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Abstract. This paper surveys some recent results on existence, unique-
ness and removable singularities for fully nonlinear differential equations
on manifolds. The discussion also treats restriction theorems and the
strong Bellman principle.
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1. Introduction

Calibrated geometries are considered generalizations of Kähler geometry.
They resemble Kähler geometry in having large families of distinguished
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subvarieties determined by a fixed differential form. On the other hand, they
seemed at first to be unlike Kähler geometry in having no suitable analogue
of holomorphic functions. However, it was realized several years ago that
the analogues of plurisubharmonic functions do exist (in abundance) on any
calibrated manifold, and a potential theory was developed in this context
[HL2,3]. This led us naturally to the study of “maximal” or “extremal”
functions, the analogues of solutions to the homogeneous complex Monge-
Ampère equation, first considered by Bremermann [B] and Walsh [W] and
later developed, in the inhomogeneous case, by Bedford-Taylor [BT∗] and
others. The techniques and results developed in our study turned out to
have substantial applications outside of calibrated geometry – in particular
to many of the highly degenerate elliptic equations which appear naturally
in geometry.

This paper is a survey of those techniques and results. We will address
questions of existence and uniqueness for the Dirichlet Problem, the question
of removable singularities for solutions and subsolutions, and the problem of
restriction. The techniques apply broadly to fully nonlinear (second-order)
equations in geometry, and in particular, to those which arise “universally”
on riemannian, hermitian, or calibrated manifolds. A number of examples
and applications will be discussed, including a proof of the Pali Conjecture
on almost complex manifolds. Many more examples appear in the references.

It is conventional in discussing nonlinear differential equations to intro-
duce the notions of a subsolution and supersolution, and define a solution
to be a function which is both. In this paper we adopt an intrinsic approach
by specifying a subset F of constraints on the value of a function and its
derivatives. The classical subsolutions are defined to be the C2-functions u
whose 2-jet (u, Du, D2u) lies in F at each point. The set F will be called
a subequation, and the functions u with (u, Du, D2u) ∈ F are called F -
subharmonic.

The notion of supersolution is captured by the dual subequation

F̃ ≡ −{∼ IntF} = ∼ {−IntF},

and classical solutions u are just those where u is F -subharmonic and −u

is F̃ -subharmonic. They have the property that (u, Du, D2u) ∈ ∂F at each
point, since ∂F = F ∩(∼ F̃ ), and they will be called F -harmonic functions.

The simplest example is the Laplace equation, where F = {tr(D2u) ≥
0} = F̃ .

The most basic example is the Monge-Ampère subequation P =
{D2u ≥ 0} with ∂P ⊂ {detD2u = 0}. The dual P̃-subharmonics are
the subaffine functions (see 2.1.8).

Adopting this point of view brings out an internal duality:

˜̃
F = F,
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and enables the roles of F and F̃ to be interchanged in the analysis. This
symmetry is often enlightening. It is particularly so when discussing the
boundary geometry necessary for solving the Dirichlet problem.

A dictionary relating this approach to the more classical one is given in
Appendix A.

The first step in our analysis is to extend the notion of F -subharmonicity
to general upper semi-continuous [−∞,∞)-valued functions. This is done
in §2 where it is noted that these generalized F -subharmonic functions
enjoy essentially all the useful properties of classical subharmonic functions.
However, for this to be meaningful, F must satisfy a certain positivity
condition, corresponding to weak ellipticity. We also require a negativity
condition, corresponding to weak “properness”.

For the sake of clarity our exposition will often jump between the two
extreme cases:

(1) Constant coefficient (parallel) subequations in Rn, and
(2) General subequations on manifolds.

In fact, for many equations of interest in geometry and, in particular,
those which are the principal focus of this survey, these two cases are directly
related by the notion of jet-equivalence, introduced in §3. This basic
concept plays a fundamental role in our work. Jet-equivalence is a certain
transformation of all the variables. It can often be quite radical – turning
mild equations into nasty ones, homogeneous equations into inhomogeneous
ones, etc.

As stated, many important nonlinear equations on manifolds are locally
jet-equivalent, in local coordinates, to constant coefficient equations. In
this case the results of Slodkowski [S1] and Jensen [J1], and methods of
viscosity theory [CIL], [C] can be applied to prove local weak comparison,
and therefore global weak comparison — the first main step in the analysis
of the Dirichlet Problem.

This leads to another concept of basic importance here: that of a
monotonicity cone, introduced in §4. It gives the approximation tools
needed to promote weak comparison to full comparison (see Definition 5.1)
which, together with appropriate boundary geometry, yields both uniqueness
and existence for the Dirichlet Problem. A subequation M is called a
monotonicity cone for a subequation F if

F + M ⊂ F (1.1.1)

and each fibre Mx, for x ∈ X, is a convex cone with vertex at the origin.
One has that

F + M ⊂ F ⇐⇒ F̃ + M ⊂ F̃ ,

so a monotonicity cone for F is also one for F̃ .
Monotonicity cones play a role in the theory of removable singularities.

For M as above, we define a closed subset E ⊂ X to be M -polar if
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E = {x : ψ(x) = −∞} for some M -subharmonic function which is smooth
on X − E.

If M is a monotonicity cone for a subequation F , then M -polar sets
are removable for F -subharmonic and F -harmonic functions on X.

(See Theorems 6.2.1 and 6.2.2.) This applies, for example, to all branches of
the complex Monge-Ampère equation (see 2.1.10). Moreover, if a constant
pure second-order subequation F in Rn is M -monotone, where M ≡ P(p) ⊂
Sym2(Rn) is defined in terms of the ordered eigenvalues by λ1(A) + · · · +
λ[p](A) + (p − [p])λp+1(A) ≥ 0, then

any closed subset of locally finite Hausdorff p − 2 measure

is removable for F and F̃ .

This applies to the calibration case. It generalizes certain results in [CLN],
[AGV] and [La∗].

Monotonicity cones also play a key role in comparison. The monotonicity
condition (1.1.1) is equivalent to

F + F̃ ⊂ M̃.

For many basic monotonicity cones, the M̃ -subharmonic functions satisfy
the Zero Maximum Principle (see Appendix B). In such cases, comparison
(see 5.1) comes down to an addition theorem: if u is F -subharmonic and v

is F̃ -subharmonic, then u + v is M̃ subharmonic.
There is a last ingredient needed for the Dirichlet Problem – the nec-

essary boundary geometry. Associated to each subequation F , there is a
notion of strict F -convexity for oriented hypersurfaces. There are certain
equations, like the k-Laplacian for 1 < k ≤ ∞ (see 7.4(a)), for which all hy-
persurfaces are strictly F -convex. This convexity is defined in terms of the
asymptotic geometry of F at infinity (see §7). It is quite often easy to com-
pute, and it can be expressed directly in terms of the second fundamental
form.

This notion of boundary convexity implies existence, via the Perron
process, once comparison has been established.

If comparison holds for a subequation F on a manifold X, then the
Dirichlet Problem is uniquely solvable for F -harmonic functions on every

domain Ω ⊂ X with smooth boundary which is strictly F and F̃ convex.

Unique solvability for the Dirichlet Problem means that for every ϕ ∈
C(∂Ω), there exists a unique u ∈ C(Ω) such that

u
∣∣
Ω ∈ F (Ω) and u

∣∣
∂Ω = ϕ

This theorem combines with results discussed above to prove the following
general result.

Theorem 8.1.2. Let F be a subequation with monotonicity cone M .
Suppose that:
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(i) F is locally affinely jet-equivalent to a constant coefficient subequa-
tion, and

(ii) X carries a smooth strictly M -subharmonic function.

Then existence and uniqueness hold for the Dirichlet problem for F -
harmonic functions on any domain Ω ⊂⊂ X whose boundary is both strictly

F - and F̃ -convex.

The global condition (ii) is essential for a result of this generality. For
example, suppose X is a riemannian manifold and F ≡ {Hess u ≥ 0}, where
Hess u is the riemannian hessian. Given a domain Ω ⊂⊂ X with strictly
convex boundary, one can completely change the geometry and topology
in the interior of Ω without affecting the boundary. The subequation F
continues to satisfy (i), but solutions to the Dirichlet Problem won’t exist
unless (ii) is satisfied. Another good example is the complex analogue F =
PC on an almost complex hermitian manifold (the homogeneous complex
Monge-Ampère equation). Here condition (ii) amounts to the hypothesis
that X carries at least one strictly plurisubharmonic function.

In homogeneous spaces one can apply a trick of Walsh [W] to establish
existence without uniqueness.

Theorem 8.1.3. Let X = G/H be a riemannian homogeneous space
and suppose that F ⊂ J2(X) is a subequation which is invariant under
the natural action of G on J2(X). Let Ω ⊂⊂ X be a connected domain

whose boundary is both F and F̃ strictly convex. Then existence holds for
the Dirichlet problem for F -harmonic functions on Ω.

These results apply to a wide spectrum of equations. Many examples
have been discussed in [HL4,6,7] and are summarized in §2 below.

• (Constant Coefficients). Theorem 8.1.3 establishes existence for
any constant coefficient subequation F in Rn, and uniqueness also
follows, by 8.1.2, whenever F has monotonicity cone M and there
exists a strictly M -subharmonic function on Ω. If F is pure second-
order, for example, the function |x|2 works for any M , and so
uniqueness always holds.

For invariant equations on a sphere, existence always holds
by Theorem 8.1.3. However, for domains which do not lie in a
hemisphere, where there exists a convex function, comparison and
its consequences can fail, even for pure second-order equations (see
Appendix D in [HL6]).

• (Branches). The homogeneous Monge-Ampère equations over
R,C or H each have branches defined by λk(D2u) = 0 where
λ1 ≤ · · · ≤ λn are the ordered eigenvalues. (See 2.1.3 and 2.1.10.)
In fact the equation given by the �th elementary symmetric function
σ�(D2u) = 0 also has � distinct branches. This is a general phenom-
enon which applies to any homogeneous polynomial on Sym2(Rn)
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which is G̊arding hyperbolic with respect to the identity. (See
[HL7,8] and 4.3.4 below.)

• (The Special Lagrangian Potential Equation). This equation
F (c), given in 2.2.1(d), can be treated for all values of c and has
the nice feature that F̃ (c) = F (−c).

• (Geometrically Determined Subequations – Calibrations).
These are subequations determined by a compact subset Gl of
the Grassmann bundle of tangent p-planes by requiring that
trW (Hessu) ≥ 0 for all W ∈ Gl . These include many interest-
ing examples, including the subequations in calibrated geometry
discussed at the outset. It also includes a new polynomial differen-
tial equation in Lagrangian geometry (see 2.1.11(d)). Incidentally,
this equation has branches whose study is a non-trivial application
of the G̊arding theory above.

• (Equations Involving the Principal Curvatures of the
Graph and the k-Laplacian). For all such invariant equa-
tions on G/H, Theorem 8.1.3 gives existence (but not uniqueness).
Strict boundary convexity is easily computable (see [HL6, §17]
for example). Existence holds on all domains for the k-Laplacian
|∇u|2Δu + (k − 2)(∇u)t(Hess u)(∇u) = 0, when 1 < k ≤ ∞ and
when k = 1 on mean-convex domains, where uniqueness fails cata-
strophically.

A fundamental point is that all such equations can be carried over to
any riemannian manifold with an appropriate (not necessarily integrable!)
reduction of structure group. This is done by using the riemannian hessian
given in §8.2. Theorem 8.1.2 can then be applied, and we obtain the following
corollary. Let F and M be constant coefficient subequations in Rn with
invariance group G.

Theorem 8.2.2. Let F be a subequation with monotonicity cone M
canonically determined by F and M on a riemannian manifold X with a
topological G-structure. Let Ω ⊂⊂ X be a domain with smooth boundary

which is both F and F̃ srictly convex. Assume there exists a strictly M -
subharmonic function on Ω. Then the Dirichlet Problem for F -harmonic
functions is uniquely solvable for all ϕ ∈ C(∂Ω).

• (Universal Riemannian Subequations). Any constant coeffi-
cient subequation F which in invariant under the natural action of
O(n) carries over directly to any riemannian manifold, and Theo-
rem 8.2.2 applies. This includes most of the examples above.

• (Universal Hermitian Subequations). A constant coefficient
subequation F invariant under U(n) carries over to any almost
complex hermitian manifold. There is a quaternionic analogue.
More generally, we have:

• (Equations on Manifolds with G-Structure). A constant coef-
ficient subequation F invariant under a subgroup G ⊂ O(n) carries
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over to any manifold equipped with a topological G-structure (see
8.2.1). This includes manifolds with topological (or quasi) calibra-
tions based on any fixed form in ΛpRn. Even the extreme case
G = {e} is interesting here. An {e}-structure is a topological trivi-
alization of TX. It transplants every constant coefficient equation
to X, and Theorem 8.2.2 applies. This holds, for example, for every
orientable 3-manifold and every Lie group.

Theorem 8.1.2 actually treats much more general equations on manifolds.
Affine jet-equivalence gives great flexibility to the result.

Many variable-coefficient, inhomogeneous subequations on manifolds can be
transformed by local affine jet-equivalence to universally defined subequa-
tions, such as those in Theorem 8.2.2, while preserving the domains of strict
boundary convexity.

• (Calabi-Yau-Type Equations). This is a good example of the
power of affine jet equivalence. It applies to treat equations of type(
i∂∂u + ω

)n = F (x, u)ωn on almost complex hermitian manifolds,
where F > 0 is non-decreasing in u. See 3.2.8.

• (Inhomogeneous Equations). Many homogeneous equations
can be transformed into inhomogeneous equations by affine jet
equivalence. For example, from the kth branch of the Monge-
Ampère equation one can obtain: λk(Hessu) = f(x) for any con-
tinuous function f . See 3.2.7.

• (Obstacle Problems). The methods here apply also to the Dirich-
let Problem with an Obstacle. In this case not all boundary data
are allowed. They are constrained by the obstacle function. This is
another example of an inhomogeneous equation. See §8.6.

• (Parabolic Equations). Each of these subequations has a para-
bolic cousin, where existence and uniqueness results are generally
stronger. See 8.5.

For any subequation F on a manifold X, one has the very natural

Restriction Question: When is the restriction of an F -subharmonic func-
tion on X to a submanifold j : Y ⊂ X, a j∗(F )-subharmonic function on Y ?

For C2-functions, this always holds, and if fact defines the induced sube-
quation j∗F . However, it is important and non-trivial for general upper semi-
continuous subharmonics. There are several restriction results established in
[HL9]. They are relevant to calibrated and riemannian geometry. Sometimes
they lead to characterizing F -subharmonics in terms of their restrictions to
special submanifolds.

An important case of this latter phenomenon occurs in almost complex
manifolds. The “standard” way of defining plurisubharmonic functions is
to require that the restrictions to (pseudo) holomorphic curves are subhar-
monic. There also exists an intrinsic subequation, whose subharmonics agree
with the standard plurisubharmonic functions in the integrable case. Via the
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restriction theorem, these two definitions have been shown to agree on any
almost complex manifold [HL10].

There is also the notion of a plurisubharmonic distribution on a general
almost complex manifold. Nefton Pali [P] has shown that those which are
representable by continuous [−∞,∞)-valued functions are of the type above,
and he conjectured that this should be true generally. This leads to another
topic.

For convex subequations which are “second-order complete”, a Strong
Bellman Principle can be applied. It enables one to prove that distribution-
ally F -subharmonic functions correspond in a very precise sense to the upper
semi-continuous F -subharmonic functions considered here. This is done in
[HL13]. Such arguments apply to prove the Pali Conjecture [HL10].

Some Historical Notes. There is of course a vast literature on the
principal branches of P and PC of the real and complex Monge-Ampère
equations. Just to mention a few of the historically significant contributions
beginning with Alexandrov: [Al], [Po∗], [RT], [B], [W], [TU], [CNS∗], [CKNS],
[BT∗], [HM], [S1], [CY∗], and [Yau]. Quaternionic subharmonicity and the
principal branch PH of the quaternionic Monge-Ampère equation have been
studied in [A∗] and [AV]. On compact complex manifolds without boundary,
viscosity solutions to equations of the form

(
i∂∂u + ω

)n = eϕv, where v > 0
is a given smooth volume form, were studied in [EGZ]. By establishing a
comparison principle they obtain existence and uniqueness of solutions in
important borderline cases (ω ≥ 0, v ≥ 0 with

∫
v > 0), and also show that

these are the unique solutions in the pluripotential sense.
The parabolic form of the 1-Laplacian gives rise to mean curvature flow

by the level set method. Some of the interesting results on this topic (see
[ES∗], [CGG∗], [E], [Gi]) can be carried over from euclidean space to the
riemannian setting by the methods of [HL6].

The first basic work on the Dirichlet Problem for the convex branches
of the Special Lagrangian potential equation appeared in [CNS2], and there
are further results by Yuan [Y], [WY].

In [AFS] and [PZ] standard viscosity theory has been adapted to rie-
mannian manifolds by using the distance function, parallel translation, Ja-
cobi fields, etc. For the problems considered here this machinery in not
necessary.

In [S2,3,4], Z. Slodkowski developed an axiomatic perspective on gener-
alized subharmonic functions, and addressed the Dirichlet Problem in this
context. He studied certain invariant “pseudoconvex classes” of functions
on euclidean space and complex homogeneous spaces. There is a version of
duality which plays an important role in his theory. It is formulated differ-
ently from the one here. However, in the cases of overlap the two notions of
duality are equivalent. Interestingly, his results are used to prove a duality
theorem for complex interpolation of normed spaces [S5]
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Concerning Regularity. In this paper there is no serious discussion of
regularity for solutions of the Dirichlet Problem. Indeed, with the level
of degeneracy allowed here, no regularity above continuity can be claimed
generally. Consider uxx = 0 in R2 for example. (See also [Po1] and [NTV]
and references therein.) A good account of regularity results can be found in
[E]. A general exposition of viscosity methods and results appears in [CIL]
and [C].

Concerning −∞. Our approach here is to steadfastly treat subsolutions
from the point of view of classical potential theory. We allow subsolutions
(F -subharmonic functions) to assume the value −∞, in contrast to standard
viscosity theory where subsolutions are finite-valued. This has the advantage
of including basic functions, like the fundamental solution of the Laplacian,
Riesz potentials, and log|f | with f holomorphic, into the class of subsolu-
tions. It also allows the constant function u ≡ −∞, which is crucial for the
restriction theorems discussed in Chapter 9. This issue is not important for
the Dirichlet Problem.

2. Subequations—A Geometric Approach

The aim of this chapter is to present a geometric approach to subequa-
tions, pioneered by Krylov [K]. This point of view clarifies and conceptually
simplifies many aspects of the theory. For transparency we begin with the
basic case.

2.1. Constant Coefficient Subequations in Rn. The 2-jets of func-
tions on Rn (i.e., Taylor polynomials of degree two) take values in the vector
space

J2 ≡ R × Rn × Sym2(Rn) with traditional coordinates (r, p, A).
(2.1.1)

Definition 2.1.1. A second-order constant coefficient subequation on
Rn is a proper closed subset F ⊂ J2 satisfying the Positivity Condition

F + P ⊂ F (P )

and the Negativity Condition

F + N ⊂ F (N)

where

P ≡ {(0, 0, A) ∈ J2 : A ≥ 0} and N ≡ {(r, 0, 0) ∈ J2 : r ≤ 0},

and the Topological Condition

F = IntF. (T )

We say F is pure second-order if F = R × Rn × F0 for a closed subset
F0 ⊂ Sym2(Rn). In this case only (P) is required, since (N) is automatic
and one can show that (P) ⇒ (T). Such subequations are often simply
denoted by the subset F0 of Sym2(Rn).
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Example 2.1.2. Some basic pure second-order examples are:
(a) The Laplace Subequation:

F0 = {A ∈ Sym2(Rn) : trA ≥ 0}.

(b) The Homogeneous Monge-Ampère Subequation:

F0 = {A ∈ Sym2(Rn) : A ≥ 0} ∼= P.

(c) The kth Elementary Symmetric Function Subequation:

F0 = {A ∈ Sym2(Rn) : σ�(A) ≥ 0, 1 ≤ � ≤ k}.

(d) The Special Lagrangian Potential Subequation:

F0 = {A ∈ Sym2(Rn) : tr(arctan A) ≥ c}.

(e) The Calabi-Yau Subequation: (This is not pure second-order,
but it is gradient-independent.)

F = {(r, p, A) ∈ Sym2(Rn) : tr(A + I) ≥ er and A + I ≥ 0}.

Remark 2.1.3. In Cn = (R2n, J) each of the examples above has
a complex analogue given by replacing A with its hermitian symmetric
part AC ≡ 1

2(A − JAJ). The same applies in quaternionic n-space Hn =
(R4n, I, J, K) with A replaced by AH ≡ 1

4(A − IAI − JAJ − KAK).

Definition 2.1.4. Given a constant coefficient subequation F on Rn,
the dual subequation F̃ is defined by

F̃ ≡ ∼ (−IntF) = −(∼ IntF).

Lemma 2.1.5. F is a subequation ⇐⇒ F̃ is a subequation,
and in this case ˜̃

F = F and ˜F + J = F̃ − J

for all J ∈ J2.

The proof can be found in [HL4, §4]. In the examples above the dual
subequations are easily computed in terms of the eigenvalues of A (or AC,
etc.). One finds that the Laplace subequation is self-dual (F̃ = F) but the
others are generally not. Of particular interest is example (b) where the dual
of P ≡ {A ≥ 0} is

P̃ ∼= {A ∈ Sym2(Rn) : at least one eigenvalue of A is ≥ 0} (2.1.2)

We now present a concept of central importance which comes from
viscosity theory [CIL]. For any manifold X, let USC(X) denote the set of
upper semi-continuous functions u : X → [−∞,∞). Given u ∈ USC(X) and
a point x ∈ X, a test function for u at x is a C2-function ϕ defined near
x so that

u ≤ ϕ and u(x) = ϕ(x).
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Definition 2.1.6. Let F be a constant coefficient subequation on Rn

and fix an open set X ⊂ Rn. A function u ∈ USC(X) is said to be F-
subharmonic on X if for each x ∈ X and each test function ϕ for u at x,
the 2-jet (or total second derivative) of ϕ satisfies

J2
xϕ ≡ (ϕ(x), (Dϕ)x, (D2ϕ)x) ∈ F. (2.1.3)

It is important that this condition (2.1.3) is only required at points where
test functions actually exist. The set of such functions is denoted by F (X).

It is striking that the space F (X) of F -subharmonics shares many of
the important properties enjoyed by classical subharmonic functions (see
2.3.1 below). The C2-functions u ∈ F (X) are exactly those with J2

xu ∈ F
for all x ∈ X. This basic fact requires the Positivity Condition (P) on F.
Interestingly, the other properties in 2.3.1 do not require (P).

For the subequation P in example (b) we have the following.

Proposition 2.1.7. (see [HL4, Rmk. 4.9] and [HL9, Prop. 2.7])

(i) P(X) is the set of convex functions on X.

(ii) P̃(X) is the set of subaffine functions on X.

Definition 2.1.8. A function u ∈ USC(X) is called subaffine if for
each compact subset K ⊂ X and each affine function a,

u ≤ a on ∂K ⇒ u ≤ a on K.

Note that subaffine functions satisfy the maximum principle. In fact, for
a pure second-order subequations, the subequation P̃ is universal for this
property. That is, if the functions in F(X) satisfy the maximum principle,
then F ⊂ P̃. We note also that functions which are locally subaffine are
globally subaffine, while the corresponding statement for functions satisfying
the maximum principle is false.

Definition 2.1.9. Let F and X be as in Definition 2.1.6. A function
u ∈ USC(X) is said to be F-harmonic on X if

u ∈ F (X) and − u ∈ F̃ (X) (2.1.4)

Condition (2.1.4) implies that u is continuous. If u is twice differentiable
at a point x, then (2.1.4) implies that

J2
xu ∈ F ∩ (−F̃) = F ∩ (∼ IntF) = ∂F.

Thus if F is defined classically as the closure of a set {f(r, p, A) > 0} for a
continuous function f : J2 → R, then any u ∈ C2(X) which is F-harmonic
satisfies the differential equation

f(u, Du, D2u) = 0 on X,

however, the converse is not always true.
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Note 2.1.10. (Branches) It is instructive to consider the most basic
of subequations, P. A C2-function u which is P-harmonic satisfies the
homogeneous Monge-Ampère equation

det
(
D2u

)
= 0. (2.1.5)

However, u is required to have the additional property of being convex (cf.
Alexandroff [Al]). (In the complex analogue u is plurisubharmonic.)

The equation (2.1.5) has other solutions corresponding to other
“branches” of the locus {detA = 0}, which can also be handled by this
theory. Given a symmetric matrix A, let λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) be
the ordered eigenvalues of A. Since detA = λ1(A) · · ·λn(A), equation (2.1.5)
can be split into branches

λk

(
D2u

)
= 0. (2.1.5)k

for k = 1, . . . , n. By monotonicity of eigenvalues, each Λk ≡ {λk ≥ 0} is a
subequation. Interestingly, the dual of a branch is another branch:

Λ̃k = Λn−k+1

This phenomenon of branches occurs in many equations of geometric
significance.

Example 2.1.11. (Geometrically Defined Subequations) There
is a large class of subequations which arise naturally in our set-theoretic
setting. Let G(p,Rn) denote the Grassmannian of p-planes in Rn. For each
compact subset Gl ⊂ G(p,Rn) we define the pure second-order subequation

F(Gl ) ≡ {A ∈ Sym2(Rn) : trW A ≥ 0 for all W ∈ Gl } (2.1.6)

with dual
˜F(Gl ) = {A ∈ Sym2(Rn) : trW A ≥ 0 for some W ∈ Gl }

The F(Gl )-subharmonic functions are called Gl -plurisubharmonic. This
terminology is justified by the following. Let X ⊂ Rn be an open set.

Theorem 2.1.12. A function u ∈ USC(X) is Gl -plurisubharmonic if
and only if for every affine Gl -plane L the restriction u

∣∣
X∩L

is subharmonic
for the standard Laplacian on L. The same statement holds with the affine
Gl -planes expanded to include all minimal Gl -submanifolds of X. (A Gl -
submanifold is one whose tangent planes are elements of Gl ).

This follows from a Restriction Theorem in [HL9], which is discussed in
Chapter 9.

(a) Gl = G(1,Rn): In this case F(Gl ) = P and the Gl -plurisubharmonic
functions are the classical convex functions, i.e., those which are
convex on affine lines.

(b) Gl = GC(1,Cn) ⊂ G(2,R2n) the set of complex lines in Cn: In this
case F(Gl ) = PC (see 4.3.1), and the Gl -plurisubharmonic functions
are the standard plurisubharmonic functions, i.e., those which are
subharmonic on complex lines.
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(c) Gl = G(p,Rn): Here the Gl -plurisubharmonic functions are the
standard p-plurisubharmonic functions, i.e., those which are sub-
harmonic on affine p-planes. This subequation has the feature that
each p-plurisubharmonic function is also Gl -plurisubharmonic for
every closed Gl ⊂ G(p,Rn). The analogue Gl = G(p,Cn) in the
complex case plays a role in analysis in several complex variables.

The Gl -harmonic functions in these cases are viscosity solutions
to differential equations which are O(n) (or U(n)) invariant poly-
nomials in the variables D2u. Each of these equations has branches
which will be discussed further in 4.3.1 and 4.3.2 below.

(d) Gl = LAG ⊂ G(n,R2n) the set of Lagrangian planes in Cn = R2n:
In this case the LAG-plurisubharmonic functions are relatively new
and interesting. The corresponding harmonics are viscosity solu-
tions to a differential equation which is a U(n)-invariant polynomial
in the variables D2u (see [HL14]). This equation also has branches.

Many important examples come directly from the theory of
calibrations. A parallel calibration in Rn is a constant coefficient
p-form whose restriction satisfies ±ϕ|W ≤ volW for all oriented
p-planes W . For such a ϕ, we define Gl ≡ G(ϕ) to be the set
of W ∈ G(p,Rn) such that |ϕ|W | = volW . In this case G(ϕ)-
submanifolds (or simply ϕ-submanifolds) are automatically min-
imal. When ϕ = ω is the Kähler form in Cn, we recover case (b)
above, where the ω-submanifolds are the holomorphic curves. (This
carries over to any symplectic manifold (X, ω) with a compatible
almost complex structure in the sense of Gromov [Gr].) The G(ϕ)-
plurisubharmonic (or simply ϕ-plurisubharmonic) functions are es-
sentially dual to the ϕ-submanifolds (see [HL2,3]), and they provide
calibrated geometry with new tools from conventional analysis.

(e) Gl = G(ϕ) = SLAG ⊂ G(n,R2n) where ϕ = Re(dz1 ∧ · · · ∧ dzn)
is the Special Lagrangian Calibration (cf. [HL1]). The notions of
Special Lagrangian submanifolds and of SLAG-plurisubharmonic
and SLAG-harmonic functions carry over to any Ricci-flat Kähler
manifold (cf. [HL1]). The SLAG-subvarieties play a central role
in the conjectured differential-geometric interpretation of mirror
symmetry presented in [SYZ1,2].

(f) Gl = G(ϕ) ⊂ G(3,R7) where R7 = ImO is the imaginary octonions
and ϕ(x, y, z) ≡ 〈x · y, z〉 is the associative calibration. There is
a rich geometry of associative submanifolds, and an abundance of
ϕ-plurisubharmonic and ϕ-harmonic functions. The same applies
to the coassociative calibration ψ = ∗ϕ. Both calibrations make
sense on any 7-manifold with G2-holonomy.

(g) Gl = G(Φ) ⊂ G(4,R8) where R8 = O, the octonions, and
Φ(x, y, z, w) ≡ 〈x × y × z, w〉 is the Cayley calibration. There is
a rich geometry of Cayley submanifolds, and an abundance of Φ-
plurisubharmonic and Φ-harmonic functions. All this carries over
to any 8-manifold with Spin7-holonomy.
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Note. While the ϕ-harmonic functions in examples (e), (f) and (g) are
of basic interest in calibrated geometry, they appear not to satisfy any
polynomial equation in u, Du and D2u. This is one justification for the
approach to subequations adopted here.

2.2. Subequations on General Manifolds. Suppose now that X is
a smooth manifold of dimension n. The natural setting for second-order
differential equations on X is the bundle of 2-jets of functions on X.
This is the bundle J2(X) → X whose fibre at x ∈ X is the quotient
J2

x(X) = C∞
x /C∞

x,3 of germs of smooth functions at x modulo those which
vanish to order 3 at x.

Restriction from 2-jets to 1-jets gives a basic short exact sequence

0 −→ Sym2(T ∗X) −→ J2(X) −→ J1(X) −→ 0 (2.2.1)

where Sym2(T ∗
xX) embeds into J2

x(X) as the 2-jets of functions having a
critical value zero at x. The dual exact sequence is

0 −→ J1(X) −→ J2(X) σ−−→ Sym2(TX) −→ 0. (2.2.2)

Sections of Jk(X) are linear differential operators of degree ≤ k on X, and
σ is the principal symbol map on operators of degree 2.

There are two important, intrinsically defined subbundles of J2(X)
which correspond to the subspaces P and N in Definition 2.1.1 , namely:

P ≡ {A ∈ Sym2(T ∗X) : A ≥ 0} and
N ≡ {2-jets of constant functions ≤ 0}.

Definition 2.2.1. A subequation of order ≤ 2 on X is a closed subset
F ⊂ J2(X) satisfying (under fibre-wise sum) the Positivity Condition:

F + P ⊂ F, (P )

the Negativity Condition:
F + N ⊂ F, (N)

and the Topological Condition:

(i) F = IntF , (ii) Fx = IntFx, (iii) IntFx = (IntF )x (T )

where IntFx denotes interior with respect to the fibre.

Note that P is not a subequation. However, when discussing pure second-
order subequations, it is sometimes used as an abbreviation for R×Rn ×P,
which is a subequation. (see 2.1.1 and 2.1.2).

Remark 2.2.2. (Splitting the 2-Jet Bundle) Let ∇ be a torsion-free
connection on X. Then each u ∈ C2(X) has an associated hessian Hess u ∈
Γ(Sym2(T ∗X)) defined on vector fields V, W by

(Hess u)(V, W ) = V Wu − WV u − (∇V W )u. (2.2.3)
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Since ∇V W − ∇W V = [V, W ], one easily sees that Hess u is a symmetric
tensor. If X is riemannian and ∇ is the Levi-Civita connection, then Hess u
is called the riemannian hessian of u.

The hessian in (2.2.3) depends only on the 2-jet of u at each point, and
so it gives a splitting of the short exact sequence (2.2.1). That is, we can
write

J2(X) = R ⊕ T ∗X ⊕ Sym2(T ∗X) (2.2.4)
by the association

J2
xu = (u(x), (du)x, Hessxu).

Remark 2.2.3. (Universal Subequations) Each of the subequations
given in Example 2.1.2 carries over to any riemannian manifold X by using
the splitting (2.2.4) (determined by the riemannian hessian). For instance,
Example 2.1.2(a) gives the Laplace-Beltrami operator. More generally, any
constant coefficient subequation F ⊂ J2 which is invariant under the action
of the group O(n), transplants to every riemannian manifold. In the case
of Cn = (R2n, J), each U(n)-invariant subequation transplants to every
hermitian almost complex manifold.

There is, in fact, a very general principle:

Let F ⊂ J2 be a constant coefficient subequation which is invariant under a
subgroup G ⊂ O(n) acting naturally on J2. Then F carries over to a
subequation F on every manifold X with a topological G-structure.

See [HL6] and §8.2 below for definitions and many examples.
The concepts of the previous section carry over to this general setting.

Definition 2.2.4. Given a subequation F ⊂ J2(X), the dual subequa-
tion F̃ is defined by

F̃ ≡ ∼ (−IntF ) = −(∼ IntF ).

Lemma 2.2.5.

F is a subequation ⇐⇒ F̃ is a subequation,

and in this case ˜̃
F = F and ˜F + S = F̃ − S

for any section S of J2(X).

The proof can be found in [HL6 §3]. The dual of a universal subequation
associated to F ⊂ J2 is the universal subequation associated to F̃. As before
we have the following.

Definition 2.2.6. Let F be a subequation on a manifold X. A function
u ∈ USC(X) is said to be F -subharmonic on X if for each x ∈ X and
each test function ϕ for u at x,

J2
xϕ ≡ (ϕ(x), (Dϕ)x, (D2ϕ)x) ∈ F. (2.2.5)

The set of such functions is denoted by F (X).
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Definition 2.2.7. Let F be a subequation on a manifold X. A function
u ∈ USC(X) is said to be F -harmonic on X if

u ∈ F (X) and − u ∈ F̃ (X) (2.2.6)

As before, positivity ensures that a function u ∈ C2(X) is F -sub-
harmonic on X iff J2

xu ∈ F for all x, and it is F -harmonic iff

J2
xu ∈ ∂F for all x.

2.3. Properties of F -Subharmonic Functions. The F -sub-
harmonic functions share many of the important properties of classical
subharmonic functions.

Theorem 2.3.1. (Elementary Properties of F-Subharmonic Functions)
Let F be an arbitrary closed subset of J2(X).

(i) (Maximum Property) If u, v ∈ F (X), then w = max{u, v} ∈ F (X).
(ii) (Coherence Property) If u ∈ F (X) is twice differentiable at x ∈ X,

then J2
xu ∈ Fx.

(iii) (Decreasing Sequence Property) If {uj} is a decreasing (uj ≥ uj+1)
sequence of functions with all uj ∈ F (X), then the limit u =
limj→∞ uj ∈ F (X).

(iv) (Uniform Limit Property) Suppose {uj} ⊂ F (X) is a sequence
which converges to u uniformly on compact subsets to X, then
u ∈ F (X).

(v) (Families Locally Bounded Above) Suppose F ⊂ F (X) is a family
of functions which are locally uniformly bounded above. Then the
upper semicontinuous regularization v∗ of the upper envelope

v(x) = sup
f∈F

f(x)

belongs to F (X).

A proof can be found, for example, in Appendix B in [HL6]. For parts
(i) and (ii), even the closure hypothesis on F can be weakened (op. cit.).

3. Jet Equivalence of Subequations

Many important nonlinear equations that occur in geometry can be
transformed locally to constant coefficient equations. This technique allows
one to apply standard arguments from viscosity theory to prove local
comparison results.

3.1. Affine Automorphisms of the Jet Bundle J2(X). The trans-
formations we shall use are the affine automorphisms of J2(X) which we now
introduce. To begin, note that there is a canonical direct sum decomposition

J2(X) = R ⊕ J2
red(X) (3.1.1)
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where the trivial R-factor corresponds to the value of the function. For the
reduced 2-jet bundle there is a short exact sequence

0 −→ Sym2(T ∗X) −→ J2
red(X) −→ T ∗X −→ 0 (3.1.2)

coming from (2.2.1) above.

Definition 3.1.1. A linear isomorphism of J2(X) is an automorphism
if, with respect to the splitting (3.1.1) it has the form Id ⊕ Φ where
Φ : J2

red(X) → J2
red(X) has the following properties. We first require that

Φ(Sym2(T ∗X)) = Sym2(T ∗X), (3.1.3)

so by (3.1.2) there is an induced bundle automorphism

g = gΦ : T ∗X −→ T ∗X. (3.1.4)

We further require that there exist a second bundle automorphism

h = hΦ : T ∗X −→ T ∗X (3.1.5)

such that on Sym2(T ∗X), Φ has the form Φ(A) = hAht, i.e.,

Φ(A)(v, w) = A(htv, htw) for v, w ∈ TX. (3.1.6)

The automorphisms of J2(X) form a group. They are the sections of
the bundle of groups Aut(J2(X)) whose fibre at x ∈ X is the group of
automorphisms of J2

x(X) defined by (3.1.3) - (3.1.6) above. See [HL6, §6.2]
for this and the following.

Proposition 3.1.2. With respect to any splitting

J2(X) = R ⊕ T ∗X ⊕ Sym2(T ∗X)

of the short exact sequence (2.2.1), a bundle automorphism has the form

Φ(r, p, A) = (r, gp, hAht + L(p)) (3.1.7)

where g, h : T ∗X → T ∗X are bundle isomorphisms and L is a smooth section
of the bundle Hom (T ∗X, Sym2(T ∗X)).

Example 3.1.3. Given a local coordinate system (ξ1, . . . , ξn) on an open
set U ⊂ X, the canonical trivialization

J2(U) = U × R × Rn × Sym2(Rn) (3.1.8)

is determined by J2
xu = (u, Du, D2u) where Du = (uξ1 , ..., uξn) and D2u =

((uξiξj
)) evaluated at the point ξ(x) ∈ Rn. With respect to this splitting,

every automorphism is of the form

Φ(u, Du, D2u) = (u, gDu, h · D2u · ht + L(Du)) (3.1.9)

where gx, hx ∈ GLn and Lx : Rn → Sym2(Rn) is linear for each point x ∈ U .
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Example 3.1.4. The trivial 2-jet bundle on Rn has fibre

J2 = R × Rn × Sym2(Rn).

with automorphism group

Aut(J2) ≡ GLn × GLn × Hom (Rn, Sym2(Rn))

where the action is given by

Φ(g,h,L)(r, p, A) = (r, gp, hAht + L(p)).

Note that the group law is

(ḡ, h̄, L̄) · (g, h, L) = (ḡg, h̄h, h̄Lh̄t + L̄ ◦ g)

Automorphisms at a point, with g = h, appear naturally when one
considers the action of diffeomorphisms. Namely, if ϕ is a diffeomorphism
fixing a point x0, then in local coordinates (as in Example 3.1.3 above)
the right action on J2

x0
, induced by the pull-back ϕ∗ on 2-jets, is an

automorphism.

Remark 3.1.5. Despite this last remark, automorphisms of the 2-
jet bundle J2(X), even those with g = h, have little to do with global
diffeomorphisms or global changes of coordinates. In fact an automorphism
radically restructures J2(X) in that the image of an integrable section (one
obtained by taking J2u for a fixed smooth function u on X) is essentially
never integrable.

The automorphism group Aut(J2(X)) can be naturally extended by the
fibre-wise translations. Recall that the group of affine transformations of
a vector space V is the product Aff(V ) = GL(V ) × V acting on V by
(g, v)(u) = g(u) + v. The group law is (g, v) · (h, w) = (gh, v + g(w)). There
is a short exact sequence

0 → V → Aff(V ) π−−→ GL(V ) → {I}.

Definition 3.1.6. The affine automorphism group of J2(X) is the
space of smooth sections of

π−1{Aut(J2(X))}) ⊂ Aff(J2(X))

where π is the surjective bundle map π : Aff(J2(X)) → GL(J2(X)).

Note that any affine automorphism can be written in the form

Ψ = Φ + S (3.1.10)

where Φ is a (linear) automorphism and S is a section of the bundle J2(X).
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3.2. Jet-Equivalence.

Definition 3.2.1. Two subequations F, F ′ ⊂ J2(X) are said to be jet-
equivalent if there exists an automorphism Φ : J2(X) → J2(X) with
Φ(F ) = F ′. If this holds for an affine automorphism Ψ = Φ + S, they are
said to be affinely jet-equivalent.

Remark 3.2.2. A jet-equivalence Φ : F → F ′ does not take F -
subharmonic functions to F ′-subharmonic functions. In fact as mentioned
above, for u ∈ C2, Φ(J2u) is almost never the 2-jet of a function. It happens
if and only if Φ(J2u) = J2u. Nevertheless, if Ψ = Φ + S is an affine
automorphism of J2(X) and F ⊂ J2(X) is a closed set, then

F is a subequation ⇐⇒ Ψ(F ) is a subequation,

and furthermore, by 2.2.5,

˜Ψ(F ) = Φ(F̃ ) − S,

which is basic in establishing comparison.

Definition 3.2.3. We say that a subequation F ⊂ J2(X) is locally
affinely jet-equivalent to a constant coefficient subequation F if each point
x has a local coordinate neighborhood U such that, in the canonical triv-
ialization (3.1.8) of J2(U) determined by those coordinates, F is affinely
jet-equivalent to the constant coefficient subequation U × F.

This concept is robust as shown by the following lemma, whose proof is
a straightforward calculation.

Lemma 3.2.4. If F is affinely jet-equivalent to F in some local coordinate
trivialization of J2(U), then this is true in every local coordinate trivializa-
tion of J2(U).

A basic reason for introducing this concept is the following (see [HL6,
Prop. 6.9]). Let X be a riemannian manifold with topological G-structure
for a subgroup G ⊂ O(n) (see (8.2.1)).

Proposition 3.2.5. Suppose that F ⊂ J2(X) is the subequation deter-
mined by a G-invariant constant coefficient subequation F ⊂ J2 (cf. 2.2.3
and 8.2). Then F is locally jet-equivalent to F on X.

Example 3.2.6. (Universal Equations) Basic examples come from uni-
versal riemannian equations (G = O(n)) such as those given in Example
2.1.2 (a), (b), (c), and their complex analogues on almost complex hermit-
ian manifolds (G = U(n)) or the analogues on almost quaternionic hermitian
manifolds (G = Sp(n)). There are also the other branches of these equations
as discussed in Note 2.1.10. There are also the many geometric examples
coming from Lagrangian geometry and calibrated geometry which are dis-
cussed below.
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Example 3.2.7. (Inhomogeneous Equations) Another important fact
about affine jet equivalence is that it can transform inhomogeneous equations
into constant coefficient ones and vice versa. We present several illustrative
examples here (and more in 8.5). They each have the structure F =
Ψ(H), H = Ψ−1(F ) where F is a pure second-order, universal riemannian
subequation, and

Ψ(A) ≡ hAht + S = η2A + S

where h(x) = η(x)Id, for η : X → R, and S : X → Sym2T ∗(X) is a
translation term.

(i) Let F correspond to the kth branch {λk(Hess u) = 0} of the
homogeneous Monge-Ampère equation (see 2.1.10). Taking η ≡ 1
and S = −f(x)Id shows that F is affinely jet-equivalent to the
inhomogeneous equation

λk(Hess u) = f(x)

for any smooth function f . This includes the Monge-Ampère equa-
tion from 2.1.2(b) when written as λmin(Hess u) = 0.

(ii) Let F correspond to the universal equation det(Hessu) = 1 with
Hess u ≥ 0. One can transform this to the inhomogeneous equation

det(Hess u) = f(x) with Hess u ≥ 0

for any smooth f > 0 by choosing η = f− 1
2n and S = 0.

(iii) More generally, one can transform the universal subequation:
σk(Hess u) = 1 and σ�(Hess u) ≥ 0, 1 ≤ � < k, into the inho-
mogeneous equation

σk(Hess u) = f(x) and σ�(Hess u) ≥ 0, 1 ≤ � < k

for any smooth f > 0 by choosing η = f− 1
2k and S = 0.

Example 3.2.8. (The Calabi-Yau Equation) Let X be an almost com-
plex hermitian manifold (a Riemannian Un-manifold), and consider the
subequation F ⊂ J2(X) determined by the euclidean subequation:

detC{AC + I} ≥ 1 and AC + I ≥ 0

where AC ≡ 1
2(A − JAJ) is the hermitian symmetric part of A. Let f > 0

be a smooth positive function on X and write f = h−2n. Consider the global
affine automorphism of J2(X) given by

Ψ(r, p, A) = (r, p, h2A + (h2 − 1)I)

and set Ff = Ψ−1(F ). Then

(r, p, A) ∈ Ff ⇐⇒ detC{h2(AC + I)} ≥ 1 and h2(AC + I) ≥ 0
⇐⇒ detC{(AC + I)} ≥ f and (AC + I) ≥ 0

so we see that the Ff -harmonic functions are functions u with
detC{HessCu + I} = f and HessCu + I ≥ 0 (quasi-plurisubharmonic).
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If X is actually a complex manifold of dimension n with Kähler form ω, this
last equation can be written in the more familiar form(

i∂∂u + ω
)n = fωn

with u quasi-plurisubharmonic.
One can similarly treat the equation(

i∂∂u + ω
)n = eufωn.

or the same equation with eu replaced by any non-decreasing positive
function F (u).

The concept of affine jet equivalence plays a critical role in the study of
intrinsically subharmonic functions on almost complex manifolds [HL10].

4. Monotonicity.

A concept of fundamental importance here is that of a monotonicity
cone for a given subequation. It is the key to establishing comparison and
removable singularity theorems for equations which are highly non-convex.

4.1. The Constant Coefficient Case. Let F,M ⊂ J2 be constant
coefficient subequations.

Definition 4.1.1. We say that M is a monotonicity subequation
for F if

F + M ⊂ F. (4.1.1)
It follows directly from 2.1.6 that the sum of an F-subharmonic function
and an M-subharmonic function is again F-subharmonic, provided that one
of them is smooth. Thus, the reader can see that monotonicity is related to
approximation whenever M has the cone property

tM ⊂ M for 0 ≤ t ≤ 1.

When this holds M can be expanded so that each fibre is a convex cone with
vertex at the origin (cf. 4.1.4). Under this added assumption M is called a
monotonicity cone.

Lemma 4.1.2. If M is a monotonicity cone for F, then

F̃ + M ⊂ F̃ and (4.1.2)

F + F̃ ⊂ M̃. (4.1.3)

These elementary facts are basic. The first states that:

M is a monotonicity cone for F ⇐⇒ M is a monotonicity cone for F̃.

The second is the algebraic precursor to proving that:

The sum of an F-subharmonic function and an F̃-subharmonic function

is M̃-subharmonic.
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If one of the two functions is smooth, this last result follows easily from
the definitions. It is important, because in most cases, the M̃-subharmonic
functions satisfy the following:

Zero Maximum Principle: For any compact set K in the domain of u,

u ≤ 0 on ∂K ⇒ u ≤ 0 on K. (ZMP )

Example 4.1.3. The (ZMP) holds for M̃-subharmonic functions when

M = {(r, p, A) ∈ J2 : r ≤ −γ|p|, p ∈ D and A ≥ 0}

where γ > 0 and D ⊂ Rn is a convex cone with non-empty interior (and
vertex at 0). See Appendix B for a proof and further discussion of Examples.
Note incidentally that the smaller M is, the easier it is to be a monotonicity
cone for F , while the larger M̃ is, the harder it is to satisfy (ZMP).

Note 4.1.4. Associated to any subequation F is the set MF of all J ∈ J2

such that F + tJ ⊂ F for 0 ≤ t ≤ 1. One checks easily that MF is a closed
convex cone which satisfies (P) and (N). Thus, if IntMF �= ∅, it is the
maximal monotonicity cone for F.

4.2. The General Case. Let F ⊂ J2(X) be a subequation on a
manifold X.

Definition 4.2.1. A monotonicity cone for F is a convex cone
subequation M ⊂ J2(X) (each fibre is a convex cone with vertex at the
origin) satisfying the condition

F + M ⊂ F (4.2.1)

Lemma 4.2.2. If M is a monotonicity cone for F , then

F̃ + M ⊂ F̃ and (4.2.2)

F + F̃ ⊂ M̃. (4.2.3)

Note 4.2.3. Suppose F ⊂ J2 is a constant coefficient subequation
invariant under a subgroup G ⊂ O(n). Then MF is also G-invariant. Thus
if IntMF �= ∅, it determines a monotonicity cone MF for every subequation
F canonically determined on any manifold with a topological G-structure
(cf. Remark 2.2.3).

4.3. Examples. (Branches of Polynomial Equations) Many sube-
quations have naturally associated monotonicity cones. The most basic case
is the following.

Example 4.3.1. (Homogeneous Monge Ampère Equations) Let K =
R,C or H and let Kn = RN for N/n = 1, 2, or 4. Then any quadratic
form A ∈ Sym2(RN ) has a K-hermitian symmetric part AK defined in
Remark 2.1.3. Let λK

1 (A) ≤ · · · ≤ λK
n (A) be the ordered eigenvalues of AK
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(where we ignore the natural multiplicities 2 in the complex case and 4 in
the quaternion case). Let

ΛK
k ≡ {λK

k (A) ≥ 0}
denote the kth branch of the homogeneous Monge-Ampère equation (cf.
Note 2.1.10). The dual subequation is Λ̃K

k = ΛK
n−k+1. These subequations

carry over to any riemannian manifold with orthogonal almost complex or
quaternionic structures.

The smallest, most basic branch is ΛK
1 = {AK ≥ 0} = F(G(1, Kn)),

which will be denoted by PK , K = R,C or H. The monotonicity of ordered
eigenvalues: λK

k (A) ≤ λK
k (A + P ) for P ∈ PK implies that

ΛK
k + PK ⊂ ΛK

k ,

i.e., the top branch PK is a monotonicity cone for each branch ΛK
k of the

Monge-Ampère equation.

Example 4.3.2. (p-Convexity) Fix p, 1 ≤ p ≤ n. For each A ∈
Sym2(Rn) and each p-tuple I = {i1 < i2 < · · · < ip}, set λI(A) =
λi1(A) + · · · + λip(A). Consider the second-order polynomial differential
equation determined by

MAp(A) ≡
∏
I

λI(A) = det {DA : ΛpRn → ΛpRn} = 0

where DA denotes A acting as a derivation on the exterior power ΛpRn. This
equation splits into branches Λk(p), k = 1, . . . ,

(
n
p

)
, obtained by ordering the

eigenvalues {λI(A)}. The principle branch Λ1(p), which is denoted by

P(p) ≡ {A : λ1(A) + · · · + λp(A) ≥ 0} = F(G(p,Rn)),

is exactly the one considered in 2.1.11(c). In particular, the P(p)-sub-
harmonic functions are just the p-plurisubharmonic functions—those which
are harmonic on all affine p-planes. The monotonicity of eigenvalues shows
that P(p) is a monotonicity cone for every branch of this equation, that is,

Λk(p) + P(p) ⊂ Λk(p).

More generally, let K = R,C or H and, using the notation of 4.3.1, set

MAK
p (A) ≡

∏
I

λK
I (A).

This defines a polynomial differential equation with principal branch
PK(p) = F(G(p, Kn)). The other branches, obtained as above by ordering
the eigenvalues {λK

I (A)}, are subequations for which PK(p) is a monotonic-
ity cone.

The cone P(p) can be defined for any real number p, 1 ≤ p ≤ n by

P(p) ≡
{
A : λ1(A) + · · · + λ[p](A) + (p − [p])λp+1(A) ≥ 0

}
. (4.3.1)

This extension plays an important role in removable singularity theorems
(see Section 6.2 below). We note that this extended P(p) is the principal
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branch of the polynomial operator MAp(A) =
∏

(λI(A) + (p − [p])λk(A))
where the product is over |I| = [p] − 1 and k /∈ I.

Example 4.3.3. (δ-Uniform Ellipticity) A basic family of monotonicity
subequations is given by

P(δ) ≡ {A ∈ Sym2(Rn) : A ≥ −δtrA · I}

for δ > 0. Any subequation F, for which P(δ) is a monotonicity cone, is
uniformly elliptic in the usual sense. This subequation is the principal branch
of the pure second-order polynomial differential equation:

n∏
i=1

(λk(Hess u) + δΔu) = 0.

This equation has n branches

λk(Hess u) + δΔu ≥ 0 for k = 1, ..., n,

and P(δ) is a monotonicity cone for each of these branches, so in particular,
each branch is uniformly elliptic.

This is easily generalized as follows. Suppose F ⊂ Sym2(Rn) is any pure
second-order subequation. Then for each δ > 0, the δ-elliptic regularization
F(δ) is defined by requiring that A + δ(trA) · I ∈ F. Now if M is a
monotonicity cone for F, it follows immediately from the definitions that
M(δ) is a monotonicity cone for F(δ). Also, P ⊂ M implies that P(δ) ⊂
M(δ), which ensures that each F(δ) is uniformly elliptic.

Example 4.3.4. G̊arding Hyperbolic Polynomials) The examples above,
and several below, fall into a general class of equations where monotonicity
cones appear naturally. A homogeneous polynomial Q : Sym2(Rn) → R of
degree m is said to be G̊arding hyperbolic with respect to the identity if
Q(I) = 1 and for each A ∈ Sym2(Rn) the polynomial qA(t) ≡ Q(tI + A)
has m real roots. Thus we can write

Q(tI + A) =
m∏

k=1

(t + λk(A))

where the λ1(A) ≤ · · · ≤ λm(A) are the ordered eigenvalues (the negatives
of the roots) of qA(t). Such a polynomial has m branches

ΛQ,k ≡ {λk(A) ≥ 0}, k = 1, ..., m,

which correspond to m constant coefficient pure second-order subequations
in Rn. The principal branch

MQ ≡ ΛQ,1

is called the G̊arding cone. G̊arding’s beautiful theory of hyperbolic polyno-
mials [G] applies here to give the following.
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Proposition 4.3.5. The G̊arding cone MQ is a convex cone containing
the identity I. It satisfies the property

ΛQ,k + MQ ⊂ ΛQ,k for all k = 1, . . . , m,

that is, MQ gives a monotonicity cone for each of the subequations ΛQ,k.
In particular, as long as MQ contains P, each branch ΛQ,k of Q is a
subequation.

One of the simplest examples comes by taking Q(A) = σm(A), the mth

elementary symmetric function in the eigenvalues. Here the G̊arding cone
MQ is the set {σ1 ≥ 0, . . . , σm ≥ 0} (cf. Example 2.1.2(c)).

In general, for any hyperbolic polynomial Q as above, one can construct
large families of associated subequations, equipped with monotonicity cones,
by using the eigenvalues of Q. For a discussion of this as well as an elementary
introduction to G̊arding’s theory, see [HL7,8].

4.4. Monotonicity and Duality. The key algebraic fact that the dual
of a translated subequation F + J is just F̃ − J (see 2.1.5) easily proves the
following result, which in turn proves the basic algebraic lemmas 4.1.2 and
4.2.2.

Lemma 4.4.1. Given three subequations G, M, F ⊂ J2(X), the fibre-wise
sums satisfy:

G + M ⊂ F ⇐⇒ G + F̃ ⊂ M̃. (4.4.1)

Proof. Note that J+M ⊂ F ⇐⇒ M ⊂ −J+F ⇐⇒ J+F̃ ⊂ M̃ . �
Later on, (4.4.1) will be implemented with G = F c ⊂ F (cf. (5.1.1)) to

obtain weak comparison (see Remark 5.1.4).

4.5. Uniform Ellipticity as Monotonicity. As noted in Example
4.4.3 the classical notion of uniform ellipticity can be reformulated in terms
of monotonicity. We now examine this in greater detail. Suppose that F
is a subequation defined on an open set X ⊂ Rn, in the classical way, by
F ≡ {f(x, r, p, A) ≥ 0} for a function f : J2(X) → R (cf. Appendix A).
Then uniform ellipticity (with constants 0 < λ < Λ) is the condition that
for A, P ∈ Sym2(Rn) with P ≥ 0,

λtr(P ) ≤ f(x, r, p, A + P ) − f(x, r, p, A) ≤ Λtr(P ) (4.5.1)

(and is usually combined with Lipschitz continuity in p). This condition can
be reformulated in terms of a monotonicity subequation for F . To see this
it suffices to consider the simplest case f : Sym2(Rn) → R. The condition
(4.5.1) is equivalent to requiring that for all A, B (not just B ≥ 0),

P−
λ,Λ(B) ≤ f(A + B) − f(A) ≤ P+

λ,Λ(B) (4.5.1)′

where P±
λ,Λ are the Pucci operators defined by

P−
λ,Λ(B) ≡ λtr(B+) + Λtr(B−) and P+

λ,Λ(B) ≡ −P−
λ,Λ(−B)
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and where B = B++B− is the decomposition into B+ ≥ 0 and B− ≤ 0. It is
easy to see that the left hand inequality in (4.5.1)′ for all A, B is equivalent
to the right hand inequality for all A, B. The desired monotonicity is given
by the Pucci cone

Pλ,Λ ≡ {B ∈ Sym2(Rn) : P−
λ,Λ(B) ≥ 0}. (4.5.2)

Note that the left hand inequality in (4.5.1)′ implies the monotonicity:

F + Pλ,Λ ⊂ F. (4.5.3)

The equivalence of F + Pλ,Λ ⊂ F and F̃ + Pλ,Λ ⊂ F̃ corresponds to the
equivalence of the right and left hand inequalities in (4.5.1)′.

The Pucci cones are convex. One way to see this is to compute that Pλ,Λ
is the polar of the convex cone on the set {B ∈ Sym2(Rn) : λI ≤ B ≤ ΛI}.

We point out that Pucci cones provide just one of many choices of a
family of monotonicity subequations (convex cones) which form a “funda-
mental” neighborhood system of P = {A ≥ 0}, e.g. Example 4.3.3 above.
All such families give equivalent notions of uniform ellipticity.

5. Comparison and Strict Approximation

Let F ⊂ J2(X) be a subequation on a manifold X and for each compact
set K ⊂ X set F (K) = USC(K) ∩ F (IntK).

Definition 5.0.1. We say that comparison holds for F on X if for
every compact subset K, the Zero Maximum Principle

u + v ≤ 0 on ∂K ⇒ u + v ≤ 0 on K (ZMP )

holds for all
u ∈ F (K) and v ∈ F̃ (K).

One sees easily that comparison implies uniqueness for the Dirichlet
problem:

If u and v are F -harmonic on IntK and u = v on ∂K, then u = v on K

5.1. Weak Comparison. A C2 function u on X is said to be strictly
F -subharmonic if J2

xu ∈ IntFx for all x. This notion has the following useful
extension to functions which are not C2. For c > 0 let F c be the subequation
with fibres

F c
x ≡ {J ∈ Fx : dist(J,∼ Fx) ≥ c} (5.1.1)

where dist denotes distance in the fibre J2
x(X). This set satisfies conditions

(P) and (N). A function u ∈ USC(X) is called strictly F -subharmonic if
each x has a neighborhood U and c > 0 such that u is F c-subharmonic on U .

Definition 5.1.1. We say that weak comparison holds for F on X
if for every compact subset K,

u + v ≤ 0 on ∂K ⇒ u + v ≤ 0 on K
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holds for all
u ∈ F c(K), v ∈ F̃ (K) and c > 0.

We say that local weak comparison holds for F on X if every point has
a neighborhood in which weak comparison holds. This weakened form of
comparison has several advantages. The first is the following.

Theorem 5.1.2. (Local implies Global) If local weak comparison holds
on X, then weak comparison holds on X.

A second important advantage is the following.

Theorem 5.1.3. Suppose F is a subequation on X which is locally jet-
equivalent to a constant coefficient subequation. Then local weak comparison
holds for F on X.

Remark 5.1.4. F c is exactly the subset of F which satisfies the “weak
monotonicity”

F c + M c ⊂ F and hence F c + F̃ ⊂ M̃ c

where M c is the universal subequation corresponding to the constant coef-
ficient subequation

Mc ≡ (−∞, 0] × B(0, c) × (P − c · I).

The smaller subequation Mc ⊂ Mc defined by

Mc ≡ (−∞, 0] × B(0, c) × P

has dual M̃c ⊃ M̃c which satisfies the (ZMP). It is the union of three
subequations:

R− × Rn × Sym2(Rn) (zeroth order)
R × (∼ B(0, c)) × Sym2(Rn) (dual Eikonal)

R × Rn × P̃ (subaffine),

5.2. Strict Approximation. We say that strict approximation
holds for F on X if for each compact set K ⊂ X, each function u ∈ F (K)
can be uniformly approximated by functions in F (K) which are strict on
IntK.

Theorem 5.2.1. If weak comparison and strict approximation hold for
F on X, then comparison holds for F on X.

Theorem 5.2.2. Let F be a subequation on X with a monotonicity
cone subequation M . Suppose X carries a C2-function which is strictly M -
subharmonic. Then local weak comparison implies global comparison for F
on X.

The idea is to approximate u ∈ F (K) by u + εψ, ε > 0, where ψ is
the strictly M -subharmonic function. (The proofs of these theorems can be
found in [HL6].)
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Thus we see that monotonicity subequations are of central importance in
solving the Dirichlet Problem for nonlinear equations which are degenerate
and highly non-convex.

There are times when strict approximation can be achieved by other
means. One example is given by the Eikonal subequation |∇u| ≤ 1. Here
the family of functions uε = (1 − ε)u for ε > 0 gives strict approximation.

5.3. Addition Theorems. In [HL4] the following results were proved
for pure second-order, constant coefficient subequations on an open subset
X ⊂ Rn. We recall that a function u on an open set in Rn is quasi-convex if
the function u(x) + c|x|2 is convex for some c > 0. Local quasi-convexity is
invariant under coordinate changes and therefore makes sense on manifolds.

Suppose u is locally quasi-convex on X. Then

u ∈ F(X) ⇐⇒ D2
xu ∈ F a.e. on X.

If F + G ⊂ H, then for quasi-convex functions u and v,

u ∈ F(X) and v ∈ G(X) ⇒ u + v ∈ H(X).

Both of these results hold in much greater generality.

Theorem 5.3.1. (AE Theorem) Suppose F is a subequation (in the sense
of Definition 2.2.1) on a manifold X, and suppose u is locally quasi-convex
on X. Then

u ∈ F (X) ⇐⇒ J2
xu ∈ Fx a.e. on X.

Theorem 5.3.2. (Quasi-Convex Addition) Given three subequations F ,
G and H (as in 5.3.1) with F + G ⊂ H, one has that

u ∈ F (X) and v ∈ G(X) ⇒ u + v ∈ H(X).

for locally quasi-convex functions u and v.

Theorem 5.3.1 follows in an elementary manner from either Jensen’s
Lemma [J1] or Slodkowski’s Lemma [S1] (in fact, they are equivalent).
Theorem 5.3.2 is immediate from the first. These results will be elaborated
in a forthcoming paper.

Of course, quasi-convex approximation can be used in the constant
coefficient case to obtain the full Addition Theorem:

u ∈ F(X) and v ∈ G(X) ⇒ u + v ∈ H(X). (5.3.1)

Application 5.3.3. (Comparison via Monotonicity for Constant Coef-
ficient Equations) Suppose F satisfies

F + M ⊂ F (5.3.2)

where M̃-subharmonic functions satisfy the Zero Maximum Prinicple. From
(5.3.2) we have F + F̃ ⊂ M̃. Therefore

u ∈ F(X) and v ∈ F̃(X) ⇒ u + v ∈ M̃(X),

and so comparison holds for F.
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Note that M can be any of the monotonicity cones discussed in Appendix
B. For example, the cone M = R− × Rn × P implies comparison for all
gradient independent subequations.

6. Removable Singularities

Monotonicity cones lend themselves nicely to the question of removable
singularities for F -subharmonic and F -harmonic functions.

6.1. M-Polar Sets. Suppose M ⊂ J2(X) is a convex cone subequa-
tion, i.e., one for which the fibres are convex cones with vertex at the origin.

Definition 6.1.1. A closed subset E ⊂ X is called C∞ M -polar if
E = {x : ψ(x) = −∞} for some M -subharmonic function ψ which is smooth
on X − E.

Examples.

(a) Consider the pure second-order constant coefficient equation M =
P on Rn. The P-subharmonic functions are convex (See Proposi-
tion 2.1.7), and so there do not exist any C∞ P-polar sets.

(b) Consider the complex analogue PC on Cn. Then PC-subharmonic
functions are the standard plurisubharmonic functions and PC-
polar sets are standard pluripolar sets. These exist is abundance.
They include, for example, log|f | with f holomorphic.

(c) For the quaternionic analogue PH on Hn there is a 2-sphere of
complex structures coming from unit imaginary quaternions. A
plurisubharmonic function in any one of these structures is PH-
subharmonic, and so any pluripolar set for that structure is PH-
polar.

(d) Consider the constant coefficient subequation P(p) defined in
(4.3.1) and equal to F(G(p,Rn)) for integer p (cf. 2.1.11(c)). The
following result is proved in [HL12] using the theory of classical
Riesz potentials (see [L] for example).

Theorem 6.1.2. Any closed set of locally finite Hausdorff (p−2)-measure
is P(p)-polar.

6.2. Removability Results. The following removable singularity re-
sults on manifolds are proved in [HL12]. Recall that M is a monotonicity
cone for F if and only if it is a monotonicity cone for F̃ (see 4.2.2).

Theorem 6.2.1. Suppose F is a subequation on X with monotonicity
cone M , and E ⊂ X is locally C∞ M -polar with no interior. Then E
is removable for F -subharmonic functions which are locally bounded above
across E. More precisely, if u ∈ F (X −E) is locally bounded across E, then
its canonical upper semi-continuous extension U to X is F -subharmonic
on X.
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Theorem 6.2.2. Suppose F is a subequation on X with monotonicity
cone M , and E ⊂ X is locally C∞ M -polar with no interior. Then for
u ∈ C(X)

u is F -harmonic on X − E ⇒ u is F -harmonic on X.

More generally, Theorem 6.2.1 remains true when E has interior if the
extension U is defined to be ≡ −∞ on IntE.

Theorems 6.2.1 and 6.2.2 can be applied to the many subequations
given in Section 4.3. For example, this gives removable singularity results
for all branches of the homogeneous complex Monge-Ampère equation on a
complex hermitian manifold. Here E can be any pluripolar set (not just a
C∞ pluripolar set). The result also applies to the intrinsic notion of maximal
functions on an almost complex manifold (see [HL10]).

These general results combined with Theorem 6.1.2 above give the
following. We restrict attention to constant coefficient pure second-order
subequations in Rn.

Corollary 6.2.3. If F is a subequation for which P(p) is a mono-
tonicity cone, then any closed set of locally finite Hausdorff (p − 2)-measure
is removable for F - and F̃ -subharmonics and F -harmonics as in the two
theorems above.

This applies immedately to all branches of the equation MAp in Example
4.3.2. It also applies to all subequations geometrically defined by a subset
Gl of the Grassmannian G(p,Rn). (See Example 2.1.11 and also example (c)
following Theorem 2.1.12.). These include the Lagrangian and Special La-
grangian subequations in Cn, the associative and coassociative subequations
in R7, and the Cayley subequations in R8 (where the appropriate value of
p is clear in each case).

For the general applicability of this result we introduce the following
invariant, which is studied in [HL15].

Definition 6.2.4. Suppose M is a convex cone subequation. The Riesz
characteristic pM of M is defined to be

pM ≡ sup{p ∈ R : I − pPe ∈ M ∀ |e| = 1}.

It has the important property that

P(p) ⊂ M ⇐⇒ p ≤ pM . (6.2.1)

and hence: For any subequation F which is M -monotone, closed sets of

locally finite Hausdorff (pM − 2)-measure are F -removable as above.

Example 6.2.5. For M = Pλ,Λ, the Pucci cone defined in (4.5.2), the
Riesz characteristic is

pM =
λ

Λ
(n − 1) + 1.
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As a consequence one retrieves the removable singularity results in [AGV].
In fact Corollary 6.2.3 is stronger since it applies to interesting equations
which are not uniformly elliptic.

For M = P(δ), another choice for defining uniform ellipticity, the Riesz
characteristic is

pM =
δn + 1
δ + 1

Final Remark. In the special case of convex subequations (in the general
setting of manifolds) there are many interesting removability results [HL12].
They come from combining the Strong Bellman Principle (see §10) and
known results ([Le], [HP1,2], [H], [Shi]) for linear elliptic equations. See [HL13]
for details.

7. Boundary Convexity

Fix a subequation F on a manifold X and a domain Ω ⊂⊂ X with
smooth boundary. We shall be interested in the Dirichlet problem for F -
harmonic functions on Ω. In this chapter we present geometric conditions
on ∂Ω which guarantee the existence of solutions for all continuous boundary
functions. These conditions are based on the following concept.

7.1. The Asymptotic Interior of a Reduced Subequation.
Throughout this section we assume that F is a subequation which is “inde-
pendent of the r-variable” or “reduced”. This means that with respect to
the splitting

J2(X) = R ⊕ J2
red(X)

in (3.1.1), F is of the form F = R × F0. For simplicity we just take
F ⊂ J2

red(X).

Definition 7.1.1. The asymptotic interior
−→
F of F is the set of all

J ∈ J2
red(X) for which there exists a neighborhood N (J) in the total space

of J2
red(X) and a number t0 > 0 such that

t · N (J) ⊂ F for all t ≥ t0

The set
−→
F is an open cone in J2

red(X) which satisfies Condition (P). If
F is itself a cone, then

−→
F = IntF . Otherwise,

−→
F is smaller than IntF and

may be empty.

Definition 7.1.2. A function u ∈ C2(X) is called strictly
−→
F -

subharmonic if J2
red,xu ∈ −→

F for all x.

Let Ω ⊂ X be a domain with smooth boundary ∂Ω. By a defining
function for ∂Ω we mean a smooth function ρ defined on a neighborhood of
∂Ω such that ∂Ω = {x : ρ(x) = 0}, dρ �= 0 on ∂Ω, and ρ < 0 on Ω.
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Definition 7.1.3. Suppose F is a reduced subequation. The boundary
∂Ω is said to be strictly F -convex at x ∈ ∂Ω if there exists a strictly−→
F -subharmonic defining function for ∂Ω on some neighborhood of x

This is equivalent to either of the following two conditions.

(i) For some local defining function ρ, J2
red,xρ ∈ −→

F .

(ii) For any local defining function ρ, J2
red,xρ + t(dρ)x ◦ (dρ)x ∈ −→

F for
all t ≥ some t0.

7.2. General F -Convexity. Suppose now that F ⊂ J2(X) is a gen-
eral subequation on X. For each λ ∈ R there is a reduced subequation
Fλ ⊂ J2

red(X) obtained by fixing the r-variable to be λ, that is

Fλ ≡ F ∩
(
{λ} × J2

red(X)
)
.

As above we fix a domain Ω ⊂ X with smooth boundary ∂Ω.

Definition 7.2.1. Suppose F is a general subequation. The boundary
∂Ω is said to be strictly F -convex at x ∈ ∂Ω if it is strictly

−→
Fλ-convex at

x for all λ ∈ R.

For example, consider the universal riemannian subequation F given by
Hess u ≥ 0 and det{Hess u} ≥ eu. Then Fλ is given by the condition that
Hess u ≥ 0 and det{Hess u} ≥ eλ. One easily checks that for every λ,

−→
Fλ

is the open cone {Hess u > 0}, and so in this case the strictly F -convex
boundaries are just the classical strictly convex boundaries.

Strict F - and F̃ -convexity of ∂Ω at each point are sufficient for the
construction of barriers used in the proof of the existence of solutions to the
Dirichlet problem.

7.3. F -Convexity in Terms of the Second Fundamental Form.
For a reduced subequation F on a riemannian manifold X, the F -convexity
of a boundary ∂Ω can be characterized in terms of its second fundamental
form II∂Ω with respect to the outward-pointing unit normal ν. We use the
decomposition given by (2.2.4):

J2
red(X) = T ∗X ⊕ Sym2(T ∗X).

Proposition 7.3.1. The boundary ∂Ω is strictly F -convex at x ∈ ∂Ω if
and only if

(ν, tPν ⊕ II∂Ω) ∈ −→
Fx for all t ≥ some t0. (7.3.1)

where Pν denotes orthogonal projection onto the normal line Rν at x.

Note. Blocking with respect to the decomposition TxX = Rν ⊕Tx(∂Ω),
(7.3.1) can be rewritten(

(1, 0),
(

t 0
0 II∂Ω

))
∈ −→

Fx for all t ≥ some t0. (7.3.2)
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7.4. Examples. (a) k-Laplacians. There are many examples where
every boundary is strictly F -convex. The simplest one is the subequation
Δu ≥ 0 or more generally Δu ≥ f(x, u) where f is non-decreasing in u.

Other examples come from the constant coefficient k-Laplace subequa-
tion, defined by

FLap
k ≡ Closure

{
(p, A) : |p|2trA + (k − 2) ptAp > 0

}
(7.3.3)

where k ≥ 1. These equations are self-dual. Since FLap
k is a cone,

−→
FLap

k =
IntFLap

k . One can check directly from (7.3.2) that for k > 1 every boundary
is

−→
FLap

k -convex.
When k = 1 this equation is the implicit minimal surface equation

studied by De Giorgi and his school [Giu]. Here one sees that a boundary
∂Ω is strictly FLap

1 -convex if and only if it is strictly mean convex, i.e.,
tr(II∂Ω) > 0 at all points.

At the other extreme is the infinity Laplacian (cf. [CIL], [J2], [ESm])

FLap
∞ ≡ Closure

{
(p, A) : ptAp > 0

}
(7.3.4)

where again all boundaries are strictly FLap
∞ -convex.

(b) Elementary Symmetric Functions of Hess(u). Consider Ex-
ample 2.1.2(c)

Fσk
≡ {σk(A) ≥ 0, σk−1(A) ≥ 0, ... , σ1(A) ≥ 0} (7.3.5)

which can be extended to the complex and quaternionic cases, and carried
over to riemannian manifolds. One finds that ∂Ω is strictly Fσk

-convex if
and only if

σk−1 (II∂Ω) > 0, σk−2 (II∂Ω) > 0, . . . , σ1 (II∂Ω) > 0.

Moreover, if ∂Ω is strictly Fσk
-convex, then it is Fσk,i-convex for every

branch Fσk,i of the equation σk(Hess u) = 0 (see Section 4.3). This includes
the dual subequation F̃σk

, which is the bottom branch.

(c) Geometrically Defined Subequations. Consider now the sube-
quations discussed in Example 2.1.11. Here the boundary convexity is par-
ticularly nice. Fix a compact subset Gl ⊂ G(p,Rn) and define F(Gl ) as in
(2.1.6). Then a boundary ∂Ω is strictly F(Gl )-convex if and only if

trW {II∂Ω} > 0 for all Gl planes W which are tangent to ∂Ω. (7.3.6)

This condition holds automatically at x ∈ ∂Ω if there are no Gl -planes
tangent to ∂Ω at x.

On the other hand, if Gl = G(p,Rn), then ∂Ω is strictly F (Gl )-convex
if and only if II∂Ω has positive trace on all tangent p-planes, i.e., ∂Ω is
p-convex as in [Wu], [Sha1,2].

For example, suppose Gl ⊂ G(1,R2) is the single point Gl = {x-axis}.
Then a domain Ω ⊂⊂ R2 with smooth boundary is strictly Gl -convex iff the
curvature vector of ∂Ω points strictly inward at every horizontal tangent.
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This implies that all horizontal slices of Ω are connected. Thus, one can see
directly that the Dirichlet problem for Gl -harmonic functions (uxx = 0) is
uniquely solvable for all continuous boundary data.

A classical example comes from the set Gl = GC(1,Cn) ⊂ G(2,R2n) of
complex lines in Cn. A domain Ω ⊂ Cn is strictly Gl -convex iff it is strictly
pseudo-convex in the usual sense in complex analysis (cf. [Ho1]). This is the
boundary convexity required to solve the Dirichlet problem for PC = F(Gl )-
harmonic functions, i.e., for solutions to the homogeneous complex Monge-
Ampère equation.

We note that in all cases F (Gl ) ⊂ ˜F (Gl ), so that a strictly F (Gl )-convex

boundary is automatically strictly ˜F (Gl )-convex.

(d) p-Plurisubharmonic Functions. Consider now the pth branch
of the homogeneous complex Monge-Ampère equation. This is the pure
second-order subequation given by ΛC

p ≡ {A : λC
p (A) ≥ 0} where λC

1 (A) ≤
· · · ≤ λC

n (A) are the ordered eigenvalues of the hermitian symmetric part
of A (see 2.1.3 and 2.1.10). The ΛC

p -subharmonic functions are the classical
(p−1)-plurisubharmonic functions in complex analysis – those for which the
complex hessian has at least n−p+1 non-negative eigenvalues. The Dirichlet
problem for ΛC

p -harmonic functions was studied by Hunt and Murray [HM]
and then solved by Slodkowski [S1]. A smooth boundary ∂Ω ⊂ Cn is strictly
ΛC

p -convex iff
λC

p (II∂Ω) ≥ 0, or equivalently (7.3.7)
the Levi form of ∂Ω has n − p − 1 eigenvalues ≥ 0 at each point.

(e) Calabi-Yau-Type Equations. Let X be a complex hermitian
manifold. Consider the subequation F on X corresponding to detC(I +
HessCu) ≥ f(x, u) for a continuous f > 0 which is non-decreasing in u
and I + Hess u ≥ 0. For λ ∈ R the subequation Fλ given in Section 7.2
corresponds to detC(I + HessCu) ≥ f(x, λ) at each point. One checks that
Fλ-convexity of a boundary ∂Ω amounts to the statement that (II∂Ω)C > −I
at each point (a condition independent of λ). Levi convexity of the boundary
((II∂Ω)C > 0) will certainly suffice.

(f) Principal curvatures of the graph. Other equations of interest
are those which impose conditions on the principal curvatures of the graph
of the function u in X × R. See [HL6, §11.5] for a complete discussion of
this case.

8. The Dirichlet Problem

Throughout this chapter F ⊂ J2(X) will be a subequation on a manifold
X and Ω ⊂⊂ X will be a domain with smooth boundary ∂Ω. We shall say
that existence holds for the Dirichlet Problem for F -harmonic functions on Ω
if for each continuous function ϕ ∈ C(∂Ω) there exists a function u ∈ C(Ω)
such that
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(i) u is F -harmonic on Ω, and
(ii) u

∣∣
∂Ω = ϕ.

We say that uniqueness holds for this problem if for each ϕ ∈ C(∂Ω), there
exists at most one such function u.

8.1. General Theorems. It is an elementary fact that if comparison
holds for F on X (see Definition 5.1), then uniqueness holds for the Dirichlet
problem. Under appropriate boundary convexity comparison also implies
existence.

Theorem 8.1.1. Suppose comparison holds for F on X. Then existence
and uniqueness hold for the Dirichlet problem for F -harmonic functions on
any domain Ω ⊂⊂ X whose boundary is both strictly F -convex and strictly

F̃ -convex.

Note that u is F -harmonic if and only if −u is F̃ -harmonic. Thus, it is
expected that both conditions, strict F and F̃ convexity, should be required,
if one of them is. Often one of these convexity conditions implies the other.
This is clearly the case for F = P in Rn where strict P-convexity is the
usual strict convexity and P̃-convexity is much weaker. It also holds in the
case of q-plurisubharmonic functions (Example 7.4(d)) where by (7.3.7) PC

q -
convexity implies PC

q′ -convexity if q < q′. This is reflected in the work of
Hunt and Murray [HM] who noted the failure of the statement when only
one convexity condition is required.

Theorems 5.1.2 and 5.2.1 imply that

If local weak comparison and strict approximation hold for F on X,
then comparison holds for F on X.

Theorem 8.1.2. Let F be a subequation with monotonicity cone M .
Suppose that:

(i) F is locally affinely jet-equivalent to a constant coefficient subequa-
tion, and

(ii) X carries a strictly M -subharmonic function.

Then existence and uniqueness hold for the Dirichlet problem for F -
harmonic functions on any domain Ω ⊂⊂ X whose boundary is both strictly

F - and F̃ -convex.

Comparison and therefore uniqueness follow from Theorems 5.1.3 and
5.2.2. It is then proved, using comparison and barriers constructed from
boundary convexity, that existence also holds. Further details are given in §8.

Assumption (ii) is always true for pure second-order equations in Rn

(and in any complete simply-connected manifold of non-positive sectional
curvature) since the subequation P is always a monotonicity cone by the
positivity condition (P) and |x|2 is strictly P-convex.
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On the other hand something like assumption (ii) must be required in
the general case. For example, suppose F is a universal riemannian equation
as in 2.2.3. One could completely change the geometry (and topology) of
the interior of a domain Ω ⊂ X without changing the F -convexity of the
boundary. Take the subequation P on the euclidean ball, and change the
interior so that it is not contractible. Then there are no P-subharmonic
(riemannian convex) functions on the resulting space, and certainly no P-
harmonic ones.

In homogeneous spaces one can apply a trick of Walsh [W] to establish
existence without uniqueness.

Theorem 8.1.3. Let X = G/H be a riemannian homogeneous space
and suppose that F ⊂ J2(X) is a subequation which is invariant under
the natural action of G on J2(X). Let Ω ⊂⊂ X be a connected domain

whose boundary is both F and F̃ strictly convex. Then existence holds for
the Dirichlet problem for F -harmonic functions on Ω.

This theorem applies to give (the known) existence for the k-Laplacian,
1 < k ≤ ∞ on arbitrary domains, and for the 1-Laplacian on mean convex
domains in G/H. The literature on these equations in Rn is vast. See [JLM],
[CIL], [J2], [ESm] and references therein, for example. We note that even
in Rn, uniqueness for the 1-Laplacian fails catastrophically. For a generic
smooth function on the boundary of the unit disk in R2 there are families
of solutions to the Dirichlet problem parameterized by R (and often Rm for
large m)!

The proof of existence in the theorems above uses the standard Perron
method based on the properties in Theorem 2.3.1. Given ϕ ∈ C(∂Ω),
consider the family

F(ϕ) ≡ {u ∈ USC(Ω) ∩ F (Ω) : u ≤ ϕ on ∂Ω},

and define the Perron function to be the upper envelope of this family:

U(x) ≡ sup
u∈F(ϕ)

u(x). (8.1.1)

Proposition 8.1.4. Suppose that F satisfies weak comparison and that

∂Ω is both F and F̃ strictly convex. Then the upper and lower semi-
continuous regularizations U∗ and U∗ of U on Ω satisfy:

(i) U∗ = U∗ = U = ϕ on ∂Ω,
(ii) U = U∗ on Ω
(iii) U is F -subharmonic and −U∗ is F̃ -subharmonic on Ω.

The classical barrier argument, used by Bremermann [B] for the case
F = PC, establishes (i), while weak comparison is used in (ii). Part (iii)
relies on a “bump argument” found in Bedford and Taylor [BT1] and also
in [I].

When one can ultimately establish comparison, as in Theorem 8.1.2, the
Perron function is the unique solution. When this is not necessarily possible,
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as in Theorem 8.1.3, arguments of Walsh [W] can be applied to show that
the Perron function is a solution.

In this latter case one can say more. Fix F and Ω as in Theorem 8.1.3.

Suppose

U is the Perron function for F on Ω with boundary values ϕ, and

−Ũ is the Perron function for F̃ on Ω with boundary values −ϕ.

Both U and Ũ solve the Dirichlet problem for F -harmonic functions on Ω
with boundary values ϕ, and if u is any other such solution,

Ũ ≤ u ≤ U. (8.1.2)

Theorems 8.1.2 and 8.1.3 have wide applications. In the following sec-
tions we will examine some specific examples.

8.2. Manifolds with Reduced Structure Group. Fix a constant
coefficient subequation F ⊂ J2, and let

G ≡ GF ≡ {g ∈ O(n) : g(F) = F} (8.2.1)

where g acts naturally on J2 by g(r, p, A) = (r, gp, gtAg).

Definition 8.2.1. Let X be a riemannian n-manifold and G ⊂ O(n) a
subgroup. A topological G-structure on X is a family {(Uα, eα)}α where
{Uα}α is an open covering of X and each eα = (e1

α, ..., en
α) is a continuous

tangent frame field on Uα, such that for all α, β the change of framing
g : Uα ∩ Uβ → O(n) takes values in G.

Each constant coefficient subequation F canonically determines a sube-
quation F on any riemannian manifold X equipped with a topological GF-
structure. (Use the splitting (2.2.4) and then the trivializations induced by
the local tangent frames. The subequation determined by F in these trivi-
alizations is preserved under the change of framings.) By Proposition 3.2.5,
F is locally jet-equivalent to F.

If M is a GF-invariant monotonicity cone for F, then the corresponding
subequation M on X is a monotonicity cone for F . Note that the maximal
monotonicity cone for F is always GF-invariant.

Theorem 8.2.2. Let F be a subequation with monotonicity cone M
canonically determined by F and M on a riemannian manifold X with a
topological GF-structure. Let Ω ⊂⊂ X be a domain with smooth boundary

which is both F and F̃ srictly convex. Assume there exists a strictly M -
subharmonic function on Ω. Then the Dirichlet Problem for F -harmonic
functions is uniquely solvable for all ϕ ∈ C(∂Ω).

Example 8.2.3. (a) Universal Riemannian Subequations: As
noted in Remark 2.2.3, if GF = O(n), then F universally determines a
subequation on every riemannian manifold by choosing the framings eα to
be orthonormal. In particular this covers all branches of the homogeneous
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Monge-Ampère equation. In fact, it covers all pure second-order subequa-
tions which depend only on the ordered eigenvalues of the Hessian. The
subequation P = {Hess u ≥ 0} is a monotonicity cone for all such equa-
tions. Thus Theorem 8.2.2 applies to all such F ’s in any region of X where
there exists a smooth strictly convex function.

Other interesting examples are given by the branches of the p-convex
Monge-Ampère equation MAp given in example 4.3.2. Here the monotonicity
cone is P(p), and the appropriate boundary convexity is the p-convexity
discussed in 7.4 (c).

Further examples come from elementary symmetric functions of Hess u
(see 7.4 (b) and the discussion after 4.3.5.), and functions of eigenvalues of
the graph (7.4 (f)).

(b) Universal Hermitian Subequations: If GF = U(n), then F univer-
sally determines a subequation on every almost complex hermitian manifold.
For example, this covers all pure second-order subequations which depend
only on the ordered eigenvalues of the hermitian symmetric part HessCu of
Hess u. For such equations, PC = {HessCu ≥ 0} is a monotonicity cone.
Thus, for example, one has the following consequence of Theorem 8.2.2. Let
X be an almost complex hermitian manifold, and Ω ⊂⊂ X a smoothly
bounded domain with a strictly plurisubharmonic (PC-subharmonic) defin-
ing function. Then the Dirichlet problem for every branch of the homoge-
neous complex Monge-Ampère equation is uniquely solvable on Ω.

A similar result holds for branches of the equation MAC
p where p-

convexity of the Levi form on the boundary plays a role (see 7.4 (d)).
The discussion of elementary symmetric functions also carries over to

this case.
Theorem 8.2.2 can similarly be applied to Calabi-Yau type equations

(7.4 (e)).
All of this discussion can be replicated for almost quaternionic hermitian

manifolds.

(c) Geometrically Defined Subequations: Theorem 8.2.2 applies di-
rectly to all subequations geometrically defined by a compact subset Gl ⊂
G(p,Rn) (see 2.1.11, 2.1.12 and 7.4 (b)). Suppose X has a topological G-
structure where G = {g ∈ O(n) : g(Gl ) = Gl } and let F (Gl ) be the cor-
responding subequation on X. Suppose Ω ⊂ X is a domain with a global
defining function which is strictly Gl -plurisubharmonic. Then the Dirichlet
problem for Gl -harmonic functions is uniquely solvable on Ω.

Thus, one can solve the Dirichlet problem for (in fact, all branches of)
the Lagrangian harmonic equation (see 2.1.11 (d)) on domains with a strictly
Lagrangian-plurisubharmonic defining function.

One can also solve for G(ϕ)-harmonic functions on strictly G(ϕ)-convex
domains in a manifold with a topological calibration ϕ. A typical example
is the following. Let X be a riemannian 7-manifold with a topological G2-
structure determined by a global associative 3-form ϕ of constant comass 1.
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(Such structures exist on X if and only if X is a spin manifold.) Then the
Dirichlet problem for G(ϕ)-harmonic functions is uniquely solvable on any
domain with a strictly G(ϕ)-plurisubharmonic defining function.

8.3. Inhomogeneous Equations. Since Theorem 8.1.2 assumes affine
jet-equivalence, it applies to inhomogeneous equations as in Examples 3.2.7-
8. In these cases boundary convexity and monotonicity cones are the same
as in the homogeneous case.

8.4. Existence Without Uniqueness. Theorem 8.1.3 applies in
cases where monotonicity cones do not exist, such as the 1-laplacians in
7.4 (a). As previously noted, solutions of the Dirichlet problem for the 1-
laplacian are highly non-unique. However, they are all caught between the
Perron functions U and Ũ (see (8.1.2) above).

8.5. Parabolic Equations. The methods and results above carry over
effectively to parabolic equations. Let X be a riemannian n-manifold with
a topological G-structure for G ⊂ O(n), and consider a constant coefficient
subequation of the form

F = {J ∈ J2 : f(J) ≥ 0}
where f : J2(X) → R is G-invariant, P- and N -monotone, and Lipschitz
in the reduced variables (p, A). This induces a subequation F on X. The
associated constant coefficient parabolic subequation HF on R × Rn is
defined by

f(J) − p0 ≥ 0
(where p0 denotes the ut component of the 2-jet of u), and it induces the
associated parabolic subequation HF on the riemannian product R × X.
The HF -harmonic functions are solutions of the equation

ut = f(u, Du, D2u).

Examples which can be treated include:
(i) f = trA, the standard heat equation ut = Δu for the Laplace-

Beltrami operator.
(ii) f = λq(A), the qth ordered eigenvalue of A. This is the natural

parabolic equation associated to the qth branch of the Monge-
Ampère equation.

(iii) f = trA + k
|p|2+ε2

ptAp for k ≥ −1 and ε > 0. When X = Rn and
k = −1, the solutions u(x, t) of the associated parabolic equation,
in the limit as ε → 0, have the property that the associated level
sets Σt ≡ {x ∈ Rn : u(x, t) = 0} are evolving by mean curvature
flow (cf. [ES∗], [CGG∗], [E] and [Gi].)

(iv) f = tr{arctanA}. When X = Rn, solutions u(x, t) have the
property that the graphs of the gradients: Γt ≡ {(x, y) ∈
Rn × Rn = Cn : y = Dxu(x, t)} are Lagrangian submanifolds
which evolve the initial data by mean curvature flow. (See [CCH].)
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Techniques discussed above show that:

Comparison holds for the subequation HF on X × R.

Applying standard viscosity techniques for parabolic equations, one
can prove more. Consider a compact subset K ⊂ {t ≤ T} ⊂ X × R
and let KT ≡ K ∩ {t = T} denote the terminal time slice of K. Let
∂0K ≡ ∂K − IntKT denote the parabolic boundary of K. Here IntK
denotes the relative interior in {t = T} ⊂ X × R. We say that parabolic
comparison holds for HF if for all such K (and T )

u + v ≤ c on ∂0K ⇒ u + v ≤ c on IntK

for all u ∈ HF (K) and v ∈ H̃F (K). Then one has that:

Parabolic comparison holds for the subequation HF on X × R.

Under further mild assumptions on f which are satisfied in the examples
above, one also has existence results. Consider a domain Ω ⊂ X whose
boundary is strictly F - and F̃ -convex. Set K = Ω × [0, T ]. Then

For each ϕ ∈ C(∂0K) there exists a unique function u ∈ C(K) such that
u
∣∣
IntK is HF -harmonic and u

∣∣
∂0K

= ϕ.

One then obtains corresponding long-time existence results.

8.6. Obstacle Problems. The methods discussed here lend them-
selves easily to solving boundary value problems with obstacles. Suppose
that F = R × F0 is a reduced subequation, i.e., independent of the r-
variable. Given g ∈ C(X), the associated obstacle subequation is defined to
be

H ≡ (R− + g) × F0 where R− ≡ {r ≤ 0} ⊂ R.
The following facts are easy to prove.

• The H-subharmonic functions are the F -subharmonic functions u
which satisfy u ≤ g.

• If F has a monotonicity cone M = R × M0, then M− ≡ R− × M0
is a monotonicity cone for H.

• If X carries a strictly M -subharmonic function ψ, then on any given
compact set, the function ψ − c is strictly (M−)-subharmonic for
c > 0 sufficiently large.

• If F is locally affinely jet-equivalent to a constant coefficient re-
duced subequation R×F0, then H is locally affinely jet-equivalent
to the subequation R− × F0.

Consequently, under the assumptions in Theorem 8.1.2 on a reduced
subequation F = R×F0 with monotonicity cone M = R×M0, comparison
holds for each associated obstacle subequation H ≡ (R− + g) × F0.

However, existence fails for a boundary function ϕ ∈ C(∂Ω) unless
ϕ ≤ g

∣∣
∂Ω. Nevertheless, if ∂Ω is both F and F̃ strictly convex as in
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Theorem 8.1.2, then existence holds for each boundary function
ϕ ≤ g

∣∣
∂Ω.

To see that this is true, note the following. The Perron family for a
boundary function ϕ ∈ C(∂Ω) consists of those F -subharmonic functions
u on Ω with u

∣∣
∂Ω ≤ ϕ (the usual family for F ) subject to the additional

constraint u ≤ g on Ω. The dual subequation to H is H̃ = [(R− − g) ×
J2

red(X)] ∪ F̃ so that the boundary ∂Ω is strictly H̃-convex if it is strictly
F̃ -convex. Although ∂Ω can never be strictly H-convex (since (

−→
Fλ)x = ∅ for

λ > g(x)), the only place that this hypothesis is used in proving Theorem
8.1.2 for H is in the barrier construction which appears in the proof of
Proposition F in [HL6]. However, if ϕ(x0) ≤ g(x0), then the barrier β(x) as
defined in (12.1) in [HL6] is not only F -strict near x0 but also automatically
H-strict since β < g.

The obstacle problem for the basic subequation P is related to convex
envelopes. This was discovered by Oberman [O] and developed by Oberman-
Silvestre [OS].

9. Restriction Theorems

Let F ⊂ J2(Z) be a subequation on a manifold Z, and suppose i : X ⊂ Z
is a submanifold. Then there is a natural induced subequation i∗F on X
given by restriction of 2-jets. For functions u ∈ C2(Z) one has directly that

u is F -subharmonic on Z ⇒ u
∣∣
X

is i∗F -subharmonic on X.

Generically this induced subequation i∗F is trivial, i.e., all of J2(X). The
first problem is to determine the class of submanifolds for which the restric-
tion is interesting. In such cases we then have the following

Question: When does the implication above hold for all u ∈ USC(Z)?

Example. The situation is illustrated by the basic subequation P in Rn

whose subharmonics are the convex functions. The restriction of a smooth
convex function u ∈ C∞(Rn) to the unit circle in R2 obeys no proper
subequation, while the restriction of u to a minimal submanifold M ⊂ Rn,
of any dimension, is subharmonic for the Laplace-Beltrami operator on M .
This assertion carries over to general convex functions u.

9.1. The First General Theorem. The paper [HL9] establishes two
restriction theorems of a general nature, each of which has interesting appli-
cations. The first entails the following technical hypothesis. Fix coordinates
z = (x, y) on Z so that locally X ∼= {y = y0}.

The Restriction Hypothesis: Given x0 ∈ X and (r0, p0, A0) ∈ J2
n and

given zε = (xε, yε) and rε for a sequence of real numbers ε converging to 0:

If
(

rε,

(
p0 + A0(xε − x0),

yε − y0

ε

)
,

(
A0 0
0 1

ε I

))
∈ Fzε
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and xε → x0,
|yε − y0|2

ε
→ 0, rε → r0,

then

(r0, p0, A0) ∈ (i∗F )x0 .

Theorem 9.1.1. Suppose u ∈ USC(Z). Assume the restriction hypothe-
sis and suppose that (i∗F ) is closed. Then

u ∈ F (Z) ⇒ u
∣∣
X

∈ (i∗F )(X).

If (i∗F ) is not closed, the conclusion holds with (i∗F ) replaced by (i∗F ).

9.2. Applications of the First General Theorem. Theorem 9.1.1
applies to several interesting cases. In the following, the term restriction
holds refers to the conclusion of Theorem 9.1.1. The reader is referred to
[HL9] for full statements and proofs.

Theorem 9.2.1. Let F be a constant coefficient subequation in Rn. Then
restriction holds for all affine subspaces X for which i∗F is closed.

More generally, if u is F-subharmonic, then u
∣∣
X

is i∗F-subharmonic.
Consider now a second-order linear operator IL with smooth coefficients

on Rn. Fix linear coordinates z = (x, y) and suppose X ∼= {y = y0} as
above. Using the summation convention, write

IL(u) = Aij(z)uxixj +ai(z)uxi +α(z)u+Bk�(z)uyky�
+bk(z)uyk

+Cik(z)uxiyk

Suppose the subequation L corresponding to ILu ≥ 0 satisfies positivity.
If any one of the coefficients B(x0, y0), b(x0, y0) or C(x0, y0) is non-zero,
restriction is trivial locally since i∗L is everything for x near x0. Hence, we
assume the following

B(x, y0), b(x, y0), and C(x, y0) vanish identically on X (9.2.1)

Theorem 9.2.2. Assuming (9.2.1), restriction holds for the linear op-
erator L to X.

This result for linear operators proves to be quite useful.
The next result concerns geometric subequations (see Example 2.1.11)

on general riemannian manifolds Z.

Theorem 9.2.3. Let Gl ⊂ G(p, TZ) be a closed subset of the bundle of
tangent p-planes on Z, which admits a fibre-wise neighborhood retract (a sub-
bundle for example). Let F (Gl ) be the induced subequation on Z, defined as in
(2.1.6) using the riemannian hessian. Then restriction holds for all minimal
Gl -submanifolds X ⊂ Z, i.e., minimal submanifolds with TxX ∈ Gl x for all
x ∈ X.
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9.3. The Second General Theorem. Let F be a subequation on
a manifold Z and fix a submanifold i : X ⊂ Z as above. In 3.2.3 we
defined the notion of F being locally jet-equivalent to a constant coefficient
subequation F. In our current situation there is a notion of F being locally
jet-equivalent to F relative to the submanifold X. This entails i∗F being
locally jet-equivalent to a constant coefficient subequation (assumed closed)
on X. For details, see [HL9, §§9 and 10].

Theorem 9.3.1. If F is locally jet-equivalent to a constant coefficient
subequation relative to X, then restriction holds for F to X.

9.4. Applications of the Second General Theorem. A nice appli-
cation of Theorem 9.3.1 is the following.

Theorem 9.4.1. Let Z be a riemannian manifold of dimension n and
F ⊂ J2(Z) a subequation canonically determined by an O(n)-invariant
constant coefficient subequation F ⊂ J2. Then restriction holds for F to
any totally geodesic submanifold X ⊂ Z.

Suppose now that Z is a riemannian manifold with a topological G-
structure and F ⊂ J2(Z) is determined by a G-invariant constant coefficient
subequation as in Section 8.2. The local framings eα appearing in Definition
8.2.1 are called admissible. So also is any framing of the form e′

α = geα

for a smooth map g : Uα ∩ Uβ → G. A submanifold X ⊂ Z is said to
be compatible with the G-structure if at every point z ∈ X there is an
admissible framing e on a neighborhood U of z such that on X ∩ U

e1, . . . , en are tangent to X ∩ U and
en+1, . . . , eN are normal to X ∩ U.

For example, if G = U(N/2), then any submanifold of constant CR-rank is
compatible.

Theorem 9.4.2. Let Z be a riemannian manifold with topological G-
structure, and F ⊂ J2(Z) a subequation canonically determined by a G-
invariant constant coefficient subequation F ⊂ J2. Then restriction holds
for F to any totally geodesic submanifold X ⊂ Z which is compatible with
the G-structure.

There is a further application of Theorem 9.3.1 to almost complex
manifolds, which is discussed in §11.

10. Convex Subequations and the Strong Bellman Principle

An elementary fact, known to all, is that a closed convex set in in a
vector space V is the intersection of the closed half-spaces containing it.
Put this into a family and you have a fundamental principle, which we call
the Bellman Principle, for dealing with nonlinear pde’s which are convex.
Specifically, suppose F ⊂ J2(X) is a convex subequation—one with the
property that every fibre Fx is convex. Then, under mild assumptions, F
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can be written locally as the intersection of a family of linear subequations.
These are subequations of the form

Lu = 〈a, D2u〉 + 〈b, Du〉 + cu ≥ λ, (10.1)

where, from the Conditions (P) and (N) for F , one can deduce that the
matrix function a and the scalar function c satisfy

a ≥ 0 and c ≤ 0. (10.2)

The introduction of these local linear equations goes back to Richard
Bellman and his work in dynamic programing. These equations can be found
in many areas of mathematics. Examples close in spirit to those above appear
in work of Bedford-Taylor [BT∗] and Krylov [K].

It is obviously a big improvement if all the linear equations in (10.1)
needed to carve out F can be taken to have

a > 0, (10.3)

for then the machinery of uniformly elliptic linear equations can be brought
to bear.

More specifically: any F -subharmonic function u is locally a viscosity
subsolution of Lu ≥ λ. From this one sees that u is a classical subsolution
(see [HL10, Thm. A.5]), and if a > 0, the results of [HH] apply to prove
that u is L1

loc. It can then be shown that u is a distributional subsolution to
Lu ≥ λ, and the full linear elliptic theory ([Ho2] or [G] for example) applies.

This naturally raises the question: What assumptions on F will guaran-
tee that it is cut out by linear equations with a > 0?

This question has two parts. The first concerns only the convex geometry
of the fibres Fx at each point x; in other words, the question for a convex
constant coefficient subequaton F ⊂ J2. The second only involves the mild
regularity condition that a containing half-space for Fx extends locally to a
linear (variable coefficient) subequation containing F .

These questions have been discussed in [K], and an account has also
been given in [HL13], where the answer to the first question is given as
follows. We say that a subset C ⊂ Sym2(Rn) depends on all the variables
if there is no proper subspace W ⊂ Rn and subset C ′ ⊂ Sym2(W ) such
that A ∈ C ⇐⇒ A

∣∣
W

∈ C ′. Then a (constant coefficient) subequation
F ⊂ J2 = R × Rn × Sym2(Rn) is said to depend weakly on all the
second-order variables if for each (r, p) ∈ R × Rn, the fibre F(r,p) = {A ∈
Sym2(Rn) : (r, p, A) ∈ F} depends on all the variables.

Theorem 10.1. If F depends weakly on all the second-order variables,
then F can be written as the intersection of a family of half-space subequa-
tions 〈a, A〉 + 〈b, p〉 + cr ≥ λ with a > 0.

Note 10.2. For subequations which do not depend on all the second
order variables, the conclusions above fail. Consider the (geometrically
determined) subequation

F ∼= {uxx ≥ 0}
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in the (x, y)-plane. Any continuous function u(y) is F-subharmonic, in fact,
F-harmonic, but not in general L1

loc.

See [HL13] for a full discussion of these matters.

11. Applications to Almost Complex Manifolds

In this section we consider completely general almost complex manifolds
(X, J) where J : TX → TX is smooth bundle map with J2 ≡ −Id. On any
such manifold there is an intrinsically defiined subequation

F (J) ⊂ J2(X),

for which, when the structure is integrable, the F (J)-subharmonic functions
are exactly the standard plurisubharmonic functions. Hence, the results
and techniques discussed in this paper apply to give a full-blown potential
theory on almost complex manifolds, which extends the classical theory. The
consequences are worked out in detail in [HL10]. Here are a few highlights.

11.1. J-Holomorphic Curves. A submanifold Y ⊂ X is an almost
complex submanifold if J(TyY ) = TyY for all y ∈ Y . In general dimensions
such submanifolds exist only rarely. However, when the real dimension of
Y is two, Y is called a J-holomorphic curve, and we have the following
important classical result.

Theorem 11.1.1. (Nijenhuis and Woolf [NW]) For each point x ∈ X
and each complex tangent line � ⊂ TxX, there exists a J-holomorphic curve
passing through x with tangent direction �.

The restriction result 9.3.1 applies in this case to prove the following.
For historical compatibility we replace the term “F (J)-subharmonic” with
“F (J)-plurisubharmonic”.

Theorem 11.1.2. Let (Y, JY ) be an almost complex submanifold of
(X, JX). Then the restriction of any F (JX)-plurisubharmonic function to
Y is F (JY )-plurisubharmonic.

This leads to the following result equating two natural definitions of
plurisubharmonicity. We recall that an almost complex structure J on a
2-dimensional manifold S is always integrable, and all notions of (usc)
subharmonic functions on (S, J) coincide.

Theorem 11.1.3. A function u ∈ USC(X) is F (J)-plurisubharmonic if
and only if its restriction to every J-holomorphic curve is subharmonic.

11.2. Completion of the Pali Conjecture. There is a third defini-
tion of J-plurisubharmonic functions on an almost complex manifold (X, J),
which makes sense for any distribution u ∈ D′(X). Any such distribution u
is known to be L1

loc. By work of Nefton Pali [P] we know that any ∈ USC(X)
which is J-plurisubharmonic in the sense of Section 11.1, is L1

loc on X and
J-plurisubharmonic as a distribution. In the converse direction he showed
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that if a J-plurisubharmonic distribution u has a continuous representative
(as a [−∞,∞)-valued function), then it is J-plurisubharmonic as above.
He further conjectured that the converse should hold in general. This was
proved in [HL10].

The proof used the Strong Bellman Principle and involved showing that
the upper semi-continuous representative of the L1

loc-class obtained for each
of the associated linear equations, is independent of the linear equation. It
is, in fact, given by the essential upper-semi-continuous regularization

u∗
ess(x) ≡ lim

r↘0

{
ess sup

Bx(r)
u

}
which depends only on the L1

loc-class of u.

11.3. The Dirichlet Problem for Maximal Functions. Theorem
8.12 applies in this case to prove existence and uniqueness for the Dirichlet
problem for J-maximal functions. One can show that the more classical
notion of a function u being J-maximal (going back to [B], [W]), is the
same as u being F (J)-harmonic, i.e., u is F (J)-(pluri)subharmonic and −u

is F̃ (J)-subharmonic. A domain Ω ⊂⊂ X with smooth boundary is strictly
J-convex if it has a strictly F (J)-plurisubharmonic defining function.

Theorem 11.3.1. Let Ω ⊂⊂ X be a strictly J-convex domain in an
almost complex manifold (X, J). Then the Dirichlet problem for J-maximal
functions in uniquely solvable on Ω for all continuous boundary values
ϕ ∈ C(∂Ω).

Note 11.3.2. Recently Szymon Plís has also studied the Dirichlet
problem on almost complex manifolds [Pl]. His result is the almost-complex
analogue of a main result in [CKNS]. It treats the inhomogeneous Monge-
Ampère equation with positive right hand side. All data are assumed to be
smooth, and complete regularity is established for the solution.

Appendix A. A Pocket Dictionary

The conventions adopted in this paper (and related ones) are not
common in the literature, but they have several advantages, particularly for
applications to calibrated geometry and to branches of polynomial operators.
In the case of comparison the advantage is discussed in Comment 3 below.

For readers hard-wired to standard notation (as in, say, [CIL]), we give
here a concise translation of concepts to serve as a guide.

Classically, a fully nonlinear partial differential equation for a smooth
function u(x) on an open set X ⊂ Rn is written in the form

f(x, u, Du, D2u) = 0

for a given contiinuous function f : X × R × Rn × Sym2(Rn) −→ R.
Here the function f is typically replaced by the closed set

F ≡ {(x, r, p, A) : f(x, r, p, A) ≥ 0}.
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For C2-functions u(x) we have the following translations. Set J2
xu ≡

(x, u, Du, D2u).

u is a subsolution <−−−> u is F subharmonic, i.e.,
f(x, u, Du, D2u) ≥ 0 <−−−> J2

xu ∈ F ∀x ∈ X.

u is a supersolution <−−−> −u is F̃ subharmonic, i.e.,

f(x, u, Du, D2u) ≤ 0 <−−−> −J2
xu ∈ F̃ ∀x ∈ X.

u is a solution <−−−> u is F harmonic, i.e.,
f(x, u, Du, D2u) = 0 <−−−> J2

xu ∈ ∂F ∀x ∈ X

<−−−> u is F subharmonic and
−u is F̃ subharmonic

These same translations apply to any upper semi-continuous function u by
applying them to test functions at each point x.

We also have the following translations between some of the standard
structural conditions placed on the function f and conditions on the set F .
Let P ≡ {(0, 0, A) : A ≥ 0} and N ≡ {(r, 0, 0) : r ≤ 0}.

f is degenerate elliptic <−−−> F satisfies positivity, i.e.,
f(x, r, p, A + P ) ≥ f(x, r, p, A) ∀P ≥ 0 <−−−> F + P ⊂ F.

f is monotone in the dependent variable <−−−>

F satisfies negativity, i.e.,
f(x, r − s, p, A) ≥ f(x, r, p, A) ∀s ≥ 0 <−−−> F + N ⊂ F.

f is proper if both conditions hold <−−−> F + P ⊂ F and F + N ⊂ F

f is uniformly elliptic <−−−>

⎧⎪⎨⎪⎩
F + Pλ,Λ ⊂ F for some 0 < λ < Λ,

or equivalently,

F + P(δ) ⊂ F for some δ > 0.

Here Pλ,Λ is the Pucci cone discussed in §4.5, and P(δ) is the cone defined
in Example 4.3.3.

It is important to realize that these translations are not precise equiv-
alences (although there is an implication). In passing from the function f
to the set F ≡ {f ≥ 0}, the behavior of f away from its zero-set is lost.
Matters become simpler, and this can be an advantage (See Comment 3).
There are also natural examples where the set {f ≥ 0} is not really what
one wants to take for the set F , and the topological condition required in
the “set” point of view easily corrects matters (see Comment 2 below).
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Comment 1. As noted above, these translations are not equivalences in
general. For example, the positivity condition F + P ⊂ F is equivalent to
the assumption that

f(x, r, p, A) ≥ 0 ⇒ f(x, r, p, A + P ) ≥ 0 ∀ P ≥ 0.

which is weaker than the inequality on f required for degenerate ellipticity.
The negativity condition F + N ⊂ F is equivalent to the assumption that

f(x, r, p, A) ≥ 0 ⇒ f(x, r − s, p, A) ≥ 0 ∀ s ≥ 0.

which is weaker than the properness condition placed on f above.

Comment 2. The Topological Condition (T) that F = IntF , holds for
most classical equations of interest. However, there are cases where it
fails, such as the infinite Laplaican f(p, A) = 〈Ap, p〉 or the k-Laplacian
|p|2 + (k − 2)〈Ap, p〉, (1 ≤ k �= 2). When it fails, it is condition (T) that
selects the “correct” subequation F .

Comment 3 (Supersolutions versus F̃ -subharmonicity). There is an
important difference between u being a supersolution and −u being F̃ -
subharmonic, which arises when IntF �= {f > 0}. However, since we have
{f > 0} ⊂ IntF (equivalently ∼ IntF ⊂ {f ≤ 0}) we deduce

−v is F̃ subharmonic ⇒ v is an f supersolution. (A.1)

The fact that the converse is not true is important. For a constant coeffi-
cient, pure second-order subequation F ⊂ Sym2(Rn), the more restrictive
condition on v in (A.1) ensures that comparison holds. That is, with u F -
subharmonic and −v F̃ -subharmonic,

u ≤ v on ∂K ⇒ u ≤ v on K

(See [HL4] for a proof.) One can show that (A.1) is an equivalence if and
only if whenever F (A) = 0, the function F (A + εI) has an isolated zero at
ε = 0.

Appendix B. Examples of Basic Monotonicity Cones

The following is a list of constant-coefficient convex cone subequations M

such that the Zero Maximum Principle (see §4.1) holds for M̃-subharmonic
functions. In cases (1), (5) and (6) the full maximum principle holds, since
these equations are independent of the r-variable.

(1) M = R×Rn×P. Here the M̃-subharmonic functions are the subaffine
functions (see Proposition 2.1.7). This is a monotonicity subequation for any
pure second-order subequation F = R × Rn × F0.

(2) M = R− × Rn × P. Here one can characterize the M̃-subharmonics
as being “sub” the functions of the form max{0, a(x)} with a(x) affine (the
affine-plus functions). This is a monotonicity subequation for any gradient-
independent subequation.
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(3) M = R− × D × P with D ⊂ Rn a “directional” convex cone with
vertex at the origin and non-empty interior.

(4) M = {(r, p, A) ∈ J2 : r ≤ −γ|p|, p ∈ D and A ≥ 0} with γ > 0 and
D ⊂ Rn as above.

(5) M = R×M0 with (p, A) ∈ M0 ⇐⇒ 〈Ae, e〉−λ|〈p, e〉| ≥ 0 ∀ |e| = 1

For the next example the Maximum Principle only holds for compact
sets K ⊂ Rn which are contained in a ball of radius R.

(6) M = R × M0 with (p, A) ∈ M0 ⇐⇒ A − |p|
R Id ≥ 0

The proofs depend on the following elementary result.

Theorem B.2. Suppose M is a constant coefficient convex subequation
and K ⊂ Rn is compact. If K admits a smooth function ψ which is strictly
M-subharmonic on IntK, then the Zero Maximum Principle holds for the

dual subequation M̃ on K.

Proof. Suppose that the (ZMP) fails for u ∈ USC(K). We will show
that there exists a point x̄ ∈ IntK and ε > 0 such that ϕ ≡ −εψ is a test
function for u at x̄. This proves that u is not M̃-subharmonic near x̄ because
J2

x̄ψ ∈ IntM implies that J2
x̄ϕ = −εJ2

x̄ψ /∈ M̃.
By assumption, u ≤ 0 on ∂K but supK u > 0. The negativity condition

(N) for M̃ allows us to subtract a small number from u and assume that
u < 0 on ∂K with supK u > 0. Set v ≡ u + εψ. Then with ε > 0 sufficiently
small, v < 0 on ∂K but supK v > 0. Now let x̄ denote a maximum point for
v on K. Since x̄ ∈ IntK, this proves that ϕ ≡ −εψ is a test function for u
at x̄ as desired. �

Proof of (1)–(4). Since the M in (4) is contained in the other three
M’s, it suffices to find a strictly M-subharmonic function for M defined
as in (4). Choose ψ(x) ≡ 1

2δ|x − x0|2 − c with δ, c > 0. Denote the jet
coordinates of ψ at x ∈ K by r = ψ(x), p = δ(x − x0) and A = δI.
Choose x0 ∈ Rn so that K ⊂ x0 + IntD. Then A ∈ IntP, p ∈ IntD and
r + γ|p| = 1

2ε|x − x0|2 − c + γδ|x − x0| < 0 if c is large. �

Proof of (5). Consider ψ(x) ≡ 1
N+1 |x|N+1. Then one computes that

p = Dψ = |x|N x

|x| and A = D2ψ = |x|N−1 (
I + (N − 1)P[x]

)
where P[x] is orthogonal projection onto the x-line. Then with |e| = 1 we
have

1
|x|N−1 (〈Ae, e〉 − λ|〈p, e〉|) = 1 − λ|x|t + (N − 1)t2 ≡ g(t).

with t ≡ |〈 x
|x| , e〉|. We can assume that 0 /∈ K and x ∈ K implies |x| ≤ R.

The quadratic g(t) has a minimum at t0 = λ|x|
2(N−1) with the minimum value
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g(t0) = 1 − λ2|x|2
4(N−1) ≥ 1 − λ2R2

4(N−1) . Choose N large enough so that this is
> 0. �
Proof of (6). This is similar to the proof of (5). It reduces to showing that
g(t) = 1 − |x|

R + (N − 1)t2 > 0. Now the minimum value (at t = 0) is 1 − |x|
R .

For the counterexample, consider

u(x) ≡
{

−(R − |x|)3 |x| ≤ R

0 |x| ≥ R
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