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ABSTRACT

Let X be a complex manifold and γ a simple closed curve in X .
We address the question: What conditions on γ insure the existence
of a 1-dimension complex variety Σ with boundary γ in X . When
X = Cn, an answer to this question involves the polynomial hull of
gamma. When X = Pn, complex projective space, the projective
hull γ̂ of γ, a generalization of polynomial hull, comes into play. One
always has Σ ⊂ γ̂, and for analytic γ they conjecturally coincide.

In this paper we establish an approximate analogue of this
idea which holds without analyticity. We characterize points in γ̂
as those which lie on a sequence of analytic disks whose boundaries
converge down to γ. This is in the spirit of work of Poletsky and
of Larusson-Sigurdsson, whose results are essential here.

The results are applied to construct a remarkable example of
a closed curve γ ⊂ P2, which is real analytic at all but one point,
and for which the closure of γ̂ is W ∪ L where L is a projective
line and W is an analytic (non-algebraic) subvariety of P2 − L.
Furthermore, γ̂ itself is the union of W with two points on L.

Introduction.

Let γ be a simple closed real curve in a complex manifold X . Consider the problem
of finding conditions which guarantee that γ forms the boundary of a complex analytic
subvariety in X . When X is Cn (or, more generally, Stein), there is a solution [W] which
involves the polynomial hull of γ. When X is Pn (or, more generally, projective), there is
a notion of the projective hull of γ, denoted γ̂, which is related to the polynomial hull and
has the following property. If

f : Σ → X

is a map of a compact Riemann surface with boundary, which is holomorphic on IntΣ and
continuous up to the boundary with

f(∂Σ) = γ,

then
f(Σ) ⊆ γ̂.

∗Partially supported by the N.S.F.
∗∗Partially supported by the Institute Mittag-Leffler
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(See [HL2].) It is conjectured that if X = Pn and γ is real analytic, then either γ̂ = γ
or γ̂ is a 1-dimensional analytic subvariety with boundary γ or γ̂ is an algebraic curve
containing γ. Real analyticity is fundamental for this conjecture. It fails for any C∞-curve
γ which is not pluripolar [HL2, Cor. 4.4]. However, the conjecture has been established
for real analytic curves which are “stable” by using arguments of E. Bishop (see [HLW]).

In this paper we show that for any closed curve γ ⊂ Pn, all points z0 in the projective
hull γ̂ are essentially characterized by the fundamental property discussed above. We show
that if z0 ∈ γ, then for any sequence ǫj ց 0, there exists a sequence of holomorphic maps
of the unit disk

fj : ∆ → Pn

with
fj(0) = z0

and
dist (fj(∂∆), γ) ≤ ǫj .

In fact, from any such sequence we extract limiting holomorphic maps f : ∆ → Pn,
possibly constant ≡ z0, and show in Theorem 2 that

f(∆) ⊂ γ̂.

If we choose an affine coordinate chart Cn ⊂ Pn containing γ, then the sequence of
maps fj can be chosen so that the poles ζj

1 , ..., ζj
Nj

of fj , viewed as a Cn-valued function,

are simple and satisfy
∑

k log|ζj
k| ≥ −M for some constant M independent of j. In this

form the existence of the sequence is necessary and sufficient for z0 to lie in γ̂.
This is Theorem 1 below.

Theorem 2 is applied to produce interesting examples related to the conjecture above.
We construct a simple closed curve γ ⊂ P2, which is real analytic at all but one point p,
and has the following properties. There exists a projective line L through p, a point q ∈ L,
and a proper complex analytic subvariety W ⊂ P2 − L such that

γ̂ = W ∪ {p, q} and {γ̂} = W ∪ L.

Thus, if real analyticity breaks down at a single point, the conjecture fails. Moreover, if
this happens, then γ̂ may not be closed.

Related examples with other interesting properties are also given
One of us (John Wermer) wishes to acknowledge the contributions to the genesis of this

work he received from what he learned at Mittag-Leffler during the spring 2008 conference
on Several Complex Variables.
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The Main Theorems.

Consider a connected closed curve γ lying in complex projective n-space Pn. Write
Pn = Cn ∪ H, where H denotes the hyperplane at infinity, and assume that γ ⊂ Cn. We
wish to characterize those points z0 ∈ Cn which lie in the projective hull γ̂ of γ in terms
of analytic disks. We shall make use of the work of Lárusson and Sigurdsson [LS1], who
give a formula for the Siciak-Zahariuta extremal function VX of a connected open subset
X of Cn.

For each r > 0 let Kr denote the open tube of radius r around γ, i.e.,

Kr = {z ∈ Cn : dist(z, γ) < r}

We fix a point z0 ∈ Cn − γ. Thus z0 /∈ Kr for r sufficiently small.
Let {fr}r be a family of analytic maps of the unit disk ∆ into Pn, indexed by numbers

r > 0 converging to zero. We consider the following four conditions on the family {fr}r:

For all r

(i) fr(∂∆) ⊂ Kr,

(ii) fr(0) = z0,

(iii) There exists a number M > 0 such that if ζ
(r)
1 , ..., ζ

(r)
Nr

are the poles of fr in ∆

(i.e., fr(ζ
(r)
j ) ∈ H for j = 1, ..., Nr), then we have

Nr∑

j=1

log|ζ
(r)
j | ≥ −M.

(iv) The poles are simple, that is, the Cn-valued function (ζ−ζ
(r)
j )fr(ζ) is holomorphic

in a neighborhood of ζ
(r)
j for each j.THEOREM 1. The point z0 lies in γ̂ if and only if there exists a family {fr}r of analytic

maps satisfying (i) – (iv).

Proof. (Sufficiency). Assume there exists a family {fr}r which satisfies (i) – (iv). For

given r, let ζ
(r)
1 , ..., ζ

(r)
Nr

be the poles of fr. Put

Br(ζ) ≡

Nr∏

j=1


 ζ − ζ

(r)
j

1 − ζ
(r)

j ζ


 for ζ ∈ ∆.

Claim:

|Br(0)| ≥ e−M for all r.
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Proof of Claim. Since Br(0) =
∏Nr

j=1(−ζ
(r)
j ) we have

log|Br(0)| =

Nr∑

j=1

log|ζ
(r)
j |.

By (iii) the right hand side is ≥ −M . Hence |Br(0)| ≥ e−M as claimed.

For each r we now define a function Gr by setting

Gr ≡ fr · Br. (1)

Note that Gr has no poles on ∆ and |Br| is of unit length on ∂∆. Also since fr(∂∆) ⊂ Kr,
there exists a constant c1 such that |Gr(ζ)| ≤ c1 on ∂∆ for all r. Hence, by the maximum
principle |Gr(ζ)| ≤ c1 on ∆ for all r. Thus {Gr}r is a normal family on the interior of ∆,
and so there exists a sequence {Grj

}rj
, rj → 0 as j → ∞, converging point-wise on Int∆

to a holomorphic function G. Furthermore, {Br}r is a normal family on the interior of ∆,
and we may assume without loss of generality that Brj

→ B, a holomorphic function on
Int∆. The functions B and G lie in H∞(∆). Moreover, by Claim 1 we have |B(0)| ≥ e−M ,
so B is not identically zero.

We put Z = the zero set of B on Int∆. Then Z is a countable discrete subset of Int∆.
Fix a point a ∈ Int∆ \ Z. For each r, fr(a) = Gr(a)/Br(a) and as rj → 0, we have

Brj
(a) → B(a). By choice of a, B(a) 6= 0, so limj→∞ frj

(a) exists and equals G(a)/B(a).
We define

f ≡
G

B
.

Then f is holomorphic on Int∆ \ Z and has possible poles at the points of Z. Since
fr(0) = z0 ∀ r, we have

f(0) = z0.

This brings us to the following.THEOREM 2. For each f constructed as above, we have

f(Int∆) ⊂ γ̂.

In particular, f(0) = z0 ∈ γ̂.

Proof of Theorem 2. We begin with the following.PROPOSITION 1. For each point a ∈ Int∆ \ Z we have

f(a) ∈ γ̂.

Proof. Fix a polynomial P on Cn with degree d Assume that ‖P‖γ ≤ 1. Then for all r
sufficiently small, ‖P‖Kr

≤ 2
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Fix such an r and let ζ
(r)
1 , ..., ζ

(r)
Nr

be as above. The map ζ 7→ P (fr(ζ)) is holomorphic

on Int∆ \
⋃Nr

j=1{ζ
(r)
j }. Write P as

P (w) =
∑

|α|≤d

cαwα1
1 · · ·wαn

n .

and fr(ζ) = (w1(ζ), ..., wn(ζ)) so that

P (fr(ζ)) =
∑

|α|≤d

cαwα1
1 (ζ) · · ·wαn

n (ζ).

Then by assumption (iv) for ζ near ζ
(r)
j

P (fr(ζ)) =
(
ζ − ζ

(r)
j

)−dj
(
aj + bj(ζ − ζ

(r)
j ) + cj(ζ − ζ

(r)
j )2 + · · ·

)

where 0 ≤ dj ≤ d and aj 6= 0. Hence,

log|P (fr(ζ))| = −dj · log
∣∣∣ζ − ζ

(r)
j

∣∣∣+ hj(ζ) (2)

where hj is harmonic near ζ
(r)
j . Also

log

∣∣∣∣∣∣
ζ − ζ

(r)
j

1 − ζ
(r)

j ζ

∣∣∣∣∣∣
= log

∣∣∣ζ − ζ
(r)
j

∣∣∣+ kj(ζ)

where kj is harmonic on ∆ \ ζ
(r)
j . We define

χr(ζ) = log|P (fr(ζ))| + d · log|Br(ζ)| for ζ ∈ Int∆. (3)

On Int∆ \
⋃Nr

j=1{ζ
(r)
j } the function χr(ζ) is subharmonic.

Fix j = j0. For ζ near ζ
(r)
j0

, (2) and (3) give

χr(ζ) = −dj · log
∣∣∣ζ − ζ

(r)
j0

∣∣∣+ hj0(ζ) + d ·




log

∣∣∣∣∣∣
ζ − ζ

(r)
j0

1 − ζ
(r)

j0
ζ

∣∣∣∣∣∣
+
∑

j 6=j0

log

∣∣∣∣∣∣
ζ − ζ

(r)
j

1 − ζ
(r)

j ζ

∣∣∣∣∣∣




 .

Thus for ζ near ζ
(r)
j0

,

χr(ζ) = (d − dj0) · log
∣∣∣ζ − ζ

(r)
j0

∣∣∣+ Hj0(ζ)

where Hj0 is subharmonic there. Since d ≥ dj0 , the function χr is subharmonic in a

neighborhood of ζ
(r)
j0

.
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Since this holds for all j0, χr is subharmonic on Int∆. Also χr = log|P (fr)| on ∂∆
since |Br| = 1 there. Therefore, for ζ ∈ ∂∆ we have

χr(ζ) = log|P (fr(ζ))| ≤ log ‖P‖Kr
≤ log 2

since fr(∂∆) ⊂ Kr and ‖P‖Kr
≤ 2. By the maximum principle for subharmonic functions

on ∆ we have that
χr(ζ) ≤ log 2 for ζ ∈ ∆. (4)

Fix a ∈ Int∆ \ Z. Then by (3), χr(a) = log|P (fr(a))|+ d · log|Br(a)|, and so

log|P (fr(a))| + d · log|Br(a)| ≤ log 2.

Letting r → 0, we get log|P (f(a))|+ d · log|B(a)| ≤ log 2 and therefore

|P (f(a))| ≤ 2 ·

∣∣∣∣
1

B(a)

∣∣∣∣
d

. (5)

Now this holds for all polynomials P with degree ≤ d and ‖P‖γ ≤ 1. Hence, f(a) ∈ γ̂ and
Proposition 1 is proved.

To complete the proof of Theorem 2 we must show that for each pole ζ0 of f we have
f(ζ0) ∈ γ̂. Fix a pole ζ0 and choose a small closed disk D about ζ0 so that f is regular on
D \ {ζ0}. Let γ0 = f(∂D). Then by [HL2, Prop. 2.3] we have

f(ζ0) ∈ γ̂0

since f(ζ0) lies on an analytic disk in Pn with boundary γ0. This means that there is a
constant C0 > 0 such that for every section P ∈ H0(Pn,O(d)) we have

‖P(f(ζ0))‖ ≤ Cd
0‖P‖γ0

. (6)

Now in the affine chart Cn ⊂ Pn each such P corresponds to a polynomial P of degree
≤ d, and one has that for z ∈ Cn, ‖P‖z = (1 + ‖z‖2)−

d
2 |P (z)|. It then follows from (5)

above that there is a constant κ > 0 such that for all each a ∈ ∂D

‖P(f(a))‖ ≤

∣∣∣∣
κ

B(a)

∣∣∣∣
d

‖P‖γ . (7)

Combining (6) and (7) gives a new constant C > 0 such that

‖P(f(ζ0))‖ ≤ Cd‖P‖γ ,

which proves that f(ζ0) ∈ γ̂ and establishes Theorem 2 and the sufficiency of conditions
(i) – (iv).
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Proof. (Necessity). Assume z0 ∈ γ̂. We must provide a family {fr}r of maps satisfying
conditions (i) – (iv). The sets Kr are defined as before.DEFINITION 1. Let E be a set in Cn and denote by LE the set functions u in the Lelong
class which satisfy u ≤ 0 on E.DEFINITION 2. The Siciak-Zahariuta extremal function for E is given by

VE(z) = sup{u(z) : u ∈ LE}.

Since z0 ∈ γ̂, we know from [HL2, p.6] that there exists a constant K such that

u(z0) ≤ K for all u ∈ LE .

Fix r and choose u ∈ LKr
. Then u is of Lelong class and u ≤ 0 on Kr. In particular

u ≤ 0 on γ. Hence u ∈ Lγ and therefore u(z0) ≤ K. From Definition 2 it follows that
VKr

(z0) ≤ K. Hence
−VKr

(z0) ≥ −K (8)

We now appeal to a result of Lárusson and Sigurdsson on page 178 of [LS1]. (Recall
that H = Pn \ Cn is the hyperplane at infinity.)THEOREM (Lárusson - Sigurdsson). Let X be a connected open subset of Cn. Then for
each z ∈ Cn,

−VX(z) = sup
f




∑

f(ζ)∈H

log |ζ|





taken over all analytic maps f : ∆ → Pn with f(∂∆) ⊂ X and f(0) = z0.

Because of (8) this theorem provides us with an analytic map fr : ∆ → Pn with
fr(∂∆) ⊂ Kr and fr(0) = z0 such that

∑

fr(ζ)∈H

log |ζ| > −K − 1. (9)

Putting M = K + 1, we see that fr satisfies condition (iii). (Note: {ζ : fr(ζ) ∈ H} =

{ζ
(r)
1 , ..., ζ

(r)
Nr

}.) Standard transversality theory implies that for an open dense subset of
Gz0

≡ {g ∈ PGL(n + 1,C) : g(z0) = z0} the map g ◦ fr is transversal to H, that is, g ◦ fr

satisfies condition (iv). (Since the group Gz0
acts transitively on Pn − {z0}, one can use,

for example, Sard’s Theorem for families as in [HL1].) Choosing g sufficiently close to the
identity we may assume that g◦fr(∂∆) ⊂ Kr and that (9) holds with fr replaced by g◦fr.
Choosing this approximation we see that f ′

r = g ◦ fr satisfies all the conditions (i) – (iv).
So we have constructed the desired family {fr}r, and necessity is established. This

completes the proof of Theorem 1.NOTE 1. The function f appearing in Theorem 2 could be constant (≡ z0), but if it is not,
then we obtain a non-trivial analytic disk through z0 which lies entirely in the projective
hull γ̂.
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The Examples.

Example 1. We shall use Theorem 2 to construct a closed curve γ0 ⊂ C2, which is real
analytic at all but one point, and whose projective hull contains a “large” Riemann surface
Σ. In particular, Σ will be the image of a holomorphic map of the open disk Int∆ which
takes boundary values continuously (in fact, analytically) on γ0 at all but one point. We
shall then show that the closure of γ̂0 in P2 is exactly the union of a projective line L and
a proper complex analytic (but not algebraic) subvariety W ⊂ P2 \ L which extends Σ.

To produce Σ we shall construct a family of holomorphic maps fn : ∆ → P2, n =
1, 2, ... satisfying conditions (i) – (iv) for a sequence rn ց 0 and with z0 = (0, 0).

To begin choose a sequence of numbers {ǫj} , 0 < ǫj < 1, such that
∑∞

j=1 ǫj < ∞.
Put aj = 1 − ǫj , j = 1, 2, .... Next choose a sequence of positive numbers {cj} such that∑∞

j=1
cj

ǫj
< ∞. For n = 1, 2, ... we put

ωn(ζ) =

n∑

j=1

cj

ζ − aj

+

n∑

j=1

cj

aj

.

Let fn(ζ) = (ζ, ωn(ζ)) for ζ ∈ ∆. Then {fn} is a sequence of holomorphic maps ∆ → P2

such that fn has the poles ζ
(n)
j = aj, j = 1, ..., n. Put

ω(ζ) =

∞∑

j=1

cj

ζ − aj

+

∞∑

j=1

cj

aj

for |ζ| = 1.

For any ζ with |ζ| ≥ 1, we have |ζ − aj| ≥ 1 − aj , so

∣∣∣∣
cj

ζ − aj

∣∣∣∣ ≤
cj

1 − aj

=
cj

ǫj

and so
∞∑

j=1

∣∣∣∣
cj

ζ − aj

∣∣∣∣ ≤

∞∑

j=1

cj

ǫj

,

and by our hypothesis the right hand side converges. Thus the series defining ω(ζ) con-
verges absolutely on |ζ| = 1. In fact it converges absolutely and uniformly for |ζ| ≥ 1.

We define γ0 to be the graph of the function ω over the curve |ζ| = 1 in C2.
Fix a point ζ with |ζ| = 1 and fix n. The point (ζ, ω(ζ)) lies on γ0. Hence,

dist(fn(ζ), γ0) ≤ |ω(ζ) − ωn(ζ)|

=

∣∣∣∣∣∣




∞∑

j=1

cj

ζ − aj

+

∞∑

j=1

cj

aj


−




n∑

j=1

cj

ζ − aj

+

n∑

j=1

cj

aj




∣∣∣∣∣∣

=

∣∣∣∣∣∣




∞∑

j=n+1

cj

ζ − aj

+
∞∑

j=n+1

cj

aj




∣∣∣∣∣∣
≤

∞∑

j=n+1

cj

1 − aj

+
∞∑

j=n+1

cj

aj

.
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Fix r. We recall that the set Kr is the tube around γ0 of radius r. In view of
the preceding, dist(fn(∂∆), γ0) becomes arbitrarily small for all n large enough. So the
sequence {fn} satisfies condition (i) for a suitable sequence of numbers rn ց 0.

Next observe that fn(0) = (0, ωn(0)) = (0, 0) for all n. Hence, the sequence {fn}
satisfies condition (ii) with z0 = (0, 0).

Finally, fix n and note that ζ
(n)
j = aj , j = 1, ..., n are exactly the poles of the map fn.

Now we have

log |ζ
(n)
j | = log aj = log(1 − ǫj) ∼ −ǫj , j = 1, 2, 3, ...

so
n∑

j=1

log |ζ
(n)
j | ∼ −

n∑

j=1

ǫj .

Now
∑n

j=1 ǫj ≤
∑∞

j=1 ǫj ≡ M < ∞ for all n, and so −
∑n

j=1 ǫj ≥ −M for all n. Thus, for
some M ′ we have

n∑

j=1

log |ζ
(n)
j | ≥ −M ′ for all n,

and the sequence satisfies condition (iii). Condition (iv) is straightforward to verify, and
we are done with the construction.

Fix a point ζ in ∆ \
⋃∞

j=1 aj . Then fn(ζ) = (ζ, ωn(ζ)) and as n → ∞,

fn(ζ) → (ζ, ω(ζ)),

where

ω(ζ) =

∞∑

j=1

cj

ζ − aj

+

∞∑

j=1

cj

aj

. (10)

It is easily verified that this series converges uniformly in ζ on compact subsets of Int∆ \⋃∞
j=1 aj . In fact it converges uniformly on compact subsets of the domain C\{1}∪

⋃∞
j=1 aj.

Consider the meromorphic map f(ζ) = (ζ, ω(ζ)) on Int∆. It follows from Theorem 2
that

Σ ≡ f(Int∆) ⊂ γ̂0.

This includes all points on the graph of ω over Int∆ \
⋃∞

j=1 aj.

NB. The meromorphic map f is in fact a holomorphic map f : Int∆ → P2. However,
its image passes infinitely often through the point ℓ ∈ H ∼= P1 corresponding to the
“vertical” line in C2. In particular, the image of f is not an analytic subvariety at that
point.

We observed above that the function ω(ζ) defined in (10) converges uniformly in
C \ Int∆. Moreover, its graph extends across infinity to give a regularly embedded disk
Σ− in P2 with boundary γ0, taken from the “outside”. Thus by [HL2, Prop. 2.3] we have
Σ− ⊂ γ̂0.
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We now denote by L ⊂ P2 the projective line determined by ζ = 1. Let W be the
closure in P2 − L of the graph of ω. Note that

W = Σ ∪ Σ− \ {ℓ, p}

where ℓ is the common polar point referred to above and p = (1, ω(1)). Note that W is a
complex analytic subvariety of dimension 1 in P2 − L. We have proved that W ⊆ γ̂0.THEOREM 3. For appropriate choices of the sequences {ǫj} and {cj} one has that

γ̂0 = W ∪ {ℓ, p} and (γ̂0) = W ∪ L

Proof. We must show that points of P2\(W∪{ℓ, p}) do not lie on γ̂0. The second assertion
then follows from the Picard Theorem applied to the essential singularity of ω at 1.

Consider the polynomial of degree N + 1:

PN (z, w) ≡

(
w − κ −

N∑

n=1

cn

z − an

)
N∏

n=1

(z − an) (11)

Note that

PN (z, w(z)) =

(
∞∑

n=N+1

cn

z − an

)
N∏

n=1

(z − an)

For |z| = 1 we have the estimate that |z − an| ≥ ǫn. Hence we have

‖PN‖γ0
= sup

|z|=1

∣∣∣∣∣

(
∞∑

n=N+1

cn

z − an

)
N∏

n=1

(z − an)

∣∣∣∣∣ ≤

(
∞∑

n=N+1

cn

ǫn

)
2N (12)

Now choose {cn}, {ǫn} so that

∞∑

n=N+1

cn

ǫn

<

(
1

N + 1

)N+1

(13)

For example set ǫn = 1
2n and cn = 1

2n
1
2n

1
nn

Now choose z with z 6= 1 and z 6= an for any n. Pick any w 6= w(z). Consider equation
(11). The first factor on the RHS converges to w − w(z) 6= 0. The second factor satisfies

∣∣∣∣∣

N∏

n=1

(z − an)

∣∣∣∣∣

1
N+1

−→ |z − 1| 6= 0.

There cannot exist a constant C > 0 so that

|PN (z, w)|
1

N+1 ≤ C {‖PN‖γ0
}

1
N+1
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for all N since this implies

0 6= t|z − 1| ≤
2C

N + 1

by (12) and (13).
Suppose now that z = an for some n. In equation (11) move (z − an) over to the left

factor so that factor becomes regular at an. Then we have

PN (an, w) = cn

N∏

j 6=n

(an − aj).

Again we see that ∣∣∣∣∣∣

N∏

j 6=n

(an − aj)

∣∣∣∣∣∣

1
N+1

−→ |an − 1| 6= 0.

and the same contradiction results.
Suppose now that ζ = 1 and w 6= ω(1). We now choose our sequence {cn} to converge

even more rapidly so that

∞∑

n=N+1

cn

ǫn

<

(
1

N + 1

)(N+1)(N+1)

(13)′

For example set ǫn = 1
2n and cn = 1

2n
1
2n

1
nn2 . Then for large N one has

PN (1, w) ∼ (w − ω(1))

N∏

n=1

ǫn = (w − w(1))

N∏

n=1

1

2n
=

(
1

2

)N(N+1)
2

Comparing with (13)′ as above shows that (1, w) /∈ γ̂0 when w − ω(1) 6= 0.
It now remains only to eliminate all points on the line H at infinity except for ℓ and

p. We begin with the following observation. Let PN ∈ H0(P2,O(N + 1)) denote the
holomorphic section corresponding to the polynomial PN . Then equations (3) and (4)
imply that for some constant K and all N

sup
γ0

‖PN‖ ≤

(
2K

N + 1

)N+1

(14)

where ‖ • ‖ denotes the standard metric in the line bundle O(N + 1). This equation (14)
can be interpreted in any coordinate chart.

We make a change of coordinates as follows. First let s = z − 1 and set P ′
N (s, w) =

PN (s+1, w). We now pass to homogeneous coordinates (t0, s0, w0) where the corresponding
homogeneous polynomial is

QN (t0, s0, w0) ≡ tN+1
0 P ′

N

(
s0

t0
,
w0

t0

)
.
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Next we pass to the affine coordinate chart defined by setting s0 = 1, or equivalently by
dividing by s0. This gives new coordinates (t1, w1) where t1 = t0/s0 and w1 = w0/s0.
Thus, the change of coordinates from the old chart (where t0 = 1) is: t1 = 1/s, w1 = w/s.

For simplicity of notation we relabel these new affine coordinates as (t, w). In this
affine chart our polynomial is expressed in terms of QN be setting s0 = 1, that is, the
polynomial is now P ′′

N (t, w) = QN (t, 1, w). Calculation shows that

P ′′
N (t, w) =

(
w − κt −

N∑

n=1

cnt2

1 + ǫnt

)
N∏

n=1

(1 + ǫnt).

Now in the affine (t, w) coordinates the line L has become the line at infinity, and the old
line at infinity H corresponds to {t = 0}. The point ℓ lies at infinity on H and the point
p corresponds to (0, 0). Note that

P ′′
N (0, w) = w and ‖P ′′

N (0, w)‖ =

(
1

1 + |w|2

)N+1
2

|w| (15)

Now if (0, w) ∈ γ̂0 for w 6= 0, then there would be a constant C > 0 such that

‖P ′′
N (0, w)‖

1
N+1 ≤ C

(
sup
γ0

‖P ′′
N‖

) 1
N+1

contradicting (14) and (15).EXAMPLE 2. We repeat the construction above with poles clustering at all points of ∂∆.
Put

ω̃n(ζ) ≡

n∑

k=1

k∑

ℓ=1

(
ck

ζ − e
2πiℓ

k ak

)
− κn

where κn is chosen so that ω̃n(0) = 0. Let ak = 1 − ǫk and choose ǫk > 0 and ck > 0
so that

∑
k ǫk < ∞ and

∑
k

kck

ǫk
< ∞. We now proceed in exact analogy with Example

1. The limit ω = limn ωn converges absolutely on ∂∆ and its graph defines a curve γ∞

in C2. The same limit over Int∆ defines a meromorphic function whose graph lies in the
projective hull γ̂∞ by Theorem 2. This limit also exists at all points of C \ ∆ and gives
an exterior analytic disk contained in γ̂∞.

In this example the closure of γ̂∞ contains ∂∆ ×C, a subset if dimension 3.
Set

ω(ζ) =
∞∑

n=1

cn

ζ − an

+ κ where κ =
∞∑

n=1

cn

an

We are considering the graph W of f(ζ) = (ζ, ω(ζ)) for ζ 6= an any n. Our curve γ0 is
just the graph of ω above ∂∆. For rapidly converging {cn} the analogue of Theorem 3 will
hold.
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