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ABSTRACT

This is an essay on potential theory for geometric plurisubharmonic
functions. It begins with a given closed subset Gl of the Grassmann bundle
G(p, TX) of tangent p-planes to a riemannian manifold X . This determines
a nonlinear partial differential equation which is convex but never uniformly
elliptic (p < dimX). A surprising number of results in complex analysis
carry over to this more general setting. The notions of: a Gl -submanifold, an
upper semi-continuous Gl -plurisubharmonic function, a Gl -convex domain, a
Gl -harmonic function, and a Gl -free submanifold, are defined. Results include
a restriction theorem as well as the existence and uniqueness of solutions to
the Dirichlet Problem for Gl -harmonic functions on Gl -convex domains.
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1. Introduction

In a recent series of papers [HL1]–[HL8] the authors have studied certain aspects
of degenerate non-linear elliptic partial differential equations and “subequations”. The
results include the development of a generalized potential theory, a restriction theorem,
and solutions to the Dirichlet Problem. An important special case – and, in fact, the
motivating case – of all these results is the “geometric” one, in which the equation is
determined by a distinguished family Gl of tangent p-planes on a manifold (as we explain
below). There are many interesting geometric cases coming, for instance, from the theory
of calibrations, from almost complex and quaternionic geometry, and from p-convexity in
riemannian and hermitian geometry. However, these examples will not be emphasized here
since they occur in profusion in the earlier papers.

One aim of this paper is to collect together the various results in the geometric case.
Because of their importance as motivation and their usefulness in non-geometric cases, we
thought it would be helpful to present them in a coordinated fashion. This exposition also
includes several new theorems.

Given an n-dimensional riemannian manifold X , let G(p, TX) denote the Grassmann
bundle whose fibre at a point x is the set of p-dimensional subspaces of the tangent space
TxX . The starting point is to distinguish a subset Gl ⊂ G(p, TX) determining the partic-
ular “geometry”. Then, for example, one defines the Gl -submanifolds to simply be those
p-dimensional submanifolds M of X with TxM ∈ Gl for all x ∈M . There is also the ana-
lytical notion of a Gl -plurisubharmonic function, defined for smooth functions u by using
the riemannian hessian Hessxu. For each W ∈ G(p, TxX), one can restrict this quadratic
form on TxX to W and take its trace. We then define u ∈ PSH∞

Gl (X), the set of smooth
Gl -plurisubharmonic functions on X , by requiring that:

trW Hessxu ≥ 0 ∀W ∈ Gl x, ∀x ∈ X. (1.1)

The set P(Gl x) ⊂ Sym2(TxX) of Gl -positive quadratic forms (i.e., those satisfying (1.1))
is a closed convex cone with vertex at the origin but it is never uniformly elliptic, unless
p = dimX .

The smooth theory, i.e., the study of PSH∞
Gl (X), is for the most part a straightforward

extension of standard results in complex analysis – where Gl is simply the set of complex
lines in Cn, and the functions u ∈ PSH∞

Gl (X) are the standard smooth plurisubharmonics
on a domain X ⊂ Cn. In Section 4 the existence of various kinds of exhaustion functions
for X are characterized in terms of Gl -convex hulls and the Gl -core. The Gl -core is empty
if and only if X admits a smooth strictly Gl -plurisubharmonic function (Definition 4.1
and Theorem 4.2). We recall the notion of a Gl -free submanifold which generalizes the
notion of a totally real submanifold in complex analysis. The maximal possible dimension
of such submanifolds provides an upper bound on the homotopy type of strictly Gl -convex
manifolds (Theorem 4.16). In Section 5 the Gl -convexity of the boundary of a domain is
defined and related to the second fundamental form of the boundary, and also to properties
of local defining functions for the boundary.

The notion of Gl -plurisubharmonicity for a general upper semi-continuous function u
is defined in Section 6 by requiring that each “viscosity” test function ϕ for u at each point

2



x ∈ X satisfies (1.1) (cf. [C],[CIL]). A key positivity condition (Remark 6.3) is satisfied,
which ensures that smooth Gl -plurisubharmonic functions are also Gl -plurisubharmonic
in the second sense (cf. Lemma 6.2). A surprising number of the basic properties of
plurisubharmonic functions in complex analysis carry over to the general geometric case,
provided that Gl is a closed set which locally surjects onto X (Theorem 6.5).

Under the additional (but still quite weak) assumption that Gl admits a smooth
neighborhood retraction which preserves the fibres of the projection π : G(p, TX) → X ,
restriction holds in the sense that for any upper semi-continuous u ∈ PSHGl (X) and any
minimal Gl -submanifold M ⊂ X , the restriction u

∣∣
M

is subharmonic for the riemannian

Laplacian ∆M on M (Theorem 6.7). That is, u
∣∣
M

is subharmonic in any of the many

(equivalent) classical senses. For instance, u
∣∣
M

is “sub-the-∆M -harmonics”. Finally, if
each W ∈ Gl is the tangent space to some minimal Gl -submanifold M , then the converse
to restriction also holds. This justifies the terminology “plurisubharmonic’.

Next we discuss the solution to the Dirichlet problem on domains Ω ⊂⊂ X with
smooth strictly Gl -convex boundary and no core.

A smooth function u is Gl −harmonic if in addition to the inequality (1.1) holding,
at each point x there exists a W ∈ Gl x such that equality holds, i.e., trW Hessxu = 0. In
terms of the set P(Gl x) defined by (1.1), this is the requirement that Hessxu ∈ ∂P(Gl x) at
each point x.

The notion of the Dirichlet dual P̃(Gl ) of P(Gl ), defined in (7.1), enables one to
extend this notion of Gl -harmonicity to general continuous functions since ∂P(Gl ) =

P(Gl )∩ (−P̃(Gl )) and P̃(Gl ) satisfies the positivity condition required of a subequation (see
Section 7). First, we give a proof of the maximum principle for any upper semi-continuous

function u which is P̃(Gl )-subharmonic (much weaker than Gl =plurisubharmonic ) under
our hypothesis that the Gl -core is empty. This easily established result is a precursor to

comparison. This notion of P̃(Gl )-subharmonic is referred to as dually Gl -plurisubharmonic
in this paper.

As long as Gl is in a weak sense modeled on a euclidean case Gl 0 ⊂ G(p,Rn), both
existence and uniqueness hold for the Dirichlet Problem for Gl -harmonic func-
tions on Ω (see Definition 7.5 and Theorem 7.6). An outline of our proof from [HL7] is
provided in Section 7.

Since each closed convex set in a vector space V (in our case Sym2(TxX)) is the
intersection of its supporting closed half-spaces, linear subequations can be made to play
a special role in understanding our Gl -subequations. This is seen in Sections 8 and 9.

In Section 8 we consider the case where each Gl x involves all the variables in the
tangent space TxX . This means there does not exist a proper linear subspace W ⊂ TxX
with Gl x ⊂ Sym2(W ), and it is equivalent (see Lemma 8.1) to the condition that there
exists A ∈ SpanGl with A > 0. Under the mild condition of regularity (Definition 6.8),
this enables one to write the subequation P(Gl ) locally as the intersection of a family of
uniformly elliptic subequations (Corollary 8.3), a fact that has many consequences. One
is the Strong Maximum Principle for Gl -plurisubharmonic functions (see Theorem 8.5).

There is a distributional notion of Gl -plurisubharmonicity (but not of Gl harmonic-
ity). In Section 9 we prove that Gl -plurisubharmonic functions and distributionally Gl -
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plurisubharmonic functions are equivalent in a sense made very precise by Theorem 9.2
under the hypothesis that Gl involves all the variables and is regular. Strict Gl -pluri-
subharmonicity can also be defined distributionally and is again equivalent to the viscosity
definition (Theorem 9.8). Section 9 concludes with a local-to-global result (of Richberg
type [R]) for C∞ approximation of strictly Gl -plurisubharmonic functions.

Some of the technical issues involving the various hypotheses on Gl , such as: Gl
closed, Gl locally surjective onto X , Gl having a fibre-preserving neighborhood retract, or
Gl modeled on a euclidean case Gl 0, are discussed in Appendix A, in conjunction with a
discussion of the concept of a subequation (Definition A.2) in the geometric case.

In appendix B we characterize the subequations which are both linear and geometric
under the weak notion of local jet equivalence (Proposition B.4).

Finally we note that the extreme case, where Gl = G(p, TX) is chosen to be the full
grassmann bundle, is a basic Gl -geometry. There are many additional results specific to
this case which are discussed in a separate but companion paper [HL9]. In that paper we
use the classical terminology: p-plurisubharmonicity, p-convexity, etc.

2. Gl -Plurisubharmonicity for Smooth Functions.

This concept will be developed in stages. We begin with the basic case.

Euclidean Space.

Suppose V is an n-dimensional real inner product space, and fix an integer p, with
1 ≤ p ≤ n. Let Sym2(V ) denote the space of symmetric endomorphisms of V . Using the
inner product, this space is identified with the space of quadratic forms on V . Let G(p, V )
denote the set of p-dimensional subspaces of V . For W ∈ G(p, V ), the W -trace of A,
denoted trWA, is the trace of the restriction A

∣∣
W

of A to W .

We identify the Grassmannian G(p, V ) with a subset of Sym2(V ) by identifying a
subspace W with orthogonal projection PW onto the subspace W . The natural inner
product on Sym2(V ) is defined by using the trace, namely 〈A,B〉 = tr(AB). Under this
identification we have

trWA = 〈A, PW 〉 (2.1)

Let D2
xu denote the second derivative of a function u at x ∈ V .

Definition 2.1. Suppose that Gl is a closed subset of the Grassmannian G(p, V ).

(a) A form A ∈ Sym2(V ) is Gl -positive if

trWA ≥ 0 ∀W ∈ Gl . (2.2)

(b) A smooth function u defined on an open subset X ⊂ V is said to be
Gl -plurisubharmonic if

trWD2
xu ≥ 0 ∀W ∈ Gl and ∀x ∈ X. (2.3)

Let P(Gl ) denote the set of all Gl -positive forms A ∈ Sym2(V ), and let PSH∞
Gl (X)

denote the set of all smooth Gl -plurisubharmonic function on X . If trWA > 0 for all
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W ∈ Gl , then A is said to be Gl -strict. Similarly, if the inequalities in (2.3) are all strict,
then u is said to be strictly Gl -plurisubharmonic.

Note that:

u ∈ PSH∞
Gl (X) ⇐⇒ D2

xu ∈ P(Gl ) ∀x ∈ X , and

u is Gl -strict ⇐⇒ D2
xu ∈ IntP(Gl ) ∀x ∈ X

The next result justifies the terminology. We shall say that a function u is subharmonic
on an affine subspace W if ∆W

(
u
∣∣
W∩X

)
≥ 0 where ∆W is the euclidean Laplacian on W.

A p-dimensional affine subspace W is called an affine Gl -plane if its corresponding vector
subspace W is a Gl -plane.

Proposition 2.2. A function u ∈ C∞(X) is Gl -plurisubharmonic if and only if the
restriction u

∣∣
W∩X

is subharmonic for all affine Gl -planes W ⊂ Rn.

Proof. This is obvious from Condition (2) since with v = u
∣∣
W∩X

, we have trWD2u = ∆Wv
on W ∩X .

Riemannian Manifolds.

Suppose X is an n-dimensional riemannian manifold. Then the euclidean notions
above carry over with V = TxX and the ordinary second derivative of a smooth function
replaced by the riemannian hessian. Now the set Gl will be an arbitrary closed subset of
the Grassmann bundle π : G(p, TX) → X . For u ∈ C∞(X) this is a well defined section
of the bundle Sym2(TX) given on tangent vector fields V,W by

(Hessu)(V,W ) = VWu− (∇VW )u, (2.4)

where ∇ denotes the Levi-Civita connection. Note that under composition with a smooth
function ϕ : R → R,

Hessϕ(u) = ϕ′(u)Hessu+ ϕ′′(u)∇u ◦ ∇u (2.5)

Definition 2.1′. A smooth function u on X is said to be Gl -plurisubharmonic if Hessxu
is Gl x-positive (where Gl x = Gl ∩ π−1(x)) at each point x ∈ X , i.e.,

trW Hessxu ≥ 0 ∀W ∈ Gl x and ∀x ∈ X. (2.3)′

Again let PSH∞
Gl (X) denote the set of all smooth Gl -plurisubharmonic functions on

X , and let P(Gl ) denote the subset of Sym2(TX) with fibres P(Gl x), the set of Gl x-positive
elements in Sym2(TxX). If the inequalities in (2.3)′ are all strict at x, then we say that u
is strictly Gl -plurisubharmonic at x.

Exercise 2.1. (Convex Composition Property). If ϕ ∈ C∞(R) is convex and
increasing, then u ∈ PSH∞

Gl (X) ⇒ ϕ ◦ u ∈ PSH∞
Gl (X). If, furthermore ϕ is strictly

increasing and convex, then u strictly Gl -psh ⇒ ϕ ◦ u strictly Gl -psh.
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Exercise 2.2. Show that if u ∈ C∞(X) is strictly Gl -psh at a point x ∈ X , then u is
strictly Gl -psh in a neighborhood of x. (See Claim 1 in the proof of Lemma A.3.)

Exercise 2.3. Take X ≡ R and let Gl ⊂ G(1, TX) = X ×G(1,R) be defined by setting
Gl x = G(1,R) if x ≥ 0 and Gl x = ∅ if x < 0. Show that P(Gl ) ⊂ X × Sym2(R) = R2 has
fibres R if x < 0 and R+ = [0,∞) if x ≥ 0. In particular, note that P(Gl ) is not a closed
set even though Gl is closed.

3. Gl -Submanifolds and Restriction.

The appropriate geometric objects (in a sense dual to the Gl -plurisubharmonic func-
tions) are the minimal Gl -submanifolds. In the euclidean case this enlarges the family of
affine Gl -planes used in Proposition 2.2.

Definition 3.1. If M is a p-dimensional submanifold of X with TxM ∈ Gl x for all x ∈M ,
then M is said to be a Gl -submanifold.

Restriction holds as follows.

THEOREM 3.2. If a function u ∈ C∞(X) is Gl -plurisubharmonic, then the restriction of
u to every minimal Gl -submanifold M is subharmonic in the induced riemannian structure
on M .

Remark 3.3. If Gl is determined by a calibration φ, i.e., Gl consists of the p-planes
calibrated by φ (with the orientation dropped), then Gl -submanifolds are automatically
minimal. Recently, Robles [Ro] has shown that if the calibration is parallel, then this
remains true for any critical set Gl corresponding to a non-zero critical value of the cali-
bration.

Proof. Suppose M ⊂ X is any p-dimensional submanifold, and let HM denote its mean
curvature vector field. Then

∆M

(
u
∣∣
M

)
= trTMHessu−HMu.

In particular, if M is minimal, then

∆M

(
u
∣∣
M

)
= trTMHessu. (3.1)

If M is a Gl -submanifold, then trTMHessu ≥ 0 and the result follows.

Remark 3.4. If for every point x ∈ X and every p-plane W ∈ Gl x, there exists a minimal
submanifold M with TxM = W , then the converse to Theorem 3.2 is true (use the formula
(3.1)).
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4. Gl -Convexity and the Core.

We will answer four questions concerning the existence of Gl -plurisubharmonic func-
tions.

(1) When does there exist u ∈ PSH∞
Gl (X) which is everywhere strict?

(2) When does there exist u ∈ PSH∞
Gl (X) which is a proper exhaustion for X?

(3) When does there exist u ∈ PSH∞
Gl (X) which is both strict and an exhaustion?

(4) When does there exist u ∈ PSH∞
Gl (X) which is an exhaustion and strict near ∞?

The answers illustrate some of the flexibility available in constructing Gl -plurisubharmonic
functions.

First we characterize those manifoldsX which admit a smooth strictly Gl -plurisubharmonic
function.

Definition 4.1. (The Core). The Gl -core of X is defined to be the subset

CoreGl (X) = {x ∈ X : no u ∈ PSH∞
Gl (X) is strict at x}.

Note that the core is the intersection over u ∈ PSH∞
Gl (X) of the closed sets where the

given u is not strict, and as such is a closed subset of X (see Exercise 2.2).

THEOREM 4.2. The manifold X admits a smooth strictly Gl -plurisubharmonic function
⇐⇒ CoreGl (X) = ∅. In fact, there exists a function ψ ∈ PSH∞

Gl (X) which is Gl -strict at
each point x /∈ CoreGl (X).

Proof. The implication ⇒ is clear from the definition. For the converse choose an exhaus-
tion of X by compact subsets K1 ⊂ K2 ⊂ · · ·. Given any sequence of smooth functions
uj ∈ C∞(X) and numbers ǫj > 0, j ≥ 1 with

∑
ǫj < ∞, if we choose numbers δj > 0

sufficiently small that the semi-norms

‖w‖K,j ≡ sup
K

∑

|α|≤j

|Dαuj | < ǫj .

satisfy
δj‖uj‖Kj ,j ≤ ǫj ,

then u =
∑

j δjuj converges in the C∞-topology to u ∈ C∞(X).
If v is Gl -strict at a point x, then v is Gl -strict in a neighborhood of x (Exercise 2.2).

Therefore, if K is a compact set disjoint from CoreGl (X), then we can find v ∈ PSH∞
Gl (X)

which is Gl -strict at each point of K. Hence, we may choose uj ∈ PSH∞
Gl (X) with uj strict

at each point of Kj of distance ≥ 1/j from CoreGl (X). Take ψ ≡
∑
δjuj as above.

Remark. Essentially the same argument proves that there exists ψ ∈ PSH∞
Gl (X) such

that trW Hessψ > 0 for all Gl -planes W which do not lie in the tangential core (see [HL1]).

Definition 4.3. (The Gl -Convex Hull). Given a subset K ⊂ X , the Gl -convex hull
of K is the set

K̂ = {x ∈ X : u(x) ≤ sup
K

u ∀u ∈ PSH∞
Gl (X)}.

7



Note that
̂̂
K = K̂ and that K̂ is closed.

THEOREM 4.4. (Gl -Convexity and Exhaustion). The following three conditions
are equivalent.

(1) If K ⊂⊂ X , then K̂ ⊂⊂ X .

(2) X admits a smooth Gl -plurisubharmonic proper exhaustion function u.

(3) For some neighborhood of ∞, X −K with K compact,
there exists u ∈ PSH∞

Gl (X −K) with limx→∞ u(x) = +∞.

Condition (3) is a weakening of condition (2) to a local condition at ∞ in the one-point
compactification X = X ∪ {∞}.

Definition 4.5. We say that X is Gl -convex if one of the equivalent condition in
Theorem 4.4 holds.

The implication (3) ⇒ (2) is immediate from the next (stronger) result. Here K is a
compact subset of X .

Lemma 4.6. Given v ∈ PSH∞
Gl (X − K) with limx→∞ v(x) = +∞, there exists u ∈

PSH∞
Gl (X) such that u = v in a neighborhood of ∞.

Proof. For c sufficiently large, v is smooth and Gl -plurisubharmonic outside the compact
set {x ∈ X : v(x) ≤ c − 1}. Pick a convex increasing function ϕ ∈ C∞(R) with ϕ ≡ c
on a neighborhood of (−∞, c− 1] and ϕ(t) = t on (c + 1,∞). Then by Exercise 2.1, the
composition ϕ◦ v is smooth and Gl -plurisubharmonic on all of X . Moreover, u = v outside
the compact set {x ∈ X : v(x) ≤ c+ 1}.

Proof that (2) ⇒ (1). If K is compact, then c = supK u < ∞, and K̂ is contained in
the compact set {u ≤ c}.

The implication (1) ⇒ (2) is a construction using the next lemma.

Lemma 4.7. Suppose K ⊂ X is compact. If x /∈ K̂, then there exists u ∈ PSH∞
Gl (X)

satisfying:

(a) u ≡ 0 on a neighborhood of K,

(b) u(x) > 0, and

(c) u is strict at x if x /∈ CoreGl (X).

Proof. Suppose x /∈ K̂. Then there exists v ∈ PSH∞
Gl (X) with supK v < 0 < v(x). Pick

ϕ ∈ C∞(R) with ϕ ≡ 0 on (−∞, 0] and with ϕ > 0 and convex increasing on (0,∞). Then
u = ϕ ◦ v satisfies the required conditions. Furthermore, assume h ∈ PSH∞

Gl (X) is strict
at x. Then take v = v + ǫh. For small enough ǫ, supK v < 0 < v(x). If ϕ is also strictly
increasing on (0,∞), then u = ϕ ◦ v is strict at x.

Proof that (1) ⇒ (2). A Gl -plurisubharmonic proper exhaustion function on X is
constructed as follows. Choose an exhaustion of X by compact Gl -convex subsets K1 ⊂
K2 ⊂ K3 ⊂ · · · with Km ⊂ K0

m+1 for all m. By Lemma 4.7 and the compactness
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of Km+2 − K0
m+1, there exists a Gl -plurisubharmonic function fm ≥ 0 on X with fm

identically zero on a neighborhood of Km and fm > 0 on Km+2 − K0
m+1. By re-scaling

we may assume fm > m on Km+2 −K0
m+1. The locally finite sum f =

∑∞
m=1 fm satisfies

(2).

Next we characterize the existence of a strict exhaustion function.

THEOREM 4.8. (Strict Gl -Convexity). The following conditions are equivalent:

(1) CoreGl (X) = ∅, and if K ⊂⊂ X , then K̂ ⊂⊂ X ,

(2)X admits a smooth proper exhaustion function which is strictly Gl -plurisubharmonic.

Proof that (1) ⇒ (2). Since CoreGl (X) = ∅, there exists a strictly Gl -plurisubharmonic
function v by Proposition 4.2. If u is a Gl -plurisubharmonic exhaustion function given by
Theorem 4.4, then u+ ev is a strict exhaustion.

Definition 4.9. We say that X is strictly Gl -convex if one of the equivalent conditions
of Theorem 4.8 holds.

Corollary 4.10. Suppose that CoreGl (X) = ∅. If X is Gl -convex , then X is strictly
Gl -convex .

THEOREM 4.11. (Strict Gl -Convexity at Infinity). The following conditions are
equivalent:

(1) CoreGl (X) is compact, and if K ⊂⊂ X , then K̂ ⊂⊂ X ,

(2) X admits u ∈ PSHGl (X) with limx→∞ u(x) = ∞ and u strict outside a
compact subset.

(3) CoreGl (X) is compact, and X admits u ∈ PSHGl (X −K), for some compact
subset K, with limx→∞ u(x) = ∞.

Proof that (3) ⇒ (2). Apply Lemma 4.6.

Proof that (2) ⇒ (1). (Straightforward)

Proof that (1) ⇒ (3). CoreGl (X) ≡ K is compact ⇒ CoreGl (X −K) = ∅.

Definition 4.12. We say that X is strictly Gl -convex at infinity if one of the equivalent
condition in Theorem 4.11 holds.

Some of the previous results can be summarized as follows.

Corollary 4.13. Suppose CoreGl (X) = ∅. Then the following are equivalent.

(1) X is Gl -convex.

(2) X is strictly Gl -convex.

(3) X is strictly Gl -convex at infinity.

Proof. Use Theorems 4.4 and 4.11.
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Proposition 4.14. Suppose (M, ∂M) is a compact connected Gl -submanifold-with-
boundary in X . If M is minimal (stationary), then

(1) If ∂M = ∅, then M ⊂ CoreGl (X).

(2) If ∂M 6= ∅, then M ⊂ ∂̂M .

Proof. Since the restriction of any u ∈ PSH∞
Gl (X) to M is subharmonic on M , the

maximum principle applies to u
∣∣
M

.

This proposition provides an analogue of the support Lemma 3.2 in [HL2]:

If M is a minimal Gl submanifold, then M ⊂ ∂̂M ∪ CoreGl (X).

The existence question for strictly Gl -convex manifolds has two sides. We briefly
mention these results from both [HL1] and [HL4].

Definition 4.15. (Gl -Free). A subspace V ⊂ TX is said to be Gl -free if there are no
Gl -planes contained in V . The maximal dimension of such a free subspace, taken over
all points x ∈ X , is called the free dimension of Gl and is denoted freedim(Gl ). A
submanifold M of X is Gl -free if TxM is Gl -free for each x ∈M .

Strict Gl -convexity of X imposes conditions on the topology of X .

THEOREM 4.16. A strictly Gl -convex manifold has the homotopy type of a CW complex
of dimension ≤ freedim(Gl ).

The free dimension of G is computed in many examples in [HL1] and summarized in
[HL4].

On the other hand, the existence of many strictly Gl -convex manifolds is guaranteed
by another result (see Theorem 6.6 in [HL1]).

THEOREM 4.17. Suppose M is a Gl -free submanifold of X . Then M has a fundamental
neighborhood system in X consisting of strictly Gl -convex manifolds, each of which has M
as a deformation retract.

5. Boundary Convexity

Suppose that Ω ⊂ X is an open connected set with smooth non-empty boundary ∂Ω
contained in an oriented riemannian manifold. Fix a closed subset Gl ⊂ G(p, TX).

Definition 5.5. A p-plane W ∈ Gl x at x ∈ ∂Ω is called a tangential Gl -plane at x if
W ⊂ Tx(∂Ω).

Denote by II = II∂Ω the second fundamental form of the boundary with respect to
the inward pointing normal n. This is a symmetric bilinear form on each tangent space
Tx(∂Ω) defined by

II(v, w) = −〈∇vn, w〉 = 〈n,∇vW 〉

where W is any vector field tangent to ∂Ω with Wx = w.
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Definition 5.2. The boundary ∂Ω is Gl -convex at a point x if trW IIx ≥ 0 for all
tangential Gl -planes W at x. If this inequality is strict, then we say that ∂Ω is strictly
Gl -convex at x.

Definition 5.3. (Local defining functions). Suppose ρ is a smooth function on a
neighborhood B of a point x ∈ ∂Ω with ∂Ω ∩B = {ρ = 0} and Ω ∩B = {ρ < 0}. If dρ is
non-zero on ∂Ω ∩B, then ρ is called a local defining function for ∂Ω.

Lemma 5.4. If ρ is a local defining function for ∂Ω, then for all x ∈ ∂Ω ∩B,

Hessxρ
∣∣
Tx(∂Ω)

= |∇ρ(x)|IIx

Proof. Suppose that e is a vector field on B tangent to ∂Ω along ∂Ω, and note that
II(e, e) = 〈n,∇ee〉 = − 1

|∇ρ|〈∇ρ,∇ee〉 and −〈∇ρ,∇ee〉 = −(∇ee)(ρ) = e(eρ)− (∇ee)(ρ) =

(Hess ρ)(e, e).

Corollary 5.5. The boundary ∂Ω is Gl -convex at a point x if and only if

trW Hess ρ ≥ 0 for all Gl −planes W tangent to ∂Ω at x (5.1)

where ρ is a local defining function for ∂Ω. In particular the condition (5.1) is independent
of the choice of local defining function ρ. Moreover, the boundary is strictly Gl -convex at
a point x if and only if the inequalities in(5.1) are all strict, again with independence of
the choice of ρ.

Remark 5.6. If ∂Ω is Gl -free at a point x ∈ ∂Ω (see Definition 4.15), then ∂Ω is auto-
matically strictly Gl -convex at x since there are no tangential Gl -planes W to consider. For
example, in the extreme case p = n (the Laplacian subequation) all boundaries ∂Ω are
strict at each point since all hyperplanes in TxX are Gl -free.

THEOREM 5.7. Suppose that ∂Ω is strictly Gl -convex. Then there exists a global Gl -
plurisubharmonic defining function ρ ∈ C∞(Ω) which is strict on a collar {−ǫ ≤ ρ ≤ 0}.
If Core(Ω) = ∅, then ρ can be chosen to be strict on all of Ω.

Corollary 5.8. If ∂Ω is strictly Gl -convex, then Ω is strictly Gl -convex at ∞; and if
Core(Ω) = ∅, then Ω is strictly Gl -convex.

Proof of Corollary. Suppose that ρ ∈ C∞(Ω) is a defining function for ∂Ω. Then
−log(−ρ) is an exhaustion funtion for Ω. Since the function ψ : (−∞, 0) → (−∞,∞)
defined by ψ(t) = −log(−t)is strictly convex and increasing,

−log(−ρ) is strictly Gl −plurisubharmonic at points in Ω

where ρ is strictly Gl −plurisubharmonic.
(5.2)

(See Exercise 2.1.)

Proof of Theorem. Start with an arbitrary defining function ρ ∈ C∞(Ω) for ∂Ω. Set
ρ̃ ≡ ρ+ λ

2ρ
2 with λ > 0. Then at points in ∂Ω

Hess ρ̃ = (1 + λρ)Hess ρ+ λ∇ρ ◦ ∇ρ = Hess ρ+ λ∇ρ ◦ ∇ρ. (5.3)
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We will show that:

For λ sufficiently large, ρ̃ = ρ+ λ
2
ρ2 is strictly Gl −plurisubharmonic

at every boundary point x ∈ ∂Ω.
(5.4)

It then follows that ρ̃ is strictly Gl -plurisubharmonic in a neighborhood of ∂Ω in X , and
hence on some collar {−ǫ ≤ ρ̃ ≤ 0} with ǫ > 0. Choose ψ(t) convex and increasing with
ψ(t) ≡ −ǫ if t ≤ −ǫ, and ψ(t) = t if t ≥ − ǫ

2 . Then ψ(ρ̃) is Gl -plurisubharmonic on Ω and
equal to ρ̃ on the collar {−ǫ ≤ ρ̃ ≤ 0}, thereby providing the required defining function. If
Core(Ω) is empty, then add the global strictly Gl -plurisubharmonic function, provided by
Theorem 4.2, to ψ(ρ̃).

It remains to prove (5.4). Each p-plane V ∈ G(p, TxX) can be put in canonical form
with respect to Tx∂Ω. Let n denote a unit normal to Tx∂Ω in TxX . Choose an orthonormal
basis e1, ..., ep for V such that e2, ..., ep is an orthonormal basis for V ∩ (Tx∂Ω). Then
e = cos θV n+ sin θV e1 defines an angle θV mod π and a unit vector e1 ∈ Tx∂Ω. Now by
(5.3) we have

trV Hess ρ̃ = trV Hess ρ+ λ cos2 θV |∇ρ|2. (5.5)

The inequality | cos θV | < δ defines a fundamental neighborhood system for G(p, T∂Ω)
as a subset of the bundle G(p, TX)

∣∣
∂Ω

. Intersecting with Gl
∣∣
∂Ω

we see that Gl ∩G(p, T∂Ω)

has a fundamental neighborhood system in Gl
∣∣
∂Ω

given by Nδ ≡ {V ∈ Gl x : x ∈
∂Ω and | cos θV | < δ}. Since ∂Ω is strictly Gl -convex, there exists η > 0 such that
trW Hess ρ ≥ 2η for all W ∈ Gl ∩ G(p, T∂Ω). Hence for δ small, trV Hess ρ ≥ η for all
V ∈ Nδ. Choose a lower bound −M for trV Hess ρ over all V ∈ Gl

∣∣
∂Ω

.

Assume V ∈ Gl x, x ∈ ∂Ω. For | cos θV | < δ, trV Hessρ̃ ≥ η + λ cos2 θV |∇ρ|2 ≥ η. For
| cos θV | ≥ δ, trV Hess ρ̃ ≥ −M + λδ2|∇ρ|2 which is ≥ η if λ is chosen large. This proves
(5.4).

Remark 5.9. Simple examples show that strict Gl -convexity of ∂Ω does not imply that
every defining function ρ for ∂Ω is strictly Gl -plurisubharmonic at points of ∂Ω. However,
the exhaustion −log(−ρ) is always strictly Gl -plurisubharmonic on a small enough collar
of ∂Ω. For the proof of this, compute Hess(−log(−ρ)) and mimick the proof of Theorem
5.7 on the hypersurfaces {ρ = ǫ} (see the proof of Theorem 5.6 in [HL1]).

Remark 5.10. (Signed Distance). Recall that a defining function ρ for Ω satisfies
|∇ρ| ≡ 1 in a neighborhood of ∂Ω if and only if ρ is the signed distance to ∂Ω (< 0 in Ω
and > 0 outside of Ω). In fact any function ρ with |∇ρ| ≡ 1 in a riemannian manifold is,
up to an additive constant, the distance function to (any) one of its level sets. In this case
it is easy to see that

Hess ρ =

(
0 0
0 II

)
(5.6)

where II denotes the second fundamental form of the hypersurface H = {ρ = ρ(x)} with
respect to the normal n = −∇ρ and the blocking in (5.6) is with respect to the splitting
TxX = NxH ⊕ TxH. For example let ρ(x) = ‖x‖ ≡ r in Rn. Then direct calculation
shows that Hess ρ = 1

r
(I − x̂ ◦ x̂) where x̂ = x/r. Moreover,

Hess(ρ+ λρ2) =

(
2λ 0
0 II

)
(5.7)
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simplifying the proof of (5.3). Moreover, setting δ = −ρ ≥ 0, the actual distance to ∂Ω in
Ω, we have

Hess(−logδ) =
1

δ

(
1
δ

0
0 II

)
(5.8)

giving an easy proof of Remark 5.9 for this ρ. Namely, with δ(x) ≡ dist(x, ∂Ω) we have
that

∂Ω strictly Gl −convex ⇒ −logδ is strictly Gl −psh in a collar. (5.9)

Remark 5.11. (Gl -Parallel). If Gl is parallel as a subset of G(p, TX) ⊂ Sym2(TX),
then a weakened form of the converse to (5.9) is true. Namely,

If −logδ is Gl -plurisubharmonic in a collar, then ∂Ω is Gl -convex at each point.

Proof. If ∂Ω is not Gl -convex at x ∈ ∂Ω, then with ρ ≡ −δ, trW Hessxρ < 0 for some
W ∈ Gl x tangential to ∂Ω at x. let γ denote the geodesic segment in Ω which emanates
orthogonally from ∂Ω at x. Since δ is the distance function to ∂Ω, γ is an integral curve
of ∇δ. Let Wy denote the parallel translate of W along γ to y. Then Wy ∈ Gl y and
(∇δ)y ⊥Wy. Therefore by (5.8), trWy

Hessy(−logδ) = 1
δ
trWy

Hessy(ρ) < 0 for y sufficiently
close to x. Hence −logδ is not Gl -plurisubharmonic near ∂Ω.

Local Convexity of a Domain Ω ⊂ X

For simplicity assume that CoreGl (X) is empty. Then for each open subset Y ⊂ X the
three notions of convexity, namely Gl -convexity, strict Gl -convexity, and strict Gl -convexity
at infinity, are all equivalent.

Definition 5.12. A domain Ω ⊂ X is locally Gl -convex if each point x ∈ ∂Ω has a
neighborhood U in X such that U ∩ Ω is Gl -convex.

Small balls are Gl -convex and the intersection of two Gl -convex domains is again
Gl -convex. Therefore:

If Ω is Gl −convex, then Ω is locally Gl −convex. (5.10)

Using terminology from complex analysis, we formulate the “Levi Problem”: For
which pairs X,Gl does

Ω locally Gl −convex ⇒ Ω is Gl −convex? (5.10)

Even in the euclidean case this is not always true. Here is a counterexample.

Example 5.13. (Horizontal convexity in R2). Take Gl = {R × {0}} ⊂ G(1,R2) a
singleton consisting of the x1-axis. A domain is Gl -convex if and only if all of its horizontal
slices are connected. Choose Ω ⊂⊂ R2 with the property that ∂Ω contains the interval
[−1, 1] on the x1-axis, the lower half of the circle of radius 3 about the origin, and the points
(−2, 1), (2, 1). This can be done with Ω locally Gl -convex but not globally Gl -convex. In
addition, the boundary of Ω can be made Gl -convex.

By contrast, one of the main results of [HL9] is the solution to the Levi Problem in
euclidean space in the extreme case Gl = G(p,Rn).
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6. Upper Semi-Continuous Gl -Plurisubharmonic Functions.

Let X be a riemannian manifold, and assume that Gl ⊂ G(p, TX) is a closed subset.
Denote by USC(X) the space of upper semi-continuous [−∞,∞)-valued functions on X .
By a test function for u ∈ USC(X) at a point x we mean a C2-function ϕ, defined near
x, such that u ≤ ϕ near x and u(x) = ϕ(x).

Definition 6.1. A function u ∈ USC(X) is Gl -plurisubharmonic if for each x ∈ X and
each test function ϕ for u at x, the riemannian hessian Hessxϕ at x satisfies

trW Hessxϕ ≥ 0 ∀W ∈ Gl x

i.e., Hessxϕ ∈ P(Gl x). The space of these functions is denoted by PSHGl (X).

This definition is an extension of Definition 2.1′ because of the following.

Lemma 6.2. Suppose u ∈ C2(X). Then for a point x ∈ X , the following are equivalent:

trW Hessxϕ ≥ 0 ∀W ∈ Gl x and all test functions ϕ for u at x, (6.1)

trW Hessxu ≥ 0 ∀W ∈ Gl x, (6.2)

Proof. Note that (6.1) ⇒ (6.2) because we can take ϕ = u in (6.1). Assume (6.2) and that
ϕ is a test function for u at x. Then ψ ≡ ϕ−u ≥ 0 near x and vanishes at x. Hence x is a
critical point for ψ, and the second derivative or hessian of ψ is a well defined non-negative
element of Sym2(TxX), independent of any metric. In particular, trW Hessxψ ≥ 0 for all
W ∈ G(p, TxX). Since Hessxϕ = Hessxu+ Hessxψ, taking the W -trace with W ∈ Gl x, we
see that (6.2) ⇒ (6.1).

Remark 6.3. (Positivity). Let Px ⊂ Sym2(TxX) denote the subset of non-negative
elements. Replacing P(Gl ) ⊂ Sym2(TX) with a general closed subset F ⊂ Sym2(TX), the
above (standard) proof shows that (6.2) implies (6.1), i.e., Hessxu ∈ Fx ⇒ Hessxϕ ∈ Fx,
provided that F satisfies the positivity condition:

Fx + Px ⊂ Fx for all x ∈ X. (P )

There are several equivalent ways of stating the condition (6.1). We record one that
is particularly useful, and refer the reader to Appendix A in [HL7] for the proof as well as
the statements of the other conditions.

Lemma 6.4. Suppose u ∈ USC(X). Then u /∈ PSHGl (X) if and only if ∃x0 ∈ X,α > 0,
and a smooth function ϕ defined near x0 satisfying:

u− ϕ ≤ −α|x− x0|
2 near x0

u− ϕ = 0 at x0

but with trW Hessx0
ϕ < 0 for some W ∈ Gl x0

.
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Elementary Properties

Even though Gl ⊂ Sym2(TX) is closed, the subset P(Gl ) ⊂ Sym2(TX) of Gl -positive
elements may not be closed (see Exercise 2.3). However, by Proposition A.6 below, P(Gl )
is closed if and only if π

∣∣
Gl

is a local surjection. We make this assumption unless the
contrary is stated.

The following basic facts can be found for example in [HL7, Theorem 2.6]. In fact
they hold with P(Gl ) replaced by any subequation (see Definition A.2).

THEOREM 6.5.

(a) (Maximum Property) If u, v ∈ PSHGl (X), then w = max{u, v} ∈ PSHGl (X).

(b) (Coherence Property) If u ∈ PSHGl (X) is twice differentiable at x ∈ X , then Hessxu
is Gl -positive.

(c) (Decreasing Sequence Property) If {uj} is a decreasing (uj ≥ uj+1) sequence of func-
tions with all uj ∈ PSHGl (X), then the limit u = limj→∞ uj ∈ PSHGl (X).

(d) (Uniform Limit Property) Suppose {uj} ⊂ PSHGl (X) is a sequence which converges
to u uniformly on compact subsets to X , then u ∈ PSHGl (X).

(e) (Families Locally Bounded Above) Suppose F ⊂ PSHGl (X) is a family of functions
which are locally uniformly bounded above. Then the upper semicontinuous regular-
ization v∗ of the upper envelope

v(x) = sup
u∈F

u(x)

belongs to PSHGl (X).

Example 6.6. The following examples show that Properties (c), (d) and (e) require that
the set P(Gl ) be closed. Let X = R and Gl x = {TxR} ∈ G(1, TX) if x ≥ 0 and Gl x = ∅
for x < 0. Note that Gl is a closed set. Then P(Gl x) = Sym2(TxX) ∼= R for x < 0 and
P(Gl x) = {A ∈ Sym2(TxX) : A ≥ 0} for x ≥ 0. Note that P(Gl ) is not closed in R × R.
This subequation is simply the requirement that

u′′(x) ≥ 0 for all x ≥ 0.

Fix a constant a > 0 and set

u(x) =

{
0 if x ≥ 0,

x(a− x) if x ≤ 0.

This function fails to be Gl -plurisubharmonic at 0. To see this note that ϕ(x) = x(a− x)
is a test function for u at 0 and ϕ′′(0) < 0.

For each δ > 0 set vδ(x) = u(x + δ) + δ. Note that graph(vδ) = graph(u) + (−δ, δ).
Then each vδ is Gl -plurisubharmonic and vδ ↓ u as δ → 0. Hence condition (c) fails.

Now for each ǫ > 0, define uǫ ≡ min{u,−ǫ}. Then uǫ is Gl -plurisubharmonic for all ǫ
and uǫ ↑ u as ǫ→ 0. Hence conditions (d) and (e) also fail.
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Restriction

Throughout this subsection we assume that Gl ⊂ G(p, TX) is a closed set admitting a
smooth neighborhood retraction preserving the fibres of the projection π : G(p, TX) → X .
The terminology Gl -plurisubharmonic for u ∈ USC(X) is justified by the next result, which
extends Theorem 3.2.

THEOREM 6.7. If u ∈ PSHGl (X), then for every minimal Gl -submanifold M , the
restriction u

∣∣
M

is ∆-subharmonic where ∆ is the Laplace-Beltrami operator in the induced
riemannian metric on M .

This result can be extended to submanifolds M of dimension larger that p. Let
Gl M ≡ {W ∈ G(p, TM) : W ∈ Gl } denote the set of tangential Gl -planes to M . This
set Gl M defines a notion of Gl M -plurisubharmonicity for functions w ∈ USC(M).

Definition 6.8. We say that Gl is regular if at every point x0 ∈ X , each element
W0 ∈ Gl x0

has a local smooth extension to a section W (x) of Gl .

Definition 6.9. A submanifold M of X is Gl -flat if the second fundamental form B of
M satisfies

tr
(
B

∣∣
W

)
= 0 for all tangential Gl planes W ∈ Gl M (6.3)

THEOREM 6.10. Suppose M is a Gl -flat submanifold of X and that the subset Gl M ⊂
G(p, TM) is regular on M . If u ∈ PSHGl (X), then u

∣∣
M

∈ PSHGl M
(M).

See Section 8 of [HL8] for a more complete discussion, including Example 8.4, which
shows that Gl M being regular is necessary in Theorem 6.10. The proof uses Lemma 8.3 in
[HL8] which is stated in this paper as Proposition 8.4 below.

7. Gl -Harmonic Functions and the Dirichlet Problem.

In this section we discuss the Dirichlet problem for extremal or Gl -harmonic functions.
These are natural generalizations of solutions of the classical homogeneous Monge-Ampère
problem, in both the real and complex cases (and constitute a very special case of the
general F -harmonic functions treated in [HL7]). To do this we must introduce the Dirichlet
dual.

Dually Gl -Plurisubharmonic Functions

We first define the Dirichlet dual of the subset F ≡ P(Gl ) ⊂ Sym2(TX), to be the

subset F̃ ≡ P̃(Gl ) ⊂ Sym2(TX) whose fibres are given by

F̃x = −(∼ IntFx) = ∼ (−IntFx). (7.1)

Since
A ∈ IntFx ⇐⇒ trWA > 0 for all W ∈ Gl x, (7.2)

it is easy to see that

A ∈ F̃x ⇐⇒ trWA ≥ 0 for some W ∈ Gl x, (7.3)
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Definition 7.1. A smooth function u on X is said to be dually Gl -plurisubharmonic
if at each point x ∈ X

∃W ∈ Gl x with trW Hessxu ≥ 0, or equivalently Hessxu ∈ P̃(Gl ).

More generally a function u ∈ USC(X) is dually Gl -plurisubharmonic if for each point
x ∈ X and each test function ϕ for u at x,

∃W ∈ Gl x with trW Hessxϕ ≥ 0, or equivalently Hessxϕ ∈ P̃(Gl ).

The set of all such functions is denoted P̃SHGl (X).

First note that P̃(Gl ) satisfies the positivity condition (P), so that as noted in Remark

6.3, if a smooth function u satisfies Hessxu ∈ P̃(Gl ), then for each test function ϕ for u at x,

we have Hessxϕ ∈ P̃(Gl ), making the second definition an extension of the first definition.
Second, assuming that π

∣∣
Gl

is a local surjection as in Definition A.5, it then follows that

not only P(Gl ), but also P̃(Gl ) is closed. As a consequence,

the set P̃SHGl (X) satisfies all of the properties given in Theorem 6.5. (7.4)

In fact P̃(Gl ) is a subequation (Definition A.2).
By Theorem 4.2 if CoreGl (X) = ∅, then X admits a smooth function ψ which

is strictly Gl -plurisubharmonic at each point. Of course, P(Gl ) ⊂ P̃(Gl ), so that the
dually Gl -plurisubharmonic functions on X constitute a much larger class than the Gl -
plurisubharmonic functions. Again we assume that π

∣∣
Gl

is a local surjection.

THEOREM 7.2. (The Maximum Principle for Dually Gl -Plurisubharmonic
Functions). Suppose CoreGl (X) = ∅. Then for each compact subset K ⊂ X and each

u ∈ P̃SHGl (K) ≡ USC(X) ∩ P̃SHGl (IntK) we have:

sup
K

u ≤ sup
∂K

u.

The proof is classical and completely elementary. Moreover, one can easily see that
this maximum principle is equivalent to the special case of comparison (Theorem 7.7 below)
where u is smooth.

Proof. Suppose it fails. Then there exist a compact set K, a function u ∈ P̃SHGl (K) and
a point x̄ ∈ IntK with u(x̄) > sup∂K u. Let ψ be a smooth strictly Gl -psh function on
X . Then for ǫ > 0 sufficiently small, the function u + ǫψ will also have a maximum at
some point x ∈ IntK. Thus −ǫψ is a test function for u at x, and therefore Hessx(−ǫψ) ∈

˜Px(Gl ) = −(∼ IntPx(Gl )), i.e., Hessx(ψ) /∈ IntPx(Gl ) contradicting the strictness of ψ at x.
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The Convex-Increasing Composition Property in Exercise 2.1 not only extends to the
upper semi-continuous case, but also to the much larger class of dually Gl -plurisubharmonic
functions.

Lemma 7.3. (Composition Property). Suppose ϕ : R → R is both convex and
increasing (i.e., non-decreasing). Then

u ∈ ˜PSHGl (X) ⇒ ϕ ◦ u ∈ ˜PSHGl (X) (a)

If ϕ is also strictly increasing, then in addition to (a) we have that

u is Gl strict ⇒ ϕ ◦ u is Gl strict (b)

where we refer ahead to Definition 7.7 for the notion of strictness.

Proof. We can assume that ϕ is smooth since it can be approximated by a decreasing
sequence ϕǫ via convolution. Observe now that:

ψ is a test function for u at x ⇐⇒ ϕ ◦ ψ is a test function for ϕ ◦ u at x.
This reduces the proof to the case where ϕ and u are both smooth, and formula (2.5)
applies with both coefficients ϕ′(u(x)) and ϕ′′(u(x)) ≥ 0.

Gl -Harmonics

To understand the next definition note that

∂P(Gl ) = P(Gl ) ∩ (−P̃(Gl )) (7.5)

Definition 7.4. A function u on X is said to be Gl -harmonic if

u ∈ PSHGl (X) and − u ∈ P̃SHGl (X).

By (7.5) we see that a C2-function u on X is Gl -harmonic if and only if

Hessxu ∈ ∂P(Gl x) for all x ∈ X.

In order to solve the Dirichlet Problem for Gl -harmonic functions on domains Ω ⊂ X ,
we restrict Gl ⊂ G(p, TX) to be modeled on a “constant coefficient” case Gl 0 ⊂ G(p,Rn).

Definition 7.5. A closed subset Gl ⊂ G(p, TX) is locally trivial with fibre Gl 0 ⊂
G(p,Rn), if in a neighborhood each point x ∈ X there exists a local tangent frame field
so that under the associated trivialization φ : G(p, TU)

∼=−−−→ U ×G(p,Rn) we have

φ : Gl
∣∣
U

∼=−−−→ U × Gl 0.

This can be formulated somewhat differently. Let Aut(Gl 0) = {g ∈ GLn : g(Gl 0) = Gl 0}.
Then given a closed subset Gl ⊂ G(p, TX) which is locally trivial with fibre Gl 0, the local
tangent frame fields in Definition 7.5 provide X with a topological Aut(Gl 0)-structure (see
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§5 in [HL7]). Conversely, if X admits a topological Aut(Gl 0)-structure, then the euclidean
model Gl 0 ⊂ G(p,Rn) determines a canonical closed subset Gl ⊂ G(p, TX) which is locally
trivial with fibre Gl 0. In other words, a euclidean model can be transplanted to any
manifold with a topological Aut(Gl 0)-structure (again see §5 in [HL7]).

In the language of [HL7, §6]: “Gl is locally trivial with fibre Gl 0” means that the
subequation P(Gl ) is locally jet equivalent to the constant coefficient subequation P(Gl 0).

In the next two theorems X is a riemannian manifold and Gl ⊂ G(p, TX) is a closed,
locally trivial set with non-empty fibre.

THEOREM 7.6. (The Dirichlet Problem). Suppose that Ω ⊂⊂ X is a domain with
a smooth, strictly Gl -convex boundary ∂Ω and CoreGl (Ω) = ∅. Then the Dirichlet problem
for Gl -harmonic functions is uniquely solvable on Ω. That is, for each ϕ ∈ C(∂Ω), there
exists a unique Gl -harmonic function u ∈ C(Ω) such that

(i) u
∣∣
Ω

is Gl -harmonic, and

(ii) u
∣∣
∂Ω

= ϕ.

This is the special case Theorems 16.1 of Theorem 13.1 in [HL7]. There are many
interesting examples. See [HL7] for a long list.

Boundary convexity is not required for uniqueness, only an empty core for X . As
usual uniqueness is immediate from comparison.

THEOREM 7.7. (Comparison). Suppose that CoreGl (X) = ∅ and K ⊂ X is compact.

If u ∈ PSHGl (K) and v ∈ P̃SHGl (K), then the zero maximum principle holds, that is,

u+ v ≤ 0 on ∂K ⇒ u+ v ≤ 0 on K. (ZMP)

Outline of proof. By definition u, v ∈ USC(K) and on the interior IntK, u is Gl -
plurisubharmonic and v is dually Gl -plurisubharmonic. The appropriate notion of strict
plurisubharmonicity for general upper semi-continuous functions plays a crucial role, and
will be discussed below after outlining its importance. If (ZMP) holds for all compact
K ⊂ X under the additional assumption that u is Gl -strict, we say that weak comparison
holds for Gl on X . This weakened version of comparison has one big advantage, namely
that local implies global (Theorem 8.3 in [HL7]). The proof of completed by showing two
things. First,

Weak comparison is true locally. (7.6)

This follows by a argument based on the “Theorem on Sums” – see Section 10 in [HL7].
Second, strict approximation holds. That is, since CoreGl (X) = ∅, X supports a C2 strictly
Gl -plurisubharmonic function ψ, and

If u is Gl −plurisubharmonic,

then u+ ǫψ is strictly Gl −plurisubharmonic, for each ǫ > 0.
(7.7)

This follows easily from the definition of strictness. Using weak comparison and strict
approximation, one shows that in the limit comparison holds.
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Strictness

Definition 7.8. A function u ∈ USC(X) is strictly Gl -plurisubharmonic if each point
in X has a neighborhood U along with a constant c > 0 such that for each point x ∈ U
and each test function ϕ for u at x

trW Hessxϕ ≥ c for all W ∈ Gl x. (7.8)

To see that this definition of strict agrees with the one given in [HL7, Def. 7.4,]
one must compare (7.8) with distance in Sym2(TxX). For this first note that for W ∈
G(p, TxX) the (signed) distance of a point A ∈ Sym2(TxX) to the boundary of the positive
half-space defined by the unit normal 1

p
PW is simply 〈A, 1

p
PW 〉. Consequently, the distance

from A ∈ P(Gl x) to ∼ P(Gl x) is given by

dist(A,∼ P(Gl x)) = inf
W∈Gl x

〈A, 1
p
PW 〉 = inf

W∈Gl x

1
p
trWA. (7.9)

For each fixed c > 0, c-strictness is a subequation. Therefore, all the properties
in Theorem 6.5 hold for c-strict Gl -plurisubharmonic functions. Moreover, as noted in
Lemma 7.3, if ϕ is convex and strictly increasing, the composition property holds. Finally,
strictness is “stable”.

Lemma 7.9. (C∞-Stability Property). Suppose u is strictly Gl -plurisubharmonic and
ψ ∈ C∞(X) with compact support. Then u + ǫψ is strictly Gl -plurisubharmonic for all ǫ
sufficiently small.

Proof. This is Corollary 7.6 in [HL7].

8. Geometric Subequations Involving all the Variables.

This is a concept which distinguishes, for example, the full Laplacian on Rn, which
involves all the variables, from the pth partial Laplacian ∆p, which does not. We shall first
treat the euclidean case (see Section 2 of [HL4]). The results will then be carried over to
a general riemannian manifold X .

Fix a finite dimensional inner product space V and suppose Gl ⊂ G(p, V ) is a closed
subset of the grassmannian. Let SpanGl denote the span in Sym2(V ) of the elements PW

with W ∈ Gl , and let P+(Gl ) denote the convex cone on Gl with vertex at the origin in
Sym2(V ). Examples show that SpanGl is often a proper vector subspace of Sym2(V ),
in which case P+(Gl ) will have no interior in Sym2(V ). However, considered as a subset
of the vector space SpanGl , the interior of P+(Gl ) has closure equal to P+(Gl ). We
define Int0P+(Gl ) to be the interior of P+(Gl ) in SpanGl (not in Sym2(V )). In particular,
Int0P+(Gl ) is never empty, and P+(Gl ) = Int0P+(Gl ).

By Definition 2.1, P(Gl ) = {B ∈ Sym2(V ) : 〈B,PW 〉 ≥ 0 for all W ∈ Gl }. Hence,
P(Gl ) ⊂ H(A) for each closed half-space H(A) ≡ {B ∈ Sym2(V ) : 〈A,B〉 ≥ 0} determined
by a non-zero A ∈ P+(Gl ). This proves that

P(Gl ) =
⋂

A∈P+(Gl )

H(A),
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i.e., P(Gl ) is the “polar” of P+(Gl ). (Therefore, by the Hahn-Banach/Bipolar Theorem
P+(Gl ) is the polar of P(Gl ).)

Since P+(Gl ) = Int0P+(Gl ), this intersection can be taken over the smaller set of
A ∈ Int0P+(Gl ). That is,

P(Gl ) =
⋂

A∈Int0P+(Gl )

H(A). (8.1)

This is what will be used below, since the involvement of all the variables in Gl insures
that such A are positive definite, i.e., the linear operators 〈A,D2u〉 are uniformly elliptic.

The linear operator ∆Au ≡ 〈A,D2u〉 with A ≥ 0 will be referred to as the A-
Laplacian. Note that from our set theoretic point of view, the subequation ∆A ⊂
Sym2(V ) is precisely the closed half-space H(A).

The following is a restatement of Proposition 2.8 in [HL4] (see also Remark 4.8, page
874 of [K]).

Lemma 8.1. The following are equivalent ways of defining the concept that Gl involves
all the variables.

(1) The only vector v ∈ Sym2(V ) with v ⊥W for all W ∈ Gl is v = 0.

(2) For each unit vector e ∈ V , Pe is never orthogonal to SpanGl .

(3) There does not exist a hyperplane W ⊂ V with Gl ⊂ Sym2(W ) ⊂ Sym2(V ).

(4) Int0P+(Gl ) ⊂ IntP, i.e., each A ∈ Int0P+(Gl ) is positive definite.

(5) There exists A ∈ SpanGl with A > 0.

In Section 2 of [HL4] such subsets Gl were called “elliptic”.
We shall apply Lemma 8.1 to the case V = TxX on a riemannian manifold X . We

say that a closed subset Gl ⊂ G(p, TX) involves all the variables if each fibre Gl x ⊂
G(p, TxX) involves all the variables in the vector space V ≡ TxX . For any smooth section
A(x) ≥ 0 of Sym2(TX) the linear operator

∆Au ≡ 〈A(x),Hessxu〉

will again be referred to as the A-Laplacian.
Recall from Definition 6.8 that Gl is regular if each element W0 ∈ Gl x can be locally

extended to a smooth section W (y) of Gl . This immediately implies that each element
A0 ∈ P+(Gl x) can be locally extended to a smooth section A(y) with A(y) ∈ P+(Gl y),
(since A0 =

∑
k tkWk for tk > 0 and Wk ∈ Gl x). Furthermore, if A(x) > 0, then A(y) > 0

for y near x. This proves the following.

Lemma 8.2. Suppose Gl ⊂ G(p, TX) is a closed subset involving all the variables and
that Gl is regular. Then

P(Gl x) =
⋂
H(A(x)) for each x ∈ X (8.1)′

where the intersection is taken over all smooth P+(Gl )-valued section A(y) where A(y) > 0
for y near x.
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Corollary 8.3. A function u ∈ USC(X) is Gl -plurisubharmonic ⇐⇒ u is ∆A-
subharmonic for each smooth (local) section A of Sym2(TX) with values in P+(Gl ) and
A > 0.

Proof. If A is a section of P+(Gl ), then P+(Gl ) ⊂ ∆A over a neighborhood U of x, so that
each Gl -plurisubharmonic function on U is automatically ∆A-subharmonic. Conversely, if
u is ∆A-subharmonic for each (local) section A of P+(Gl ) with A > 0, and if ϕ is a test
function for u at x, then Hessxϕ ∈ H(A(x)), and therefore by (8.1)′, Hessxϕ ∈ P(Gl x).

Note 8.4. The simple argument just given also shows the following. Suppose F is a
subequation on X which can be written as an intersection of subequations F =

⋂
α Fα.

Then for u ∈ USC(X), u is F -subharmonic if and only if u is Fα-subharmonic for all α.

Corollary 8.3 has many consequences. We mention one.

THEOREM 8.5. (The Strong Maximum Principle for Gl -Plurisubharmonic
Functions). Suppose Gl ⊂ G(p, TX) is regular and involves all the variables. Then for
any compact subset K with IntK connected and K = IntK, if u ∈ PSHGl (K) has an
interior maximum point, then u

∣∣
K

is constant.

Proof. Unlike the maximum principle, if the strong maximum principle is true locally, it
is true globally. However, locally we have P(Gl ) ⊂ ∆A with A > 0, so the (SMP) for ∆A

implies the (SMP) for P(Gl ).

We provide an example which shows that if the core is non-empty and the equation
does not involve all the variables, then the (MP), and hence the (SMP) can fail.

Example 8.6. Let X ⊂ Rn+1 be the unit sphere Sn = {(x1, ..., xn, y) ∈ Rn × R :
x2

1 + · · · + x2
n + y2 = 1} with the points y = ±1 removed. Let H = ker

(
dy

∣∣
TX

)
be the

field of “horizontal” (n−1)-planes on X tangent to the foliation by the latitudinal spheres
{y = constant}, and set Gl z = {H(z)} for z ∈ Sn so that Gl ⊂ G(n− 1, TX). Calculation
shows that for a smooth function ϕ defined in a neighborhood of X ,

(HessXϕ)(V,W ) = (HessR
n+1

ϕ)(V,W )− 〈V,W 〉ν · ϕ

where ν is the outward-pointing unit normal to X .
Now let ϕ = 1

2 (1 − y2). Then for V,W ∈ H(z) horizontal vector fields, the first term
vanishes and the second term yields

(HessXϕ)(V,W ) = y2〈V,W 〉

Hence trW {HessXϕ} = (n − 1)y2, proving that ϕ ∈ PSH∞
Gl (X) and that it is Gl -strict

outside y = 0. Therefore, the maximum principle fails for Gl -plurisubharmonic functions
on any domain Ω ⊂⊂ X which contains Sn−1

0 ≡ {y = 0} in its interior. For any such
domain,

Sn−1
0 ⊂ Core(Ω)

because Sn−1
0 is a compact minimal Gl -submanifold and therefore any Gl -plurisubharmonic

function restricted to it must be constant. (See Theorem 6.9.)
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Note that trH{HessXu} ≥ 0 is a linear subequation of constant rank and therefore
locally jet equivalent to the partial Laplacian ∆n in local coordinates (Proposition B.3).
Consequently, this subequation satisfies weak local comparison (see the discussion of the
proof of Theorem 7.7). However, it does not satisfy comparison since it does not satisfy
the maximum principle.

We note that the maximum principle also fails for the subequation consisting of all
the p-dimensional linear subspaces of Gl (given above), for any p, 1 ≤ p ≤ n− 1.

9. Distributionally Gl -Plurisubharmonic Functions.

It is easy to see that for the pth partial Laplacian ∆p on V = Rn, p < n, there
are lots of distributional subharmonics (i.e., distributions u with ∆pu a non-negative mea-
sure) which are not upper semi-continuous, and hence cannot be horizontally subharmonic.
However, if a closed set Gl ⊂ G(p, V ) involves all the variables, then the appropriate distri-
butional definition of Gl -plurisubharmonicity, although technically not equal, is equivalent
to Definition 6.1. This constant coefficient result was proved in Corollary 5.4 of [HL4]. In
this section we extend the result to the variable coefficient case.

First we give the distributional definition.

Definition 9.1. A distribution u ∈ D′(X) on a riemannian manifold X is distribu-
tionally Gl -plurisubharmonic if ∆Au ≥ 0 (a non-negative measure) for every smooth
section A(x) of Sym2(TX) taking values in P+(Gl ).

This distributional notion can not be the “same” as Gl -plurisubharmonicity, but it is
equivalent in a sense we now make precise. We exclude the Gl -plurisubharmonic functions
which are ≡ −∞ on any component ofX . Let L1

loc(X) denote the space of locally integrable
functions on X .

THEOREM 9.2. Assume that Gl ⊂ G(p, TX) involves all the variables and is regular.

(a) Suppose u is Gl -plurisubharmonic . Then u ∈ L1
loc(X) ⊂ D′(X), and u is

distributionally Gl -plurisubharmonic.

(b) Suppose v ∈ D′(X) is distributionally Gl -plurisubharmonic. Then v ∈ L1
loc(X),

and there exists a unique upper semi-continuous representative u of the L1
loc(X)-class v

which is Gl -plurisubharmonic. In fact,

u(x) = ess lim sup
y→x

v(x)

is actually independent of Gl .

Proof. Under the hypothesis of Theorem 9.2 we can use the next proposition along with
Corollary 8.3 to reduce to proving the analogous result for A-Laplacians ∆A where A(x)
is a smooth section of Sym2(TX) having the additional property that A(x) > 0, i.e., ∆A

is uniformly elliptic.

Proposition 9.3. A distribution v ∈ D′(X) is distributionally Gl -plurisubharmonic ⇐⇒
v is distributionally ∆A-subharmonic for each smooth (local) section A of Sym2(TX) with
values in P+(Gl ) and A > 0.
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Proof. Suppose A is a local smooth section of P+(Gl ) with A(y) > 0 as in Definition 8.1.
Fix x ∈ X and note that since Gl x involves all the variables, there exists S0 ∈ Int0P+(Gl x)
and S0 > 0 (Lemma 8.1 (4)). By the regularity of Gl there exists a local section S(y) of
P+(Gl ) extending S0. Since S0 > 0, we have that S(y) > 0 in a neighborhood U of x.
Now for each ǫ > 0, (A + ǫS)(y) > 0 on U . That is, locally any smooth section taking
values in P+(Gl ) can be approximated by P+(Gl )-valued sections which are positive definite.
Assuming ∆A+ǫSu ≥ 0, this implies ∆Au ≥ 0.

Completion of the Proof of Theorem 9.2. First note that this is a local result. Note
that for each positive definite P+(Gl )-valued section A(x), the A-Laplacian ∆A is of the
form

∆Au = a(x) ·D2
xu+ b(x) ·Dxu

where a(x) is a positive definite n×n matrix and b(x) is Rn-valued. Now the analogue of
Theorem 9.2, with Gl -plurisubharmonicity replaced by ∆A-subharmonicity, is true. Details
can be found in Appendix A of [HL6]. An important point in the proof of Theorem 9.2
(b) is that the upper semi-continuous representative u provided by Appendix A in [HL6]
for a ∆A-subharmonic distribution v is the same for all sections A(x) > 0, since it is the
ess-limsup regularization of the L1

loc-class v.

Remark 9.4. The ∆A-harmonics are smooth, and the notion of ∆A-subharmonicity is
also equivalent to the self-defining notion “sub-the-∆A-harmonics” – again see Appendix
A in [HL6].

The following gives an easily verified criterion for the regularity of Gl .

Exercise 9.5. Suppose Gl ⊂ G(p, TX) is a closed subset which is a smooth fibre-wise
neighborhood retract in G(p, TX). Then Gl is regular.

Also note that Gl is a smooth fibre-wise neighborhood retract in G(p, TX) if and only
if it is a smooth fibre-wise neighborhood retract in Sym2(TX).

Strictness

Recall that Gl -strictness for u ∈ USC(X) was defined in Section 7. The requirement
was that locally there exists c > 0 with u c-strict as defined by (7.8). Corollary 8.3 extends
to c-strictness as follows.

Proposition 9.6. A function u ∈ USC(X) is c-strictly Gl -plurisubharmonic ⇐⇒ u is a
c-strict ∆A-subharmonic function for each smooth (local) section A of P+(Gl ) with A > 0
at each point.

By u is c-strict for ∆A we mean that at each point x and for each viscosity test
function ϕ for u at x, we have (∆Aϕ)(x) ≥ c.

A distribution v ∈ D′(X) is said to be c-strict for ∆A (an A ≥ 0 Laplacian) if

∆Av ≥ c (as an inequality of measures). (9.1)

If this inequality is true for every smooth section A of P+(Gl ), then v is c-strict as a
Gl -plurisubharmonic distribution. Proposition 9.3 easily extends to
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Proposition 9.7. A distribution v ∈ D′(X) is c-strict for Gl ⇐⇒ v is c-strict for ∆A

for each smooth section A of P+(Gl ) which is positive definite.

Since c-strictness for the A-Laplaican, when A is positive definite, can be show to be
equivalent whether interpreted with viscosity test functions or distributional test functions,
Theorem 9.2 has a obvious extension to the c-strict case (c > 0). The remainder of the
proof is left to the reader, but here is the statement.

THEOREM 9.8. In either part (a) or part (b) of Theorem 9.2, if the function in the
hypothesis is assumed to be c-strict, one has c-strictness in the conclusion.

Finally we state a result, due to Richberg [R] in the complex case, which carries over
to the Gl -plurisubharmonic case, assuming the following local approximation is possible.

Definition 9.9. We say that Gl has the local C∞-approximation property if each
point x ∈ X has a neighborhood U such that for all u ∈ C(U) ∩ PSHGl (U) which are
c-strict, and all compact K ⊂ U and ǫ > 0, there exists ũ ∈ PSH∞

Gl (U) which is c-strict,
with u ≤ ũ ≤ u+ ǫ on K.

THEOREM 9.10. Suppose Gl has the local C∞ strict approximation property, and let
c, ǫ ∈ C(X) be any given continuous functions satisfying c > 0 and 1 > ǫ > 0 on X . If
u ∈ C(X)∩PSHGl (X) is c-strict, then there exists ũ ∈ PSH∞

Gl (X), which is (1− ǫ)c-strict,
with

u ≤ ũ ≤ u+ ǫ on X.

The proof in Chapter I, Section 5 of [D], given in the complex case, carries over to
this much more general case. (See also [GW].)

Appendix A. Geometric Subequations

Let X be a riemannian manifold and consider a closed subset

Gl ⊂ G(p, TX)

of the Grassmannian of tangent p-planes. The natural candidate for a subequation F =
F (Gl ) associated with Gl is defined by its fibres

Fx = {A ∈ Sym2(TxX) : trWA ≥ 0 ∀W ∈ Gl x}. (A.1)

For each W ∈ Gl x the condition trWA ≥ 0 defines a closed half-space (with boundary
a hyperplane through the origin). Consequently,

Fx is a closed cone with vertex at the origin, and (A.2)

IntFx = {A ∈ Sym2(TxX) : trWA > 0 ∀W ∈ Gl x}. (A.3)
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Let Px denote the set of non-negative elements in Sym2(TxX). Since trWP ≥ 0 for
all W ∈ G(p, TxX) when P ∈ Px, the fibres Fx defined by (A.1) satisfy the important
positivity condition

Fx + Px ⊂ Fx. (P )

Therefore the fibres Fx satisfy all of the properties of a constant coefficient (euclidean)
pure second-order subequation.

Proposition A.1.

(1) Fx + IntPx = IntFx

(2) Fx = IntFx

(3) IntFx + Px = IntFx

(4) A ∈ IntFx ⇐⇒ there exists a neighborhood of A in Fx of the form
Nǫ(A) ≡ A− ǫI + IntPx for some ǫ > 0.

Proof. (4) Note that Nǫ(A) is an open set containing A, and that if A − ǫI ∈ Fx, then
the positivity condition (P) implies that Nǫ(A) ⊂ Fx.

(1) By positivity Fx + IntPx ⊂ Fx, and it is open since it is the union over A ∈ Fx of
open sets. Hence it is contained in IntFx. Finally, IntFx ⊂ Fx + IntPx by (4).

(2) If A ∈ Fx, then by (1) we have A + ǫI ∈ IntFx for all ǫ > 0. Hence, A =
limǫ→∞(A+ ǫI) ∈ IntFx proving that Fx ⊂ IntFx. Since Fx is closed, we have equality.

(3) The containment “⊂” is proved as in the first half of (1). The containment “⊃”
follows from 0 ∈ Px.

Recall the following definition from [HL7].

Definition A.2. A (general) subset F ⊂ Sym2(TX) is called a subequation if it satisfies
the positivity condition:

Fx + Px ⊂ Fx for all x ∈ X (P )

and the three topological conditions:

(T1) F = IntF , (T2) Fx = IntFx, (T3) IntFx = (IntF )x.

(Here IntFx means the interior relative to the fibre Sym2(TxX).)

Although F (Gl ) is not always closed (See Proposition A.6), we shall see that conditions
(T1) and (T2) are always true. They will be a consequence of the following half of (T3).

Lemma A.3. The condition

(T3)
′

IntFx ⊂ (IntF )x

holds for any closed subset Gl ⊂ G(p, TX). Consequently, if a smooth function is Gl -strict
at a point, then it is Gl strict in a neighborhood of that point.
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The proof is given at the end of this appendix.

Corollary A.4. The set F = F (Gl ) satisfies

(T1)
′
F ⊂ IntF , (T2) Fx = IntFx, (T3) IntFx = (IntF )x.

Proof. Condition (T3)
′ implies (T3) since (IntF )x is an open subset of Fx, and hence

contained in IntFx. Property (T2) is just condition (2) in Proposition A.1. Finally, by
(T2) and (T3) we have Fx = IntFx = (IntF )x ⊂ IntF which proves (T1)

′.

We can characterize the case where F (Gl ) is closed.

Definition A.5. The restricted projection π : Gl → X is a local surjection if for each
W ∈ Gl and each neighborhood U of W , the image π(U ∩ Gl ) contains a neighborhood of
π(W ). In this case we say that Gl has the local surjection property.

Proposition A.6. F (Gl ) is closed ⇐⇒ π : Gl → X is a local surjection.
The proof is given at the end of this appendix.

Corollary A.7. A closed subset Gl ⊂ G(p, TX) determines a subequation F (Gl ) via (A.1)
if and only if π : Gl → X is a local surjection.

Consequently, we adopt the following definition.

Definition A.8. A subset F ⊂ Sym2(TX) is a geometrically determined sube-
quation if F = F (Gl ) with Gl a closed subset of Sym2(TX) having the local surjection
property.

Strictness

The concept of strictness given in Definition 7.8 plays an important role for upper
semi-continuous functions, not just smooth functions (see Definition (2.1)′) where the
notion is unambiguous.

Definition A.9. (c-Strict). For each c > 0 define F c = F c(Gl ) to be the subset of
Sym2(TX) with fibres

F c
x ≡ {A ∈ Sym2(TxX) : trWA ≥ c ∀W ∈ Gl x}. (A.4)

The identity I is a well defined smooth section of Sym2(TX), and trW I = p for all
W ∈ G(p, TX). Therefore,

F c = F +
c

p
· I (fibrewise sum). (A.5)

Consequently, all of the previous results for F remain true for F c (c ≥ 0). In particular,
we have:

THEOREM A.10. If Gl ⊂ G(p, TX) is a closed subset with the local surjection property,
then for each c ≥ 0 the set F c(Gl ) is a subequation.
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Proofs

Proof of Lemma A.3. Assume we are working in a local trivialization Sym2(T ∗V ) ∼=
V × Sym2(Rn) over an open subset V ⊂ X containing x. Then each A ∈ Sym2(TxV )
determines a smooth section (also denoted A) over V . It suffices to prove the following
two claims.

Claim 1: Given A ∈ Sym2(TxV ), there exists c > 0 such that

A ∈ IntFx ⇒ A ∈ F c
y for y near x.

Proof. If not, there exist sequences {yj} in U and Wj ∈ Gl yj
such that

lim
j→∞

yj = x and lim
j→∞

trWj
A = 0.

By compactness we can assume thatWj →W ∈ Gl x, and by continuity this gives trWA = 0,
contradicting our assumption that A ∈ IntFx (see (A.3)).

Claim 2: If A is a continuous section of Sym2(TV ) and if for some c > 0, A(y) ∈ F c
y for

all y near x, then A(x) ∈ IntF .

Proof. Since A(y) ∈ F c
y , setting ǫ = c

p
, we have that B(y) ≡ A(y)− ǫI ∈ Fy for all y near

x. The set N ≡ B + IntP, defined using fibre-wise sum, is the translation of the open
subset IntP of V × Sym2(Rn) by a continuous section. Hence, N is open in Sym2(TV ).
Since B(y) ∈ Fy for all y, we have N ≡ B + IntP ⊂ F . Hence, N ⊂ IntF . Finally,
A(x) = B(x) + ǫI ∈ N by positivity.

Proof of Proposition A.6. The assertion is local so we may assume that X is an
open subset of Rn and π : X × G(p,Rn) → X is projection onto the first factor, with
G(p,Rn) ⊂ Sym2(Rn).

Suppose π
∣∣
Gl

is locally surjective. Let (xj , Aj) ∈ F be a convergent sequence, xj →
x,Aj → A. Fix W ∈ Gl x. By hypothesis for each neighborhood Nδ(W ) of W , π{(X ×
Nδ(W ))∩Gl } contains a neighborhood of x. Hence we may pick Wj ∈ Gl xj

with Wj →W .
Since trWj

Aj ≥ 0 for all j we have trWA ≥ 0, and so A ∈ Fx.
For the converse, suppose π

∣∣
Gl

is not locally surjective. Then there exists (x,W ) ∈ Gl
and a neighborhood N(W ) of W in G(p,Rn) so that π{(X×N(W ))∩Gl } does not contain
a neighborhood of x. Hence there exists a sequence of points xj → x in X , such that
Gl xj

∩N(W ) = ∅ for all j.
If ǫ > 0 is chosen small enough, then for all V ∈ G(p,Rn)

〈PV , PW⊥〉 < ǫp ⇒ V ∈ N(W ). (A.1)

Consequently, since 〈PV ,−PW 〉 ≥ −p, we have that

V /∈ N(W ) ⇒ 〈PV ,−PW + 1
ǫ
PW⊥〉 ≥ 0. (A.2)

Since Gl xj
∩N(W ) = ∅, this proves that A ≡ −PW + 1

ǫ
PW⊥ ∈ Fxj

. However, 〈A, PW 〉 = −1
and W ∈ Gl x, and so A /∈ Fx. We conclude that F is not closed.
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Appendix B. The Linear Geometric Case.

In this appendix we consider the extreme geometric case where each Gl x is a single
point Wx ∈ G(p, TxX), or equivalently, each P(Gl x) is the half space in Sym2(TxX) with
inward normal PWx

(orthogonal projection onto Wx). Said differently, the subequation
P(Gl ) is linear and given by the W -Laplacian

(∆Wu) (x) = 〈PWx
,Hessxu〉riem. = trWx

Hessxu. (B.1)

It is more appropriate to refer toW -subharmonic functions, rather than Gl -plurisubharmonic
functions in this linear-geometric case.

Example B.1. (The pth Horizontal Laplacian). In this example, choose a single p-
plane W ∈ G(p,Rn), which might as well be the first coordinate p-plane W ≡ Rp ×{0} ⊂
Rn. Abbreviate PRp×{0} to P . Then

∆Pu = 〈P,D2u〉 = trPD
2u =

p∑

j=1

∂2u

∂x2
j

(B.2)

is the pth horizontal Laplacian. The terminology “horizontally subharmonic” and “hor-
izontally p-convex” is appropriate in this case.

Suppose h and H are smooth functions defined on an open subset on Rn, with h
taking values in GLn(R) and with H taking values in Hom(Rn, Sym2(Rn)).

Definition B.2. An equation of the form

Lu = 〈htPh,D2u〉 + 〈Ht(P ), Du〉 (B.3)

is said to be jet equivalent to ∆p.

The linear-geometric case is jet equivalent to ∆p in any local coordinate system.

Proposition B.3. If W is a smooth section of the Grassmann bundle G(p, TX) over
X , then the W -Laplacian is jet equivalent to the pth horizontal Laplacian over any local
coordinate chart.

Proof. Choose a local orthonormal frame field e1, ..., en for Rn with e1, ..., ep a frame for
W . Define h(x) with values in GLn(R) by e = h ∂

∂x
. Then, in the given local coordinates,

∆Wu = 〈htPh,D2u〉 − 〈Γt(htPh), Du〉 (B.4)

follows from Proposition 5.5 in [HL7].

Proposition B.4. A subequation L is locally jet equivalent to the pth horizontal Laplacian
∆p if and only if in any local coordinate system

Lu = 〈E,D2u〉 − 〈b,Du〉 (B.5)

where b and E are smooth and E(x) has rank p at each point x.

29



Proof. First note that E = htPh in (B.3) has constant rank p. Conversely, assume E
in (B.5) has rank p at each point. Then E(x) has a unique smooth square root A(x) in
Sym2(Rn). Let B denote orthogonal projection onto the null space of E. Then the inverse
of A+B conjugates E to PW where W⊥ ≡ kerE. Finally it is easy to (locally) conjugate
PW to P and find a smooth section H of Hom(Rn, Sym2(Rn)) with Ht(P ) = b.
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