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Abstract

This note establishes smooth approximation from above for J-
plurisubharmonic functions on an almost complex manifold (X, J).
The following theorem is proved. Suppose X is J-pseudoconvex, i.e.,
X admits a smooth strictly J-plurisubharmonic exhaustion function.
Let u be an (upper semi-continuous) J-plurisubharmonic function on
X. Then there exists a sequence uj ∈ C∞(X) of smooth strictly J-
plurisubharmonic functions point-wise decreasing down to u.

In any almost complex manifold (X, J) each point has a fundamental
neighborhood system of J-pseudoconvex domains, and so the theorem
above establishes local smooth approximation on X.

This result was proved in complex dimension 2 by the third author,
who also showed that the result would hold in general dimensions if a
parallel result for continuous approximation were known. This paper
establishes the required step by solving the obstacle problem.
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1. Introduction.

On any smooth almost complex manifold (X, J) there is a well-defined
notion of J-plurisubharmonic functions of class C2, namely those u ∈ C2(X)
which satisfy the condition i∂∂u ≥ 0. This notion extends directly to the
space of distributions D′(X) by requiring the current i∂∂u to be positive.
It also extends to the space USC(X) of upper semi-continuous functions
u : X → [−∞,∞) in several ways – using viscosity theory, or by requiring
that the restrictions to J-holomorphic curves in X be subharmonic. These
different extensions have been shown to be, in a precise sense, equivalent
(see [16], [12]), and the space of such functions is denoted by PSH(X, J).

We say that a function u ∈ C2(X) is strictly J-plurisubharmonic if
i∂∂u > 0 at every point. The manifoldX is then said to be J-pseudoconvex
if it admits a smooth (proper) exhaustion function ρ : X → R which is
strictly J-plurisubharmonic. (See Remark 3.7 for other equivalent defini-
tions.)

The main point of this paper is to establish the following (in §4).

THEOREM 4.1. (C∞ Strict Approximation). Suppose (X, J) is an
almost complex manifold which is J-pseudoconvex, and let u ∈ PSH(X, J)
be a J-plurisubharmonic function. Then there exists a decreasing sequence
{uj} ⊂ C∞(X) of smooth strictly J-plurisubharmonic functions such that
uj(x) ↓ u(x) at each x ∈ X.

Now on any almost complex manifold X every point x has a fundamen-
tal neighborhood system of J-pseudoconvex domains – namely, small balls
about x in appropriate local coordinates. Consequently, as a special case
of Theorem 4.1 we have local C∞ strict approximation on X (see Corollary
4.2).

By this local regularization result a current i∂∂̄u ∧ i∂∂̄v defined in [18]

is a positive current for plurisubharmonic u, v in the Sobolev class W 1,2
loc ,

in particular for bounded plurisubharmonic u, v (see Proposition 4.2 and
Proposition 5.2 there and compare with Corollary 2 in [19]). For an appli-
cation of our global regularization result see Corollary 4.3, which concerns
hulls of sets.

We note that in the case of plurisubharmonic functions on domains in Cn,
smoothing as in Theorem 4.1 is possible on all pseudoconvex, Reinhardt,
and tube domains (see [7]), but there are smooth domains where not all
plurisubharmonic functions are a limits of a decreasing sequence of smooth
plurisubharmonic functions (see [6]).

Theorem 4.1 was proved in complex dimension 2 by the third author (in
[19]), who pointed out that his work would establish the result in general
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dimensions provided one could prove a certain parallel continuous approx-
imation theorem. The required continuous approximation result can be
deduced from work of the first two authors on the obstacle problem – more
precisely the Dirichlet problem with an obstacle function.

The discussion of this obstacle problem in [10] and [13] and its exact
implementation in the context of almost complex analysis is somewhat scat-
tered, and so, for clarity, we give a coherent exposition of the needed results
in the first two sections of this note. Nevertheless, this note draws heavily
on the work in [10], [12], [13], [18] and [19].

It is interesting to note that the work in [18] and [19] also involves solving
the Dirichlet problem for the (almost) complex Monge-Ampère operator. In
this case, however, the solutions are taken in the smooth category using
results in [17], where the techniques are quite different from the viscosity
methods employed in [10], [12], [13]. The idea of using the Monge-Ampère
equation to approximate J-plurisubharmonic functions is probably due to
J.-P. Rosay.

Remark. The main proof in this paper consists of combining a Richberg-
type theorem (cf. [18, Thm. 3.1], [11, Thm. 9.10]) with the continuous ap-
proximation theorem which follows from solving the obstacle problem. The
method applies generally to give smooth approximation of F -subharmonic
functions whenever these two components can be established. An exam-
ple is given in Appendix B where smooth approximation is established for
subsolutions of the complex Hessian equations on a Kähler manifold.
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2. The Obstacle Problem and Continuous Approximation
for General Potential Theories.

We refer the reader to [10] or [13] for the concepts and terminology em-
ployed in this section.

Let J2(X) → X be the bundle of 2-jets of real-valued functions on a
manifold X. There is a natural splitting J2(X) = R × J2

red(X) where the
first factor corresponds to the value of the function.

Consider a subequation of the form F = R× F0 with F0 ⊂ J2
red(X). For

a domain Ω ⊂⊂ X, let F (Ω) denote the set of u ∈ USC(Ω) such that u
∣∣
Ω

is

F -subharmonic (i.e., u
∣∣
Ω

is a viscosity F -subsolution, cf. [2], [3]).

THEOREM 2.1. (The Obstacle Problem). Suppose that:

(1) F0 is locally affinely jet-equivalent to a constant coefficient (reduced)
subequation F0,

(2) F0 has a monotonicity cone M0 and X carries a C2 strictly M -
subharmonic function ψ where M = R×M0,

(3) g ∈ C(X), and

(4) Ω ⊂⊂ X is a domain with smooth boundary ∂Ω which is both F - and

F̃ -strictly convex.

Then the function
h(x) ≡ sup

u∈F [g]
u(x), (2.1)

where F [g] ≡ {u(x) : u ∈ F (Ω) and u ≤ g on Ω}, satisfies:

(i) h ∈ C(Ω) ∩ F (Ω),

(ii) h ≤ g on Ω

(iii) h
∣∣
∂Ω

= g
∣∣
∂Ω

Furthermore,

(v) h is the Perron function, and F [g] is the Perron family, for the Dirichlet
problem for the subequation

F g ≡ (R− + g)× F0 on Ω

with boundary function ϕ ≡ g
∣∣
∂Ω

.

(vi) Comparison holds for F g on X.
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COROLLARY 2.2. (Continuous Strict Approximation). Suppose
u ∈ F (Ω).

(a) Then there exists a sequence of functions uj ∈ C(Ω)∩F (Ω) decreasing

down to u on Ω. In fact, if {gj} ⊂ C(Ω) is any sequence of continuous

functions decreasing down to u, the {uj} ⊂ C(Ω) ∩ F (Ω) can be chosen so
that

u ≤ uj ≤ gj ∀ j. (2.2)

(b) Moreover, given εj ↓ 0, the sequence {uj + εjψ} also decreases down

to u on Ω, and on each compact subset of Ω, the functions {uj + εjψ} are
c-strict for some c > 0.

See 2.3 below for a definition and discussion of c-strictness.

Proof of Corollary 2.2. Pick gj ∈ C(Ω) with gj ↓ u. Let uj denote the

solution of the obstacle problem for gj . Then uj ∈ C(Ω)∩F (Ω) and uj ≤ gj .
Since u is in the Perron family F [gj ], we have (2.2). This proves Part (a).
Part (b) follows from (a) and hypothesis (2).

Proof of Theorem 2.1. The following is proved in [10] but not stated
explicitly as a theorem. It is however stated explicitly as Theorem 8.1.2 in
[13] and the proof is given there based on results in [10]

THEOREM 8.1.2 in [13]. Suppose F is a subequation on a manifold X
which is locally affinely jet-equivalent to a constant coefficient subequation.
Suppose there exists a C2 strictly M -subharmonic function on X where
M is a monotonicity cone for F . Then for every domain Ω ⊂⊂ X whose

boundary is strictly F - and F̃ -convex, both existence and uniqueness hold
for the Dirichlet problem. That is, for every ϕ ∈ C(∂Ω) there exists a unique
F -harmonic function u ∈ C(Ω) with u

∣∣
∂Ω

= ϕ.

The adaptation to the general Obstacle Problem is given in Section 8.6
of [13]. What follows is a more detailed version of that argument.

By assumption we know that F = R× F0 is affinely jet equivalent to the
constant coefficient equation R×F0 ⊂ R×J2

red, with a jet equivalence which
is the identity on the first factor. Hence the subequation

F g ≡ {r ≤ g(x)} × F0

is locally affinely jet equivalent to the subequation

Fg ≡ {r ≤ g(x)} × F0

We now consider the affine jet equivalence

Φ : R× J2
red −→ R× J2

red

given by
Φ(r, J) ≡ (r − g(x), J).
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Applying this gives the local equivalence

Φ : Fg −→ {r ≤ 0} × F0 ≡ R− × F0,

and so composing this with the first equivalence shows that F g is locally
affinely jet-equivalent to the constant coefficient subequation R− × F0.

Now observe that if M0 is a monotonicity cone for F0, then M− ≡ R−×M0

is a monotonicity cone for F g.

Note also that if ψ is strictly M -subharmonic function, then so is ψ − c
for any constant c ≤ 0 because M satisfies the basic negativity condition
(N). Given a domain Ω ⊂⊂ X, we may therefore assume that ψ < 0 on a
neighborhood of Ω. In this case, ψ is also M−-strictly subharmonic on Ω.

Since F g is locally jet-equivalent1 to a constant coefficient subequation,
local weak comparison holds for F g. This is Theorem 10.1 in [10] and follows
from the Theorem on Sums. Local weak comparison implies weak compar-
ison (Theorem 8.3 in [10]). Now using Theorems 9.5 and 9.2 we have that
comparison holds for F g on X.

The Dirichlet Problem for F g-harmonics would now be solvable for arbi-
trarily prescribed boundary data ϕ ∈ C(∂Ω), (by either Theorem 12.4 in
[10] or Theorem 8.1.2 above) if one could prove that the boundary is strictly

F g and F̃ g convex.

However, this is not true in general, and in fact existence fails for a bound-
ary function ϕ ∈ C(∂Ω) unless ϕ ≤ g

∣∣
∂Ω

. Nevertheless, if ∂Ω is both F and

F̃ strictly convex, then existence holds for each boundary function ϕ ≤ g
∣∣
∂Ω

.
Section 8.6 in [13] provides a proof of this.

Here we give a proof but with attention restricted to the case at hand
where ϕ = g

∣∣
∂Ω

. The Perron family for F g with this boundary data consists

of those functions u ∈ USC(Ω) which are F -subharmonic on Ω and satisfy
the additional constraint that u ≤ g on Ω. The dual subequation to F g is

F̃ g = [(R− − g)× J2
red(X)] ∪ F̃ . Since F̃ g ⊂ F̃ , the ∂Ω is strictly F̃ g-convex

if it is strictly F̃ -convex. However, ∂Ω can never be strictly F g-convex, as

defined in Definition 11.10 of [10], because (
−→
Fλ)x = ∅ for λ > g(x)),

Nevertheless, the only place that this hypothesis is used in proving The-
orem 8.1.2 for H is in the barrier construction which appears in the proof
of Proposition F in [10]. With ϕ(x0) = g(x0), the barrier β(x) as defined in
(12.1) in [10] is not only F -strict near x0 but also automatically F g-strict
since β < g in a neighborhood of x0.

1See Appendix A for a discussion of jet-equivalence.
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Definition 2.3. (Strictness). Let F ⊂ J2(X) be a subequation. A
function u ∈ F (Ω) is strictly F -subharmonic (or simply strict) if for any
ϕ ∈ C∞0 (Ω), there exists ε > 0 such that u+ εϕ ∈ F (Ω).

Note that a C2-function u ∈ F (Ω) is strict iff J2
xu ∈ IntF ∀x ∈ Ω.

In [10] there is the following related concept of c-strictness for c > 0.
Equip J2(X) with a bundle metric (induced, say, from a riemannian metric
on X), and for x ∈ X, define F cx ≡ {J ∈ Fx : distx(J,∼ F ) ≥ c} where distx
denotes the distance in the fibre. A function u ∈ F (Ω) is said to be c-strict
on a compact set K ⊂ Ω if u is F c-subharmonic on a neighborhood of K.
The constant c depends on the choice of bundle metric, but the condition
of being c-strict on K for some c > 0 does not. Strictness, as defined above,
is equivalent to being locally c-strict on Ω. (This is proved, though not
explicitly stated, in §7 of [10].)

Remark 2.4. The main conclusion of Theorem 2.1 above can be stated
in more appealing and succinct terms. Let us call the function h, defined
in (2.1), the largest F -subharmonic minorant of g. Then we have the
following abbreviated version of Theorem 2.1 and Corollary 2.2.

THEOREM 2.5. Suppose X,F = R × F0 and Ω are as in Theorem 2.1.
Then given g ∈ C(Ω), the largest F -subharmonic minorant of g on Ω is
continuous and equals g on the boundary of Ω.

Moreover, given u ∈ F (Ω) there exists a sequence {uj} ⊂ C(Ω) ∩ F (Ω)
decreasing down to u (with each uj strict).

3. Strict Continuous Approximation of Plurisubharmonic
Functions on Almost Complex Manifolds

Let (X,J) be an almost complex manifold, and let F (J) ⊂ J2
red(X) be the

subequation defining the upper semi-continuous J-plurisubharmonic func-
tions on X. (It is shown in [12] that all the different basic definitions of
these functions are, in a precise sense, equivalent).2

Proposition 4.5 in the paper [12] proves that the subequation F (J) is
locally jet equivalent to a constant coefficient reduced subequation (in fact
to the standard subequation F (J0) ∼= {i∂∂u ≥ 0} determined by a standard
parallel J0).

Furthermore, F (J) is a convex cone subequation and in particular it sat-
isfies F (J) + F (J) ⊂ F (J). Therefore, F (J) is a monotonicity cone for
itself. A C2-function ψ is strictly J-plurisubharmonic (i.e., strictly F (J)-
subharmonic) if i∂∂ψ > 0 on X.

2It is also shown at the end of section 7 in [12] that the various notions of F (J)-harmonic
(including the notion of being maximal and continuous) are equivalent.
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Definition 3.1. A domain Ω ⊂⊂ X is called strictly J-pseudoconvex if
it has a global C2 defining function ψ which is strictly J-plurisubharmonic

on a neighborhood of Ω. Let F̃ (J) denote the dual subequation. One checks
that

F (J) + F (J) ⊂ F (J) ⇒ F̃ (J) + F (J) ⊂ F̃ (J) ⇒ F (J) ⊂ F̃ (J),

so if ∂Ω is strictly F (J)-convex, it is automatically strictly F̃ (J)-convex.

Thus, as a special case of Theorem 2.5 we have the following.

THEOREM 3.2. Let Ω ⊂⊂ X be a strictly J-pseudoconvex domain in
an almost complex manifold (X, J). Let g ∈ C(Ω). Then the largest J-
plurisubharmonic minorant of g is continuous.

Moreover, given u ∈ PSH(Ω) there exists a sequence {uj} ⊂ C(Ω)∩PSH(Ω)
decreasing down to u (with each uj strict).

We now address the global question of continuous approximation of J-
plurisubharmonic functions on X.

Definition 3.3. An almost complex manifold (X, J) is J-pseudoconvex
if it has a global C2 strictly J-plurisubharmonic exhaustion function. (See
Remark 3.7 below for equivalent definitions.)

It is standard that a strictly J-pseudoconvex domain Ω is itself J-pseudo-
convex.

THEOREM 3.4. Suppose X is a J-pseudoconvex manifold. Then for each
u ∈ PSH(X) there exists a sequence of continuous strictly J-plurisubharmonic
functions uj ∈ C(X) decreasing down to u on X.

Proof. We shall adapt a part of the proof of the Theorem 1 from [19]. Take
a decreasing sequence of continuous functions {gk} converging down to u.
We begin with a result in smooth topology.

Claim 3.5. Let h be an arbitrary continuous function on X, and suppose
that ρ : X → R is a C2 (proper) exhaustion function. Then there exists a
convex function χ ∈ C∞(R) with χ′ ≥ 1 so that

χ(ρ(x)) ≥ h(x) for all x ∈ X.

Proof. Set ψ(t) ≡ sup{h(x) : ρ(x) ≤ t} and note that

χ(ρ(x)) ≥ h(x) ∀x ∈ X ⇐⇒ χ(t) ≥ ψ(t) ∀ t ∈ range(ρ).

This reduces the claim to a one-variable claim. To establish this, assume
that range(ρ) = [0,∞) and replace ψ by a smooth function which is larger.
Then choose χ ∈ C∞([0,∞)) to have χ(0) = ψ(0), χ′(0) ≥ max{ψ′(0), 1}
and χ′′ ≥ max{ψ′′, 0}.

Now let ρ ∈ C∞(X) be a strictly J-plurisubharmonic exhaustion function.
For any smooth convex, increasing function χ ∈ C∞(R), with χ′ ≥ 1, the
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composition χ ◦ ρ is also a smooth strictly J-plurisubharmonic exhaustion.
Thus, by Claim 3.5, with h taken to be g1 plus any exhaustion function for
X, we can assume ρ is chosen so that

lim
z→∞

(ρ(z)− g1(z)) = +∞ (3.1)

where limz→∞ denotes the limit in the one-point compactification of X.

By (3.1) the sets Uk ≡ {ρ > g1 + k} provide a fundamental neighborhood
system for the point at infinity. Since ρ is an exhaustion, we have that
{ρ−k ≥ t} ⊂ Uk if t is sufficiently large. By Sard’s Theorem we may choose
such t to be a regular value tk of ρ− k. Then Ωk ≡ {ρ− k < tk} is a strictly
J-pseudoconvex domain, and

ρ− k > g1 (≥ gk) on a neighborhood of ∼ Ωk. (3.2)

Hence,

g̃k
def
= max{gk, ρ− k} = ρ− k on a neighborhood of ∼ Ωk. (3.3)

Now let uk be the largest J-psh minorant of g̃k on Ωk, and note that uk is
continuous by Theorem 3.2. By (3.3) we have g̃k = ρ−k on a neighborhood
of ∼ Ωk. Since ρ − k is J-psh, and uk is the largest J-psh minorant of g̃k,
we have uk = ρ− k on a neighborhood of ∼ Ωk. Thus we can extend uk as
a J-psh function to all of X by setting uk = ρ− k on ∼ Ωk.

Note that since g̃k ≡ max{gk, ρ− k}, gk+1 ≤ gk, and gk ↓ u, one has

g̃k+1 ≤ g̃k and g̃k ↓ u. (3.4)

By definition

uk ≤ g̃k and uk = g̃k on ∼ Ωk. (3.5)

Now since uk+1 ≤ g̃k+1, and since uk is the largest J-psh minorant of g̃k on
Ωk, we have by (3.4) that uk+1 ≤ uk on Ωk. On the complement ∼ Ωk, we
have uk = g̃k and so uk+1 ≤ uk again by (3.4) and (3.5). Hence,

uk+1 ≤ uk on X. (3.6)

Since u ≤ g̃k is J-psh and uk is the largest such minorant on Ωk, we have
that u ≤ uk on Ωk. On the complement ∼ Ωk, we have uk = g̃k and so
u ≤ uk there as well. Hence,

u ≤ uk and uk ↓ u on X.

In other words {uk} is a decreasing sequence of continuous J-psh functions
decreasing down to u on X, and we can replace uk with uk + 1

kρ to make uk
strict.

Remark 3.7. (Equivalent Definitions of J-Pseudoconvexity). In
defining J-pseudoconvexity it is enough to assume the existence of a con-
tinuous strictly J-plurisubharmonic exhaustion function ρ : X → R. This
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follows from the extension of Richberg’s Theorem to almost complex mani-
folds (Theorem 3.1 in [18]). Such manifolds are called almost Stein manifolds
in [4].

J-Pseudoconvex manifolds (X, J) can also be characterized in terms of
the hulls of compact sets (see (4.1) below) by requiring that:

(i) There exists some u ∈ PSH∞(X, J) which is strict, and

(ii) For every compact K ⊂ X, the hull K̂C∞ is compact.

By Theorem 3.1 in [18] we have that the hulls K̂C0 = K̂C∞ agree (see
Corollary 4.3 below). Therefore, J-Pseudoconvex manifolds can also be
characterized by the requiring:

(i) There exists some u ∈ PSH0(X, J) which is strict, and

(ii) For every compact K ⊂ X, the hull K̂C0 is compact.
For the proof one applies standard arguments (cf. [11, §4] or [9, Prop. 9.3])
to show that (i) and (ii) imply the existence of a strict PSH-exhaustion (in
either case).

4. Strict Smooth Approximation of Plurisubharmonic Func-
tions on Almost Complex Manifolds

THEOREM 4.1. (C∞ Strict Approximation). Suppose (X, J) is an
almost complex manifold which is J-pseudoconvex, and let u ∈ PSH(X, J)
be a J-plurisubharmonic function. Then there exists a decreasing sequence
{uj} ⊂ C∞(X) of smooth strictly J-plurisubhrmonic functions such that
uj(x) ↓ u(x) at each x ∈ X.

Proof. Apply Theorem 3.1 in [18] and Theorem 3.4 above.

This generalizes Theorem 1 in [19] to arbitrary dimensions.

COROLLARY 4.2. (Local C∞ Strict Approximation). Let (X, J) be
an arbitrary (smooth) almost complex manifold. Then every point x ∈ X
has a fundamental system of neighborhoods U with the property that for
every u ∈ PSH(U, J) there is a decreasing sequence {uj} ⊂ C∞(U) of strictly
J-plurisubharmonic functions such that uj ↓ u.

Proof. Fix local coordinates in Cn for X near x so that J is C1-close to
the standard J0 at the origin. Then χ(z) = |z|2 is strictly J-psh on the ball
Bε(0) = {|z| < ε} for all ε > 0 sufficiently small. It is standard that any
domain which admits a C2 strictly J-plurisubharmonic defining function, is
J-pseudoconvex.

One can also give a more direct proof of Corollary 4.2 based on Theorem
3.2 above and Theorem 3.1 in [18].

Another immediate consequence of the global approximation Theorem 4.1
is that all the various possible definitions of the hull of a set actually agree.
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Given a compact set K ⊂ X we define its J-plurisubharmonic hull to be
the set

K̂ ≡
{
x ∈ X : u(x) ≤ sup

K
u ∀u ∈ PSH(X, J)

}
. (4.1)

One could also define K̂C0 and K̂C∞ by replacing PSH(X,J) in (3.4) with
PSH0(X, J) ≡ PSH(X, J)∩C(X) and PSH∞(X, J) ≡ PSH(X, J)∩C∞(X)
respectively.

Corollary 4.3. Suppose (X, J) is J-pseudoconvex. Then for any compact

K ⊂ X, one has K̂ = K̂C0 = K̂C∞ .

Proof. Clearly K̂ ⊂ K̂C0 ⊂ K̂C∞ , so it suffices to show that K̂C∞ ⊂ K̂.

Suppose that x /∈ K̂. Then there exists u ∈ PSH(X, J) with u ≤ 0 on K
and u(x) = 1. Replace u with max{u, 0}. Let {uj} be the sequence given in
Theorem 4.1. Then uj converges uniformly to 0 on the compact set K and

uj(x) ≥ 1 for all j. Hence, x /∈ K̂C∞ .

Appendix A. Affine Jet-Equivalence. A local affine jet-equivalence
is a local isomorphism of the 2-jet bundle J(Rn) = R×Rn×Sym2(Rn) which
is of the form:

r′ = r + r0(x), p′ = k(x)p+ p0(x), A′ = h(x)Ah(x)t + Lx(p) +A0(x)

where

r0(x) takes values in R,
p0(x) takes values in Rn,
A0(x) takes values in Sym2(Rn),

(i.e., J0(x) ≡ (r0(x), p0(x), A0(x)) is a section of J(Rn))

and
k(x) and h(x) take values in GLn(R), while

Lx takes values in Hom (Rn,Sym2(Rn))

The regularity conditions on the jet-equivalence required in the proof of
Theorem 10.1 in [10] are:

(1) k, h and L are Lipschitz continuous, and

(2) J0 is continuous.

For the second jet equivalence in our application to the Obstacle Problem,
g ≡ h ≡ Id and J0(x) = (r0(x), 0, 0), so our obstacle function g(x) = −r0(x)
need only be continuous.
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Appendix B. Σm-Subharmonic Functions.

As noted in Remark 1.3, for any subequation F , smooth approximation for
F -subharmonic functions can be proved whenever continuous approximation
and a Richberg-type theorem can be established for F . In this appendix we
give just such a result for the complex hessian subequations on a Kähler
manifold.

Let X be a complex manifold of dimension n with a fixed Kähler form ω.
We say that a function u ∈ C2(Ω) is Σm-subharmonic on a domain Ω ⊂⊂ X
if (ddcu)k ∧ ωn−k ≥ 0 for k = 1, . . . ,m. We say that a locally integrable
function

u : Ω→ [−∞,+∞)

is Σm-subharmonic (u ∈ Σm(Ω)) if u is upper semicontinuous and

ddcu ∧ ddcu1 ∧ . . . ∧ ddcum−1 ∧ ωn−m ≥ 0,

for any C2 Σm-subharmonic functions u1, . . . um−1 (they are defined in [1]
for ω = ωst = ddc(|z|2) in Cn and in [5] and [14] for general Kähler form).
This is just the subequation F ≡ Σm defined on X by the condition that
the first m elementary symmetric functions of the complex hessian satisfy
σ`(HessCu) ≥ 0 for ` = 1, ...,m (compare Example 18.1 in [10] and Lemma
7 in [20]).

A Richberg-type theorem for Σm was proved in [20] (Theorem 2). Lu
and Nguyen proved in [15] that on compact Kähler manifolds any quasi-Σm-
subharmonic function can be approximated from above by smooth quasi-Σm-
subharmonic functions (a function u is quasi-Σm-subharmonic if the function
u + ρ is Σm-subharmonic where ρ is local potential for ω). Actually their
global result implies that locally it is possible to regularize Σm-subharmonic
functions. However, in the same way as in Theorem 4.1, we can prove a
slightly stronger result.

THEOREM B.1. Let X be a Σm-pseudoconvex Kähler manifold. Let u be
a Σm-subharmonic function on X. Then there exists a decreasing sequence
uj ∈ C∞(X) of Σm-subharmonic functions such that uj ↓ u.

By Σm-pseudoconvex we mean that X has a global C2 strictly Σm-
subharmonic exhaustion function. In particular Stein manifolds are Σm-
pseudoconvex.
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