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In this paper, he

Established the foundations of the subject.

Derived the fundamental elliptic system of pde’s
governing the second fundamental form.

Established complete interior regularity for minimizing hypersurfaces
in dimensions < 7.
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In this paper, he

Established the foundations of the subject.

Derived the fundamental elliptic system of pde’s
governing the second fundamental form.

Established complete interior regularity for minimizing hypersurfaces
in dimensions < 7.

Established the Bernstein Conjecture
in dimensions < 8.

Produced the example which eventually showed that

both of the above theorems were sharp.
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The Classical Theory of Minimal Surfaces

Riemann, Weierstrauss
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The Classical Theory of Minimal Surfaces

Riemann, Weierstrauss
The Idea: Consider a smooth surface in Euclidean 3-space ¥ c E°.
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The Classical Theory of Minimal Surfaces

Riemann, Weierstrauss

The Idea: Consider a smooth surface in Euclidean 3-space ~ C E3.

Suppose that for every deformation Xy, (¥ = X) in the interior, the area
satisfies

A(X) > AX).
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The Classical Theory of Minimal Surfaces

Riemann, Weierstrauss

Then for all such deformations:
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The Classical Theory of Minimal Surfaces

Riemann, Weierstrauss

Then for all such deformations:

— = —A(Z >
th(Zt) . 0 and P (1) o 0
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The Classical Theory of Minimal Surfaces
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The Classical Theory of Minimal Surfaces
Riemann, Weierstrauss

If for all such deformations:

EA(Z,) =0 Y is called a Minimal Surface.
t=0
If in addition
d2
—AX >
at? 0 =0 °
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The Classical Theory of Minimal Surfaces
Riemann, Weierstrauss

If for all such deformations:

EA(Z,) =0 Y is called a Minimal Surface.
t=0
If in addition
d2
WA(L) >0 Y iscalled a Stable Minimal Surface.
t=0
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Observation:

These conditions
dasyl =0 wa Lasyl o0
dt’ Ul "™
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Observation:

These conditions

gA(Z) =0 and d—2A(Z) >0
dt’ Ul "™

Make sense

e in arbitrary dimensions and codimensions,
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Observation:

These conditions

gA(Z) =0 and d—2A(Z) >0
dt’ Ul "™

Make sense

e in arbitrary dimensions and codimensions,
e in general riemannian manifolds,
e and for quite general objects ©
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A Geometric Characterization in R®
THE GAUSS MAP

N:¥Y — &

The Gauss map associates to each point x € ¥, the normal vector N(x) to X
at x, i.e., the vector perpendicular to the tangent plane to ¥ at x.

", ’x \
) [ Z/
7 f -
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Y is minimal if and only if the Gauss map is (anti)-conformal.

Angles are preserved (but direction is reversed).
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Complex Anaysis Enters the Picture
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Complex Anaysis Enters the Picture

Take Stereographic Projection
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Complex Anaysis Enters the Picture

Take Stereographic Projection

Complex Analysis is

a rich and deep subject

with many beautiful results.
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Elementary Question
Suppose our surface X is the graph of a function z = f(x, y)

over a domain D in the (x, y)-plane

When is this graph a minimal surface?
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Elementary Question
Suppose our surface X is the graph of a function z = f(x, y)
over a domain D in the (x, y)-plane
When is this graph a minimal surface?

ANSWER: It must satisfy the differential equation
1+ ff)fxx + (1 + ), — 2ff,fy, = 0.
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Elementary Question
Suppose our surface X is the graph of a function z = f(x, y)
over a domain D in the (x, y)-plane
When is this graph a minimal surface?

ANSWER: It must satisfy the differential equation
(1 +|VIRAf — (VHH(HVF = 0.
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The Dirichlet Problem

Let D be the round disk of radius R.
Let p be an arbitrary continuous function on the boundary circle.

Theorem. There exists a unique function f(x, y) continuous on D and smooth
in its interior, such that f = ¢ on 9D and in the interior it satisfies the minimal
surface equation:

(1 + |VFR)Af — (VHH()VF = 0
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The Bernstein Theorem

This gives us a wildly abundant family of minimal surfaces
which are graphs over disks of radius R.
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Now imagine letting R — o
and making clever choices for boundary curves .
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The Bernstein Theorem

This gives us a wildly abundant family of minimal surfaces
which are graphs over disks of radius R.

Now imagine letting R — o
and making clever choices for boundary curves .

One would expect to produce many functions f(x, y)
defined over the entire (x, y)-plane and satisfying the M.S.Eqgn.
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The Bernstein Theorem

This gives us a wildly abundant family of minimal surfaces
which are graphs over disks of radius R.

Now imagine letting R — o
and making clever choices for boundary curves .

One would expect to produce many functions f(x, y)
defined over the entire (x, y)-plane and satisfying the M.S.Eqgn.

Surprise!!

The Bernstein Theorem (1918). Any solution of the minimal surface
equation which is defined for all (x, y) in the plane must be is linear, i.e., its
graph is an affine 2-plane.
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This is a beautiful and astonishing result.

If we remove a tiny disk from the plane,
there is a function defined everywhere outside that disk
whose graph is a minimal surface.
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This is a beautiful and astonishing result.

If we remove a tiny disk from the plane,
there is a function defined everywhere outside that disk
whose graph is a minimal surface.

This is also true if we remove a half-line from the plane,

o & = Q>
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For the Classical Proof of this Theorem

we return to the Gauss Map.
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For the Classical Proof of this Theorem
we return to the Gauss Map.

Notice: If
Y = {(x,y,f(x,y)): (x,y) € D}
is a the graph of a function,
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For the Classical Proof of this Theorem

we return to the Gauss Map.

Notice: If
r = {(xy.f(x.y)): (x,y) € D}
is a the graph of a function, then
the image of the Gauss map lies in the upper hemisphere

_E {:(x;} 9
| ' {
g — L A (\\\vm,,dr/]
™~
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For the Classical Proof of this Theorem

we return to the Gauss Map.

Notice: If
Y = {(x,y,f(x,y)): (x,y) € D}
is a the graph of a function, then

the image of the Gauss map lies in the upper hemisphere
The proof is given by showing that ¥ must have the conformal type of C.

N
-
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For the Classical Proof of this Theorem

we return to the Gauss Map.

Notice: If
L = {(xy.f(x.y)): (x,y) € D}
is a the graph of a function, then
the image of the Gauss map lies in the upper hemisphere

The proof is given by showing that ¥ must have the conformal type of C.

Then the Gauss map becomes a bounded entire function and must be
constant.

\ T /
\ ) 4
. / 1 !
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Question:

Does this Theorem Generalize to Higher Dimensions?
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Question:
Does this Theorem Generalize to Higher Dimensions?

FACT:
The graph

Y ={(x,f(z)):zeC}c C?

of any entire holomorphic function (e.g. a complex polynomial)
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Question:
Does this Theorem Generalize to Higher Dimensions?

FACT:
The graph

Y ={(x,f(z)):zeC}c C?

of any entire holomorphic function (e.g. a complex polynomial)
is a (stable) minimal surface in C? = R*.
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Question:
Does this Theorem Generalize to Higher Dimensions?

FACT:
The graph

Y ={(x,f(z)):zeC}c C?

of any entire holomorphic function (e.g. a complex polynomial)
is a (stable) minimal surface in C? = R*.

Restrict to codimension one.
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The Bernstein Conjecture.
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The Bernstein Conjecture.

Let

f:R" — R

be a solution of the minimal surface equation

(14 |Vf2)Af — (VHIH(f)VF = 0.

defined over the entire space R".
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The Bernstein Conjecture.

Let

f:R" — R
be a solution of the minimal surface equation
(1 +|VIRAf — (VHH(HVF = 0.
defined over the entire space R".

Then f must be linear.
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The Plateau Problem —in R”.
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The Plateau Problem —in R”.

Let

B c R

be a compact submanifold of dimension p — 1 (without boundary).
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The Plateau Problem —in R”.

Problem: Find a p-dimensional “submanifold” ¥ with “boundary” B
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The Plateau Problem —in R”.

Problem: Find a p-dimensional “submanifold” ¥ with “boundary” B
HP(E) < HP(E)
for all such X’ with boundary B.

such that
./" 5
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The Plateau Problem.

ISSUES:
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The Plateau Problem.

ISSUES:

e What do we mean by “submanifold”?
e What do we mean by “boundary”?

e Do solutions exist?
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The Plateau Problem.

ISSUES:
e What do we mean by “submanifold”?
e What do we mean by “boundary”?
e Do solutions exist?

e How regular are the solutions?
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The Plateau Problem — Classical Results.
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Douglas and Rado 1930
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The Plateau Problem — Classical Results.
Douglas and Rado 1930

Considered a simple closed curve ' C R”

and tried to minimize area among all continuous maps of the disk

v:A — R
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The Plateau Problem — Classical Results.
Douglas and Rado 1930

Considered a simple closed curve ' C R”

and tried to minimize area among all continuous maps of the disk
v:A — R
having first derivatives in L2 and mapping

P:0A = T (monotonically)
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The Plateau Problem — Classical Results.

Douglas and Rado 1930
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The Plateau Problem — Classical Results.

Douglas and Rado 1930

established the existence of minimizers
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The Plateau Problem — Classical Results.

Douglas and Rado 1930

established the existence of minimizers
and the regularity of these minimizing maps (as mappings!)

However, self-intersections and isolated branch points could exist in these
surfaces.
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and the regularity of these minimizing maps (as mappings!)

However, self-intersections and isolated branch points could exist in these
surfaces.

(Osserman later proved that in R® branch points do not exist.)
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The Plateau Problem — Classical Results.

Douglas and Rado 1930

established the existence of minimizers
and the regularity of these minimizing maps (as mappings!)

However, self-intersections and isolated branch points could exist in these
surfaces.

(Osserman later proved that in R® branch points do not exist.)

Much work ensued — Courant, Morrey, etc.

Surfaces of higher genus,
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The Plateau Problem — Classical Results.

Douglas and Rado 1930

established the existence of minimizers
and the regularity of these minimizing maps (as mappings!)

However, self-intersections and isolated branch points could exist in these
surfaces.

(Osserman later proved that in R® branch points do not exist.)

Much work ensued — Courant, Morrey, etc.

Surfaces of higher genus,
with many boundary components

in general manifolds.
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Reifenberg 1960

took a radically different approach to the Plateau Problem
and proved the existence of solutions
among surfaces of all topological types.
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The Plateau Problem — The Next Era.

Reifenberg 1960

took a radically different approach to the Plateau Problem
and proved the existence of solutions
among surfaces of all topological types.

He considered the family of all compact sets ¥ C R"
with BC ©
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The Plateau Problem — The Next Era.

Reifenberg 1960

took a radically different approach to the Plateau Problem
and proved the existence of solutions
among surfaces of all topological types.

He considered the family of all compact sets ¥ C R"
with BC ¥
such that [B] — 0 under the induced map

Ho(B,A) — Hp(X,A)

on Cech homology with coefficients in A (say, Z or Zy),
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The Plateau Problem — The Next Era.

Reifenberg 1960

took a radically different approach to the Plateau Problem
and proved the existence of solutions
among surfaces of all topological types.

He considered the family of all compact sets ¥ C R"
with BC ¥
such that [B] — 0 under the induced map

Ho(B,\) — Hp(X,N)
on Cech homology with coefficients in A (say, Z or Z3), and then

he minimized #”(X) in this class.
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The Plateau Problem — The Next Era.

Reifenberg proved

If  is one of his solutions to this problem,
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The Plateau Problem — The Next Era.

Reifenberg proved

If  is one of his solutions to this problem,
there is a (relatively) open dense subset ¥, C &
which is a real analytic submanifold of R".
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Reifenberg proved
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there is a (relatively) open dense subset ¥, C &
which is a real analytic submanifold of R".

Furthermore, if n=3 and A = Z5,
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Reifenberg proved

If  is one of his solutions to this problem,
there is a (relatively) open dense subset ¥, C &
which is a real analytic submanifold of R".

Furthermore, if n=3 and A = Z5,
all of ¥ — B is a real analytic submanifold of R".
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The Plateau Problem — The Next Era.

Reifenberg proved

If  is one of his solutions to this problem,
there is a (relatively) open dense subset ¥, C &
which is a real analytic submanifold of R".

Furthermore, if n=3 and A = Z5,
all of ¥ — B is a real analytic submanifold of R".

A complete solution to the unoriented Plateau Problem in R3.
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Federer and Fleming — 1960
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The Plateau Problem — The Next Era.

Federer and Fleming — 1960

wrote an important foundational paper:
Normal and Integral Currents, Ann. of Math.
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The Plateau Problem — The Next Era.

Federer and Fleming — 1960

wrote an important foundational paper:
Normal and Integral Currents, Ann. of Math.
which, among many other things, established the
existence of solutions to the Plateau problem
in a very general setting.
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Federer and Fleming — 1960

wrote an important foundational paper:
Normal and Integral Currents, Ann. of Math.
which, among many other things, established the
existence of solutions to the Plateau problem
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Fundamental to this is the notion of an
Oriented p-Rectifiable Set.
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The Plateau Problem — The Next Era.

Federer and Fleming — 1960

wrote an important foundational paper:
Normal and Integral Currents, Ann. of Math.
which, among many other things, established the
existence of solutions to the Plateau problem
in a very general setting.

Fundamental to this is the notion of an
Oriented p-Rectifiable Set.

which leads to the notion of a
Rectifiable p-Current.
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Rectifiable Sets.

There are many characterizations.
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Rectifiable Sets.

There are many characterizations.

Definition. Let E be an #P-measurable subset of a riemannian manifold X.
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Rectifiable Sets.

There are many characterizations.

Definition. Let E be an #P-measurable subset of a riemannian manifold X.

Then E is p-rectifiable if for every € > 0 there exists a p-dimensional
embedded C'-submanifold M c X with

HP(EAM) < e
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Rectifiable Sets.

There are many characterizations.

Definition. Let E be an #P-measurable subset of a riemannian manifold X.

Then E is p-rectifiable if for every € > 0 there exists a p-dimensional
embedded C'-submanifold M c X with

HP(EAM) < e

Alternative Definition.

E c U h(RP)
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Rectifiable Sets.

There are many characterizations.

Definition. Let E be an #P-measurable subset of a riemannian manifold X.

Then E is p-rectifiable if for every ¢ > 0 there exists a p-dimensional
embedded C'-submanifold M c X with

HP(EAM) < e

Alternative Definition.
E C Ul (RP)

where each

fx : RP — X s a Lipschitz map.
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Rectifiable Sets.

IMPORTANT FACT.

Rectifiable sets have tangent planes a.e.
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Rectifiable Sets.

IMPORTANT FACT.

Rectifiable sets have tangent planes a.e.

Definition. An orientation of a p-rectifiable set E
is a measurable choice of orientations of the tangent spaces of E.
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Rectifiable Sets.

IMPORTANT FACT.

Rectifiable sets have tangent planes a.e.

Definition. An orientation of a p-rectifiable set E
is a measurable choice of orientations of the tangent spaces of E.

i.e.,

N
an HP-measurable field of unit simple p-vectors E with

—

E, = TE for HP-a.a.x € E
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Rectifiable Sets.

IMPORTANT CONSEQUENCE.

One can integrate differential forms.
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Rectifiable Sets.

IMPORTANT CONSEQUENCE.

One can integrate differential forms.

Let E C X be an oriented p-rectifiable set with HP(E) < oc.
Then for every (smooth) differential p-form on X

a € EP(X)
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Rectifiable Sets.

IMPORTANT CONSEQUENCE.

One can integrate differential forms.

Let E C X be an oriented p-rectifiable set with HP(E) < cc.
Then for every (smooth) differential p-form on X
a € EP(X)

The integral

for = fpe (&) e

is well defined.
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Rectifiable Sets.

NEXT IMPORTANT CONSEQUENCE.

o & = = Q>
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We have an embedding.

{oriented p-rectifiable sets} C &y(X) = (EP(X))’
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Rectifiable Sets.

NEXT IMPORTANT CONSEQUENCE.
We have an embedding.

{oriented p-rectifiable sets} C &y(X) = (EP(X))’

into the space of p-dimensional currents on X.
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Rectifiable Sets.

NEXT IMPORTANT CONSEQUENCE.
We have an embedding.

{oriented p-rectifiable sets} C &y(X) = (EP(X))’

into the space of p-dimensional currents on X.

HENCE THERE IS A WELL-DEFINED NOTION OF BOUNDARY.
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Rectifiable Sets.

NEXT IMPORTANT CONSEQUENCE.
We have an embedding.

{oriented p-rectifiable sets} C &y(X) = (EP(X))’

into the space of p-dimensional currents on X.

HENCE THERE IS A WELL-DEFINED NOTION OF BOUNDARY.

(OIED)(e) = [E](da)
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Rectifiable Currents.

Definition. A rectifiable p-current is a sum

T =) nlEl
j=1

where {E;}; is a family of disjoint oriented p-rectifiable sets,
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Definition. A rectifiable p-current is a sum

T =) nlEl
j=1

where {E;}; is a family of disjoint oriented p-rectifiable sets, n; € Z*

JE cc x
j=1
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Rectifiable Currents.

Definition. A rectifiable p-current is a sum

T =) nlEl
j=1

where {E;}; is a family of disjoint oriented p-rectifiable sets, n; € Z*
JE cc x
j=1

and the mass of T

M(T) = inij(Ej) < o00.
=1

Blaine Lawson Jim Simons’ Work on Minimal Varieties May 24, 2013 36/2



Integral Currents.
Note that We consider any such T to be a current

T € &(X)
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Note that We consider any such T to be a current
T € &(X)

and as such it has a boundary

aT € & 1(X)
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Integral Currents.

Note that We consider any such T to be a current
T € &(X)

and as such it has a boundary

OT € E-1(X) given by (OT)(B) = T(dp).
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Integral Currents.

Note that We consider any such T to be a current
T € &(X)

and as such it has a boundary

OT € E-1(X) given by (OT)(B) = T(dp).

Definition. An integral p-current is a current T € £,(X) such that

both T and OT are rectifiable.
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Note that We consider any such T to be a current
T € &(X)

and as such it has a boundary

OT € E-1(X) given by (OT)(B) = T(dp).

Definition. An integral p-current is a current T € £,(X) such that

both T and OT are rectifiable.

TIp(X) = {rectifiable p-currents on X}.
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Integral Currents.

Note that We consider any such T to be a current
T € &(X)

and as such it has a boundary

OT € E-1(X) given by (OT)(B) = T(dp).
Definition. An integral p-current is a current T € £,(X) such that
both T and T are rectifiable.

TIp(X) = {rectifiable p-currents on X}.

d:Ip(X) = I,-1(X) and & =0.
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Homology.

For any manifold X we have a chain complex

To(X) -2 Tpa(X) L o D To(X)

o & = Q>
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Homology.

For any manifold X we have a chain complex

Io(X) -5 Toa(X) 5 - -5 To(X)

Theorem (Federer-Fleming) There is an equivalence of functors

| H(Z.(X),0) = H.(X;2). |
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Homology.

For any manifold X we have a chain complex

Io(X) -5 Toa(X) 5 - -5 To(X)

Theorem (Federer-Fleming) There is an equivalence of functors

\ H,.(Z.(X),0) = H.(X;2Z). \

This remains true for much more general spaces X.
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Compactness.

Given a compact set K € X and ¢ > 0, let

p(X)k.c © Ip(X)

=} F = = DA
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Compactness.

Given a compact set K € X and ¢ > 0, let
Ip(X)k.c C Ip(X)
be the set of T with

M(T) <c, M(@OT)<c and supp(T)cCK.
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Compactness.

Given a compact set K € X and ¢ > 0, let

Zp(X)k,c C Ip(X)
be the set of T with

M(T) <c, M(@OT)<c and supp(T)cCK.
Theorem (Federer-Fleming)

The set Ip(X)k,c is compact in the weak topology.
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The Plateau Problem in X.

Since mass is lower semi-continuous in the weak topology,
the compactness result solves a very general form of the Plateau Problem.
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Since mass is lower semi-continuous in the weak topology,
the compactness result solves a very general form of the Plateau Problem.
Let X be compact riemannian or, say, R".

Theorem (Federer-Fleming)
Let B € I, 1(X) be acycle (0B=0)
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The Plateau Problem in X.

Since mass is lower semi-continuous in the weak topology,
the compactness result solves a very general form of the Plateau Problem.
Let X be compact riemannian or, say, R".

Theorem (Federer-Fleming)

Let B € I, 1(X) be acycle (0B=0)
such that B = 0Ty for some Ty € Z,(X)
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The Plateau Problem in X.

Since mass is lower semi-continuous in the weak topology,

the compactness result solves a very general form of the Plateau Problem.

Let X be compact riemannian or, say, R".

Theorem (Federer-Fleming)

Let B € I, 1(X) be acycle (0B=0)
such that B = 0Ty for some Ty € Z,(X)

Then there exists T € Z,(X) with T — To = dRy some Ry € Zp41(X)
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The Plateau Problem in X.

Since mass is lower semi-continuous in the weak topology,
the compactness result solves a very general form of the Plateau Problem.
Let X be compact riemannian or, say, R".

Theorem (Federer-Fleming)

Let B € I, 1(X) be acycle (0B=0)
such that B = 0Ty for some Ty € Z,(X)

Then there exists T € Zp(X) with T — To = dRy some Ry € Zp.1(X) such that

M(T) = inf  M(T +0R)
REZp11(X)
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Consequence.

Let X be a compact riemannian manifold.

Corollary (Federer-Fleming)
Every homology class u € Hy(X;Z)

contains an integral current of least mass.
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Regularity Theory.

Fleming 1962

o F = = DA
Blaine Lawson Jim Simons’ Work on Minimal Varieties



Regularity Theory.
Fleming 1962

Combined his work with Federer, techniques of Reifenberg, and clever
arguments to prove
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Regularity Theory.

Fleming 1962

Combined his work with Federer, techniques of Reifenberg, and clever
arguments to prove

the complete interior regularity of mass-minimizing integral currents in R3.
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Regularity Theory.

Fleming 1962

Combined his work with Federer, techniques of Reifenberg, and clever
arguments to prove

the complete interior regularity of mass-minimizing integral currents in R3.

Theorem. (Fleming). Let T < 7,(R®) be a current of least mass (among all
integral currents with the same boundary).
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Regularity Theory.

Fleming 1962

Combined his work with Federer, techniques of Reifenberg, and clever
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the complete interior regularity of mass-minimizing integral currents in R3.

Theorem. (Fleming). Let T < 7,(R®) be a current of least mass (among all
integral currents with the same boundary). Then

supp(T) — suppdT is a regular minimal surface in R® — suppoT.
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Regularity Theory.

Fleming 1962

Combined his work with Federer, techniques of Reifenberg, and clever
arguments to prove

the complete interior regularity of mass-minimizing integral currents in R3.

Theorem. (Fleming). Let T < 7,(R®) be a current of least mass (among all
integral currents with the same boundary). Then

supp(T) — suppdT is a regular minimal surface in R® — suppoT.

This solves the oriented Plateau Problem in R® among surfaces of all
topological types.
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Regularity Theory.

Fleming 1962

Combined his work with Federer, techniques of Reifenberg, and clever
arguments to prove

the complete interior regularity of mass-minimizing integral currents in R3.

Theorem. (Fleming). Let T < 7,(R®) be a current of least mass (among all
integral currents with the same boundary). Then

supp(T) — suppdT is a regular minimal surface in R® — suppoT.

This solves the oriented Plateau Problem in R® among surfaces of all
topological types.

The result holds in general riemannian 3-manifolds.
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Cautionary Note: Multiplicities.
A mass-minimizing integral current 7 can have
integer multiplicities
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Cautionary Note: Multiplicities.

A mass-minimizing integral current 7 can have
integer multiplicities
on each connected component of its support.
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Cautionary Note: Multiplicities.
A mass-minimizing integral current 7 can have
integer multiplicities
on each connected component of its support.

So T has the form of a locally finite sum

T = Z nk[Mk].
k
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Higher Dimensions and Codimensions??.

Complete regularity fails
for codimension > 2.
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Higher Dimensions and Codimensions??.

Complete regularity fails
for codimension > 2.

Theorem. (Federer). Let V be a complex analytic subvariety, dimg(V) = p
in a Kéhler manifold X,
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Complete regularity fails
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Higher Dimensions and Codimensions??.

Complete regularity fails
for codimension > 2.

Theorem. (Federer). Let V be a complex analytic subvariety, dimg(V) = p
in a Kdhler manifold X, (for example a domain in C").
Then V defines an integral current

[V] € ZE(X)  with 9[V]=0

which is homologically mass-minimizing in X.
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Higher Dimensions and Codimensions??.

Complete regularity fails
for codimension > 2.

Theorem. (Federer). Let V be a complex analytic subvariety, dimg(V) = p
in a Kdhler manifold X, (for example a domain in C").
Then V defines an integral current

[V] € ZE(X)  with 9[V]=0

which is homologically mass-minimizing in X.

That is, for every open setQ) CcC X

M([V]) < M([V]+0S) VS €TIzp(Q)
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Regularity in Codimension-One.

Work of Almgren and De Giorgi.

=} F = = DA
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Regularity in Codimension-One.

Work of Almgren and De Giorgi.

Theorem. (Almgren).

Complete interior regularity holds for mass-minimizing integral currents
of dimension 3 in 4-manifolds.
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Regularity in Codimension-One.
Work of Almgren and De Giorgi.

Theorem. (Almgren).

Complete interior regularity holds for mass-minimizing integral currents
of dimension 3 in 4-manifolds.

Theorem. (Almgren-De Giorgi).

The Bernstein conjecture holds for minimal graphs

r = {(x,f(x)) e R™': x ¢ R"}

for n < 4.
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The Proof — Revolves Around Cones.

o F = = DA
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The Proof — Revolves Around Cones.

Set
S" = {xeR™ x| =1}
and consider a compact submanifold

MP c S"
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The Proof — Revolves Around Cones.
Set
S" = {xeR™ x| =1}
and consider a compact submanifold
MP c S
The cone on MP is the set

C(MP) = {txcR™":xec MP and t >0}
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The Proof — Revolves Around Cones.
Set

S" = {xeR™ x| =1}
and consider a compact submanifold

MP - S".
The cone on MP is the set

C(MP) = {txcR™":xc MP and t > 0}

=} F = DA
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The Proof — Revolves Around Cones.
Set

S" = {xeR™ x| =1}
and consider a compact submanifold
MP c S
The cone on MP is the set

C(MP) = {txcR™":xec MP and t >0}

This concept extends naturally to currents. . - sao



Proposition.

o F = = DA
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Proposition.

Suppose that

Iloc

C = C(M) € Tg=,(R™")
is the cone on a current

M € Z,(S").

=} F = = DA
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Proposition.

Suppose that
C = C(M) € Zy:4(R™")
is the cone on a current

M € Z,(S").
Then

C(M) is minimal in R™*" = M is minimal in S”

=} F = = Qv
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Proposition.

Suppose that

C = C(M) e T\

s (R™)

is the cone on a current

M € Z,(S").
Then
C(M) is minimal in R+ = M is minimal in S”
QUESTION:
C(M) is {Z;”;Zizmg inR™ <  Mis???ins"
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How Do Cones Enter?

o F = = DA
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How Do Cones Enter?

Suppose T is a mass-minimizing integral current
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How Do Cones Enter?

Suppose T is a mass-minimizing integral current
Then at each x € supp(T) the current T has

tangent cones which are mass-minimizing.
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How Do Cones Enter?

Suppose T is a mass-minimizing integral current
Then at each x € supp(T) the current T has

tangent cones which are mass-minimizing.

IDEA: Consider sequences of dilations.
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How Do Cones Enter?
Suppose I is a minimal graph of codimension-1 in R".
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How Do Cones Enter?
Suppose I is a minimal graph of codimension-1 in R".

Then I is a mass-minimizing integral current.
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How Do Cones Enter?
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Then I is a mass-minimizing integral current.

If the graphing function is defined over all of R”,
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How Do Cones Enter?
Suppose I is a minimal graph of codimension-1 in R".

Then I is a mass-minimizing integral current.
If the graphing function is defined over all of R”,

Then we can produce cones which are mass-minimizing in R".
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How Do Cones Enter?
Suppose I is a minimal graph of codimension-1 in R".

Then I is a mass-minimizing integral current.
If the graphing function is defined over all of R”,

Then we can produce cones which are mass-minimizing in R".
They are of the form Cy x R.

IDEA: Consider sequences of contractions.
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How Do Cones Enter?

Suppose I is a minimal graph of codimension-1 in R".
Then I is a mass-minimizing integral current.
If the graphing function is defined over all of R”,

Then we can produce cones which are mass-minimizing in R".
They are of the form Cy x R.

IDEA: Consider sequences of contractions.
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The Key Idea:
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The Key Idea:

A tangent cone to a cone C

(at a point x away from the vertex)
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The Key Idea:

A tangent cone to a cone C

(at a point x away from the vertex)

splits as a product

| T,C = Rx G|

=} F = = DA
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The Key Idea:

A tangent cone to a cone C
(at a point x away from the vertex)

splits as a product

| T,C = Rx G|

where

dim(Co) = dim(C) — 1.
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The Key Idea:

A tangent cone to a cone C
(at a point x away from the vertex)

splits as a product

| ,C = Rx G|

where
dim(Cy) = dim(C) — 1.

One can now apply induction on dimension
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The Key Induction Step:

o F = = DA
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The Key Induction Step:

Work of the previous people shows:
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The Key Induction Step:

Work of the previous people shows:

If interior regularity holds for minimizing hypersurfaces in dimension n,

Blaine Lawson Jim Simons’ Work on Minimal Varieties May 24, 2013 53/2



The Key Induction Step:

Work of the previous people shows:
If interior regularity holds for minimizing hypersurfaces in dimension n,

then every minimizing cone in R"*' is
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The Key Induction Step:

Work of the previous people shows:
If interior regularity holds for minimizing hypersurfaces in dimension n,
then every minimizing cone in R"*' is

the cone on an regular minimal submanifold M c S".
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Simons’ Theorem:

o F = = DA
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Simons’ Theorem:

THEOREM. (J. Simons 1968) Suppose M"~' c S" is a compact minimal
hypersurface such that the cone

C(M) c R™!

is stable (for example, mass-minimizing).
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Simons’ Theorem:

THEOREM. (J. Simons 1968) Suppose M"~' c S" is a compact minimal
hypersurface such that the cone

C(M) c R™!

is stable (for example, mass-minimizing). Then M"" is a totally geodesic
hypersphere S"~1 c S",
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THEOREM. (J. Simons 1968) Suppose M"~' c S" is a compact minimal
hypersurface such that the cone
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is stable (for example, mass-minimizing). Then M"" is a totally geodesic
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is a linear subspace
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Simons’ Theorem:

THEOREM. (J. Simons 1968) Suppose M"~' c S" is a compact minimal
hypersurface such that the cone

C(M) c R™!

is stable (for example, mass-minimizing). Then M"" is a totally geodesic
hypersphere S"~1 c S", that is,

C(M) = R" ¢ R™!
is a linear subspace

provided n+ 1 < 7.
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Simons’ Theorem:

THEOREM. (J. Simons 1968) Suppose M"~' c S" is a compact minimal
hypersurface such that the cone

C(M) c R™!

is stable (for example, mass-minimizing). Then M"" is a totally geodesic
hypersphere S"~1 c S", that is,

C(M) = R" ¢ R™!
is a linear subspace
provided n+ 1 < 7.

FURTHERMORE,

This assertion is falseif n+1>8
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Corollaries:

Complete interior regularity holds
for mass-minimizing integral currents of codimension-one
in riemannian manifolds of dimension < 7.
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Corollaries:

Complete interior regularity holds
for mass-minimizing integral currents of codimension-one
in riemannian manifolds of dimension < 7.

The Bernstein Conjecture holds
for minimal graphs {x,+1 = f(x1,...,Xn)} whenn < 7.
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Simons’ Example:

C(S® x 8%)

{(x.y) eR*xR*": x| =|y]} ¢ R®

=} F = = DA
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Simons’ Example:

C(S*x 8% = {(x,y) eR*xR*: x| =|y|} ¢ R®

Theorem. (Bombieri, De Giorgi, Giusti (1969))

Simons’ cone is mass-minimizing in R8.
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Simons’ Example:

C(S$*x 8% = {(x,y) eR*xR*:|x| = |y} C R®

Theorem. (Bombieri, De Giorgi, Giusti (1969))

Simons’ cone is mass-minimizing in R8.

Hence, interior regularity fails in all dimensions > 8.
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Simons’ Example:

C(S$*x 8% = {(x,y) eR*xR*:|x| = |y} C R®

Theorem. (Bombieri, De Giorgi, Giusti (1969))

Simons’ cone is mass-minimizing in R8.

Hence, interior regularity fails in all dimensions > 8.

The Bernstein Conjecture is false for all n > 8.
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Further Results of Jim Simons.

Some Differential Geometry

=} F = = DA
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Further Results of Jim Simons.

Some Differential Geometry

Let M c X

be a submanifold of a riemannian manifold X
with Levi-Civita connection V.
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Further Results of Jim Simons.

Some Differential Geometry

Let M c X

be a submanifold of a riemannian manifold X
with Levi-Civita connection V.
For vector fields V, W on M

V\/W = (v\/W)T + (V\/W)N
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Further Results of Jim Simons.

Some Differential Geometry

Let M c X

be a submanifold of a riemannian m_anifold X
with Levi-Civita connection V.

For vector fields V, W on M

V\/W = (v\/W)T + (V\/W)N

Then Vy W = (VyW)T is the Levi-Civita connection of the induced
riemannian metric on M
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Further Results of Jim Simons.

Some Differential Geometry

Let M c X

be a submanifold of a riemannian mgnifold X
with Levi-Civita connection V.

For vector fields V, W on M

ﬁvW = (ﬁvW)T + (ﬁvW)N

Then Vy W = (VyW)T is the Levi-Civita connection of the induced
riemannian metric on M and

Byw = (VyW)N

is the Second Fundamental Form of M in X.
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The Second Fundamental Form.

BV.W = (V\/ W)N

is a field of symmetric 2-forms on T(M)
with values in the normal bundle N(M)
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The Second Fundamental Form.

BV.W = (v\/ W)N

is a field of symmetric 2-forms on T(M)
with values in the normal bundle N(M)
The mean curvature vector field is the normal vector field along M given by
H = traceB.

The First Variational Formula Let ¢; : M — X be a normal deformation of M
with derivative V at t = 0. Then
= — / (H, V).
t=0 M

£rvol {(M)
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The Second Fundamental Form.

The First Variational Formula Let p; : M — X be a normal deformation of M
with derivative V at t = 0. Then
= — / (H, V).
t=0 M

2 vol (M)
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The Second Fundamental Form.

The First Variational Formula Let p; : M — X be a normal deformation of M
with derivative V at t = 0. Then
= — / (H, V).
t=0 M

The Second Variational Formula Suppose H = 0 on M. Then

2 vol (M)

2
%Vd {o:(M)}

_ / (V*VV = B(V) + B(V), V)
t=0 M
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The Second Fundamental Form.

The First Variational Formula Let p; : M — X be a normal deformation of M

with derivative V at t = 0. Then

2 vol (M)

- —/M(H, V).

The Second Variational Formula Suppose H = 0 on M. Then

2

%Vd {o:(M)}

_ / (V*VV = B(V) + B(V), V)
t=0 M

where
B=BoB':N—> N

(recall B: T® T — N),

Blaine Lawson Jim Simons’ Work on Minimal Varieties May 24, 2013

59/2



The Second Fundamental Form.

The First Variational Formula Let p; : M — X be a normal deformation of M

with derivative V at t = 0. Then

2 vol (M)
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%Vd {o:(M)}

_ / (V*VV = B(V) + B(V), V)
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where
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Simons Fundamental Equation.

THEOREM. (First-order system)

Let M c X be a minimal submanifold with second fundamental form B.
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Simons Fundamental Equation.

THEOREM. (First-order system)

Let M c X be a minimal submanifold with second fundamental form B.

__ N
V(B)(W, U) — Vi (B)(V,U) = (F:V,Wu) Codazzi Equations

p p
Zvej(B)(e]7 Z ( &, Vej)
j=1

J=1
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Simons Fundamental Equation.

THEOREM. (First-order system)

Let M ¢ X be a minimal submanifold with second fundamental form B.
_ N
Vy(B)(W, U) — Vw(B)(V,U) = (RV,WU) Codazzi Equations
P _ N
> Ve(B)e V) = > (Rove)
j=1 j=1
THEOREM.(Second-order equation)

Let M c X be a minimal submanifold with second fundamental form B.

V*VB = F(B,R,VR)
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Simons Fundamental Equation.

V*VB = F(B,R,VR)

had many applications:

o & = = Q>
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Simons Fundamental Equation.

V*VB = F(B,R,VR)

had many applications:

e The important stability result above.
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had many applications:
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Simons Fundamental Equation.

V*VB = F(B,R,VR)

had many applications:

e The important stability result above.
e Isolation results: e.g.

Suppose M" ¢ S™' is a minimal submanifold with
1Bl < n pointwise on M.
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Simons Fundamental Equation.

V*VB = F(B,R,VR)

had many applications:

e The important stability result above.
e Isolation results: e.g.
Suppose M" ¢ S™' is a minimal submanifold with

1Bl < n  pointwise on M.
Then M"™~' = S"~1 is a totally geodesic “equator”.
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Simons Fundamental Equation.

V*VB = F(B,R,VR)

had many applications:

e The important stability result above.

e Isolation results: e.g.

Suppose M" ¢ S™' is a minimal submanifold with
IBIl < n pointwise on M.
Then M"™~' = S"~1 is a totally geodesic “equator”.

e Engendered decades of papers on the subject.
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Stable Currents in Projective Space.

Let # denote the space of holomorphic vector fields on P"(C).
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Let # denote the space of holomorphic vector fields on P"(C).
Let S be an integral current on P"(C),
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Stable Currents in Projective Space.

Let # denote the space of holomorphic vector fields on P"(C).
Let S be an integral current on P"(C),
Define a quadratic form Qs on H by

d2
Qs(V) = WM{(SW)*S}

t=0
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Stable Currents in Projective Space.

Let # denote the space of holomorphic vector fields on P"(C).
Let S be an integral current on P"(C),
Define a quadratic form Qs on H by

2

Qs(V) = ToM{().S)

t=0

Theorem. (Lawson-Simons)

trace (Qs) — — / 19(S) |7 1811(x)
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Stable Currents in Projective Space.

Let # denote the space of holomorphic vector fields on P"(C).
Let S be an integral current on P"(C),
Define a quadratic form Qs on H by

2

Qs(V) = T M{(20).5)

t=0

Theorem. (Lawson-Simons)

trace (Qs) = /HJ (SO 1Sl(x)

Corollary (Using Harvey-Shiffman).

Every stable integral current in P"(C) is an algebraic cycle.
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