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In 1967
Jim Simons wrote a remarkable paper

on the subject of

Minimal Submanifolds in Riemannian Geometry
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In this paper, he

• Established the foundations of the subject.

• Derived the fundamental elliptic system of pde’s

governing the second fundamental form.

• Established complete interior regularity for minimizing hypersurfaces

in dimensions ≤ 7.

• Established the Bernstein Conjecture

in dimensions ≤ 8.

• Produced the example which eventually showed that

both of the above theorems were sharp.
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The Classical Theory of Minimal Surfaces

Riemann, Weierstrauss
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The Classical Theory of Minimal Surfaces

Riemann, Weierstrauss

The Idea: Consider a smooth surface in Euclidean 3-space Σ ⊂ E3.
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The Classical Theory of Minimal Surfaces

Riemann, Weierstrauss

The Idea: Consider a smooth surface in Euclidean 3-space Σ ⊂ E3.

Suppose that for every deformation Σt , (Σ0 = Σ) in the interior, the area
satisfies

A (Σt ) ≥ A (Σ) .
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The Classical Theory of Minimal Surfaces

Riemann, Weierstrauss

Then for all such deformations:

d
dt

A (Σt )

∣∣∣∣
t=0

= 0

and
d2

dt2 A (Σt )

∣∣∣∣
t=0
≥ 0
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The Classical Theory of Minimal Surfaces
Riemann, Weierstrauss

If for all such deformations:

d
dt

A (Σt )

∣∣∣∣
t=0

= 0

Σ is called a Minimal Surface.

If in addition

d2

dt2 A (Σt )

∣∣∣∣
t=0
≥ 0 Σ is called a Stable Minimal Surface.
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Observation:

These conditions

d
dt

A (Σt )

∣∣∣∣
t=0

= 0 and
d2

dt2 A (Σt )

∣∣∣∣
t=0
≥ 0

Make sense

• in arbitrary dimensions and codimensions,

• in general riemannian manifolds,

• and for quite general objects Σ

Blaine Lawson Jim Simons’ Work on Minimal Varieties May 24, 2013 10 / 2



Observation:

These conditions

d
dt

A (Σt )

∣∣∣∣
t=0

= 0 and
d2

dt2 A (Σt )

∣∣∣∣
t=0
≥ 0

Make sense

• in arbitrary dimensions and codimensions,

• in general riemannian manifolds,

• and for quite general objects Σ

Blaine Lawson Jim Simons’ Work on Minimal Varieties May 24, 2013 10 / 2



Observation:

These conditions

d
dt

A (Σt )

∣∣∣∣
t=0

= 0 and
d2

dt2 A (Σt )

∣∣∣∣
t=0
≥ 0

Make sense

• in arbitrary dimensions and codimensions,

• in general riemannian manifolds,

• and for quite general objects Σ

Blaine Lawson Jim Simons’ Work on Minimal Varieties May 24, 2013 10 / 2



Observation:

These conditions

d
dt

A (Σt )

∣∣∣∣
t=0

= 0 and
d2

dt2 A (Σt )

∣∣∣∣
t=0
≥ 0

Make sense

• in arbitrary dimensions and codimensions,

• in general riemannian manifolds,

• and for quite general objects Σ

Blaine Lawson Jim Simons’ Work on Minimal Varieties May 24, 2013 10 / 2



A Geometric Characterization in R3

THE GAUSS MAP

N : Σ −→ S2

The Gauss map associates to each point x ∈ Σ, the normal vector N(x) to Σ
at x , i.e., the vector perpendicular to the tangent plane to Σ at x .

r
J

I
f'.

\

Σ is minimal if and only if the Gauss map is (anti)-conformal.
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Σ is minimal if and only if the Gauss map is (anti)-conformal.

Angles are preserved (but direction is reversed).
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Complex Anaysis Enters the Picture

Take Stereographic Projection

Complex Analysis is

a rich and deep subject

with many beautiful results.

We will return to this later.
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Elementary Question

Suppose our surface Σ is the graph of a function z = f (x , y)
over a domain D in the (x , y)-plane

.

When is this graph a minimal surface?

ANSWER: It must satisfy the differential equation

(1 + f 2
y )fxx + (1 + f 2

x )fyy − 2fx fy fxy = 0.
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Elementary Question

Suppose our surface Σ is the graph of a function z = f (x , y)
over a domain D in the (x , y)-plane

.

When is this graph a minimal surface?

ANSWER: It must satisfy the differential equation

(1 + |∇f |2)∆f − (∇f )tH(f )∇f = 0.
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The Dirichlet Problem

Let D be the round disk of radius R.
Let ϕ be an arbitrary continuous function on the boundary circle.

.

Theorem. There exists a unique function f (x , y) continuous on D and smooth
in its interior, such that f = ϕ on ∂D and in the interior it satisfies the minimal
surface equation:

(1 + |∇f |2)∆f − (∇f )tH(f )∇f = 0

x
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The Bernstein Theorem

This gives us a wildly abundant family of minimal surfaces
which are graphs over disks of radius R.

Now imagine letting R →∞
and making clever choices for boundary curves ϕ.

.

One would expect to produce many functions f (x , y)
defined over the entire (x , y)-plane and satisfying the M.S.Eqn.

Surprise!!

The Bernstein Theorem (1918). Any solution of the minimal surface
equation which is defined for all (x , y) in the plane must be is linear, i.e., its
graph is an affine 2-plane.
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This is a beautiful and astonishing result.

If we remove a tiny disk from the plane,
there is a function defined everywhere outside that disk

whose graph is a minimal surface.

This is also true if we remove a half-line from the plane,
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For the Classical Proof of this Theorem
we return to the Gauss Map.

Notice: If
Σ = {(x , y , f (x , y)) : (x , y) ∈ D}

is a the graph of a function, then

the image of the Gauss map lies in the upper hemisphere

1"
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For the Classical Proof of this Theorem
we return to the Gauss Map.

Notice: If
Σ = {(x , y , f (x , y)) : (x , y) ∈ D}

is a the graph of a function, then

the image of the Gauss map lies in the upper hemisphere

The proof is given by showing that Σ must have the conformal type of C.

1"
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For the Classical Proof of this Theorem
we return to the Gauss Map.

Notice: If
Σ = {(x , y , f (x , y)) : (x , y) ∈ D}

is a the graph of a function, then

the image of the Gauss map lies in the upper hemisphere

The proof is given by showing that Σ must have the conformal type of C.

Then the Gauss map becomes a bounded entire function and must be
constant.

1"
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Question:
Does this Theorem Generalize to Higher Dimensions?

FACT:

The graph

Σ = {(x , f (z)) : z ∈ C} ⊂ C2

of any entire holomorphic function (e.g. a complex polynomial)

is a (stable) minimal surface in C2 = R4.

Restrict to codimension one.
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The Bernstein Conjecture.

Let

f : Rn −→ R

be a solution of the minimal surface equation

(1 + |∇f |2)∆f − (∇f )tH(f )∇f = 0.

defined over the entire space Rn.

Then f must be linear.
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The Plateau Problem – in Rn.

Let

B ⊂ Rn

be a compact submanifold of dimension p − 1 (without boundary).
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The Plateau Problem – in Rn.

Problem: Find a p-dimensional “submanifold” Σ with “boundary” B

such that

Hp(Σ) ≤ Hp(Σ′)

for all such Σ′ with boundary B.
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The Plateau Problem.

ISSUES:

• What do we mean by “submanifold”?

• What do we mean by “boundary”?

• Do solutions exist?

• How regular are the solutions?
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The Plateau Problem – Classical Results.

Douglas and Rado 1930

Considered a simple closed curve Γ ⊂ Rn

and tried to minimize area among all continuous maps of the disk

ψ : ∆ → Rn

having first derivatives in L2 and mapping

ψ : ∂∆ → Γ (monotonically)
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The Plateau Problem – Classical Results.

Douglas and Rado 1930

established the existence of minimizers

and the regularity of these minimizing maps (as mappings!)

However, self-intersections and isolated branch points could exist in these
surfaces.

(Osserman later proved that in R3 branch points do not exist.)

Much work ensued – Courant, Morrey, etc.

Surfaces of higher genus,

with many boundary components

in general manifolds.
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The Plateau Problem – The Next Era.

Reifenberg 1960

took a radically different approach to the Plateau Problem

and proved the existence of solutions

among surfaces of all topological types.

He considered the family of all compact sets Σ ⊂ Rn

with B ⊂ Σ

such that [B]→ 0 under the induced map

Hp(B,Λ) → Hp(Σ,Λ)

on Čech homology with coefficients in Λ (say, Z or Z2), and then

he minimized Hp(Σ) in this class.
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on Čech homology with coefficients in Λ (say, Z or Z2), and then

he minimized Hp(Σ) in this class.

Blaine Lawson Jim Simons’ Work on Minimal Varieties May 24, 2013 29 / 2



The Plateau Problem – The Next Era.

Reifenberg 1960

took a radically different approach to the Plateau Problem

and proved the existence of solutions

among surfaces of all topological types.

He considered the family of all compact sets Σ ⊂ Rn

with B ⊂ Σ

such that [B]→ 0 under the induced map

Hp(B,Λ) → Hp(Σ,Λ)
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The Plateau Problem – The Next Era.

Reifenberg proved

If Σ is one of his solutions to this problem,

there is a (relatively) open dense subset Σreg ⊂ Σ

which is a real analytic submanifold of Rn.

Furthermore, if n = 3 and Λ = Z2,

all of Σ− B is a real analytic submanifold of Rn.

A complete solution to the unoriented Plateau Problem in R3.
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The Plateau Problem – The Next Era.

Federer and Fleming – 1960

wrote an important foundational paper:

Normal and Integral Currents, Ann. of Math.

which, among many other things, established the

existence of solutions to the Plateau problem

in a very general setting.

Fundamental to this is the notion of an

Oriented p-Rectifiable Set.

which leads to the notion of a

Rectifiable p-Current.
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Rectifiable Sets.

There are many characterizations.

Definition. Let E be an Hp-measurable subset of a riemannian manifold X .

Then E is p-rectifiable if for every ε > 0 there exists a p-dimensional
embedded C1-submanifold M ⊂ X with

Hp(E ∆ M) < ε.

Alternative Definition.
E ⊂

⋃∞
k=1 fk (Rp)

where each

fk : Rp → X is a Lipschitz map.
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Rectifiable Sets.

IMPORTANT FACT.

Rectifiable sets have tangent planes a.e.

Definition. An orientation of a p-rectifiable set E

is a measurable choice of orientations of the tangent spaces of E .

i.e.,

an Hp-measurable field of unit simple p-vectors
→
E with

→
E x ∼= TxE for Hp-a.a.x ∈ E
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Rectifiable Sets.

IMPORTANT CONSEQUENCE.

One can integrate differential forms.

Let E ⊂ X be an oriented p-rectifiable set with Hp(E) <∞.

Then for every (smooth) differential p-form on X

α ∈ Ep(X )

The integral∫
E
α ≡

∫
E
α

(
→
E x

)
dHp(x)

is well defined.
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Rectifiable Sets.

NEXT IMPORTANT CONSEQUENCE.

We have an embedding.

{oriented p-rectifiable sets} ⊂ Ep(X ) ≡ (Ep(X ))
′

into the space of p-dimensional currents on X .

HENCE THERE IS A WELL-DEFINED NOTION OF BOUNDARY.

(∂[E ])(α) ≡ [E ](dα)
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Rectifiable Currents.

Definition. A rectifiable p-current is a sum

T =
∞∑
j=1

nj [Ej ]

where {Ej}j is a family of disjoint oriented p-rectifiable sets,

nj ∈ Z+

∞⋃
j=1

Ej ⊂⊂ X

and the mass of T

M(T ) ≡
∞∑
j=1

njHp(Ej ) < ∞.
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Integral Currents.

Note that We consider any such T to be a current

T ∈ Ep(X )

and as such it has a boundary

∂T ∈ Ep−1(X ) given by (∂T )(β) ≡ T (dβ).

Definition. An integral p-current is a current T ∈ Ep(X ) such that

both T and ∂T are rectifiable.

Ip(X ) ≡ {rectifiable p-currents on X}.

∂ : Ip(X ) → Ip−1(X ) and ∂2 = 0.
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Homology.

For any manifold X we have a chain complex

In(X )
∂−→ In−1(X )

∂−→ · · · ∂−→ I0(X )

Theorem (Federer-Fleming) There is an equivalence of functors

H∗(I∗(X ), ∂) ∼= H∗(X ; Z).

This remains true for much more general spaces X .
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Compactness.

Given a compact set K ⊂ X and c > 0, let

Ip(X )K ,c ⊂ Ip(X )

be the set of T with

M(T ) ≤ c, M(∂T ) ≤ c and supp(T ) ⊂ K .

Theorem (Federer-Fleming)

The set Ip(X )K ,c is compact in the weak topology.
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The Plateau Problem in X .

Since mass is lower semi-continuous in the weak topology,
the compactness result solves a very general form of the Plateau Problem.

Let X be compact riemannian or, say, Rn.

Theorem (Federer-Fleming)

Let B ∈ Ip−1(X ) be a cycle (∂B = 0)
such that B = ∂T0 for some T0 ∈ Ip(X )

.
Then there exists T ∈ Ip(X ) with T − T0 = dR0 some R0 ∈ Ip+1(X ) such that

M(T ) = inf
R∈Ip+1(X)

M(T + ∂R)
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Picture.
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Consequence.

Let X be a compact riemannian manifold.

Corollary (Federer-Fleming)

Every homology class u ∈ Hp(X ; Z)

contains an integral current of least mass.
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Regularity Theory.

Fleming 1962

Combined his work with Federer, techniques of Reifenberg, and clever
arguments to prove

the complete interior regularity of mass-minimizing integral currents in R3.

Theorem. (Fleming). Let T ∈ I2(R3) be a current of least mass (among all
integral currents with the same boundary). Then

supp(T )− supp∂T is a regular minimal surface in R3 − supp∂T .

This solves the oriented Plateau Problem in R3 among surfaces of all
topological types.

The result holds in general riemannian 3-manifolds.
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Cautionary Note: Multiplicities.
A mass-minimizing integral current T can have

integer multiplicities

on each connected component of its support.

So T has the form of a locally finite sum

T =
∑

k

nk [Mk ].
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Higher Dimensions and Codimensions??.

Complete regularity fails
for codimension ≥ 2.

Theorem. (Federer). Let V be a complex analytic subvariety, dimC(V ) = p
in a Kähler manifold X, (for example a domain in Cn).

Then V defines an integral current

[V ] ∈ I loc
2p (X ) with ∂[V ] = 0

which is homologically mass-minimizing in X .

That is, for every open set Ω ⊂⊂ X

M([V ]) ≤ M([V ] + ∂S) ∀ S ∈ I2p+1(Ω)
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Regularity in Codimension-One.

Work of Almgren and De Giorgi.

Theorem. (Almgren).

Complete interior regularity holds for mass-minimizing integral currents
of dimension 3 in 4-manifolds.

Theorem. (Almgren-De Giorgi).

The Bernstein conjecture holds for minimal graphs

Γ = {(x , f (x)) ∈ Rn+1 : x ∈ Rn}

for n ≤ 4.
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The Proof – Revolves Around Cones.

Set
Sn ≡ {x ∈ Rn+1 : ‖x‖ = 1}.

and consider a compact submanifold

Mp ⊂ Sn.

The cone on Mp is the set

C(Mp) = {tx ∈ Rn+1 : x ∈ Mp and t ≥ 0}

This concept extends naturally to currents.
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Proposition.

Suppose that
C = C(M) ∈ I loc

p+1(Rn+1)

is the cone on a current
M ∈ Ip(Sn).

Then

C(M) is minimal in Rn+1 ⇐⇒ M is minimal in Sn

QUESTION:

C(M) is

{
minimizing
stable

in Rn+1 ⇐⇒ M is ??? in Sn
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How Do Cones Enter?

Suppose T is a mass-minimizing integral current

Then at each x ∈ supp(T ) the current T has

tangent cones which are mass-minimizing.

IDEA: Consider sequences of dilations.
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How Do Cones Enter?
Suppose Γ is a minimal graph of codimension-1 in Rn.

Then Γ is a mass-minimizing integral current.

If the graphing function is defined over all of Rn,

Then we can produce cones which are mass-minimizing in Rn.
They are of the form C0 × R.

IDEA: Consider sequences of contractions.
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The Key Idea:

A tangent cone to a cone C

(at a point x away from the vertex)

splits as a product

TxC = R× C0

where

dim(C0) = dim(C)− 1.

One can now apply induction on dimension
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The Key Induction Step:

Work of the previous people shows:

If interior regularity holds for minimizing hypersurfaces in dimension n,

then every minimizing cone in Rn+1 is

the cone on an regular minimal submanifold M ⊂ Sn.
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Simons’ Theorem:

THEOREM. (J. Simons 1968) Suppose Mn−1 ⊂ Sn is a compact minimal
hypersurface such that the cone

C(M) ⊂ Rn+1

is stable (for example, mass-minimizing). Then Mn−1 is a totally geodesic

hypersphere Sn−1 ⊂ Sn, that is,

C(M) = Rn ⊂ Rn+1

is a linear subspace

provided n + 1 ≤ 7.

FURTHERMORE,

This assertion is false if n + 1 ≥ 8
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Corollaries:

Complete interior regularity holds
for mass-minimizing integral currents of codimension-one

in riemannian manifolds of dimension ≤ 7.

The Bernstein Conjecture holds
for minimal graphs {xn+1 = f (x1, ..., xn)} when n ≤ 7.
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Simons’ Example:

C(S3 × S3) ≡ {(x , y) ∈ R4 × R4 : |x | = |y |} ⊂ R8

Theorem. (Bombieri, De Giorgi, Giusti (1969))

Simons’ cone is mass-minimizing in R8.

Hence, interior regularity fails in all dimensions ≥ 8.

The Bernstein Conjecture is false for all n ≥ 8.
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Further Results of Jim Simons.

Some Differential Geometry

Let M ⊂ X

be a submanifold of a riemannian manifold X
with Levi-Civita connection ∇.

For vector fields V ,W on M

∇V W = (∇V W )T + (∇V W )N

Then ∇V W ≡ (∇V W )T is the Levi-Civita connection of the induced
riemannian metric on M and

BV .W ≡ (∇V W )N

is the Second Fundamental Form of M in X .
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The Second Fundamental Form.

BV .W ≡ (∇V W )N

is a field of symmetric 2-forms on T (M)
with values in the normal bundle N(M)

The mean curvature vector field is the normal vector field along M given by

H ≡ traceB.

The First Variational Formula Let ϕt : M → X be a normal deformation of M
with derivative V at t = 0. Then

∂

∂t
vol {ϕt (M)}

∣∣∣∣
t=0

= −
∫

M
〈H,V 〉.
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The Second Fundamental Form.

The First Variational Formula Let ϕt : M → X be a normal deformation of M
with derivative V at t = 0. Then

∂

∂t
vol {ϕt (M)}

∣∣∣∣
t=0

= −
∫

M
〈H,V 〉.

The Second Variational Formula Suppose H ≡ 0 on M. Then

∂2

∂t2 vol {ϕt (M)}
∣∣∣∣
t=0

=

∫
M
〈∇∗∇V − B(V ) + R(V ),V 〉

where
B ≡ B ◦ Bt : N → N

(recall B : T ⊗ T → N), and
R(V ) =

∑p
j=1 Rej ,V (ej )
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Simons Fundamental Equation.

THEOREM. (First-order system)

Let M ⊂ X be a minimal submanifold with second fundamental form B.

∇V (B)(W ,U)−∇W (B)(V ,U) =
(

RV ,W U
)N

Codazzi Equations

p∑
j=1

∇ej (B)(ej ,V ) =

p∑
j=1

(
Rej ,V ej

)N

THEOREM.(Second-order equation)

Let M ⊂ X be a minimal submanifold with second fundamental form B.

∇∗∇B = F(B,R,∇R)
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Simons Fundamental Equation.

∇∗∇B = F(B,R,∇R)

had many applications:

• The important stability result above.

• Isolation results: e.g.

Suppose Mn ⊂ Sn+1 is a minimal submanifold with
‖B‖ < n pointwise on M.

Then Mn−1 = Sn−1 is a totally geodesic “equator”.

• Engendered decades of papers on the subject.
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Stable Currents in Projective Space.

Let H denote the space of holomorphic vector fields on Pn(C).

Let S be an integral current on Pn(C),

Define a quadratic form QS on H by

QS(V ) =
d2

dt2 M {(ϕt )∗S}
∣∣∣∣
t=0
.

Theorem. (Lawson-Simons)

trace (QS) = −
∫ ∥∥J

(→
Sx
)∥∥2 ‖S‖(x)

Corollary (Using Harvey-Shiffman).

Every stable integral current in Pn(C) is an algebraic cycle.
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