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OUTLINE

Part I. The de Rham - Federer Theory.

Differential characters
arise in many analytic settings.

• Poincaré-Lelong Formulas

• Dirac Monopoles

• Chern-Weil Transgressions

• Morse Theory

•MacPherson Formulas for Degeneracies of Bundle Maps
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k
(X) −→ S1

(a, b) 7→ a ∗ b([X])

is non-degenerate.

13
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Part II. Poincaré-Pontrjagin Duality

for Differential Cohomology.

Let X be a compact oriented n manifold.

ÎH
k
(X) is the Pontrjagin Dual of ÎH

n−k−1
(X)

The pairing

ÎH
n−k−1

(X)× ÎH
k
(X) −→ S1

(a, b) 7→ a ∗ b([X])

is non-degenerate.

The resulting mapping

ÎH
n−k−1

(X) −→ Hom
(
ÎH

k
(X), S1

)

has dense range. In fact this gives an isomorphism

ÎH
n−k−1

(X)
∼=
−−−→ Hom∞

(
ÎH

k
(X), S1

)

with the smooth homomorphisms.
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Part III. Spark Complexes:

A Homological Algebraic Machine
for Recognizing Differential Cohomology.

As with ordinary cohomology,
differential cohomology

appears in many different contexts.

(i) De Rham-Federer Sparks (Analysis)

(ii) Abelian Gerbes with Connection
mod Gauge Equivalence

(iii) Cheeger-Simons Characters
(Chern-Simons Invariants)
(the historical beginning)

(iv) Hypersparks

(v) Holonomy Maps

As with ordinary cohomology,
This universality makes differential cohomology

useful and important.
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Multiplicative Structure

In some cases above
the multiplicative structure is relatively clear

In other cases
it is nearly impossible to define.

The homological apparatus of spark complexes
does not involve the multiplicative structure.

It establishes a canonical equivalence of additive theories
The ring structure is then a consequence.

In practice it is quite different
from using the Simons-Sullivan Axioms.

The apparatus also extends beyond differential cohomology.

∂-Sparks
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Part I.

The de Rham-Federer Formulation
of Differential Cohomology

• Devised by Harvey-L.-Zweck (2003)
• It motivates and is archetypical

of the spark apparatus.
• The product is geometrically clear.
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De Rham - Federer Sparks

The Poincarè-Lelong Formula:

ddc log |z| = −δ0 on C.
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De Rham - Federer Sparks

The Poincarè-Lelong Formula:

ddc log |z| = −δ0 on C.

ddc log |f | = −Div(f) on Uopen ⊂ Cn.

for f ∈ O(U).

Dirac Monopoles.

L→ S2 = P1
C

a hermitian holomorphic line bundle,
f ∈ Γhol(L)

ddc log ‖f‖ = c1(L)−Div(f)
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More Generally.

L→ X a hermitian holomorphic line bundle,
over any complex manifold X.

f ∈ Γhol(L)

dT = c1(L)−Div(f)

where

T ≡
1

2πi
∂log ‖f‖

is a 1-form with L1
loc-coefficients.
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Chern-Weil Transgressions.

E → X a real oriented vector bundle
with orthogonal connection

σ ∈ Γ(E) a smooth section with non-degenerate zeros

dT = χ
(
ΩE

)
− Zero(σ)

where

χ
(
ΩE

)
is the Chern-Euler form (the Pfaffian) and

T is an (n− 1)-form with L1
loc-coefficients.
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Chern-Weil Transgressions.

E → X a C∞ complex vector bundle
with unitary connection

σ0, ..., σk ∈ Γ(E) generic smooth sections

dT = cn−k+1

(
ΩE

)
− ILID(σ0, ..., σk)

where

ILID(σ0, ..., σk) is the linear dependency locus, and

T is an (n− 1)-form with L1
loc-coefficients.
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Local MacPherson Formulas.

E,F → X C∞ complex vector bundles
of same rank with unitary connections

σ : E → F smooth bundle map.

p a Un-invariant polynomial on un.
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Local MacPherson Formulas.

E,F → X C∞ complex vector bundles
of same rank with unitary connections

σ : E → F smooth bundle map.

p a Un-invariant polynomial on un.

dT = p
(
ΩF

)
− p

(
ΩE

)
−
∑

k Resp,k[Σk(σ)]

where

T is an (n− 1)-form with L1
loc-coefficients.
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Morse Theory.

f : X → R a Morse function
on a compact oriented manifold X.

ϕt : X → X a Morse-Smale flow.

40



Morse Theory.

f : X → R a Morse function
on a compact oriented manifold X.

ϕt : X → X a Morse-Smale flow.

For each critical point p ∈ Cr(f) let

Sp ≡ the stable manifold of p

Up ≡ the unstable manifold of p

41



Morse Theory.

f : X → R a Morse function
on a compact oriented manifold X.

ϕt : X → X a Morse-Smale flow.

For each critical point p ∈ Cr(f) let

Sp ≡ the stable manifold of p

Up ≡ the unstable manifold of p

Sf ≡ span Z {Sp}p∈Cr(f)

42



Morse Theory.

f : X → R a Morse function
on a compact oriented manifold X.

ϕt : X → X a Morse-Smale flow.

For each critical point p ∈ Cr(f) let

Sp ≡ the stable manifold of p

Up ≡ the unstable manifold of p

Sf ≡ span Z {Sp}p∈Cr(f)

H∗(Sf ) ∼= H∗(X,Z)

43



Morse Theory.

f : X → R a Morse function
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Up ≡ the unstable manifold of p
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Morse Theory.

f : X → R a Morse function
on a compact oriented manifold X.

ϕt : X → X a Morse-Smale flow.

For each critical point p ∈ Cr(f) let

Sp ≡ the stable manifold of p

Up ≡ the unstable manifold of p

Sf ≡ span Z {Sp}p∈Cr(f)

H∗(Sf ) ∼= H∗(X,Z)

There exists a linear map

T : E∗(X) −→ E ′
∗−1

(X)

such that

dT (α) = α−
∑

p∈Cr(f)

npSp

for any closed form α with

np =

∫

Up

α ∈ Z.
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QUESTION:

What are these forms T?

Do they define invariants?
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DE RHAM THEORY

X a compact, oriented n-manifold.

E0(X)
d
−−−→ E1(X)

d
−−−→ · · ·

d
−−−→ En(X)
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d
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E ′0(X)
∂
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←−−− · · ·
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←−−− E ′n(X)

Example 1. M ⊂ X a compact oriented submanifold of
dimension k.

[M ] ∈ E ′k(X) defined by [M ](ϕ) ≡

∫

M

ϕ
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X a compact, oriented n-manifold.

E0(X)
d
−−−→ E1(X)

d
−−−→ · · ·

d
−−−→ En(X)

E ′k(X) ≡ (Ek(X))′ the topological dual space

currents of dimension k

E ′0(X)
∂
←−−− E ′1(X)

∂
←−−− · · ·

∂
←−−− E ′n(X)

Example 1. M ⊂ X a compact oriented submanifold of
dimension k.

[M ] ∈ E ′k(X) defined by [M ](ϕ) ≡

∫

M

ϕ

∂[M ] = [∂M ]

Example 2. ψ ∈ En−k(X).

[ψ] ∈ E ′k(X) defined by [ψ](ϕ) ≡

∫

X

ψ ∧ ϕ

∂[ψ] = (−1)n−k+1[dψ]
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DE RHAM THEORY

We set

E ′n−k(X) ≡ E ′k(X) forms of degree n− k

with distribution coefficients
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DE RHAM THEORY

We set

E ′n−k(X) ≡ E ′k(X) forms of degree n− k

with distribution coefficients

The sequence

E ′0(X)
∂
←−−− E ′1(X)

∂
←−−− · · ·

∂
←−−− E ′n(X)

becomes

E ′n(X)
d
←−−− E ′n−1(X)

d
←−−− · · ·

d
←−−− E ′0(X)

There is an embedding

(E∗(X), d) ⊂ (E ′∗(X), d)

Theorem. (de Rham).

H∗(E∗(X)) ∼= H∗(E ′∗(X)) ∼= H∗(X; R)
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DE RHAM - FEDERER SPARKS
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DE RHAM - FEDERER SPARKS

Definition. A de Rham - Federer spark of degree k
is a current

a ∈ E ′k(X)

such that
da = ϕ−R
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DE RHAM - FEDERER SPARKS

Definition. A de Rham - Federer spark of degree k
is a current

a ∈ E ′k(X)

such that
da = ϕ−R

where

ϕ ∈ Ek+1(X) is a smooth form

and

R ∈ Rk+1(X) is a rectifiable current

i.e., R is a Z-linear combination of submanifolds
of codimension k + 1.

Theorem. ϕ and R are uniquely determined by a and

dϕ = dR = 0.
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EQUIVALENCE

Sk(X) ≡ the group of sparks of degree k.

Definition. Two sparks a, a′ ∈ Sk(X) are equivalent if

a− a′ = db+ S where

b ∈ E ′k−1(X) and S ∈ Rk(X)
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EQUIVALENCE

Sk(X) ≡ the group of sparks of degree k.

Definition. Two sparks a, a′ ∈ Sk(X) are equivalent if

a− a′ = db+ S where

b ∈ E ′k−1(X) and S ∈ Rk(X)

Definition. The group of de Rham-Federer spark classes
of degree k is the quotient

ÎH
k
(X) ≡ Sk(X)/

{
dE ′k−1(X) +Rk(X)

}
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SEQUENCES

Theorem. Given a ∈ Sk(X) with

da = ϕ−R

ϕ and R are uniquely determined by a and

dϕ = dR = 0.
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SEQUENCES

Theorem. Given a ∈ Sk(X) with

da = ϕ−R

ϕ and R are uniquely determined by a and

dϕ = dR = 0.

Furthermore, ϕ and [R] ∈ Hk+1(X; Z)

are uniquely determined by [a] ∈ ÎH
k
(X)

67



SEQUENCES

Theorem. Given a ∈ Sk(X) with

da = ϕ−R

ϕ and R are uniquely determined by a and

dϕ = dR = 0.

Furthermore, ϕ and [R] ∈ Hk+1(X; Z)

are uniquely determined by [a] ∈ ÎH
k
(X)

Note. ϕ has integral periods
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SEQUENCES

Theorem. Given [a] ∈ ÎH
k
(X) with

da = ϕ−R

ϕ and [R] are uniquely determined by [a] ∈ ÎH
k
(X)

This determines homomorphisms.

δ1 : ÎH
k
(X) −→ Zk+1

0 (X)

δ2 : ÎH
k
(X) −→ Hk+1(X; Z)
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SEQUENCES

Theorem. Given [a] ∈ ÎH
k
(X) with

da = ϕ−R

ϕ and [R] are uniquely determined by [a] ∈ ÎH
k
(X)

This determines homomorphisms.

δ1 : ÎH
k
(X) −→ Zk+1

0 (X)

δ2 : ÎH
k
(X) −→ Hk+1(X; Z)

by

δ1([a]) = ϕ and δ2([a]) = [R]

70



SEQUENCES

Theorem. There are short exact sequences

0 −→ Hk(X,S1) −→ ÎH
k
(X)

δ1−−−→ Zk+1
0 (X) −→ 0

0 −→ ÎH
k

∞(X) −→ ÎH
k
(X)

δ2−−−→ Hk+1(X,Z) −→ 0
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SEQUENCES

Theorem. There are short exact sequences

0 −→ Hk(X,S1) −→ ÎH
k
(X)

δ1−−−→ Zk+1
0 (X) −→ 0

0 −→ ÎH
k

∞(X) −→ ÎH
k
(X)

δ2−−−→ Hk+1(X,Z) −→ 0

where

ÎH
k

∞(X) ≡ Ek(X)/Zk
0 (X)

are the smooth characters,
those represented by smooth forms.
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THE EXACT GRID

0 0 0

↓ ↓ ↓

0→ Hk(X,R)

Hk
free

(X,Z)
→ Ĥk

∞(X) → dEk(X) → 0

↓ ↓ ↓

0→ Hk(X,S1) → Ĥk(X)
δ1−−−→ Zk+1

0 (X) → 0

↓ δ2 ↓ ↓

0→ Hk+1
tor (X,Z) → Hk+1(X,Z) → Hk+1

free (X,Z) → 0

↓ ↓ ↓

0 0 0
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THE PRODUCT

Theorem. Given classes

α ∈ ÎH
k
(X) and β ∈ ÎH

ℓ
(X).

there exist representatives a ∈ α and b ∈ β with

da = φ−R and db = ψ − S

so that a ∧ S, R ∧ b and R ∧ S are well-defined currents

and R ∧ S is rectifiable.
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THE PRODUCT

Theorem. Given classes

α ∈ ÎH
k
(X) and β ∈ ÎH

ℓ
(X).

there exist representatives a ∈ α and b ∈ β with

da = φ−R and db = ψ − S

so that a ∧ S, R ∧ b and R ∧ S are well-defined currents

and R ∧ S is rectifiable.

Definition. Given a and b as above, define products

a ∗ b
def
= a ∧ ψ + (−1)k+1R ∧ b

a ∗̃ b
def
= a ∧ S + (−1)k+1φ ∧ b

and note that

d(a ∗ b) = d(a ∗̃ b) = φ ∧ ψ − R ∧ S.
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THE PRODUCT

Proposition. Given classes

α ∈ ÎH
k
(X) and β ∈ ÎH

ℓ
(X).

there exist representatives a ∈ α and b ∈ β with

da = φ−R and db = ψ − S

so that a ∧ S, R ∧ b and R ∧ S are well-defined currents

and R ∧ S is rectifiable.

Definition. Given a and b as above, define products

a ∗ b
def
= a ∧ ψ + (−1)k+1R ∧ b

a ∗̃ b
def
= a ∧ S + (−1)k+1φ ∧ b

and note that

d(a ∗ b) = d(a ∗̃ b) = φ ∧ ψ − R ∧ S.

Theorem. The classes [a∗ b] and [a∗̃b] in ÎH
k+ℓ+1

(X) agree
and are independent of the choice of representatives a ∈ α
and b ∈ β. Setting

α ∗ β
def
= [a ∗ b] = [a∗̃b]

gives ÎH
∗
(X) the structure of a graded commutative ring

with unit such that δ1, δ2 are a ring homomorphisms.
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THE ORIGINAL
CHEEGER-SIMONS CHARACTERS

Ĥk(X,R/Z)

given by
h ∈ Hom(Zk(X),R/Z)

with

δh ≡ φ (modZ) for some φ ∈ Ek+1(X)
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THE ORIGINAL
CHEEGER-SIMONS CHARACTERS

Ĥk(X,R/Z)

given by
h ∈ Hom(Zk(X),R/Z)

with

δh ≡ φ (modZ) for some φ ∈ Ek+1(X)

Theorem. There is a natural isomorphism

Ψ : ÎH
k
(X)

∼=
−−−→ Ĥk(X;R/Z)

induced by integration.
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THE ORIGINAL
CHEEGER-SIMONS CHARACTERS

Ĥk(X,R/Z)

given by
h ∈ Hom(Zk(X),R/Z)

with

δh ≡ φ (modZ) for some φ ∈ Ek+1(X)

Theorem. There is a natural isomorphism

Ψ : ÎH
k
(X)

∼=
−−−→ Ĥk(X;R/Z)

induced by integration.

Idea: Given α ∈ ÎH
k
(X) and Z ∈ Zk(X), there exists a ∈ α

smooth on a neighborhood of supp(Z).

Ψ(α) =

∫

Z

a
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THE ORIGINAL
CHEEGER-SIMONS CHARACTERS

Ĥk(X,R/Z)

given by
h ∈ Hom(Zk(X),R/Z)

with

δh ≡ φ (modZ) for some φ ∈ Ek+1(X)

Theorem. There is a natural isomorphism

Ψ : ÎH
k
(X)

∼=
−−−→ Ĥk(X;R/Z)

induced by integration.

Idea: Given α ∈ ÎH
k
(X) and Z ∈ Zk(X), there exists a ∈ α

smooth on a neighborhood of supp(Z).

Ψ(α) =

∫

Z

a

Given two such representives a, a′ ∈ α,

∫

Z

a ≡

∫

Z

a′ (mod Z).
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DIFFERENT D-F SPARK COMPLEXES

In the above one could:

Replace Rk(X) by C∞ singular (n− k)-chains
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Replace Rk(X) by integrally flat currents
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DIFFERENT D-F SPARK COMPLEXES

In the above one could:

Replace Rk(X) by C∞ singular (n− k)-chains

Replace Rk(X) by integrally flat currents

Replace E ′k(X) by currents with L1
loc-coefficients
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DIFFERENT D-F SPARK COMPLEXES

In the above one could:

Replace Rk(X) by C∞ singular (n− k)-chains

Replace Rk(X) by integrally flat currents

Replace E ′k(X) by currents with L1
loc-coefficients

Replace E ′k(X) by flat currents
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THE VARIOUS FORMULATIONS

(i) De Rham-Federer Theories

(ii) Abelian Gerbes with Connection
mod Gauge Equivalence

(iii) Cheeger-Simons Characters
(the historical beginning)

(iv) Hypersparks

(v) Holonomy Maps

(vi) Many others

ARE ALL COVERED BY THE FOLLOWING
HOMOLOGICAL ALGEBRAIC MACHINE
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HOMOLOGICAL SPARK COMPLEXES

Definition. A homological spark complex is a triple of
cochain complexes (F ∗, E∗, I∗) together with morphisms

I∗
Ψ
−−−→ F ∗ ⊃ E∗

such that:

(i) Ψ(Ik) ∩ Ek = {0} for k > 0,

(ii) H∗(E) ∼= H∗(F ), and

(iii) Ψ : I0 → F 0 is injective.
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HOMOLOGICAL SPARK COMPLEXES

Definition. A homological spark complex is a triple of
cochain complexes (F ∗, E∗, I∗) together with morphisms

I∗
Ψ
−−−→ F ∗ ⊃ E∗

such that:

(i) Ψ(Ik) ∩ Ek = {0} for k > 0,

(ii) H∗(E) ∼= H∗(F ), and

(iii) Ψ : Io → F 0 is injective.

Definition. Given (F ∗, E∗, I∗) a spark of degree k is a
pair

(a, r) ∈ F k ⊕ Ik+1

which satisfies the spark equation

(i) da = e−Ψ(r) for some e ∈ Ek+1, and

(ii) dr = 0.

(iii) de = 0 (follows from (i) and (ii))
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HOMOLOGICAL SPARK COMPLEXES

Definition. A homological spark complex is a triple of
cochain complexes (F ∗, E∗, I∗) together with morphisms

I∗
Ψ
−−−→ F ∗ ⊃ E∗

such that:

(i) Ψ(Ik) ∩ Ek = {0} for k > 0,

(ii) H∗(E) ∼= H∗(F ), and

(iii) Ψ : Io → F 0 is injective.

Definition. Given (F ∗, E∗, I∗) a spark of degree k is a
pair

(a, r) ∈ F k ⊕ Ik+1

which satisfies the spark equation

(i) da = e−Ψ(r) for some e ∈ Ek+1, and

(ii) dr = 0.

(iii) de = 0 (follows from (i) and (ii))

Sk ≡ Sk(F ∗, E∗, I∗)

is the group of sparks of degree k.
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EQUIVALENCE

Definition. Two sparks (a, r), (a′r′) ∈ Sk(F ∗, E∗, I∗) are
equivalent if there exists a pair

(b, s) ∈ F k−1 ⊕ Ik

(i) a− a′ = db+Ψ(s)

(ii) r − r′ = −ds.
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EQUIVALENCE

Definition. Two sparks (a, r), (a′r′) ∈ Sk(F ∗, E∗, I∗) are
equivalent if there exists a pair

(b, s) ∈ F k−1 ⊕ Ik

(i) a− a′ = db+Ψ(s)

(ii) r − r′ = −ds.

The equivalence classes:

ÎH
k
(F ∗, E∗, I∗) = ÎH

k

are the group of spark classes of degree k
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SEQUENCES

Zk(E) = {e ∈ Ek : de = 0}
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SEQUENCES

Zk(E) = {e ∈ Ek : de = 0}

Zk
I (E) ≡ {e ∈ Zk(E) : [e] = Ψ∗(ρ) for some ρ ∈ Hk(I)}

where [e] is the class of e in Hk(E) ∼= Hk(F ).
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SEQUENCES

Zk(E) = {e ∈ Ek : de = 0}

Zk
I (E) ≡ {e ∈ Zk(E) : [e] = Ψ∗(ρ) for some ρ ∈ Hk(I)}

where [e] is the class of e in Hk(E) ∼= Hk(F ).

Lemma. There exist well-defined surjective homomorphisms:

ÎH
k δ1−−−→ Zk+1

I (E) and ÎH
k δ2−−−→ Hk+1(I)

given on (a, r) ∈ Sk by

δ1(a, r) = e and δ2(a, r) = [r]

where da = e−Ψ(r).
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SEQUENCES

Zk(E) = {e ∈ Ek : de = 0}

Zk
I (E) ≡ {e ∈ Zk(E) : [e] = Ψ∗(ρ) for some ρ ∈ Hk(I)}

where [e] is the class of e in Hk(E) ∼= Hk(F ).

Lemma. There exist well-defined surjective homomorphisms:

ÎH
k δ1−−−→ Zk+1

I (E) and ÎH
k δ2−−−→ Hk+1(I)

given on (a, r) ∈ Sk by

δ1(a, r) = e and δ2(a, r) = [r]

where da = e−Ψ(r).

Lemma. Let ÎH
k

E = ker δ2. Then

ÎH
k

E = Ek/Zk
I (E)
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SEQUENCES

Definition. Associated to (F ∗, E∗, I∗) is the
cone complex (G∗, D) defined by

Gk ≡ F k ⊕ Ik+1 k ≥ −1

D(a, r) = (da+Ψ(r),−dr)
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SEQUENCES

Definition. Associated to (F ∗, E∗, I∗) is the
cone complex (G∗, D) defined by

Gk ≡ F k ⊕ Ik+1 k ≥ −1

D(a, r) = (da+Ψ(r),−dr)

There is a short exact sequence of complexes

0 → F ∗ → G∗ → I∗(1) → 0

where Ik(1) ≡ Ik+1. The morphism Ψ defines a chain map
of degree 1:

F ∗ Ψ
←−−− I∗(1)

which induces the connecting homomorphisms in the associ-
ated long exact sequence in cohomology.
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SEQUENCES

Definition. Associated to (F ∗, E∗, I∗) is the
cone complex (G∗, D) defined by

Gk ≡ F k ⊕ Ik+1 k ≥ −1

D(a, r) = (da+Ψ(r),−dr)

There is a short exact sequence of complexes

0 → F ∗ → G∗ → I∗(1) → 0

where Ik(1) ≡ Ik+1. The morphism Ψ defines a chain map
of degree 1:

F ∗ Ψ
←−−− I∗(1)

which induces the connecting homomorphisms in the associ-
ated long exact sequence in cohomology.

Proposition.There are two short exact sequences:

0 −→ Hk(G) −→ ÎH
k δ1−−−→ Zk+1

I (E) −→ 0

0 −→ ÎH
k

E −→ ÎH
k δ2−−−→ Hk+1(I) −→ 0
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THE GRID

Consider Ψ∗ : Hk(I)→ Hk(F ) ∼= Hk(E), and define

Hk
I (E) ≡ Image{Ψ∗} and Kerk(I) ≡ ker{Ψ∗}
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THE GRID

The exact sequences fit into a 3× 3 commutative grid.

0 0 0

↓ ↓ ↓

0 −→ Hk(E)

Hk
I
(E)

−→ ÎH
k

E −→ dEk −→ 0

↓ ↓ ↓

0 −→ Hk(G) −→ ÎH
k δ1−−−→ Zk+1

I (E) −→ 0

↓ δ2 ↓ ↓

0 −→ Kerk+1(I) −→ Hk+1(I)
Ψ∗−−−→ Hk+1

I (E) −→ 0

↓ ↓ ↓

0 0 0
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IMPORTANT CONCEPT

QUASI-ISOMORPHISMS OF SPARK COMPLEXES

Definition. Two spark complexes (F ∗, E∗, I∗) and (F
∗
, E

∗
, I

∗
)

are quasi-isomorphic if there exists a commutative dia-
gram of morphisms

I
∗ Ψ

−−−→ F
∗
⊃ E

∗

ψ ↑ ∪ ‖

I∗
Ψ
−−−→ F ∗ ⊃ E∗

inducing an isomorphism

ψ∗ : H∗(I)
∼=
−−−→ H∗(I)
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IMPORTANT CONCEPT

QUASI-ISOMORPHISMS OF SPARK COMPLEXES

Definition. Two spark complexes (F ∗, E∗, I∗) and (F
∗
, E

∗
, I

∗
)

are quasi-isomorphic if there exists a commutative dia-
gram of morphisms

I
∗ Ψ

−−−→ F
∗
⊃ E

∗

ψ ↑ ∪ ‖

I∗
Ψ
−−−→ F ∗ ⊃ E∗

inducing an isomorphism

ψ∗ : H∗(I)
∼=
−−−→ H∗(I)

Theorem. A quasi-isomorphism

(F ∗, E∗, I∗) ∼= (F
∗
, E

∗
, I

∗
)

induces an isomorphism

ÎH
∗
(F ∗, E∗, I∗) ∼= ÎH

∗
(F

∗
, E

∗
, I

∗
)

and an isomorphism of the associated grids.
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EXAMPLES

1. de Rham -Federer Spark Complexes.

F ∗ = E ′
∗
(X)

E∗ = E∗(X)

I∗ = I∗(X)

Ik(X) = {R ∈ E ′k(X) : R and ∂R are rectifiable}
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EXAMPLES

1. de Rham -Federer Spark Complexes.

F ∗ = E ′
∗
(X)

E∗ = E∗(X)

I∗ = IF∗(X)

IFk(X) = {R+∂S ∈ E ′k(X) : R and S are rectifiable}
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EXAMPLES

1. de Rham -Federer Spark Complexes.

F ∗ = E ′
∗

L1

loc

(X)

E∗ = E∗(X)

I∗ = I∗(X)

Ik(X) = {R ∈ E ′k(X) : R and ∂R are rectifiable}
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EXAMPLES

1. de Rham -Federer Spark Complexes.

F ∗ = E ′
∗
(X)

E∗ = E∗(X)

I∗ = C∗(X)

C∗(X) = smooth singular chains
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EXAMPLES

2. Smooth Hyperspark Complexes.

Fix an open covering U = {Ui} of X
with each UI = Ui0 ∩ · · · ∩ Uip contractible.

Consider the Čech-de Rham double complex

⊕

p,q≥0

Cp(U , Eq) with D = (−1)qδ + d
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EXAMPLES

2. Smooth Hyperspark Complexes.

Fix an open covering U = {Ui} of X
with each UI = Ui0 ∩ · · · ∩ Uip contractible.

Consider the Čech-de Rham double complex

⊕

p,q≥0

Cp(U , Eq) with D = (−1)qδ + d

There are two edge complexes:

0→ Eq(X)→ C0(U , Eq)
δ
−−−→ C1(U , Eq)

0→ Cp(U ,R)→ Cp(U , E0)
d
−−−→ Cp(U , E1)
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EXAMPLES

2. Smooth Hyperspark Complexes.

Fix an open covering U = {Ui} of X
with each UI = Ui0 ∩ · · · ∩ Uip contractible.

Consider the Čech-de Rham double complex

⊕

p,q≥0

Cp(U , Eq) with D = (−1)qδ + d

There are two edge complexes:

0→ Eq(X)→ C0(U , Eq)
δ
−−−→ C1(U , Eq)

0→ Cp(U ,R)→ Cp(U , E0)
d
−−−→ Cp(U , E1)

Define:

F k =
⊕

p+q=k

Cp(U , Eq)

Ek = Ek(X)

Ik = Ck(U ,Z) ⊂ Ck(U ,R)
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↑ ↑ ↑ ↑

E2(X) ⊂ C0(U , E2) → C1(U , E2) → C2(U , E2) → · · ·

↑ ↑ ↑ ↑

E1(X) ⊂ C0(U , E1) → C1(U , E1) → C2(U , E1) → · · ·

↑ ↑ ↑ ↑

E0(X) ⊂ C0(U , E0) → C1(U , E0) → C2(U , E0) → · · ·

∪ ∪ ∪

C0(U ,Z) → C1(U ,Z) → C2(U ,Z) → · · ·
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↑ ↑ ↑ ↑

E2(X) ⊂ C0(U , E2) → C1(U , E2) → C2(U , E2) → · · ·

↑ ↑ ↑ ↑

E1(X) ⊂ C0(U , E1) → C1(U , E1) → C2(U , E1) → · · ·

↑ ↑ ↑ ↑

E0(X) ⊂ C0(U , E0) → C1(U , E0) → C2(U , E0) → · · ·

∪ ∪ ∪

C0(U ,Z) → C1(U ,Z) → C2(U ,Z) → · · ·

The spark classes are abelian gerbes with connection
modulo gauge equivalence.
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EXAMPLES

3. Hyperspark Complexes.

Almost the same:

F k =
⊕

p+q=k

Cp(U , E ′q)

Ek = Ek(X)

Ik =
⊕

p+q=k

Cp(U , Iqloc)

This evidently contains the smooth Hyperspark complex.
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EXAMPLES

3. Hyperspark Complexes.

Almost the same:

F k =
⊕

p+q=k

Cp(U , E ′q)

Ek = Ek(X)

Ik =
⊕

p+q=k

Cp(U , Iqloc)

This evidently contains the smooth Hyperspark complex.

It also contains the dR-F complexes.

These inclusions are quasi-isomorphisms.
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EXAMPLES

4. Cheeger-Simons Spark Complex.

Ck(X) ≡ C∞ singular integral k-chains

Ck
R(X) ≡ Hom(Ck(X),R) and Ck

Z(X) ≡ Hom(Ck(X),Z)
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EXAMPLES

4. Cheeger-Simons Spark Complex.

Ck(X) ≡ C∞ singular integral k-chains

Ck
R(X) ≡ Hom(Ck(X),R) and Ck

Z(X) ≡ Hom(Ck(X),Z)

F ∗ = C∗
R(X)

E∗ = E∗(X)

I∗ = Ck
Z(X)
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EXAMPLES

4. Cheeger-Simons Spark Complex.

Ck(X) ≡ C∞ singular integral k-chains

Ck
R(X) ≡ Hom(Ck(X),R) and Ck

Z(X) ≡ Hom(Ck(X),Z)

F ∗ = C∗
R(X)

E∗ = E∗(X)

I∗ = Ck
Z(X)

ÎH
∗ ∼= DiffChar∗
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EXAMPLES

4. Cheeger-Simons Spark Complex.

Ck(X) ≡ C∞ singular integral k-chains

Ck
R(X) ≡ Hom(Ck(X),R) and Ck

Z(X) ≡ Hom(Ck(X),Z)

F ∗ = C∗
R(X)

E∗ = E∗(X)

I∗ = Ck
Z(X)

ÎH
∗ ∼= DiffChar∗

This is quasi-isomorphic to smooth hypersparks, therefore ...
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OTHER COMPLEXES

∂-Sparks.

X a complex manifold.

Fix an integer p > 0 .
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OTHER COMPLEXES

∂-Sparks.

X a complex manifold.

Fix an integer p > 0 .

Consider the truncated de Rham complex (E ′∗(X, p), d) with

E ′k(X, p) ≡
⊕

r+s=k,r<p

E ′
r,s

(X) and d ≡ Ψ ◦ d

where
Ψ : E ′

k
(X) −→ E ′k(X, p)

is the projection Ψ(a) = a0,k + a1,k−1 + . . .+ ap−1,k−p+1.
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OTHER COMPLEXES

∂-Sparks.

X a complex manifold.

Fix an integer p > 0 .

Consider the truncated de Rham complex (E ′∗(X, p), d) with

E ′k(X, p) ≡
⊕

r+s=k,r<p

E ′
r,s

(X) and d ≡ Ψ ◦ d

where
Ψ : E ′

k
(X) −→ E ′k(X, p)

is the projection Ψ(a) = a0,k + a1,k−1 + . . .+ ap−1,k−p+1.

Note the subcomplex

Ek(X, p) ≡
⊕

r+s=k,r<p

Er,s(X)

of smooth forms with projection Ψ : E∗(X)→ E∗(X, p).
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OTHER COMPLEXES

∂-Sparks.

X a complex manifold.

Fix an integer p > 0 .

Consider the truncated de Rham complex (E ′∗(X, p), d) with

E ′k(X, p) ≡
⊕

r+s=k,r<p

E ′
r,s

(X) and d ≡ Ψ ◦ d

where
Ψ : E ′

k
(X) −→ E ′k(X, p)

is the projection Ψ(a) = a0,k + a1,k−1 + . . .+ ap−1,k−p+1.

Note the subcomplex

Ek(X, p) ≡
⊕

r+s=k,r<p

Er,s(X)

of smooth forms with projection Ψ : E∗(X)→ E∗(X, p).

Definition. The d-spark complex of level p is the triple
(F ∗, E∗, I∗) where

F k ≡ E ′k(X, p)

Ek ≡ Ek(X, p)

Ik ≡ Ik(X)

with maps

E∗ ⊂ F ∗ and Ψ : I∗ −→ F ∗

The group of associated spark classes is

Ĥk(X, p).
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THE GRID

0 0 0

↓ ↓ ↓

0 → Jp(X) → Ĥ2p−1
∞ (X, p) → dE2p−1(X, p) →

↓ ↓ ↓

0 → H2p
D (X,Z(p))(X) → Ĥ2p−1(X, p) → Z2p

Z
(X, p) →

↓ ↓ ↓

0 → Hdgp,p(X) → H2p(X;Z) → H2p
Z
(X, p) →

↓ ↓ ↓

0 0 0
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POINCARÉ-PONTRJAGIN DUALITY
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POINCARÉ-PONTRJAGIN DUALITY

Recall: For a locally compact abelian topological group G,
the Pontrjagin dual is:

G∗ ≡ Hom(G,S1)

where Hom denotes continuous group homomorphisms.
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POINCARÉ-PONTRJAGIN DUALITY

Recall: For a locally compact abelian topological group G,
the Pontrjagin dual is:

G∗ ≡ Hom(G,S1)

where Hom denotes continuous group homomorphisms.

Examples:

Z∗ = S1 and (S1)∗ = Z
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POINCARÉ-PONTRJAGIN DUALITY

Recall: For a locally compact abelian topological group G,
the Pontrjagin dual is:

G∗ ≡ Hom(G,S1)

where Hom denotes continuous group homomorphisms.

Examples:

Z∗ = S1 and (S1)∗ = Z

(Z/pZ)∗ = Z/pZ
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POINCARÉ-PONTRJAGIN DUALITY

Recall: For a locally compact abelian topological group G,
the Pontrjagin dual is:

G∗ ≡ Hom(G,S1)

where Hom denotes continuous group homomorphisms.

Examples:

Z∗ = S1 and (S1)∗ = Z

(Z/pZ)∗ = Z/pZ

If Λ ⊂ Rm is a lattice of full rank,

Hom (Rm/Λ, S1) = Hom(Λ,Z)

Hom (Λ, S1) = Hom (Λ,R)/Hom(Λ,Z)
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Theorem. (Poincaré-Pontrjagin Duality). X a com-

pact oriented manifold of dimension n. The pairing

ÎH
n−k−1

(X)× ÎH
k
(X) −→ S1

given by

(a, b) 7→ a ∗ b([X])

is non-degenerate.

127



Theorem. (Poincaré-Pontrjagin Duality). X a com-

pact oriented manifold of dimension n. The pairing

ÎH
n−k−1

(X)× ÎH
k
(X) −→ S1

given by

(a, b) 7→ a ∗ b([X])

is non-degenerate.

The resulting mapping

ÎH
n−k−1

(X) −→ Hom
(
ÎH

k
(X), S1

)

has dense range. In fact this gives an isomorphism

ÎH
n−k−1

(X)
∼=
−−−→ Hom∞

(
ÎH

k
(X), S1

)

with the smooth homomorphisms.
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Definition of Hom∞

A homomorphism h : ÎH
k

∞(X) → S1 is called smooth
if there exists a smooth form ω ∈ Zn−k

0 (X) such that

h(α) ≡

∫

X

a ∧ ω (mod Z)

for a ∈ α. This is independent of the choice of a ∈ α.

The smooth Pontrjagin dual of ÎH
k
(X) is the subgroup

Hom∞(ÎH
k
(X), S1) ⊂ Hom(ÎH

k
(X), S1)

of those elements whose restriction to ÎH
k

∞ is smooth.
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Lemma 1. There are natural isomorphisms:
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Lemma 1. There are natural isomorphisms:

Hom(Hk(X; Z), S1) ∼= Hn−k(X; S1)

(Poincare Duality)
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Lemma 1. There are natural isomorphisms:

Hom(Hk(X; Z), S1) ∼= Hn−k(X; S1)

(Poincare Duality)

Hom

(
Hk(X; R)

Hk
free(X; Z)

, S1

)
∼= Hn−k

free (X; Z)
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Lemma 1. There are natural isomorphisms:

Hom(Hk(X; Z), S1) ∼= Hn−k(X; S1)

(Poincare Duality)

Hom

(
Hk(X; R)

Hk
free(X; Z)

, S1

)
∼= Hn−k

free (X; Z)

Hom∞(dEk(X), S1) ∼= dEn−k−1(X)
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Lemma 1. There are natural isomorphisms:

Hom(Hk(X; Z), S1) ∼= Hn−k(X; S1)

(Poincare Duality)

Hom

(
Hk(X; R)

Hk
free(X; Z)

, S1

)
∼= Hn−k

free (X; Z)

Hom∞(dEk(X), S1) ∼= dEn−k−1(X)

Proof. Classical Poincaré duality:

Hk(X; Z) ∼= Hn−k(X; Z)

134



Lemma 1. There are natural isomorphisms:

Hom(Hk(X; Z), S1) ∼= Hn−k(X; S1)

(Poincare Duality)

Hom

(
Hk(X; R)

Hk
free(X; Z)

, S1

)
∼= Hn−k

free (X; Z)

Hom∞(dEk(X), S1) ∼= dEn−k−1(X)

Proof. Classical Poincaré duality:

Hk(X; Z) ∼= Hn−k(X; Z)

gives

Hom (Hk(X; Z), S1) ∼= Hom(Hn−k(X; Z), S1)

∼= Hn−k(X; S1)

(by Univ. Coeff. Thm.)
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Lemma 1. There are natural isomorphisms:

Hom(Hk(X; Z), S1) ∼= Hn−k(X; S1)

(Poincare Duality)

Hom

(
Hk(X; R)

Hk
free(X; Z)

, S1

)
∼= Hn−k

free (X; Z)

Hom∞(dEk(X), S1) ∼= dEn−k−1(X)

Proof. Classical Poincaré duality:

Hk(X; Z) ∼= Hn−k(X; Z)

gives

Hom (Hk(X; Z), S1) ∼= Hom(Hn−k(X; Z), S1)

∼= Hn−k(X; S1)

(by Univ. Coeff. Thm.)

Hom (dEk,R/Z) = Hom(dEk,R) = (dEk)′ = dE ′
n−k−1

Def. Hom∞(dEk,R/Z) = dEn−k−1
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A Simple Picture of Duality

There are (non-canonical) group homomorphisms:

ÎH
k
(X) ∼= dEk(X)×

Hk(X; R)

Hk
free(X; Z)

×Hk+1(X; Z)

ÎH
n−k−1

(X) ∼= dEn−k−1(X)×Hn−k
free (X; Z)×Hn−k−1(X; S1)
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A Simple Picture of Duality

There are (non-canonical) group homomorphisms:

ÎH
k
(X) ∼= dEk(X)×

Hk(X; R)

Hk
free(X; Z)

×Hk+1(X; Z)

ÎH
n−k−1

(X) ∼= dEn−k−1(X)×Hn−k
free (X; Z)×Hn−k−1(X; S1)

Now apply:

Hom (Hk(X; Z), S1) ∼= Hn−k(X; S1)

Hom

(
Hk(X; R)

Hk
free(X; Z)

, S1

)
∼= Hn−k

free (X; Z)

Hom∞(dEk(X), S1) ∼= dEn−k−1(X)
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Examples.
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Examples.

Example 1. (Surfaces).

Σ a compact oriented surface of genus g.

Duality asserts that

ÎH
1
(Σ) is the smooth Pontrjagin dual of ÎH

0
(Σ).

140



Examples.

Example 1. (Surfaces).

Σ a compact oriented surface of genus g.

Duality asserts that

ÎH
1
(Σ) is the smooth Pontrjagin dual of ÎH

0
(Σ).

We see this explicitly from

0→
H1(Σ; R)

H1(Σ; Z)
→ÎH

1
(Σ)→ dE1(Σ)× Z→ 0

0→
H0(Σ; R)

H0(Σ; Z)
→ÎH

0
(Σ)→ dE0(Σ)× Z2g → 0
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Examples.

Example 1. (Surfaces).

Σ a compact oriented surface of genus g.

Duality asserts that

ÎH
1
(Σ) is the smooth Pontrjagin dual of ÎH

0
(Σ).

We see this explicitly from

0→
H1(Σ; R)

H1(Σ; Z)
→ÎH

1
(Σ)→ dE1(Σ)× Z→ 0

0→
H0(Σ; R)

H0(Σ; Z)
→ÎH

0
(Σ)→ dE0(Σ)× Z2g → 0

from which we deduce that

ÎH
1
(Σ) ∼= (S1)2g × Z× dE1(Σ)

ÎH
0
(Σ) ∼= Z2g × S1 × dE0(Σ)
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Example 2. (3-manifolds).

M be a compact oriented 3-manifold.

Duality asserts that

ÎH
1
(M) is the smooth Pontrjagin dual of ÎH

1
(M).
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Example 2. (3-manifolds).

M be a compact oriented 3-manifold.

Duality asserts that

ÎH
1
(M) is the smooth Pontrjagin dual of ÎH

1
(M).

One has

ÎH
1
(M) ∼= {H1(M ; R)/H1(M ; Z)free} × dE

1 ×H2(M ; Z)
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Example 2. (3-manifolds).

M be a compact oriented 3-manifold.

Duality asserts that

ÎH
1
(M) is the smooth Pontrjagin dual of ÎH

1
(M).

One has

ÎH
1
(M) ∼= {H1(M ; R)/H1(M ; Z)free} × dE

1 ×H2(M ; Z)

Using Poincaré duality this can be rewritten

Hom (H1(M ; Z)free, S
1)×H1(M ; Z)free×dE

1(M)×H1(M ; Z)torsion

from which the self-duality is manifest.
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Example 3. (Complex Projective Space Pn
C
). If X =

Pn
C
, we see that

Hk(X; R)

Hk(X; Z)
=

{
S1 if k is even
0 if k is odd.

and

Zk+1
0 (X) =

{
dEk(X) if k is even
Z× dEk(X) if k is odd.
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Example 3. (Complex Projective Space Pn
C
). If X =

Pn
C
, we see that

Hk(X; R)

Hk(X; Z)
=

{
S1 if k is even
0 if k is odd.

and

Zk+1
0 (X) =

{
dEk(X) if k is even
Z× dEk(X) if k is odd.

We find that:

k ÎH
k
(X)

−1 Z
0 S1 × dE0

1 Z× dE1

2 S1 × dE2

3 Z× dE3

· ·
· ·
· ·

2n− 3 Z× dE2n−3

2n− 2 S1 × dE2n−2

2n− 1 Z× dE2n−1

2n S1
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Example 4. (Real Projective Space P2n+1
R

)

For X = P2n+1
R

we have that:

k ÎH
k
(X)

−1 Z
0 S1 × dE0

1 Z2 × dE
1

2 dE2

3 Z2 × dE
3

4 dE4

5 Z2 × dE
5

6 dE6

· ·
· ·
· ·

2n− 4 dE2n−4

2n− 3 Z2 × dE
2n−3

2n− 2 dE2n−2

2n− 1 Z2 × dE
2n−1

2n− 0 Z× dE2n

2n+ 1 S1

Recall that Hom (Z2, S
1) = Z2.
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Example 5. (Products of projective spaces).

When X = P2
C
×P2

C
, we find that:

k ÎH
k
(X)

−1 Z
0 S1 × dE0

1 Z× Z× dE1

2 S1 × S1 × dE2

3 Z× Z× Z× dE3

4 S1 × S1 × S1 × dE4

5 Z× Z× dE5

6 S1 × S1 × dE6

7 Z× dE7

8 S1
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A Proof of Duality. Show the pairing is non-degenerate.

Fix α ∈ ÎH
n−k−1

(X) and assume

(α ∗ β) [X] = 0 ∀β ∈ ÎH
k
(X).

We shall prove that α = 0.
To begin suppose β is represented by a smooth form b.

Then

(α ∗ β)[X] = (−1)n−k

∫

X

δ1α ∧ b ≡ 0 (mod Z).

Since this holds ∀ k-forms b, we have δ1α = 0.
Hence, ∃ a ∈ α with da = R, a rectifiable cycle whose integral
homology class [R] is torsion.

We show [R] = 0. Choose a class u ∈ Hk+1(X; Z)tor of
order m, and let T be a rectifiable cycle with [T ] = u. Since
m[T ] = 0 there exists a rectifiable current S of degree k with

mT = dS. Set β = [ 1
m
S] ∈ ÎH

k
(X) and note that δ1β = 0.

Now

(α ∗ β)[X] = (−1)n−k (d2a ∧ b) [X] = (−1)n−k(R ∧ 1
m
S)[X]

= (−1)n−k 1
m
{intersection number of R with S}

= (−1)n−kLk([R], u)

≡ 0 (mod Z)

where Lk denotes the Seifert-deRham linking number. Since
this holds for all u, the non-degeneracy of this linking pairing
on torsion cycles implies that [R] = 0 in Hn−k(X; Z). Hence
δ2α = 0 and so after adding an exact current we may assume
that a is a smooth d-closed form of degree n− k − 1.
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Now choose any class v ∈ Hk+1(X; Z) ∼= Hn−k−1(X; Z)
and let S be a rectifiable cycle in v. Let φ be a smooth d-
closed form representing v ⊗R and choose a current b with

db = φ− S. Let β = [b] ∈ ÎH
k
(X). Then

(α ∗ [b])[X] = (a ∧ d2b)[X] ≡

∫

S

a ≡ 0 (mod Z).

Hence, [a] = 0 in Hn−k−1(X; R)/Hn−k−1
free (X; Z) = ker δ,

and so α = 0 as claimed.
By the commutativity of the ∗-product we may inter-

change α and β above and conclude that the pairing is non-
degenerate as asserted.

Finally we recall that ÎH
k

∞(X) ⊂ ÎH
k
(X) is a closed sub-

group with discrete quotient, and ÎH
k

∞(X) ∼= Ek(X)/Zk
0 (X) ∼=

dEk(X)⊕ {Hk(X; R)/Hk
free(X; Z)}. Recall that

Hom (dEk(X), S1) = dE ′
n−k−1

(X).

It follows that the image of the duality homomorphism con-
sists exactly of the smooth homomorphisms.
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