Jim Simons Work on the Theory of Minimal Varieties

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Jim Simons Work on the Theory of Minimal Varieties

・ロン ・回 と ・ ヨン・

In 1967

Jim Simons wrote a remarkable paper

on the subject of

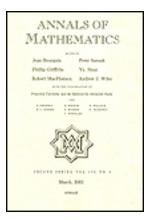
Minimal Submanifolds in Riemannian Geometry

In 1967

Jim Simons wrote a remarkable paper

on the subject of

Minimal Submanifolds in Riemannian Geometry



Minimal varieties in riemannian manifolds

Second, we apply these general results in a more detailed study of minimal varieties in the sphere and is cardian space. This study includes an estimation of a lower bound for the index and the nullity of a non-totally geodesic closed minimal variety immersed in S^{*}₁ a theorem which generalizes to arbitrary co-dimensions the theorem of Ds Ginegi [8] concerning the image

This comme devolenable from 129-29-21.167 on West, 24-Apr 266.1 10-1106.2

イロン イヨン イヨン イヨン

• Established the foundations of the subject.

Image: A matrix

- Established the foundations of the subject.
- Derived the fundamental elliptic system of pde's governing the second fundamental form.

- Established the foundations of the subject.
- Derived the fundamental elliptic system of pde's governing the second fundamental form.
- Established complete interior regularity for minimizing hypersurfaces in dimensions ≤ 7.

- Established the foundations of the subject.
- Derived the fundamental elliptic system of pde's governing the second fundamental form.
- Established complete interior regularity for minimizing hypersurfaces in dimensions ≤ 7.
- Established the Bernstein Conjecture in dimensions ≤ 8.

- Established the foundations of the subject.
- Derived the fundamental elliptic system of pde's governing the second fundamental form.
- Established complete interior regularity for minimizing hypersurfaces in dimensions ≤ 7.
- Established the Bernstein Conjecture in dimensions ≤ 8.
- Produced the example which eventually showed that both of the above theorems were sharp.

Blaine Lawson

-

・ロト ・ 日 ・ ・ 日 ・ ・

Riemann, Weierstrauss

Riemann, Weierstrauss

The Idea: Consider a smooth surface in Euclidean 3-space $\Sigma \subset \mathbf{E}^3$.

Riemann, Weierstrauss

The Idea: Consider a smooth surface in Euclidean 3-space $\Sigma \subset \mathbf{E}^3$.

Suppose that for every deformation $\Sigma_t,\,(\Sigma_0=\Sigma)$ in the interior, the area satisfies

 $A(\Sigma_t) \geq A(\Sigma)$.

Riemann, Weierstrauss

Then for all such deformations:

$$\left.\frac{d}{dt}A(\Sigma_t)\right|_{t=0} = 0$$

Riemann, Weierstrauss

Then for all such deformations:

$$\left. \frac{d}{dt} A(\Sigma_t) \right|_{t=0} = 0 \quad \text{and} \quad \left. \frac{d^2}{dt^2} A(\Sigma_t) \right|_{t=0} \geq 0$$

Riemann, Weierstrauss

If for all such deformations:

$$\left.\frac{d}{dt}A(\Sigma_t)\right|_{t=0} = 0$$

Riemann, Weierstrauss

If for all such deformations:

Т

٦

$$\left. \frac{\partial}{\partial t} A(\Sigma_t) \right|_{t=0} = 0$$
 Σ is called a Minimal Surface

Riemann, Weierstrauss

If for all such deformations:

$$\left.\frac{d}{dt}A(\Sigma_t)\right|_{t=0} = 0$$

 Σ is called a **Minimal Surface**.

If in addition

$$\left.\frac{d^2}{dt^2}A(\Sigma_t)\right|_{t=0} \geq 0$$

Riemann, Weierstrauss

If for all such deformations:

$$\left.\frac{d}{dt}A(\Sigma_t)\right|_{t=0} = 0$$

 Σ is called a **Minimal Surface**.

If in addition

$$\left. \frac{d^2}{dt^2} A(\Sigma_t) \right|_{t=0} \ge 0$$
 Σ is called a **Stable Minimal Surface**.

These conditions

$$\left. \frac{d}{dt} A(\Sigma_t) \right|_{t=0} = 0 \quad \text{and} \quad \left. \frac{d^2}{dt^2} A(\Sigma_t) \right|_{t=0} \geq 0$$

・ロト ・回ト ・ヨト ・ヨト

These conditions

$$\left. \frac{d}{dt} A(\Sigma_t) \right|_{t=0} = 0 \quad \text{and} \quad \left. \frac{d^2}{dt^2} A(\Sigma_t) \right|_{t=0} \geq 0$$

Make sense

• in arbitrary dimensions and codimensions,

Image: A matrix

(a) (b) (c) (b)

These conditions

$$\left. \frac{d}{dt} A(\Sigma_t) \right|_{t=0} = 0 \quad \text{and} \quad \left. \frac{d^2}{dt^2} A(\Sigma_t) \right|_{t=0} \ge 0$$

Make sense

- in arbitrary dimensions and codimensions,
- in general riemannian manifolds,

• 3 > 4 3

These conditions

$$\left. \frac{d}{dt} A(\Sigma_t) \right|_{t=0} = 0 \quad \text{and} \quad \left. \frac{d^2}{dt^2} A(\Sigma_t) \right|_{t=0} \ge 0$$

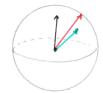
Make sense

- in arbitrary dimensions and codimensions,
- in general riemannian manifolds,
- \bullet and for quite general objects Σ

A Geometric Characterization in **R**³ THE GAUSS MAP

$$N:\Sigma \longrightarrow S^2$$

The Gauss map associates to each point $x \in \Sigma$, the normal vector N(x) to Σ at x, i.e., the vector perpendicular to the tangent plane to Σ at x.



 Σ is **minimal** if and only if the Gauss map is (anti)-**conformal**.

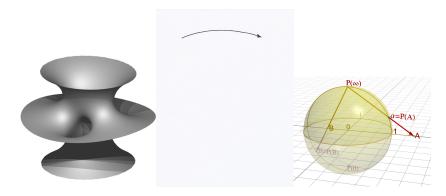
Angles are preserved (but direction is reversed).

Complex Anaysis Enters the Picture

Blaine Lawson

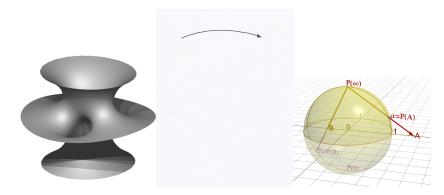
Complex Anaysis Enters the Picture

Take Stereographic Projection



Complex Anaysis Enters the Picture

Take Stereographic Projection



Complex Analysis is

a rich and deep subject

with many beautiful results.

Blaine Lawson

Jim Simons' Work on Minimal Varieties

May 24, 2013 13 / 2

Elementary Question

.

Suppose our surface Σ is the graph of a function z = f(x, y)over a domain *D* in the (x, y)-plane

When is this graph a minimal surface?

.

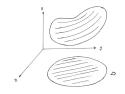
Elementary Question

Suppose our surface Σ is the graph of a function z = f(x, y)over a domain *D* in the (x, y)-plane

When is this graph a minimal surface?

ANSWER: It must satisfy the differential equation

$$(1+f_y^2)f_{xx}+(1+f_x^2)f_{yy}-2f_xf_yf_{xy} = 0.$$



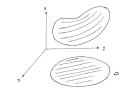
Elementary Question

Suppose our surface Σ is the graph of a function z = f(x, y)over a domain *D* in the (x, y)-plane

When is this graph a minimal surface?

ANSWER: It must satisfy the differential equation

$$(1+|\nabla f|^2)\Delta f-(\nabla f)^t\mathbf{H}(f)\nabla f = 0.$$



The Dirichlet Problem

.

Let *D* be the round disk of radius *R*.

Let φ be an arbitrary continuous function on the boundary circle.

Theorem. There exists a unique function f(x, y) continuous on D and smooth in its interior, such that $f = \varphi$ on ∂D and in the interior it satisfies the minimal surface equation:

 $(1+|\nabla f|^2)\Delta f - (\nabla f)^t \mathbf{H}(f)\nabla f = 0$

This gives us a wildly abundant family of minimal surfaces which are graphs over disks of radius *R*.

This gives us a wildly abundant family of minimal surfaces which are graphs over disks of radius *R*.

Now imagine letting $R \to \infty$ and making clever choices for boundary curves φ .

This gives us a wildly abundant family of minimal surfaces which are graphs over disks of radius *R*.

Now imagine letting $R \to \infty$ and making clever choices for boundary curves φ .

One would expect to produce many functions f(x, y) defined over the entire (x, y)-plane and satisfying the M.S.Eqn.

This gives us a wildly abundant family of minimal surfaces which are graphs over disks of radius *R*.

Now imagine letting $R \to \infty$ and making clever choices for boundary curves φ .

One would expect to produce many functions f(x, y) defined over the entire (x, y)-plane and satisfying the M.S.Eqn.

Surprise!!

The Bernstein Theorem (1918). Any solution of the minimal surface equation which is defined for all (x, y) in the plane must be is linear, i.e., its graph is an affine 2-plane.

This is a beautiful and astonishing result.

If we remove a tiny disk from the plane, there is a function defined everywhere outside that disk whose graph is a minimal surface.

This is a beautiful and astonishing result.

If we remove a tiny disk from the plane, there is a function defined everywhere outside that disk whose graph is a minimal surface.

This is also true if we remove a half-line from the plane,

we return to the Gauss Map.

Image: A matrix

we return to the Gauss Map.

Notice: If

$$\Sigma = \{(x, y, f(x, y)) : (x, y) \in D\}$$

is a the graph of a function,

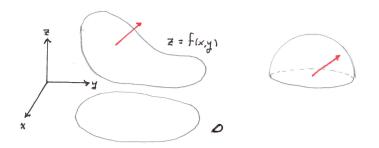
we return to the Gauss Map.

Notice: If

$$\Sigma = \{(x, y, f(x, y)) : (x, y) \in D\}$$

is a the graph of a function, then

the image of the Gauss map lies in the upper hemisphere



we return to the Gauss Map.

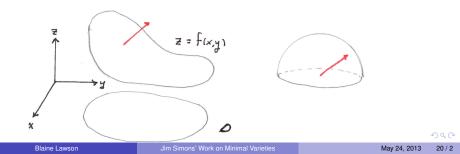
Notice: If

$$\Sigma = \{(x, y, f(x, y)) : (x, y) \in D\}$$

is a the graph of a function, then

the image of the Gauss map lies in the upper hemisphere

The proof is given by showing that Σ must have the conformal type of **C**.



we return to the Gauss Map.

Notice: If

$$\Sigma = \{(x, y, f(x, y)) : (x, y) \in D\}$$

is a the graph of a function, then

the image of the Gauss map lies in the upper hemisphere The proof is given by showing that Σ must have the conformal type of **C**. Then the Gauss map becomes a bounded entire function and must be constant.



Image: Image:

FACT:

The graph

$$\Sigma = \{(x, f(z)) : z \in \mathbf{C}\} \subset \mathbf{C}^2$$

of any entire holomorphic function (e.g. a complex polynomial)

FACT:

The graph

$$\Sigma = \{(x, f(z)) : z \in \mathbf{C}\} \subset \mathbf{C}^2$$

of any entire holomorphic function (e.g. a complex polynomial) is a (stable) minimal surface in $C^2 = R^4$.

FACT:

The graph

$$\Sigma = \{(x, f(z)) : z \in \mathbf{C}\} \subset \mathbf{C}^2$$

of any entire holomorphic function (e.g. a complex polynomial) is a (stable) minimal surface in $C^2 = R^4$.

Restrict to codimension one.

(I)

The Bernstein Conjecture.

Blaine Lawson

The Bernstein Conjecture.

Let

$$f: \mathbf{R}^n \longrightarrow \mathbf{R}$$

be a solution of the minimal surface equation

$$(1+|\nabla f|^2)\Delta f-(\nabla f)^t\mathbf{H}(f)\nabla f = 0.$$

defined over the entire space \mathbf{R}^{n} .

Image: A matrix

The Bernstein Conjecture.

Let

$$f: \mathbf{R}^n \longrightarrow \mathbf{R}$$

be a solution of the minimal surface equation

$$(1+|\nabla f|^2)\Delta f-(\nabla f)^t\mathbf{H}(f)\nabla f = 0.$$

defined over the entire space \mathbf{R}^{n} .

Then f must be linear.

Blaine Lawson

イロト イヨト イヨト イヨト

Let

$B \subset \mathbf{R}^n$

be a compact submanifold of dimension p-1 (without boundary).

(D) (A) (A) (A)

Let

 $B \subset \mathbf{R}^n$

be a compact submanifold of dimension p - 1 (without boundary).

Image: A matrix

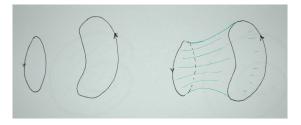
Problem: Find a *p*-dimensional "submanifold" Σ with "boundary" *B*

(D) (A) (A) (A)

Problem: Find a *p*-dimensional "submanifold" Σ with "boundary" *B* such that

$$\mathcal{H}^p(\Sigma) \leq \mathcal{H}^p(\Sigma')$$

for all such Σ' with boundary *B*.



ISSUES:

イロト イヨト イヨト イヨト

ISSUES:

• What do we mean by "submanifold"?

(4) (3) (4) (4) (4)

ISSUES:

- What do we mean by "submanifold"?
- What do we mean by "boundary"?

ISSUES:

- What do we mean by "submanifold"?
- What do we mean by "boundary"?
- Do solutions exist?

ISSUES:

- What do we mean by "submanifold"?
- What do we mean by "boundary"?
- Do solutions exist?
- How regular are the solutions?

イロト イヨト イヨト イヨ

Douglas and Rado 1930

(4) (3) (4) (4) (4)

Douglas and Rado 1930

Considered a simple closed curve $\Gamma \subset \mathbf{R}^n$

Douglas and Rado 1930

Considered a simple closed curve $\Gamma \subset \mathbf{R}^n$

and tried to minimize area among all continuous maps of the disk

$$\psi: \Delta \rightarrow \mathbf{R}^n$$

Douglas and Rado 1930

Considered a simple closed curve $\Gamma \subset \mathbf{R}^n$

and tried to minimize area among all continuous maps of the disk

$$\psi: \Delta \rightarrow \mathbf{R}^n$$

having first derivatives in L^2 and mapping

 $\psi: \partial \Delta \rightarrow \Gamma$ (monotonically)

Douglas and Rado 1930

(D) (A) (A) (A)

Douglas and Rado 1930

established the existence of minimizers

- B - - B

Douglas and Rado 1930

established the existence of minimizers

and the regularity of these minimizing maps (as mappings!)

Douglas and Rado 1930

established the existence of minimizers

and the regularity of these minimizing maps (as mappings!)

However, self-intersections and isolated branch points could exist in these surfaces.

Douglas and Rado 1930

established the existence of minimizers

and the regularity of these minimizing maps (as mappings!)

However, self-intersections and isolated branch points could exist in these surfaces.

(Osserman later proved that in \mathbf{R}^3 branch points do not exist.)

Douglas and Rado 1930

established the existence of minimizers

and the regularity of these minimizing maps (as mappings!)

However, self-intersections and isolated branch points could exist in these surfaces.

(Osserman later proved that in \mathbf{R}^3 branch points do not exist.)

Much work ensued – Courant, Morrey, etc.

Surfaces of higher genus,

Douglas and Rado 1930

established the existence of minimizers

and the regularity of these minimizing maps (as mappings!)

However, self-intersections and isolated branch points could exist in these surfaces.

(Osserman later proved that in \mathbf{R}^3 branch points do not exist.)

Much work ensued – Courant, Morrey, etc.

Surfaces of higher genus, with many boundary components

The Plateau Problem – Classical Results.

Douglas and Rado 1930

established the existence of minimizers

and the regularity of these minimizing maps (as mappings!)

However, self-intersections and isolated branch points could exist in these surfaces.

(Osserman later proved that in \mathbf{R}^3 branch points do not exist.)

Much work ensued – Courant, Morrey, etc.

Surfaces of higher genus, with many boundary components in general manifolds.

Reifenberg 1960

イロト イヨト イヨト イヨト

Reifenberg 1960

took a radically different approach to the Plateau Problem

Reifenberg 1960

took a radically different approach to the Plateau Problem and proved the existence of solutions among surfaces of all topological types.

Reifenberg 1960

took a radically different approach to the Plateau Problem and proved the existence of solutions among surfaces of **all topological types**.

He considered the family of all compact sets $\Sigma \subset \mathbf{R}^n$ with $B \subset \Sigma$

Reifenberg 1960

took a radically different approach to the Plateau Problem and proved the existence of solutions among surfaces of **all topological types**.

He considered the family of all compact sets $\Sigma \subset \mathbf{R}^n$ with $B \subset \Sigma$ such that $[B] \to 0$ under the induced map $H_p(B, \Lambda) \to H_p(\Sigma, \Lambda)$

on Čech homology with coefficients in Λ (say, Z or Z₂),

Reifenberg 1960

took a radically different approach to the Plateau Problem and proved the existence of solutions among surfaces of **all topological types**.

He considered the family of all compact sets $\Sigma \subset \mathbf{R}^n$ with $B \subset \Sigma$ such that $[B] \to 0$ under the induced map $H_{\rho}(B, \Lambda) \to H_{\rho}(\Sigma, \Lambda)$

on Čech homology with coefficients in Λ (say, **Z** or **Z**₂), and then

he minimized $\mathcal{H}^{p}(\Sigma)$ in this class.

Reifenberg proved

If Σ is one of his solutions to this problem,

Image: A matrix

Reifenberg proved

If Σ is one of his solutions to this problem, there is a (relatively) open dense subset $\Sigma_{reg} \subset \Sigma$ which is a **real analytic submanifold** of **R**^{*n*}.

Reifenberg proved

If Σ is one of his solutions to this problem, there is a (relatively) open dense subset $\Sigma_{reg} \subset \Sigma$ which is a **real analytic submanifold** of **R**^{*n*}.

Furthermore, if n = 3 and $\Lambda = \mathbf{Z}_2$,

Reifenberg proved

If Σ is one of his solutions to this problem, there is a (relatively) open dense subset $\Sigma_{reg} \subset \Sigma$ which is a **real analytic submanifold** of **R**^{*n*}.

Furthermore, if n = 3 and $\Lambda = \mathbb{Z}_2$, all of $\Sigma - B$ is a **real analytic submanifold** of \mathbb{R}^n .

Reifenberg proved

If Σ is one of his solutions to this problem, there is a (relatively) open dense subset $\Sigma_{reg} \subset \Sigma$ which is a **real analytic submanifold** of **R**^{*n*}.

Furthermore, if n = 3 and $\Lambda = \mathbb{Z}_2$, all of $\Sigma - B$ is a **real analytic submanifold** of \mathbb{R}^n .

A complete solution to the unoriented Plateau Problem in R³.

Federer and Fleming – 1960

(I)

Federer and Fleming – 1960

wrote an important foundational paper: Normal and Integral Currents, Ann. of Math.

Federer and Fleming – 1960

wrote an important foundational paper: Normal and Integral Currents, Ann. of Math. which, among many other things, established the **existence of solutions to the Plateau problem** in a very general setting.

Federer and Fleming – 1960

wrote an important foundational paper: Normal and Integral Currents, Ann. of Math. which, among many other things, established the **existence of solutions to the Plateau problem** in a very general setting.

Fundamental to this is the notion of an **Oriented** *p***-Rectifiable Set**.

Federer and Fleming – 1960

wrote an important foundational paper: Normal and Integral Currents, Ann. of Math. which, among many other things, established the existence of solutions to the Plateau problem in a very general setting.

Fundamental to this is the notion of an **Oriented** *p*-**Rectifiable Set**.

which leads to the notion of a **Rectifiable** *p***-Current**.

There are many characterizations.

イロト イヨト イヨト イヨ

There are many characterizations.

Definition. Let *E* be an \mathcal{H}^{ρ} -measurable subset of a riemannian manifold *X*.

(4) (3) (4) (4) (4)

There are many characterizations.

Definition. Let *E* be an \mathcal{H}^p -measurable subset of a riemannian manifold *X*. Then *E* is *p*-rectifiable if for every $\epsilon > 0$ there exists a *p*-dimensional embedded *C*¹-submanifold $M \subset X$ with

 $\mathcal{H}^p(E\Delta M) < \epsilon.$

There are many characterizations.

Definition. Let *E* be an \mathcal{H}^p -measurable subset of a riemannian manifold *X*. Then *E* is *p*-rectifiable if for every $\epsilon > 0$ there exists a *p*-dimensional embedded *C*¹-submanifold $M \subset X$ with

 $\mathcal{H}^p(E\Delta M) < \epsilon.$

Alternative Definition.

 $E \subset \bigcup_{k=1}^{\infty} f_k(\mathbf{R}^p)$

There are many characterizations.

Definition. Let *E* be an \mathcal{H}^p -measurable subset of a riemannian manifold *X*. Then *E* is *p*-rectifiable if for every $\epsilon > 0$ there exists a *p*-dimensional

embedded C^1 -submanifold $M \subset X$ with

 $\mathcal{H}^p(E\Delta M) < \epsilon.$

Alternative Definition.

$$E \subset \bigcup_{k=1}^{\infty} f_k(\mathbf{R}^p)$$

where each

 $f_k : \mathbf{R}^p \to X$ is a Lipschitz map.

A (1) A (2) A (2) A

IMPORTANT FACT.

Rectifiable sets have tangent planes a.e.

(4) (3) (4) (4) (4)

IMPORTANT FACT.

Rectifiable sets have tangent planes a.e.

Definition. An orientation of a *p*-rectifiable set *E*

is a measurable choice of orientations of the tangent spaces of E.

IMPORTANT FACT.

Rectifiable sets have tangent planes a.e.

Definition. An orientation of a *p*-rectifiable set *E* is a measurable choice of orientations of the tangent spaces of *E*. i.e.,

an \mathcal{H}^p -measurable field of unit simple *p*-vectors \vec{E} with

$$\overrightarrow{E}_x \cong T_x E$$
 for \mathcal{H}^p -a.a. $x \in E$

IMPORTANT CONSEQUENCE.

One can integrate differential forms.

(4) (3) (4) (4) (4)

IMPORTANT CONSEQUENCE.

One can integrate differential forms.

Let $E \subset X$ be an oriented *p*-rectifiable set with $\mathcal{H}^{p}(E) < \infty$.

(I)

IMPORTANT CONSEQUENCE.

One can integrate differential forms.

Let $E \subset X$ be an oriented *p*-rectifiable set with $\mathcal{H}^p(E) < \infty$.

Then for every (smooth) differential *p*-form on X

 $\alpha \in \mathcal{E}^p(X)$

IMPORTANT CONSEQUENCE.

One can integrate differential forms.

Let $E \subset X$ be an oriented *p*-rectifiable set with $\mathcal{H}^{p}(E) < \infty$.

Then for every (smooth) differential *p*-form on X

 $\alpha \in \mathcal{E}^{p}(X)$

The integral

$$\int_{E} \alpha \equiv \int_{E} \alpha \left(\overrightarrow{E}_{x} \right) d\mathcal{H}^{p}(x)$$

is well defined.

(I)

NEXT IMPORTANT CONSEQUENCE.

・ロト ・回ト ・ヨト ・ヨト

NEXT IMPORTANT CONSEQUENCE.

We have an embedding.

{oriented *p*-rectifiable sets} $\subset \mathcal{E}_p(X) \equiv (\mathcal{E}^p(X))'$

< 同 > < 三 > < 三 >

NEXT IMPORTANT CONSEQUENCE.

We have an embedding.

{oriented *p*-rectifiable sets} $\subset \mathcal{E}_p(X) \equiv (\mathcal{E}^p(X))'$

into the space of *p*-dimensional currents on *X*.

NEXT IMPORTANT CONSEQUENCE.

We have an embedding.

{oriented *p*-rectifiable sets} $\subset \mathcal{E}_p(X) \equiv (\mathcal{E}^p(X))'$

into the space of *p*-dimensional currents on *X*.

HENCE THERE IS A WELL-DEFINED NOTION OF BOUNDARY.

NEXT IMPORTANT CONSEQUENCE.

We have an embedding.

{oriented *p*-rectifiable sets} $\subset \mathcal{E}_p(X) \equiv (\mathcal{E}^p(X))'$

into the space of *p*-dimensional currents on *X*.

HENCE THERE IS A WELL-DEFINED NOTION OF BOUNDARY.

 $(\partial[E])(\alpha) \equiv [E](d\alpha)$

Rectifiable Currents.

Definition. A rectifiable *p*-current is a sum

$$T = \sum_{j=1}^{\infty} n_j [E_j]$$

where $\{E_j\}_j$ is a family of disjoint oriented *p*-rectifiable sets,

(4) (3) (4) (4) (4)

Rectifiable Currents.

Definition. A rectifiable *p*-current is a sum

$$T = \sum_{j=1}^{\infty} n_j [E_j]$$

where $\{E_j\}_j$ is a family of disjoint oriented *p*-rectifiable sets, $n_j \in \mathbf{Z}^+$

(I)

Rectifiable Currents.

Definition. A rectifiable *p*-current is a sum

$$T = \sum_{j=1}^{\infty} n_j [E_j]$$

where $\{E_j\}_j$ is a family of disjoint oriented *p*-rectifiable sets, $n_j \in \mathbf{Z}^+$

$$\bigcup_{j=1}^{\infty} E_j \subset X$$

글 🕨 🖌 글

Rectifiable Currents.

Definition. A rectifiable *p*-current is a sum

$$T = \sum_{j=1}^{\infty} n_j [E_j]$$

where $\{E_j\}_j$ is a family of disjoint oriented *p*-rectifiable sets, $n_j \in \mathbf{Z}^+$

$$\bigcup_{j=1}^{\infty} E_j \subset X$$

and the mass of T

$$M(T) \equiv \sum_{j=1}^{\infty} n_j \mathcal{H}^p(E_j) < \infty.$$

Note that We consider any such *T* to be a current

 $T \in \mathcal{E}_{p}(X)$

(4) E > (4) E

Note that We consider any such *T* to be a current

 $T \in \mathcal{E}_p(X)$

and as such it has a boundary

 $\partial T \in \mathcal{E}_{p-1}(X)$

(4) E > (4) E

Note that We consider any such *T* to be a current

 $T \in \mathcal{E}_p(X)$

and as such it has a boundary

 $\partial T \in \mathcal{E}_{p-1}(X)$ given by $(\partial T)(\beta) \equiv T(d\beta)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Note that We consider any such *T* to be a current

 $T \in \mathcal{E}_{p}(X)$

and as such it has a boundary

 $\partial T \in \mathcal{E}_{p-1}(X)$ given by $(\partial T)(\beta) \equiv T(d\beta)$.

Definition. An integral *p*-current is a current $T \in \mathcal{E}_p(X)$ such that

both T and ∂T are rectifiable.

Note that We consider any such *T* to be a current

 $T \in \mathcal{E}_{p}(X)$

and as such it has a boundary

 $\partial T \in \mathcal{E}_{p-1}(X)$ given by $(\partial T)(\beta) \equiv T(d\beta)$.

Definition. An integral *p*-current is a current $T \in \mathcal{E}_p(X)$ such that

both T and ∂T are rectifiable.

 $\mathcal{I}_p(X) \equiv \{ \text{rectifiable } p \text{-currents on } X \}.$

Note that We consider any such *T* to be a current

 $T \in \mathcal{E}_{p}(X)$

and as such it has a boundary

 $\partial T \in \mathcal{E}_{p-1}(X)$ given by $(\partial T)(\beta) \equiv T(d\beta)$.

Definition. An integral *p*-current is a current $T \in \mathcal{E}_p(X)$ such that

both T and ∂T are rectifiable.

 $\mathcal{I}_p(X) \equiv \{ \text{rectifiable } p \text{-currents on } X \}.$

$$\partial : \mathcal{I}_{p}(X) \to \mathcal{I}_{p-1}(X) \quad \text{and} \quad \partial^{2} = 0.$$

Homology.

For any manifold *X* we have a chain complex

$$\mathcal{I}_n(X) \stackrel{\partial}{\longrightarrow} \mathcal{I}_{n-1}(X) \stackrel{\partial}{\longrightarrow} \cdots \stackrel{\partial}{\longrightarrow} \mathcal{I}_0(X)$$

Homology.

For any manifold X we have a chain complex

$$\mathcal{I}_n(X) \stackrel{\partial}{\longrightarrow} \mathcal{I}_{n-1}(X) \stackrel{\partial}{\longrightarrow} \cdots \stackrel{\partial}{\longrightarrow} \mathcal{I}_0(X)$$

Theorem (Federer-Fleming) There is an equivalence of functors

$$H_*(\mathcal{I}_*(X),\partial) \cong H_*(X;\mathbf{Z}).$$

(4) E > (4) E

Homology.

For any manifold *X* we have a chain complex

$$\mathcal{I}_n(X) \stackrel{\partial}{\longrightarrow} \mathcal{I}_{n-1}(X) \stackrel{\partial}{\longrightarrow} \cdots \stackrel{\partial}{\longrightarrow} \mathcal{I}_0(X)$$

Theorem (Federer-Fleming) There is an equivalence of functors

$$H_*(\mathcal{I}_*(X),\partial) \cong H_*(X;\mathbf{Z}).$$

This remains true for much more general spaces X.

(I)

Compactness.

Given a compact set $K \subset X$ and c > 0, let

 $\mathcal{I}_p(X)_{K,c} \subset \mathcal{I}_p(X)$

イロト イヨト イヨト

Compactness.

Given a compact set $K \subset X$ and c > 0, let

$$\mathcal{I}_p(X)_{\mathcal{K},c} \subset \mathcal{I}_p(X)$$

be the set of T with

 $M(T) \leq c$, $M(\partial T) \leq c$ and $supp(T) \subset K$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Compactness.

Given a compact set $K \subset X$ and c > 0, let

$$\mathcal{I}_p(X)_{\mathcal{K},c} \subset \mathcal{I}_p(X)$$

be the set of T with

 $M(T) \leq c$, $M(\partial T) \leq c$ and $\operatorname{supp}(T) \subset K$.

Theorem (Federer-Fleming)

The set $\mathcal{I}_{p}(X)_{K,c}$ is compact in the weak topology.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Since mass is lower semi-continuous in the weak topology, the compactness result solves a very general form of the Plateau Problem.

Since mass is lower semi-continuous in the weak topology, the compactness result solves a very general form of the Plateau Problem. Let X be compact riemannian or, say, \mathbf{R}^n .

Since mass is lower semi-continuous in the weak topology, the compactness result solves a very general form of the Plateau Problem. Let X be compact riemannian or, say, \mathbf{R}^n .

Theorem (Federer-Fleming)

Let $B \in \mathcal{I}_{p-1}(X)$ be a cycle ($\partial B = 0$)

・ 同 ト ・ ヨ ト ・ ヨ ト

Since mass is lower semi-continuous in the weak topology, the compactness result solves a very general form of the Plateau Problem. Let X be compact riemannian or, say, \mathbf{R}^n .

Theorem (Federer-Fleming)

Let
$$B \in \mathcal{I}_{p-1}(X)$$
 be a cycle $(\partial B = 0)$
such that $B = \partial T_0$ for some $T_0 \in \mathcal{I}_p(X)$

Since mass is lower semi-continuous in the weak topology, the compactness result solves a very general form of the Plateau Problem. Let X be compact riemannian or, say, \mathbf{R}^n .

Theorem (Federer-Fleming)

Let
$$B \in \mathcal{I}_{p-1}(X)$$
 be a cycle $(\partial B = 0)$
such that $B = \partial T_0$ for some $T_0 \in \mathcal{I}_p(X)$

Then there exists $T \in \mathcal{I}_p(X)$ with $T - T_0 = dR_0$ some $R_0 \in \mathcal{I}_{p+1}(X)$

Since mass is lower semi-continuous in the weak topology, the compactness result solves a very general form of the Plateau Problem. Let X be compact riemannian or, say, \mathbf{R}^n .

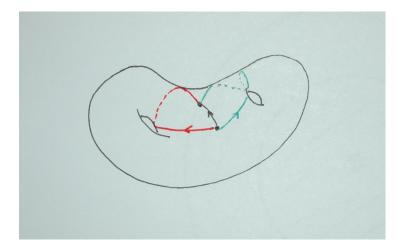
Theorem (Federer-Fleming)

Let
$$B \in \mathcal{I}_{p-1}(X)$$
 be a cycle $(\partial B = 0)$
such that $B = \partial T_0$ for some $T_0 \in \mathcal{I}_p(X)$

Then there exists $T \in \mathcal{I}_p(X)$ with $T - T_0 = dR_0$ some $R_0 \in \mathcal{I}_{p+1}(X)$ such that

$$M(T) = \inf_{R \in \mathcal{I}_{p+1}(X)} M(T + \partial R)$$

Picture.



Blaine Lawson

(ロ) (四) (E) (E) (E) (E)

Consequence.

Let X be a compact riemannian manifold.

Corollary (Federer-Fleming)

Every homology class $u \in H_p(X; \mathbb{Z})$ contains an integral current of least mass.

- B - - B

Fleming 1962

Blaine Lawson

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Fleming 1962

Combined his work with Federer, techniques of Reifenberg, and clever arguments to prove

Fleming 1962

Combined his work with Federer, techniques of Reifenberg, and clever arguments to prove

the complete interior regularity of mass-minimizing integral currents in R³.

.

Fleming 1962

Combined his work with Federer, techniques of Reifenberg, and clever arguments to prove

the complete interior regularity of mass-minimizing integral currents in R³.

Theorem. (Fleming). Let $T \in \mathcal{I}_2(\mathbb{R}^3)$ be a current of least mass (among all integral currents with the same boundary).

Fleming 1962

Combined his work with Federer, techniques of Reifenberg, and clever arguments to prove

the complete interior regularity of mass-minimizing integral currents in R³.

Theorem. (Fleming). Let $T \in I_2(\mathbf{R}^3)$ be a current of least mass (among all integral currents with the same boundary). Then

 $supp(T) - supp\partial T$ is a regular minimal surface in $\mathbf{R}^3 - supp\partial T$.

Fleming 1962

Combined his work with Federer, techniques of Reifenberg, and clever arguments to prove

the complete interior regularity of mass-minimizing integral currents in R³.

Theorem. (Fleming). Let $T \in I_2(\mathbf{R}^3)$ be a current of least mass (among all integral currents with the same boundary). Then

 $supp(T) - supp\partial T$ is a regular minimal surface in $\mathbf{R}^3 - supp\partial T$.

This solves the **oriented** Plateau Problem in **R**³ among surfaces of **all topological types**.

A D A A B A A B A A B A

Fleming 1962

Combined his work with Federer, techniques of Reifenberg, and clever arguments to prove

the complete interior regularity of mass-minimizing integral currents in R³.

Theorem. (Fleming). Let $T \in I_2(\mathbf{R}^3)$ be a current of least mass (among all integral currents with the same boundary). Then

 $supp(T) - supp\partial T$ is a regular minimal surface in $\mathbf{R}^3 - supp\partial T$.

This solves the **oriented** Plateau Problem in **R**³ among surfaces of **all topological types**.

The result holds in general riemannian 3-manifolds.

・ロット (母) ・ ヨ) ・ ヨ)

Cautionary Note: Multiplicities. A mass-minimizing integral current *T* can have integer multiplicities

Cautionary Note: Multiplicities. A mass-minimizing integral current *T* can have integer multiplicities on each connected component of its support.

Cautionary Note: Multiplicities. A mass-minimizing integral current *T* can have integer multiplicities on each connected component of its support.

So T has the form of a locally finite sum

$$T = \sum_{k} n_{k} [M_{k}].$$

 $\begin{array}{l} \mbox{Complete regularity fails} \\ \mbox{for codimension} \geq 2. \end{array}$

< A

 $\begin{array}{l} \mbox{Complete regularity fails} \\ \mbox{for codimension} \geq 2. \end{array}$

Theorem. (Federer). Let V be a complex analytic subvariety, $\dim_{\mathbf{C}}(V) = p$ in a Kähler manifold X,

 $\begin{array}{l} \mbox{Complete regularity fails} \\ \mbox{for codimension} \geq 2. \end{array}$

Theorem. (Federer). Let V be a complex analytic subvariety, $\dim_{\mathbf{C}}(V) = p$ in a Kähler manifold X, (for example a domain in \mathbf{C}^n).

 $\begin{array}{l} \mbox{Complete regularity fails} \\ \mbox{for codimension} \geq 2. \end{array}$

Theorem. (Federer). Let V be a complex analytic subvariety, $\dim_{\mathbf{C}}(V) = p$ in a Kähler manifold X, (for example a domain in \mathbf{C}^n). Then V defines an integral current

 $[V] \in \mathcal{I}_{2p}^{\mathrm{loc}}(X)$ with $\partial[V] = 0$

which is homologically mass-minimizing in X.

Higher Dimensions and Codimensions??.

 $\begin{array}{l} \mbox{Complete regularity fails} \\ \mbox{for codimension} \geq 2. \end{array}$

Theorem. (Federer). Let V be a complex analytic subvariety, $\dim_{\mathbf{C}}(V) = p$ in a Kähler manifold X, (for example a domain in \mathbf{C}^n). Then V defines an integral current

$$[V] \in \mathcal{I}_{2p}^{\mathrm{loc}}(X)$$
 with $\partial[V] = 0$

which is homologically mass-minimizing in X.

That is, for every open set $\Omega \subset \subset X$

 $M([V]) \leq M([V] + \partial S) \quad \forall S \in \mathcal{I}_{2p+1}(\Omega)$

Regularity in Codimension-One.

Work of Almgren and De Giorgi.

A 3 5 A 3

Regularity in Codimension-One.

Work of Almgren and De Giorgi.

Theorem. (Almgren).

Complete interior regularity holds for mass-minimizing integral currents of dimension 3 in 4-manifolds.

Regularity in Codimension-One.

Work of Almgren and De Giorgi.

Theorem. (Almgren).

Complete interior regularity holds for mass-minimizing integral currents of dimension 3 in 4-manifolds.

Theorem. (Almgren-De Giorgi).

The Bernstein conjecture holds for minimal graphs

$$\Gamma = \{(x, f(x)) \in \mathbf{R}^{n+1} : x \in \mathbf{R}^n\}$$

for *n* ≤ 4.

The Proof – Revolves Around Cones.

The Proof – Revolves Around Cones. Set

$$S^n \equiv \{x \in \mathbf{R}^{n+1} : \|x\| = 1\}.$$

and consider a compact submanifold

$$M^p \subset S^n$$
.

Image: A matrix

The Proof – Revolves Around Cones. Set

$$S^n \equiv \{x \in \mathbf{R}^{n+1} : \|x\| = 1\}.$$

and consider a compact submanifold

$$M^p \subset S^n$$
.

The **cone on** *M*^{*p*} is the set

$$C(M^p) = \{ tx \in \mathbf{R}^{n+1} : x \in M^p \text{ and } t \ge 0 \}$$

Image: A matrix

∃ >

The Proof – Revolves Around Cones. Set

$$S^n \equiv \{x \in \mathbf{R}^{n+1} : \|x\| = 1\}.$$

and consider a compact submanifold

$$M^p \subset S^n$$
.

The **cone on** *M*^{*p*} is the set

$$C(M^p) = \{ tx \in \mathbf{R}^{n+1} : x \in M^p \text{ and } t \ge 0 \}$$

The Proof – Revolves Around Cones. Set

$$S^n \equiv \{x \in \mathbf{R}^{n+1} : \|x\| = 1\}.$$

and consider a compact submanifold

$$M^p \subset S^n$$
.

The **cone on** *M*^{*p*} is the set

$$C(M^p) = \{ tx \in \mathbf{R}^{n+1} : x \in M^p \text{ and } t \ge 0 \}$$

This concept extends naturally to currents.

Blaine Lawson

Jim Simons' Work on Minimal Varieties

Blaine Lawson

<ロ> <同> <同> < 同> < 同>

Suppose that

$$C = C(M) \in \mathcal{I}_{p+1}^{\mathrm{loc}}(\mathbf{R}^{n+1})$$

is the cone on a current

 $M \in \mathcal{I}_p(S^n).$

イロト イヨト イヨト イヨト

Suppose that

$$C=C(M)\in \mathcal{I}_{p+1}^{\mathrm{loc}}(\mathbf{R}^{n+1})$$

is the cone on a current

$$M \in \mathcal{I}_p(S^n).$$

Then

C(M) is minimal in \mathbb{R}^{n+1} \iff M is minimal in S^n

Suppose that

$$C=C(M)\in \mathcal{I}_{p+1}^{\mathrm{loc}}(\mathbf{R}^{n+1})$$

is the cone on a current

$$M \in \mathcal{I}_p(S^n).$$

Then

```
C(M) is minimal in \mathbb{R}^{n+1} \iff M is minimal in S^n
```

QUESTION:
$$C(M)$$
 is $\begin{cases} minimizing \\ stable \end{cases}$ in \mathbb{R}^{n+1} \iff M is ??? in S^n

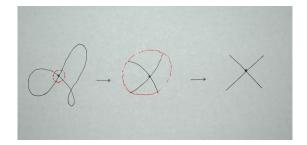
Blaine Lawson

イロト イヨト イヨト イヨト

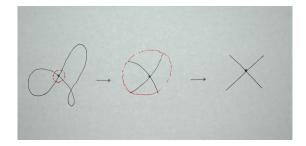
Suppose T is a mass-minimizing integral current

(D) (A) (A) (A)

Suppose T is a mass-minimizing integral current Then at each $x \in \text{supp}(T)$ the current T has tangent cones which are mass-minimizing.



Suppose T is a mass-minimizing integral current Then at each $x \in \text{supp}(T)$ the current T has tangent cones which are mass-minimizing.



IDEA: Consider sequences of dilations.

Suppose Γ is a minimal graph of codimension-1 in \mathbb{R}^n .

(D) (A) (A) (A)

Suppose Γ is a minimal graph of codimension-1 in \mathbb{R}^n .

Then Γ is a mass-minimizing integral current.

(4) (3) (4) (4) (4)

Image: Image:

Suppose Γ is a minimal graph of codimension-1 in \mathbb{R}^n .

Then Γ is a mass-minimizing integral current.

If the graphing function is defined over all of Rⁿ,

(4) The field

Suppose Γ is a minimal graph of codimension-1 in \mathbb{R}^n .

Then Γ is a mass-minimizing integral current.

If the graphing function is defined over all of Rⁿ,

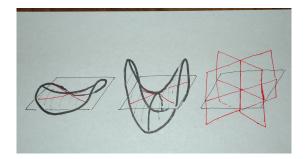
Then we can produce cones which are mass-minimizing in Rⁿ.

Suppose Γ is a minimal graph of codimension-1 in \mathbb{R}^n .

Then Γ is a mass-minimizing integral current.

If the graphing function is defined over all of R^{*n*},

Then we can produce cones which are mass-minimizing in \mathbb{R}^n . They are of the form $C_0 \times \mathbb{R}$.



IDEA: Consider sequences of contractions.

Suppose Γ is a minimal graph of codimension-1 in \mathbb{R}^n .

Then Γ is a mass-minimizing integral current.

If the graphing function is defined over all of Rⁿ,

Then we can produce cones which are mass-minimizing in \mathbb{R}^n . They are of the form $C_0 \times \mathbb{R}$.

IDEA: Consider sequences of contractions.

Blaine Lawson

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A tangent cone to a cone C

A tangent cone to a cone C

(at a point *x* away from the vertex)

Image: A matrix

(a) (b) (c) (b)

A tangent cone to a cone C

(at a point x away from the vertex)

splits as a product

$$T_x C = \mathbf{R} \times C_0$$

(a) (b) (c) (b)

A tangent cone to a cone C

(at a point *x* away from the vertex)

splits as a product

$$T_x C = \mathbf{R} \times C_0$$

where

$$\dim(C_0) = \dim(C) - 1.$$

(4) (3) (4) (4) (4)

A tangent cone to a cone C

(at a point x away from the vertex)

splits as a product

$$T_x C = \mathbf{R} \times C_0$$

where

$$\dim(C_0) = \dim(C) - 1.$$

One can now apply induction on dimension

Blaine Lawson

Work of the previous people shows:

Image: A matrix

Work of the previous people shows:

If interior regularity holds for minimizing hypersurfaces in dimension n,

Work of the previous people shows:

If interior regularity holds for minimizing hypersurfaces in dimension *n*, then every minimizing cone in \mathbb{R}^{n+1} is

Work of the previous people shows:

If interior regularity holds for minimizing hypersurfaces in dimension *n*, then every minimizing cone in \mathbb{R}^{n+1} is the cone on an regular minimal submanifold $M \subset S^n$.

Simons' Theorem:

Blaine Lawson

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Simons' Theorem:

THEOREM. (J. Simons 1968) Suppose $M^{n-1} \subset S^n$ is a compact minimal hypersurface such that the cone

 $C(M) \subset \mathbf{R}^{n+1}$

is stable (for example, mass-minimizing).

THEOREM. (J. Simons 1968) Suppose $M^{n-1} \subset S^n$ is a compact minimal hypersurface such that the cone

 $C(M) \subset \mathbf{R}^{n+1}$

is **stable** (for example, mass-minimizing). Then M^{n-1} is a totally geodesic hypersphere $S^{n-1} \subset S^n$,

イロト イポト イヨト イヨト

THEOREM. (J. Simons 1968) Suppose $M^{n-1} \subset S^n$ is a compact minimal hypersurface such that the cone

$$C(M) \subset \mathbf{R}^{n+1}$$

is **stable** (for example, mass-minimizing). Then M^{n-1} is a totally geodesic hypersphere $S^{n-1} \subset S^n$, that is,

$$C(M) = \mathbf{R}^n \subset \mathbf{R}^{n+1}$$

is a linear subspace

THEOREM. (J. Simons 1968) Suppose $M^{n-1} \subset S^n$ is a compact minimal hypersurface such that the cone

$$C(M) \subset \mathbf{R}^{n+1}$$

is **stable** (for example, mass-minimizing). Then M^{n-1} is a totally geodesic hypersphere $S^{n-1} \subset S^n$, that is,

$$C(M) = \mathbf{R}^n \subset \mathbf{R}^{n+1}$$

is a linear subspace

provided $n + 1 \le 7$.

THEOREM. (J. Simons 1968) Suppose $M^{n-1} \subset S^n$ is a compact minimal hypersurface such that the cone

$$C(M) \subset \mathbf{R}^{n+1}$$

is **stable** (for example, mass-minimizing). Then M^{n-1} is a totally geodesic hypersphere $S^{n-1} \subset S^n$, that is,

$$C(M) = \mathbf{R}^n \subset \mathbf{R}^{n+1}$$

is a linear subspace

provided $n + 1 \le 7$.

FURTHERMORE,

This assertion is false if $n + 1 \ge 8$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Corollaries:

Complete interior regularity holds for mass-minimizing integral currents of codimension-one in riemannian manifolds of dimension \leq 7.

Corollaries:

Complete interior regularity holds for mass-minimizing integral currents of codimension-one in riemannian manifolds of dimension \leq 7.

The Bernstein Conjecture holds for minimal graphs $\{x_{n+1} = f(x_1, ..., x_n)\}$ when $n \le 7$.

$$C(S^3 \times S^3) \equiv \{(x, y) \in \mathbf{R}^4 \times \mathbf{R}^4 : |x| = |y|\} \subset \mathbf{R}^8$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$C(S^3 \times S^3) \equiv \{(x, y) \in \mathbf{R}^4 \times \mathbf{R}^4 : |x| = |y|\} \subset \mathbf{R}^8$$

Theorem. (Bombieri, De Giorgi, Giusti (1969))

Simons' cone is mass-minimizing in \mathbb{R}^8 .

Image: Image:

$$C(S^3 \times S^3) \equiv \{(x, y) \in \mathbf{R}^4 \times \mathbf{R}^4 : |x| = |y|\} \subset \mathbf{R}^8$$

Theorem. (Bombieri, De Giorgi, Giusti (1969))

Simons' cone is mass-minimizing in \mathbf{R}^8 . Hence, interior regularity fails in all dimensions ≥ 8 .

$$C(S^3 \times S^3) \equiv \{(x, y) \in \mathbf{R}^4 \times \mathbf{R}^4 : |x| = |y|\} \subset \mathbf{R}^8$$

Theorem. (Bombieri, De Giorgi, Giusti (1969))

Simons' cone is mass-minimizing in \mathbf{R}^8 . Hence, interior regularity fails in all dimensions ≥ 8 .

The Bernstein Conjecture is false for all $n \ge 8$.

Some Differential Geometry

A 3 5 A 3

Some Differential Geometry

Let $M \subset X$

be a submanifold of a riemannian manifold *X* with Levi-Civita connection $\overline{\nabla}$.

Some Differential Geometry

Let $M \subset X$

be a submanifold of a riemannian manifold *X* with Levi-Civita connection $\overline{\nabla}$.

For vector fields V, W on M

$$\overline{\nabla}_{V}W = (\overline{\nabla}_{V}W)^{T} + (\overline{\nabla}_{V}W)^{N}$$

Some Differential Geometry

Let $M \subset X$

be a submanifold of a riemannian manifold *X* with Levi-Civita connection $\overline{\nabla}$.

For vector fields V, W on M

$$\overline{\nabla}_{V}W = (\overline{\nabla}_{V}W)^{T} + (\overline{\nabla}_{V}W)^{N}$$

Then $\nabla_V W \equiv (\overline{\nabla}_V W)^T$ is the Levi-Civita connection of the induced riemannian metric on M

Some Differential Geometry

Let $M \subset X$

be a submanifold of a riemannian manifold *X* with Levi-Civita connection $\overline{\nabla}$.

For vector fields V, W on M

$$\overline{\nabla}_{V}W = (\overline{\nabla}_{V}W)^{T} + (\overline{\nabla}_{V}W)^{N}$$

Then $\nabla_V W \equiv (\overline{\nabla}_V W)^T$ is the Levi-Civita connection of the induced riemannian metric on *M* and

$$B_{V.W} \equiv (\overline{\nabla}_V W)^N$$

is the **Second Fundamental Form** of *M* in *X*.

$$B_{V.W} \equiv (\overline{\nabla}_V W)^N$$

is a field of **symmetric** 2-forms on T(M) with values in the normal bundle N(M)

$$B_{V.W} \equiv (\overline{\nabla}_V W)^N$$

is a field of **symmetric** 2-forms on T(M) with values in the normal bundle N(M)

The mean curvature vector field is the normal vector field along M given by

 $H \equiv \text{trace}B.$

The First Variational Formula Let $\varphi_t : M \to X$ be a normal deformation of M with derivative V at t = 0. Then

$$\frac{\partial}{\partial t} \operatorname{vol} \left\{ \varphi_t(M) \right\} \Big|_{t=0} = -\int_M \langle H, V \rangle.$$

The First Variational Formula Let $\varphi_t : M \to X$ be a normal deformation of M with derivative V at t = 0. Then

$$\frac{\partial}{\partial t} \operatorname{vol} \left\{ \varphi_t(M) \right\} \Big|_{t=0} = - \int_M \langle H, V \rangle.$$

(D) (A) (A) (A)

The First Variational Formula Let $\varphi_t : M \to X$ be a normal deformation of M with derivative V at t = 0. Then

$$\frac{\partial}{\partial t}$$
 vol $\{\varphi_t(M)\}\Big|_{t=0} = -\int_M \langle H, V \rangle.$

The Second Variational Formula Suppose $H \equiv 0$ on *M*. Then

$$\frac{\partial^2}{\partial t^2} \operatorname{vol} \left\{ \varphi_t(M) \right\} \Big|_{t=0} = \int_M \langle \nabla^* \nabla V - \mathcal{B}(V) + \overline{R}(V), V \rangle$$

(D) (A) (A) (A)

The First Variational Formula Let $\varphi_t : M \to X$ be a normal deformation of M with derivative V at t = 0. Then

$$\frac{\partial}{\partial t} \operatorname{vol} \left\{ \varphi_t(M) \right\} \Big|_{t=0} = - \int_M \langle H, V \rangle.$$

The Second Variational Formula Suppose $H \equiv 0$ on M. Then

$$\frac{\partial^2}{\partial t^2} \operatorname{vol} \left\{ \varphi_t(M) \right\} \bigg|_{t=0} = \int_M \langle \nabla^* \nabla V - \mathcal{B}(V) + \overline{R}(V), V \rangle$$

where

$$\mathcal{B} \equiv \boldsymbol{B} \circ \boldsymbol{B}^t : \boldsymbol{N} \to \boldsymbol{N}$$

(recall $B: T \otimes T \rightarrow N$),

The First Variational Formula Let $\varphi_t : M \to X$ be a normal deformation of M with derivative V at t = 0. Then

$$\frac{\partial}{\partial t} \operatorname{vol} \left\{ \varphi_t(M) \right\} \Big|_{t=0} = - \int_M \langle H, V \rangle.$$

The Second Variational Formula Suppose $H \equiv 0$ on M. Then

$$\frac{\partial^2}{\partial t^2} \operatorname{vol} \left\{ \varphi_t(M) \right\} \bigg|_{t=0} = \int_M \langle \nabla^* \nabla V - \mathcal{B}(V) + \overline{R}(V), V \rangle$$

where

$$\mathcal{B} \equiv \boldsymbol{B} \circ \boldsymbol{B}^t : \boldsymbol{N} \to \boldsymbol{N}$$

(recall $B: T\otimes T o N$), and $\overline{R}(V) = \sum_{j=1}^{p} \overline{R}_{e_j,V}(e_j)$

イロト イヨト イヨト

THEOREM. (First-order system)

Let $M \subset X$ be a minimal submanifold with second fundamental form B.

THEOREM. (First-order system)

7

Let $M \subset X$ be a minimal submanifold with second fundamental form B.

$$\nabla_V(B)(W,U) - \nabla_W(B)(V,U) = \left(\overline{R}_{V,W}U\right)^N$$

Codazzi Equations

$$\sum_{j=1}^{p} \nabla_{e_j}(B)(e_j, V) = \sum_{j=1}^{p} \left(\overline{R}_{e_j, V} e_j\right)^N$$

THEOREM. (First-order system)

Let $M \subset X$ be a minimal submanifold with second fundamental form B.

$$abla_V(B)(W,U) -
abla_W(B)(V,U) = \left(\overline{R}_{V,W}U
ight)^N$$
 Codazzi Equations
 $\sum_{j=1}^p
abla_{e_j}(B)(e_j,V) = \sum_{j=1}^p \left(\overline{R}_{e_j,V}e_j
ight)^N$

THEOREM.(Second-order equation)

Let $M \subset X$ be a minimal submanifold with second fundamental form B.

$$\nabla^* \nabla B = \mathcal{F}(B, \overline{R}, \nabla \overline{R})$$

$$\nabla^* \nabla B = \mathcal{F}(B, \overline{R}, \nabla \overline{R})$$

had many applications:

Image: A matrix

3 1 4 3

$$\nabla^* \nabla B = \mathcal{F}(B, \overline{R}, \nabla \overline{R})$$

had many applications:

• The important stability result above.

$$\nabla^* \nabla B = \mathcal{F}(B, \overline{R}, \nabla \overline{R})$$

had many applications:

- The important stability result above.
- Isolation results:

$$\nabla^* \nabla B = \mathcal{F}(B, \overline{R}, \nabla \overline{R})$$

had many applications:

- The important stability result above.
- Isolation results: e.g.

Suppose $M^n \subset S^{n+1}$ is a minimal submanifold with ||B|| < n pointwise on M.

A B K A B K

$$\nabla^* \nabla B = \mathcal{F}(B, \overline{R}, \nabla \overline{R})$$

had many applications:

- The important stability result above.
- Isolation results: e.g.

Suppose $M^n \subset S^{n+1}$ is a minimal submanifold with ||B|| < n pointwise on M. Then $M^{n-1} = S^{n-1}$ is a totally geodesic "equator".

$$\nabla^* \nabla B = \mathcal{F}(B, \overline{R}, \nabla \overline{R})$$

had many applications:

- The important stability result above.
- Isolation results: e.g.

Suppose $M^n \subset S^{n+1}$ is a minimal submanifold with ||B|| < n pointwise on M. Then $M^{n-1} = S^{n-1}$ is a totally geodesic "equator".

• Engendered decades of papers on the subject.

Let \mathcal{H} denote the space of holomorphic vector fields on $\mathbf{P}^{n}(\mathbf{C})$.

Let \mathcal{H} denote the space of holomorphic vector fields on $\mathbf{P}^{n}(\mathbf{C})$. Let *S* be an integral current on $\mathbf{P}^{n}(\mathbf{C})$,

Image: Image:

Let \mathcal{H} denote the space of holomorphic vector fields on $\mathbf{P}^{n}(\mathbf{C})$.

Let *S* be an integral current on $\mathbf{P}^{n}(\mathbf{C})$,

Define a quadratic form Q_S on \mathcal{H} by

Let \mathcal{H} denote the space of holomorphic vector fields on $\mathbf{P}^{n}(\mathbf{C})$. Let S be an integral current on $\mathbf{P}^{n}(\mathbf{C})$, Define a quadratic form Q_{S} on \mathcal{H} by

$$Q_{\mathcal{S}}(V) = \left. \frac{d^2}{dt^2} M\{(\varphi_t)_* S\} \right|_{t=0}$$

- A 🖓 🕨 A 🖻 🕨 A 🖻

Let \mathcal{H} denote the space of holomorphic vector fields on $\mathbf{P}^{n}(\mathbf{C})$. Let S be an integral current on $\mathbf{P}^{n}(\mathbf{C})$, Define a quadratic form Q_{S} on \mathcal{H} by

$$Q_{\mathcal{S}}(V) = \left. \frac{d^2}{dt^2} M\left\{ (\varphi_t)_* S \right\} \right|_{t=0}$$

Theorem. (Lawson-Simons)

trace
$$(Q_S) = -\int \left\|J(\overrightarrow{S}_x)\right\|^2 \|S\|(x)$$

Let \mathcal{H} denote the space of holomorphic vector fields on $\mathbf{P}^{n}(\mathbf{C})$. Let S be an integral current on $\mathbf{P}^{n}(\mathbf{C})$, Define a quadratic form Q_{S} on \mathcal{H} by

$$Q_{\mathcal{S}}(V) = \left. \frac{d^2}{dt^2} M\left\{ (\varphi_t)_* S \right\} \right|_{t=0}$$

Theorem. (Lawson-Simons)

trace
$$(Q_S) = -\int \left\|J(\overrightarrow{S}_x)\right\|^2 \|S\|(x)$$

Corollary (Using Harvey-Shiffman).

Every stable integral current in $P^n(C)$ is an algebraic cycle.