ω) =
∫
Rn+k
〈ω(x), ξ(x)〉θ(x) dH n

�M =
∫

M
〈ω(x), τ(x)〉 dH n

where τ = ξθ.

Since H n(M) < ∞, by invoking Theorem 2.5.7 we find that for H n−a.e. a ∈ M,

Θ∗n(H n,M,a) ≤ 1

Now, by Lemma 4.1.4, τ is locally H n�M summable, and we find that H n−a.e. a ∈ M is a Lebesgue Point of τ.
Explicitly, for H n−a.e. a ∈ M,

lim
r→0

1
H n(M ∩ Br (0))

∫
M∩Br (a)

‖τ(a) − τ(x)‖ dH n(x) = 0
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Trivially, by the subadditivity of the measure, where both these statements fail is a null set. Fix a ∈ M, a point
which satisfies both statements.

Now, note that by Lemma 4.1.5, by associating f with ξ, we find:

‖τ(a)‖Θn
∗(H

n,M,a) = Θn
∗(µT ,a) > 0

We now establish some convergence results about our measures. Let ηλ,a(x) = λ−1(x − a), and let Λ be a
sequence converging to zero. Note that for each λ ∈ Λ, each measure H n�ηλ,aM = λ−nH n�(x− a)M and so it
is a Radon Measure. Fix 0 < r < ∞. Then,

lim sup
λ∈Λ

(H n
�ηλ,aM)(Br (0)) = lim sup

λ∈Λ
λ−nH n(M ∩ Bλr (a))

(By Lemma 4.1.6)

= ωnrn lim sup
λ∈Λ

H n(M ∩ Bλr (a))
(λr)nωn

≤ ωnrnΘ∗n(H n,M,a)

< ∞

by our previous estimate on upper density. So, we can apply [Sim83, 4.4], to find that there exists a subsequence
Λ′ ⊆ Λ and a Radon measure µ such that:

H n
�ηλ,aM ⇀ µ (λ ∈ Λ′)

Since this is pointwise convergence, this implies:

H n
�ηλ,aM ∧ τ(a)⇀ µ ∧ τ(a) (λ ∈ Λ′)

Let Tλ = ηλ,a]T. Since we fix 0 < r < ∞, by Lemma 4.1.7,

Tλ ⇀ µ

µTλ ⇀ ‖τa‖µ

for λ ∈ Λ′.

Since we have that ∂T = 0, and 〈T, f , r〉 is (n − 1)-integer rectifiable, by Lemma 4.1.8 gives us that for each
λ ∈ Λ′, 〈Tλ, f , r〉 is (n−1)-rectifiable for every Lipschitz f and L 1−a.e. r ∈ R. Now, we have M(Tλ)+M(∂Tλ) < ∞
since M(T) +M(∂T) < ∞. Further, we have Tλ ⇀ µ ∧ τ(a). So, by invoking the Slicing Lemma (Theorem 3.1.3),
there exists a further subsequence Λ′′ ⊆ Λ′ such that:

〈Tλ, f , r〉⇀ 〈µ ∧ τ(a), f , r〉 (λ ∈ Λ′′)

for L 1−a.e. r ∈ R, and every Lipschitz f . Again, by our inductive hypothesis, 〈µ ∧ τ(a), f , r〉 is (n− 1)-rectifiable.
Furthermore, by the Lower Density Lemma (Theorem 3.2.8), we have a δ > 0 such that

Θn
∗(µ, x) >

δ

‖τ(a)‖
> 0

for µ−a.e. x ∈ M.

Now, since ∂Tλ = 0, and Tλ ⇀ µ ∧ τ(a), it follows that ∂(µ ∧ τ(a)) = 0. So, we apply Lemma 4.1.9 to find
that µ ∧ τ(a) is translation invariant in exactly n directions. Letting V ⊆ Rn+k denote the vector subspace of
vectors such that µ ∧ τ(a) is translation invariant, the Constant Vectorfield Lemma (Theorem 3.3.6) guarantees
that τ(a) ∈ ∧nV. Coupling these facts imply that τ(a) is indeed a simple n-vector and dim(V) = n. So, we have
that τ(a) determines the n-plane V.

Now, let Mµ =
{
x ∈ M : Θn

∗(µ, x) > δ‖τ(a)‖−1
}
. By our previous lower density estimate, µ(M \ Mµ) = 0. Define:

P =
{
P n-plane : ∃x ∈ Mµ with x ∈ P,P parallel to V

}
Fix P ∈ P . Let x ∈ P ∩ Mµ, so we have Θn

∗(µ, x) > 0 and it follows that µ�P(Br (x)) > 0. Since µ is Radon,
µ�P(Br (x)) < ∞. But since P is parallel to V and µ translation invariant in direction of v ∈ V, we have 0 <
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µ�P(Br (x)) = µ�(Br (y)) < ∞ for y ∈ P∩ Mµ. So, µ is uniformly distributed Borel Regular for all x, y ∈ Mµ ∩ P, and
by [Mat95, 3.4 (p45)], we can write µ�P = αH n�P for α a constant. By the translation invariance, it follows that:

(µ ∧ τ(a))(ω) =
∫

Mµ

〈ω(x), τ(a)〉 dµ(x) =
∫

Mµ∩(
⋃

P)
〈ω(x), τ(a)〉 dµ(x)

Now, we argue that P is finite. Without loss of generality, we assume that P is countable and show that this
implies that P is finite. We write µ =

∑p
i=1αiH n�Pi , where αi > 0, and 1 ≤ p ≤ ∞. SinceΘn

∗(µ, x) > δ‖τ(a)‖−1 > 0
for µ−a.e. x ∈ M, we can apply Lemma 4.1.10 to find that p < ∞. (Note: our countable assumption does not lose
generality for the reason that in our proof of Lemma 4.1.10, a lower density argument is used. An uncountable
collection would only contribute a larger value used as a contradiction within the argument).

We now argue that p = 1 and α1 = 1. Suppose for contradiction that p > 1. For the simplicity of the argument,
we assume that Pi is parallel to Rn × {0} ⊆ Rn+k. (We can otherwise achieve this by rotation and since H n is
invariant under rotations).

Fix 0 < r < ∞. Let W = Bn
r (0) × Rk, where Bn

r (0) denotes the n-ball of radius r. Note that we can consider W
as a product over Rk of closed balls n-balls which are compact in Rn+k. Then by the Tychonoff Theorem [Mun96,
37.3], W is compact.

Fix ε > 0 such that 3ε < min
{
dist(Pi ,P j) : Pi , P j

}
. Fix j. Let f (x) = dist(P j , x). Let Sε =

{
x ∈ Rn+k : ε < f (x) < 2ε

}
.

Now, note that if x ∈ Sε, then ε < dist(x,P j) < 2ε which implies P j ∩ S = ∅ and P j ∩ S ∩W = ∅. Furthermore,
if i , j, then x ∈ Pi implies dist(x,Pi) > 3ε, and it follows that Pi ∩ S ∩W = ∅. So, we have that µ(W ∩ S) = 0.
Since µTλ ⇀ ‖τ(a)‖µ,

lim
λ∈Λ′

MW(Tλ�Sε) ≤ ‖τ(a)‖µ(W∩ Sε) = 0

We note that Lip ( f ) = 1, and by Lemma 1.2.3, ess sup‖D f ‖ ≤
√

n+ k < ∞, and along with the fact that W
is compact, we can invoke Lemma 4.1.11. We then have a t ∈ (ε,2ε), and a subsequence Λ′′ ⊆ Λ such that
Tλ�Rt ⇀ µ ∧ τ(a)�Rt, and:

lim
λ∈Λ′′

MW(∂(Tλ�Rt)) = 0

where Rt =
{
x ∈ Rn+k : f (x) < t

}
.

Now, note that we are guaranteed t ∈ (ε,2ε). So, Rt ∩ Pi = ∅, provided Pi , P j . So, it follows that:

µ ∧ τ(a) =
p∑

i=1

αiH
n
�Pi ∧ τ(a) = α j‖τ(a)‖~P j�

Let Π : Rn+k → Rn be the orthogonal projection, and let T′λ = Π(Tλ�Rt). Since Bn
r (0) is open, convex and bounded

in Rn, and also since T′λ ∈ DnR
n, for each λ we invoke Lemma 4.1.12 and find a βλ ∈ R such that:

MBn
r (0)(T

′
λ − βλ~B

n
r (0)�) ≤ cMBn

r (0)(∂T
′
λ)

Note that:

lim
λ∈Λ′′

MBn
r (0)(T

′
λ − βλ~B

n
r (0)�) ≤ c lim

λ∈Λ′′
MBn

r (0)(∂T
′
λ)

=⇒ lim
λ∈Λ′′

MBn
r (0)(T

′
λ − βλ~B

n
r (0)�) = 0

(Since MW(∂Tλ�Rt)→ 0)

⇐⇒ lim
λ∈Λ′′

(T′λ − βλ~B
n
r (0)�) = 0

⇐⇒ Π(µ ∧ τ(a)�Rt) − lim
λ∈Λ′′
βλ~B

n
r (0)�) = 0

⇐⇒ α j‖τ(a)‖~Bn
r (0)� − ( lim

λ∈Λ′′
βλ)~B

n
r (0)�) = 0

(Since we’ve assumed that Pj parallel to Rn × {0})

=⇒ lim
λ∈Λ′′
βλ = α j‖τ(a)‖
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Letting β = limλ∈Λ′′ βλ, we have

lim
λ∈Λ′′

MBn
r (0)(T

′
λ − β~B

n
r (0)�) = 0

We note that L n is a Radon Measure, and since H n(ηλ,aM) = λ−nH n(M) < ∞, we have L n(Π(ηλ,aM∩Rt)) < ∞.
So,

βL n(Bn
r (0) \ Π(ηλ,aM ∩ Rt)) = β

∫
Bn

r (0)
1 dL n − β

∫
Π(ηλ,aM∩Rt)

1 dL n

≤ sup
{
(β~Bn

r (0)� − T′λ)(ω) : ‖ω‖ ≤, ω ∈ DnRn+k
}

= MBn
r (0)(T

′
λ − β~B

n
r (0)�)

Now, under the limit:

lim
λ∈Λ′′
βL n(Bn

r (0) \ Π(ηλ,aM ∩ Rt)) = 0

It follows then that:

L n(Bn
r (0)) ≤ lim

λ∈Λ′′
L n(Bn

r (0)∩ Π(ηλ,aM ∩ Rt)) + lim
λ∈Λ′′

L n(Bn
r (0) \ Π(ηλ,aM ∩ Rt))

≤ lim inf
λ∈Λ′′

H n(W∩ ηλ,aM ∩ Rt)

≤ µ(W∩ Rt)

(Since H nηλ,aM ⇀ µ)

= α jH
n(Bn

r (0))

(Since t ∈ (ε,2ε), H n(W∩ Rt ∩ Pj) =H n(Bn
r (0)))

This establishes that:

L n(Bn
r (0)) ≤ α jH

n(Bn
r (0)) = α jL

n(Bn
r (0))

which implies that 1 ≤ a j for each 1 ≤ j ≤ p.

We invoke Lemma 4.1.13 to establish that Θn
∗(H

n,M,a) ≤
∑p

i=1αi . Since µ =
∑p

i=1αiH n�Pi we have that
µ �H n and we can invoke Lemma 4.1.5. By combining the upper density estimate given by Lemma 4.1.10,

0 < Θn
∗(H

n,M,a) ≤
p∑

i=1

αi ≤ Θ
∗n(H n,M,a) ≤ 1

To avoid contradiction with our previous estimate that each α j ≥ 1, we must have p = 1 and α1 = 1.

We also note that P = P1 passes through the origin since for every r > 0,

µ(B2r (0)) ≥ lim inf
λ∈Λ

(H n
�ηλ,aM)(Br (0))

≥ ωnrnΘn
∗(µT ,a)

> 0

(By Lemma 4.1.5)

Also, P is independent of the subsequence Λ, since P is uniquely determined by the simple n-vector τ(a).

Now, fix f ∈ C0
c(Rn+k). Then, observe that:

lim
λ→0

∫
ηλ,aM

f (x) dH n(x) =
∫
Rn+k

f (x) dµ(x) =
∫

P
f (x) dH n(x)

since H n�ηλ,a ⇀ µ. By definition Definition 1.3.6, P is the approximate plane of M at a. Since this holds for all
Lebesgue points of τ, and by Theorem 2.6.6 H n−a.e. a ∈ M are Lebesgue points of τ, M has an approximate
tangent plane H n−a.e. a ∈ M By Theorem 1.3.7, M is n-rectifiable.
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Now, we need to establish that θ(a) is an integer. Note that:

〈µ ∧ τ(a), f , r〉 = ∂(µ ∧ τ(a)�Rt)(ω) =
∫

M
〈dω, τ(a)〉 dH n

�P =
∫

M
〈dω, ξ(a)〉θ(a) dH n

�P

is an (n− 1)-integer rectifiable current by the induction hypothesis. So, θ(a) ∈ Z.

This establishes that T is indeed an n-integer rectifiable current, thereby completing the proof. �

Leading up to the general case of the Closure Theorem, we present the following key result.

Theorem 4.2.2 (Weaker Boundary Rectifiability Theorem) Let T ∈ DnR
n+k an integer rectifiable current. Sup-

pose that M(∂T) < ∞, Then ∂T ∈ Dn−1U is an integer rectifiable current.

Proof We use the Weak Polyhedral Approximation Theorem [Sim83, 30.2] to find a polyhedral (and integer
rectifiable by Deformation Theorem [Sim83, 29.3]) sequence {∂Pk} ⊆ Dn−1R

n+k such that ∂Pk ⇀ ∂T. Now,
trivially, ∂(∂Pk) = 0, and since M(∂Pk) ≤ M(∂T), we can apply Theorem 4.2.1 to conclude that ∂T is an (n− 1)-
integer rectifiable current. �

Theorem 4.2.3 (The Closure Theorem) Let U be open in Rn+k, and let Let {Ti} ⊆ DnU be a sequence of n-
integer rectifiable currents with

sup{MW(Ti) +MW(∂Ti)} < ∞

Suppose Ti ⇀ T. Then T is an n-integer rectifiable current.

Proof We firstly illustrate how to relax the ∂T = 0 hypothesis of Theorem 4.2.1. So, suppose still that U = Rn+k.
We invoke the Weak Boundary Rectifiability Theorem (Theorem 4.2.2) to find that each ∂Ti is (n − 1)-integer
rectifiable. Since ∂(∂T) = 0 and ∂Ti ⇀ ∂T, we apply Theorem 4.2.1 to conclude that ∂T is (n − 1)-integer
rectifiable. By application of the Isoperimetric Inequality [Sim83, 30.1], we find an n-integer rectifiable R ∈ DnR

n+k

such that ∂T = ∂R. This implies M(∂R) = M(∂T) < ∞. So, again by Theorem 4.2.2, ∂R is (n − 1)-integer
rectifiable.

Now, we have that Ti − R⇀ T − R, and by construction ∂(T − R) = 0. So, by applying Theorem 4.2.1, we find
(T − R) n-integer rectifiable which implies that T is n-integer rectifiable.

Now, we show how to relax the condition U = Rn+k, and the finite mass hypothesis. Fix W b U. Let C =
{Br (x) : Br (x) b U}. be a cover for W. Such a collection must exist since W ⊆ U and U open in Rn+k. So, we
have simply reduced the problem to considering balls Br (x) b U.

Fix x ∈ U, and let Br (x) b U.

sup
{
MBr (x)(Ti) +MBr (x)(∂Ti)

}
< ∞ ⇐⇒ sup{M(Ti�Br (x)) +M((∂Ti)�Br (x))} < ∞

Now, by the Slicing Lemma (Theorem 3.1.3), we have a subsequence i′ ⊆ i such that:

Ti′�Br (x)⇀ T�Br (x)

sup{〈T,dist(x, .), r〉} = sup{M(∂(Ti′�Br (x)) − (∂Ti′ )�Br (x))} < ∞

By combining these, we have:

sup{M(Ti′�Br (x)) +M(∂(Ti′�Br (x))} < ∞

Now, by the first part of our argument, by putting we can put U = Rn+k, Ti′�Br (x) ⇀ T�Br (x). is a n-integer
rectifiable current. Since we chose x arbitrarily, we conclude T is n-integer rectifiable. �
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4.3 Compactness

Here, we present a proof of the compactness theorem. One difference in our discussion is that unlike [Fed96,
4.2.16], we talk about compactness in the usual Weak∗ sense. A better discussion on the Weak∗ Topology
can be found in [Pry, §6]. An important fact to note is that convergence in Weak∗ corresponds to pointwise
convergence [Pry, 6.2.4].

We introduce the following auxiliary results.

Lemma 4.3.1 Let (X,R) be a normed linear space over R, and X∗ the Dual of X. For k ∈ R, let Lk : X∗ → X∗ be
defined by Lk(x) = kx. Then Lk is continuous in the Weak∗ topology.

Proof By [Pry, 6.2.2], the basis elements of the Weak∗ topology are given by:

N(x, ξ, r) = {ν ∈ X∗ : ‖ν(x) − ξ(x)‖ < r}

where x ∈ X, and ξ ∈ X∗. We note that L−1
k = k−1x, and so it suffices to prove that Lk(N(x, ξ, r)) is open. But this

is trivially true since Lk(N(x, ξ, r)) = N(x, ξ, |k| r). �

Corollary 4.3.2 For 0 < r < ∞, the usual (metric) closed ball Br (0) ⊆ X∗ is compact in the Weak∗ topology.

Proof We know from Banach-Alaoglu Theorem [Pry, 6.3] that the unit ball B1(0) is Weak∗ compact. Let r > 0.
By Lemma 4.3.1 we have that Lr = rx is continuous. We apply [Mun96, 26.5] to find that the image of a compact
domain under a continuous map is compact and conclude that Lr (B1(0)) = Br (0) is compact. �

We make the following important definition.

Definition 4.3.3 (Integral Currents) Let U be open in Rn+k. Define:

In,k = {T ∈ DnU : T, ∂T integer rectifiable ,M(T) ≤ k,M(∂T) ≤ k}

We call In,k the n-integer currents with k normal mass.

Theorem 4.3.4 (Compactness Theorem for Integral Currents) Let U open in Rn+k. Let 0 < k < ∞. Then In,k

is Weak∗ compact in DnU.

Proof Firstly, we show that In,k is Weak∗ closed in DnU. Let {Ti} ⊆ In,k, with Ti ⇀ T. Since
sup{M(Ti) +M(∂Ti)} ≤ 2k < ∞, we apply of the Closure Theorem (Theorem 4.2.3) to find that T is integer
rectifiable. Also sup{M(Ti)} ≤ k and sup{M(∂Ti)} ≤ k, which implies T ∈ In,k. By [Pry, 6.2.4], In,k is Weak∗

closed.

Now, by Corollary 4.3.2, Bk(0) ⊆ DnU is Weak∗ compact. Trivially, In,k ⊆ Bk(0) and since by [Mun96, 26.2],
closed subsets of compact sets are compact, we conclude that In,k is Weak∗ compact. �

The compactness result is often discussed in literature in terms of a topology called the flat-metric topology.
Our discussion in Weak∗ topology was for a matter of convenience. Our formulation is in fact equivalent to the
discussion in the flat-metric. A more detailed discussion can be found in [Sim83, 31.3].

Finally, note that although we have proceeded our discussion finite mass rather than locally finite mass, we have
not lost any generality. By considering compactness in the set DnW for W b U, one can attain a similar result
for locally finite mass currents.
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Notation

ess sup Essential Supremum

Cr (X,Y) r-differentiable (continuous if r = 0) functions from X to Y

Cr
c(X,Y) Compactly supported r-differentiable functions from X to Y

C(X,Y) Same as C0(X,Y)

img φ Image of function φ

Dν f Directional derivative of f in the direction ν

µ−a.e. µ almost everywhere

∧nV n-Vectors of vectorspace V

∧nV n-Forms of vectorspace V

ei1,...,in Same as ei1 ∧ . . . ∧ ein

dxi1,...,ın Same as dxi1 ∧ . . . ∧ dxin

τ ∈ ∧nV simple τ = τ̃ei1 ∧ . . . ∧ ein, where
{
ei j

}n

j=1
⊆ {ei}

n+k
i=1 , the basis for V

〈·, ·〉 Pairing of a form with a vector

〈·, ·〉H Inner product of Hilbert Space H

sptω Support of ω

W b U W open in U and W compact in U

µ�R Measure µ restricted to R

Vol (M) Volume of M

Ti ⇀ T Ti(ω)→ T(ω), pointwise convergence

Br (x) Metric ball centred at x with radius r

Bn
r (x) Metric n-ball centred at x with radius r

Dµν Radon-Nikodym derivative of ν w.r.t µ

f]T Push forward of current T by f

BV loc(Rn) Locally bounded variation real-valued functions on Rn

N Natural Numbers not including 0

Z+ Positive Integers including 0

R+ Real Numbers including 0

H n Hausdorff n measure
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L n Lebesgue n measure

Lip ( f ) Lipschitz constant of a Lipschitz function f

∇M f M-Gradient of f

dM
x f M-differential of f at x

JM f Jacobian of f over M

J∗M f Co-Jacobian of f over M

DnU Compactly supported smooth n forms over open set U

DnU Dual to DnU

MW(T) Mass of current T in W

µ ∧ ξ Current defined by Radon measure µ and n-vectorfield ξ

~M� Current defined by Rectifiable set M

V (M, θ) Varifold defined by M with multiplicity θ

T(M, ξ, θ) Integer rectifiable current with orientation ξ, rectifiable set M and multiplicity θ

〈T, f , r〉 Slice of current T by Lipschitz f at f = r

Θn
∗µ,A, x Lower density of µ at x in A

Θ∗nµ,A, x Upper density of µ at x in A

ν � µ ν absolutely continuous w.r.t µ

ηε ∗ ω Mollification of ω by ηε
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