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The Chow Moving Lemma is a theorem whih asserts that a given algebrai s-yle

on a smooth algebrai variety X an be moved within its rational equivalene lass to

interset properly a given r-yle on X provided that r + s � dim(X) (f. [Chow℄, [S2℄).

In the past few years, there has been onsiderable interest in studying spaes of algebrai

yles rather than simply yles modulo an equivalene relation. With this in mind, it is

natural to ask whether one an move a given \bounded family" of s-yles on the smooth

variety X to interset properly a given \bounded family" of r-yles. The main point of

this paper is to formulate and prove just suh a result. In Theorem 3.1, we demonstrate

that for any integer e and any smooth projetive variety X, one an simultaniously and

algebraially \move" all e�etive s-yles of degree � e on X so that eah suh yle meets

every e�etive r-yle of degree � e on X in proper dimension.

The primary motivation for this Moving Lemma for Cyles of Bounded Degree was

the possibility of a duality theorem between ohomology and homology theories de�ned

in terms of homotopy groups of yle spaes. Using Theorem 3.1, we have proved suh

a duality theorem for omplex quasi-projetive varieties in [F-L2℄. We prove our Moving

Lemma for varieties over an arbitary in�nite �eld, permitting a proof in [F-V℄ of a duality

theorem for \motivi ohomology and homology".

The reader will �nd that our Moving Lemma has numerous good properties. First of

all, the move is given as an algebrai move (parametrized by a puntured projetive line)

on Chow varietes. Although this move is \good" only for s-yles of bounded degree, it

is de�ned on all e�etive s-yles. Moreover, the move starts at \time 0" by expressing

an e�etive s-yle Z as a di�erene of e�etive s-yles both of whih have intersetion

properties no worse than Z. Finally, our Moving Lemma is appliable to smooth quasi-

projetive varieties, for it is stated for a possibly singular projetive variety X resulting in

a onlusion of proper intersetion o� the singular lous of X.

The lassial motivation for the moving lemma was to de�ne an intersetion produt

on algebrai yles modulo rational equivalene, thereby establishing the Chow ring A

�

(X).

Apparently, the lassial literature overlooked the question of whether or not intersetion

of yles de�ned via a moving lemma is independent of the move (e.g., [Chev℄, [Chow℄,

[R℄, [S2℄). One diret onsequene of our Moving Lemma is a proof for smooth quasi-

projetive varieties that the intersetion produt is indeed well de�ned independent of the

hoie of move (Theorem 3.4). Of ourse, the intersetion produt now has an intrinsi

formulation for all smooth algebrai varieties due to Fulton and MaPherson [Fu℄. We

�
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should emphasize that our arguments are projetive in nature, and thus apply diretly

only to quasi-projetive varieties.

We gratefully aknowledge helpful omments from William Fulton and Vladimir Vo-

evodsky. We are espeially indebted to Ofer Gabber who foresaw the validity of suh a

moving lemma for families and direted us to loal estimates arising in the proof of the

key Theorem 1.1.

0. De�nitions, Conventions, and a Brief Outline

We adopt the following onventions thoughout. We �x a ground �eld k, hoose an

algebrai losure k � k, and onsider projetive spaes P

n

over k of various dimensions

n. A projetive variety over k is a redued and absolutely irreduible algebrai k-

sheme whih admits a (Zariski) losed embedding in some projetive spae P

n

. A quasi-

projetive variety over k is a Zariski open subset of some projetive algebrai variety

over k whose omplement has de�ning ideal also de�ned over k. The set of geometri

points X(k) of suh a quasi- projetive variety X is the set of morphisms Spe(k) ! X

of shemes over k. For a point x on a quasi-projetive variety X, we denote by O

X;x

the

stalk at x 2 X of the struture sheaf of X and by m

x

the maximal ideal of this loal

ring. An algebrai yle Z of dimension r on a quasi-projetive variety X is an integral

ombination of losed, r-dimensional subvarieties of X, whih are (redued, irreduible but

not neessarily absolutely irreduible and) de�ned over k. We say Z is e�etive if the

integer oeÆients are all positive. Given a yle Z on X, we de�ne its support to be

the algebrai subset jZj � X onsisting of the union of the irreduible omponents of Z.

If Y and Z are yles on X of dimension r and s respetively with r + s � m = dim(X),

we say that Y and Z interset properly if eah omponent of jY j \ jZj has dimension

� r + s �m. If X is smooth and if Y and Z interset properly, then the intersetion

produt Y � Z is a well- de�ned yle of dimension r + s�m on X (See [Fu℄).

Let X � P

n

be a losed embedding over k of an m- dimensional projetive variety X.

For integers d � 0 and r with 0 � r < dim(X), we denote by C

r;d

(X) the Chow variety

of e�etive r-yles of degree d on X (f. [S1℄). The disjoint union

C

r

(X) =

a

d�0

C

r;d

(X)

has the struture of an abelian monoid and is alled the Chow monoid. The geometri

points C

r

(X)(k) of this Chow monoid onstitute the (disrete) monoid of e�etive r-yles

on X

k

, the base-hange of X to Spe(k). (See [F,1.2℄ for a disussion of the the k

0

-rational

points of C

r

(X) for any k

0

=k.)

Given an r-yle Y and an s-yle Z on a projetive variety X � P

n

of dimension

m with r + s � m, the lassial Chow Moving Lemma (f. [R℄) asserts the existene of

a rational equivalene between Z and a neessarily ine�etive s-yle Z

0

whih intersets

Y properly at all smooth points of X. Roughly speaking the proof proeeds as follows.

One onsiders a linear projetion �

L

: P

M

�! P

m

whose vetex L

�

=

P

M�m�1

does not

meet X and onstruts the projeting one C

L

(Z) = �

�

L

(�

L�

(Z)) of Z. Sine �

L

�

�

X

is a

�nite morphism, C

L

(X)�X is a well-de�ned s-yle on X whih an be moved to interset
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Y properly by moving the one C

L

(Z) in P

M

. The idea then is to hoose L so that the

residual yle

R

L

(Z) = C

L

(Z) �X � Z

intersets Y properly at least at all points outside the rami�ation lous of p

L

def

= �

L

�

�

X

.

Furthermore, any omponent of exess intersetion of jR

L

(Z)j \ jY j lies in ram(p

L

)\ jZj \

jY j. Thus, if we hoose L

1

; : : : ; L

m+1

so that \

i

ram(p

L

i

) is ontained in the singular lous

of X, then after m+ 1 iterations the residual yle R

L

m+1

ÆR

L

m

Æ � � � ÆR

L

1

(Z) will meet

Y properly at all regular points of X.

In our paper we shall arry through this argument so that it applies simultaneously

to all e�etive yles Y; Z of degree bounded by any spei�ed positive integer e. To do

this we onsider the reimbeddings X ,! P

M

d

via the Veronese embeddings P

M

,! P

M

d

of degree d. For eah d we onsider the subset U

X

(d) of linear subspaes of odimension

m + 1 in P

M

d

whih do not meet X. The main point is to show that the odimension of

\bad L's" in U

X

(d), i.e., those for whih R

L

(Z) does not have an improved intersetion

with Y , goes to in�nity as d goes to in�nity. This is ahieved in x1.

In x2 we onstrut the moving of the projeting ones. This is onventionally done by

projetive transformations of the ambient P

M

. Here we introdue a di�erent method whih

is related to the movings introdued in [L℄ and algebraiized in [F℄ to prove the \algebrai

suspension theorem" in Lawson homology. This argument essentially veri�es that e�etive

s-yles of bounded degree in P

n

an be moved to interset properly a hyperplane. Here

we generalize this argument so that it applies to all e�etive r-yles of bounded degree,

where s+ r � n, rather than to a single hyperplane.

In x3 we present our main results. In addition to Theorems 3.1 and 3.4 mentioned

above, we prove in Theorem 3.5 that the intersetion produt on homotopy groups of yle

spaes on a smooth, projetive omplex variety (f. [F-G℄) an be represented by the

intersetion of families of yles whih have been moved to interset properly. In Theorem

3.7, we present a basi ingredient of duality theorems for yle spaes. It is the assertion

that for a at map X ! B from a smooth variety, families of s-yles on X with s � dimB

an be moved to be equidimensional over B.

1. Residual yles

Consider an m-dimensional projetive variety X provided with a losed embedding

X � P

n

over k. Choose a positive integer d and de�ne

U

X

� U

X

(d) � P(�(O

P

n

(d)

m+1

))

to be the Zariski open set of those F = (f

0

; : : : ; f

m

) with the property that the zero

lous L

F

= ft 2 P

n

: F(t) = 0g misses X and thus has odimension m + 1 in P

n

.

(More preisely, F is a k-rational point of the indiated Zariski open subset.) Eah suh

F determines a �nite morphism (de�ned over k)

p

F

: X �! P

m

(1:0:1)
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whih an be viewed as follows. Let v : P

n

�! P

M

denote the Veronese embedding of

degree d (so M =

�

n+d

d

�

� 1). Then eah F 2 U

X

determines a surjetive linear projetion

�

F

: P

M

��� > P

m

(1:0:2)

with the property that p

F

= �

F

Æ v

�

�

X

. The ondition F(x) 6= 0 for x 2 X is equivalent to

the ondition that the linear subspae L(F)

def

= the vertex of the projetion �

F

, does not

meet v(X).

Suppose now that Y; Z � X are losed algebrai subsets of pure dimension r and s

respetively, where r+s � m. Let Y �Z�� denote (Y �Z)\ (X

2

�diag(X)) and denote

by Y ?

F

Z the following losed subset of Y � Z ��:

Y ?

F

Z � f(y; z) : y 6= z; p

F

(y) = p

F

(z)g

for any F 2 U

X

. We begin by investigating the ondition on F 2 U

X

that Y ?

F

Z should

have pure dimension r + s�m.

An interesting speial ase of the following theorem is the ase in whih Y equals Z,

a yle of dimension r � m=2 on the projetive variety X of dimension m. Then, our

theorem asserts for \most" projetions of suÆiently high degree that the projetion is

injetive on omponents of Z o� a subset of dimension no greater than 2r �m.

Theorem 1.1 Let X � P

M

be a losed embedding over k of an m-dimensional projetive

variety X. Consider losed algebrai subsets Y; Z � X of pure dimension r; s respetively,

and assume that r + s � m. Then for any k-rational point F 2 U

X

(d), eah irreduible

omponent of Y ?

F

Z has dimension � r + s�m.

Fix any integer N > 0, and suppose for eah losed point w = (y; z) 2 Y �Z �� and

for eah ' 2 �(O

P

n

(d)) with '(y) 6= 0 6= '(z) that the map

�(O

P

n

(d)) �! O

Y;y

=m

N+1

y

�O

Z;z

=m

N+1

z

;

sending f to the restritions of f=', is surjetive . Then the subset

B(d)

fY;Zg

� U

X

(d)

of those F for whih some omponent of Y ?

F

Z has dimension > r + s�m is a (Zariski)

losed subset of odimension at least N � r � s.

Proof. Fix w = (y; z) 2 Y � Z �� and denote by B

w

� U

X

� U

X

(d) the subset of those

F = (f

0

; : : : ; f

m

) for whih some omponent of Y ?

F

Z has dimension > r + s �m at w.

Observe that the germ at w of the variety Y ?

F

Z is de�ned by the equations:

f

i

(y

0

)f

j

(z

0

) = f

j

(y

0

)f

i

(z

0

) for 0 � i; j � m (1:1:1)

in a neighborhood of w = (y; z) in Y �Z. Now there exists a linear ombination ' =

P

a

i

f

i

of f

0

; : : : ; f

m

with the property that '(y) 6= 0 6= '(z). For notational onveniene we

assume that ' = f

0

, and we restrit attention to those F 2 U

X

for whih f

0

(y) 6= 0 6= f

0

(z).
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The general ase will follow sine U

X

is overed by a �nite olletion of sets of this type.

(In fat the set of linear ombinations f

i

+ f

j

for 0 � i � j � m will do.)

With this assumption on f

0

one sees diretly that equations (1.1.1) are equivalent to

the equations:

g

i

F

(y

0

; z

0

) =

f

i

(y

0

)

f

0

(y

0

)

�

f

i

(z

0

)

f

0

(z

0

)

= 0 for 1 � i � m (1:1:2)

on the germ of Y �Z at w. In partiular, the germ at w of Y ?

F

Z has dimension � r+s�m.

We now proeed indutively to estimate the dimension of the bad set B

w

. We phrase

the problem in terms of the loal rings. In what follows, m will always denote the maximal

ideal of the loal ring in question. Set R(w;F)

0

= O

Y�Z;w

, and let R(w;F)

i

denote the

loal ring O

Y�Z;w

=hg

1

F

; : : : ; g

i

F

i for 1 � i � m. If R(w;F)

i

has pure dimension r+ s� i for

some i < m, then the ondition on g

i+1

F

that R(w;F)

i+1

have dimension � r + s � i � 1

is the ondition that g

i+1

F

be non-zero in R(w;F)

i;�

� R(w;F)

i

=P

i;�

for eah minimal

prime P

i;�

of R(w;F)

i

. This is guaranteed if the lass of g

i+1

F

is non-zero in the quotient

R(w;F)

i;�

=m

N+1

for all �.

Let us now �x ' 2 �(O

P

n

(d)) with '(y) 6= 0 6= '(z) and set B

w;'

= fF 2 B

w

: f

0

=

'g. Consider the subset B

i+1

w;'

� B

w;'

of those F for whih R(w;F)

i

has pure dimension

r + s � i but R(w;F)

i+1

is not of dimension r + s� (i + 1). By the paragraph above we

know that if F 2 B

i+1

w;'

, then for some �, f

i+1

lies in the kernel K

i+1;�

� ker(G

i+1

�

) of the

linear map

G

i+1

�

: �(O

P

n

(d)) �! R(w;F)

i;�

=m

N+1

(1:1:3)

de�ned by taking the image in R(w;F)

i;�

=m

N+1

of the germ at w = (y; z) of the funtion

G

i+1

(F)(y

0

; z

0

) =

f

i+1

(y

0

)

'(y

0

)

�

f

i+1

(z

0

)

'(z

0

)

: (1:1:4)

We make the following laim whih is proved below.

Claim:

odim(K

i+1;�

) � N: (1:1:5)

We now show how this laim proves the theorem. Consider the losed subvariety

W � f(y; z;F) : (y; z) 2 (Y ?

F

Z)

l

g � Y � Z � U

X

;

where (Y ?

F

Z)

l

� Y �Z denotes the losure of Y ?

F

Z. By upper semi-ontinuity of the

dimension of the �bres ofW ! U

X

, we onlude that B(d)

fY;Zg

� U

X

is a losed subvariety.

Moreover, if

~

B � W denotes pr

�1

3

(B(d)

fY;Zg

), then the �bre of

~

B above w 2 (Y � Z)��

equals B

w

. Therefore if we prove that

The odimension of B

w

in fwg � U

X

is � N; (1:1:6)

it will follow that the odimension of pr

3

(

~

B) = B(d)

fY;Zg

in U

X

is at least N � r � s as

laimed.
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To prove (1.1.6) we proeed as follows. Set � = �(O

P

n

(d)) and let p : U

X

�

�

�(m+1)

�! � denote projetion onto the �rst oordinate. Then for ' 2 � with '(y) 6=

0 6= '(z) we see that

B

w;'

= p

�1

(') \ B

w

�

=

�

�m

\ B

w

:

It will suÆe to prove that the odimension of B

w;'

in �

�m

is � N . Note that

B

w;'

=

m

[

i=1

B

i

w;'

;

and that B

1

w;'

�

S

�

K

1;�

. Now for i > 1, the K

i;�

depend on F

k

for k < i. So �x

i > 1, let p : �

�m

! �

�i

be projetion onto the �rst i oordinates, and let G

i

denote the

omplement of p(B

1

w;'

[ � � � [ B

i

w;'

) � �

�i

. (Note that G

i

onsists of all F

i

= (F

1

; : : : ;F

i

)

suh that R(w;F)

i

has pure dimension r + s� i). Then for eah F

i

2 G

i

we have that

p

�1

�

F

i

�

\ B

i+1

w;'

�

�

[

�

K

i+1;�

�

� �

�(m�i�1)

� �

�(m�i)

where the union over � is �nite. Hene (1.1.6) follows from our laim (1.1.5).

Thus it remains to prove our laim (1.1.5) for i = 0; :::;m� 1. We proeed as follows.

Denote by R(y;F)

i;�

the quotient of the loal ring O

Y;y

by the pre-image of P

i;�

under the

omposition O

Y;y

�! O

Y�Z;w

�! R(w;F)

i;�

. We de�ne R(z;F)

i;�

analogously. These

rings orrespond to the projetions to Y and Z of the subvariety with generi point P

i;�

.

For i < m one of these projetions must have positive dimension (sine the subvariety

itself does). Hene, for i < m at least one of R(y;F)

i;�

, R(z;F)

i;�

has Krull dimension

� 1. We assume wlog that this is true of R(y;F)

i;�

. Then (by further projetion onto a

generi line) we know that

dim

�

R(y;F)

i;�

=m

N+1

�

� N: (1:1:7)

Let � = �(O

P

n

(d)) as above and note that the map G

i+1

: � �! O

Y�Z;w

de�ned in

(1.1.4) fators through the subspae O

Y;y

�O

Z;z

� O

Y�Z;w

. Passing to quotients gives a

linear map

^

G

i+1

: � �! O

Y;y

=m

N+1

y

�O

Z;z

=m

N+1

z

�

� O

Y�Z;w

=m

N+1

w

�

whih by our assumption is surjetive. Write

^

G

i+1

= (

^

G

i+1

1

;

^

G

i+1

2

) with respet to the

splitting above and let �

0

= ker(

^

G

i+1

2

). Then

^

G

i+1

1

: �

0

�! O

Y;y

=m

N+1

y

�f0g is surjetive.

This produes a ommutative diagram

�

0

�! O

Y;y

=m

N+1

y

�O

Z;z

=m

N+1

z

�! R(w;F)

i;�

=m

N+1

^

G

i+1

1

& " " '
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O

Y;y

=m

N+1

y

�

�! R(y;F)

i;�

=m

N+1

where

^

G

i+1

1

and � are surjetive and where ' is injetive (sine it orresponds to pull-bak

of funtions from the image of projetion of the subvariety). Our laim now follows from

(1.1.7). This ompletes the proof.

In order to apply Theorem 1.1, we show in the following lemma that the surjetivity

hypothesis of the proposition is satis�ed for all suÆiently large degrees d.

Lemma 1.2. Retain the notation of Theorem 1.1. For eah N > 0, there exists some d

N

suh that for all d � d

N

the map

�(O

P

n

(d)) �! O

Y;y

=m

N+1

y

�O

Z;z

=m

N+1

z

(1:2:1)

sending f to the restritions of f=' is surjetive for all losed points (y; z) 2 Y � Z ��,

all ' 2 �(O

P

n

(d)) with '(y) 6= 0 6= '(z).

Proof. Sine O

P

n

;y

! O

Y;y

, O

P

n

;y

! O

Z;z

are surjetive loal homomorphisms, it suÆes

to onsider the speial ase Y = P

n

= Z. Moreover, base-hanging by a �eld extension

Spe(k

0

)! Spe(k) merely tensors the map (1.2.1) with k

0

over k. Consequently, it suÆes

to assume that both y; z are rational points of P

n

. By the two-point homogeneity of P

n

under PGL

n+1

, it thus suÆes to verify the existene of d

N

for a single pair of (rational)

points (y; z) 2 P

n

�P

n

.

The map sending f to the restritions of f=' in O

Y;y

=m

N+1

y

and O

Z;z

=m

N+1

z

has

image whose dimension is independent of the hoie of ' with '(y) 6= 0 6= '(z) sine the

quotient of any two suh hoies of ' is invertible in both O

Y;y

and O

Z;z

. Hene, it will

suÆe to onsider the ase where ' = X

d

0

for some X

0

2 �(O

P

n

(1)).

Let R = k[X

1

=X

0

; : : : ; X

n

=X

0

℄ denote the oordinate algebra of the aÆne variety

A

n

= P

n

� fX

0

= 0g, where we assume that X

0

(y) 6= 0 6= X

0

(z). Sine m

N+1

y

;m

N+1

z

are

oprime in R, the Chinese Remainder Theorem implies that

R �! R=m

N+1

y

� R=m

N+1

z

is surjetive. Let d

N

be the minimal degree d for whih polynomials of degree � d

N

in R

map via this surjetive map onto R=m

N+1

y

� R=m

N+1

z

. Then for any d � d

N

, (1.2.1) is

surjetive.

Let X be a projetive variety provided with a losed embedding X � P

n

over k and

onsider non-negative integers r; d. For any non-negative integer e, set

C

r;�e

(X) =

a

d�e

C

r;d

(X):

In the next proposition we onsider the Veronese embeddings of X of degree d. We

onsider all yles of �xed degree � e (in the original embedding) and examine those

7



projetions whih are \bad" for pairs of suh yles. The main assertion is that the

odimension of these bad projetions goes to in�nity with d.

Proposition 1.3. Let X � P

n

be a losed subvariety of dimension m, let r; s be non-

negative integers with r + s � m, and let e be a positive integer. There exist (Zariski)

losed subsets B(d)

e

of the quasi-projetive variety U

X

(d),

B(d)

e

� U

X

(d) � P(�(O

P

n

(d)))

m+1

;

for d > 0 with

lim

d!1

odimB(d)

e

=1

whih satisfy the following property: for any e�etive r-yle Y on X of degree � e and

any e�etive s-yle Z on X also of degree � e, jY j ?

F

jZj has pure dimension r + s �m

whenever F is a k-rational point of U

X

(d)� B(d)

e

.

Proof. For notational brevity, let C

r;e

denote C

r;�e

(X). We de�ne

W

e

� X

2

� C

r;e

� C

s;e

� U

X

(d)

to be the losed subariety of those quintuples (y; z; Y; Z;F) for whih y � z lies in the

losure of some omponent of Y ?

F

Z. The priniple of upper semi-ontinuity applied to

W

e

over C

r;e

� C

s;e

� U

X

(d) implies that

V

e

� C

r;e

� C

s;e

� U

X

(d)

is a losed subvariety, where V

e

onsists of those triples (Y; Z; F ) suh that Y ?

F

Z has

some irreduible omponent of dimension > m� r � s. Thus,

B(d)

e

= pr

3

(V

e

) � U

X

(d)

is a losed subvariety of U

X

(d).

Observe that the �bre of V

e

above (Y; Z) 2 C

r

� C

s

is B

fY;Zg

(in the notation of

Proposition 1.1). Let E

r

= dimfC

r;e

g; E

s

= dimfC

s;e

g. By Theorem 1.1 and Lemma

1.2, for any N we may �nd d

N

so that B(d)

fY;Zg

� U

X

(d) has odimension at least

N � E

r

� E

s

� r � s for d � d

N

. Hene, B

e

(d) has odimension � N � r � s for d � d

N

.

Finally, if Y; Z are e�etive r; s yles of degrees � e and if Y ?

F

Z has some omponent

of dimension > r + s�m, then (Y; Z;F) determines a point of V

e

so that F 2 B(d)

e

.

Chow's lassial tehnique of moving Z to interset Y properly entails onsideration

of a Veronese embedding P

n

! P

M

and a linear plane L � P

M

of odimension m + 1

missing X. We let �

L

: P

M

� �� > P

m

denote the linear projetion with enter L and

p

L

: X ! P

m

denote the �nite morphism given as the restrition of �

L

to X. Departing

from the lassial onstrution (f [R℄), we de�ne the projeting one of a yle Z on X

to be the yle

C

L

(Z)

def

= �

�

L

(p

L�

(Z)) � P

M

;

8



where p

L�

denotes proper push-forward and �

�

L

denotes the algebrai join operation (�)#L

sending a yle W on P

m

to W#L on P

m

#L = P

M

(f. [L,2.10℄). This di�ers from

the lassial de�nition whih is given by the disontinuous onstrution of sending an

irreduible yle Z to �

�

L

(p

L

(Z)), where p

L

(Z) is the irreduible, redued image of Z.

Sine p

L

is a �nite map, the intersetion produt C

L

(Z) �X is de�ned for all yles

Z on X. We reall that p

L

: X ! P

m

is at at any smooth point x 2 X (f. [Mat,20.D℄).

Thus, if no omponent of Z is ontained in the singular lous of X, then C

L

(Z) �X an

alternatively be desribed as the losure in X of p

ns�

L

(p

L�

(Z)), where p

ns

L

: X

ns

! P

m

is

the restrition to p

L

to the omplement of the singular lous of X.

One onsiders the residual yle

R

L

(Z)

def

= C

L

(Z) �X � Z:

This is a linear onstrution on yles, sending e�etive yles to e�etive yles (f. Lemma

1.6).

Given Y and Z, one wants to hoose L so that R

L

(Z) has an improved intersetion

with Y . A key to this is the following lemma proved in [R℄ for the lassial de�nition of

residual yle involving the lassial projeting one �

�

L

(p

L

(Z)) �X. Denote by ram(p

L

)

the rami�ation lous of the �nite map p

L

: X �! P

m

. (In partiular ram(p

L

) ontains

all the singular points of X.)

Proposition 1.4 (f. [R; Lemma 6℄) Let Z, X and L be as above and onsider a geometri

point y : Spe(k)! jR

L

(Z)j above a losed point y 2 jR

L

(Z)j. Then either:

(i) There exists a geometri point z : Spe(k) ! jZj over a losed point z 2 jZj

with z 6= y and p

L

(z) = p

L

(y), or:

(ii) y 2 ram(p

L

).

Proof. Sine the onstrution of the residual yle is additive, we may assume that Z is

irreduible. By de�nition of R

L

(Z), if y =2 Z, then there exists a point z 2 Z with z 6= y

and p

L

(z) = p

L

(y). Thus, we may assume y 2 Z.

If [Z : p

L

(Z)℄ > 1 (i.e., if the funtion �eld of Z is a non-trivial extension of that of

p

L

(Z)), then either (i) is satis�ed for some z : Spe(k) ! Z or in a formal neighborhood

of y at least two sheets of Z (above a formal neighborhood of p

L

(y) 2 P

m

) interset at y.

This latter situation implies that in a formal neighborhood of y 2 X at least two sheets of

X interset at y so that y 2 ram(p

L

).

If [Z : p

L

(Z)℄ = 1 and if Z is a omponent of R

L

(Z), then as shown in [R; Lemma 6℄

p

L

must ramify along all of Z. Namely, a \general" point of Z is neessarily smooth on Z

and would also be smooth on X if p

L

does not ramify along Z. At suh a point, p

L

is etale

and so the multipliity of Z in p

ns�

L

(p

L�

(Z)) is 1; this ontradits the assumption that Z

is a omponent of R

L

(Z).

Finally, assume that [Z : p

L

(Z)℄ = 1 and that Z is not a omponent of R

L

(Z).

Sine y 2 jR

L

(Z)j, y lies in some omponent R of R

L

(Z) not equal to Z. Then, in a

formal neighborhood of y 2 jR

L

(Z)j at least two sheets (one determined by Z and another

determined by R) interset at y so that y 2 ram(p

L

).
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As in (1.0.1) and (1.0.2), for eah (m + 1)-tuple F = (f

0

; : : : ; f

m

) of homogeneous

forms of degree d on P

n

, we onsider the assoiated linear projetion �

F

: P

M

��� > P

m

with enter L(F). If X � P

n

is a subvariety of dimension m and if F 2 U

X

(d), we denote

by p

F

: X ! P

m

the �nite map given by restriting �

F

to X � P

M

(embedded via the

Veronese embedding). For any yle Z on X we set

C

F

(Z) = �

�

F

(p

F�

((Z))) = C

L(F)

(Z) and R

F

(Z) = C

F

(Z) �X � Z:

Corollary 1.5. Consider a projetive variety X of dimension m provided with a losed

embedding X � P

n

. Let Y be an r-yle and Z an s-yle on X with r + s � m � 0.

Assume F 2 U

X

(d) satis�es the ondition that jY j ?

F

jZj has no omponent of exess

dimension (i.e., > r + s�m). Then any omponent of jY j \ jR

F

(Z)j of exess dimension

must be ontained in jY j \ jZj \ ram(p

F

).

Proof. By de�nition of jY j ?

F

jZj, any y 2 (jY j \ jR

F

(Z)j) � jZj neessarily lies in

pr

jY j

(jY j?

F

jZj). By Proposition 1.5, any y 2 (jY j\jR

F

(Z)j)�ram(p

F

) admits a geometri

point (y; z) : Spe(k) ! jY j ?

F

jZj whih projets to y over y, so that y also lies in

pr

jY j

(jY j ?

F

jZj). Thus, the omplement of jY j \ jZj \ ram(p

F

) in jY j \ jR

F

(Z)j lies in

pr

jY j

(jY j ?

F

jZj) whose omponents have dimensions less than or equal to that of the

maximal dimension of the omponents of jY j ?

F

jZj.

We shall use the following property of the onstrution of residual yles. We reall

that a ontinuous algebrai map f : X ! Y with Y projetive is a set-theoreti map

on geometri points whih is indued by a orrespondene �

F

� X � Y (f. [F℄).

Lemma 1.6. Let F be a k-rational point of U

X

(d) � P(�(O

P

n

(d)))

m+1

. Then R

F

(Z) is

an e�etive s-yle on X whenever Z is itself an e�etive s-yle on X. Moreover, sending

Z to R

F

(Z) determines a ontinuous algebrai map

R

F

(�) : C

s;�e

(X)! C

s;�e

0

(X);

where e

0

is a positive integer depending upon d; e and the degree of X.

Proof. The fat that R

F

(�) sends e�etive yles on X to e�etive yles on X follows

immediately from the observation that eah of the operations in the de�nition of R

F

(�)

is a well de�ned operation on e�etive yles.

We employ various funtoriality properties proved in [F℄. The Veronese embedding

� : P

n

! P

M

of degree d determines a morphism

�

�

: C

s;�e

(X)! C

s;�d

s

e

(�(X)):

The linear projetion p

F

: �(X)! P

m

determines a morphism

p

F�

: C

s;�d

s

e

(�(X))! C

s;�d

s

e

(P

m

):
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The join onstrution determines a ontinuous algebrai map

�

�

F

: C

s;�d

s

e

(P

m

)! C

s+M�m;�d

s

e

(P

M

):

Furthermore, intersetion produt in P

M

determines a ontinuous algebrai map

(�) �X : C

s+M�m;�d

s

e

(P

M

)! C

s;�d

s

ef

(P

M

)

where f equals the degree of �(X). Finally, the additive struture of the Chow monoid is

also given by ontinuous algebrai maps. Thus, sending Z to R

F

(Z) � �

�

F

(p

P

m

�

(Z))�X�Z

is a ontinuous algebrai map.

In the following theorem, we verify that an iteration of the residual yle onstrution

enables one to arrange (by hoosing the degrees of projetions suÆiently large) that the

iterated residual yle for Z meets Y properly for all e�etives yles Y; Z of degree � e.

Theorem 1.7 Let X � P

n

be a losed subvariety of dimension m, and let U � X be the

Zariski open subset onsisting of the smooth points of X. For any (m+1)-tuple of positive

integers d = (d

0

; : : : ; d

m

), there is a (Zariski) open dense subset

R

X

(d) �

m

Y

i=0

U

X

(d

i

) �

m

Y

i=0

P(�(O

P

n

(d

i

))

m+1

)

onsisting of (m+ 1)-tuples F

�

� (F

0

; : : : ;F

m

) with the property that

U \ ram(p

F

0

) \ : : : \ ram(p

F

m

) = ;:

For any non-negative integers r; s with r + s � m and any positive integer e, there

exists a (Zariski) losed subset

B(d)

e

� R

X

(d)

suh that

(a) The odimension of B(d)

e

an be made arbitrarily large for all appropriately hosen

d whih are suÆiently large (f. (1.8) below).

(b) For all e�etive r-yles Y and s-yles Z of degree � e on X and for all k-rational

points F

�

2 R

X

(d)�B(d)

e

, eah omponent of

jY j \ jR

F

�

(Z)j ; R

F

�

(Z) � R

F

m

Æ � � � ÆR

F

0

(Z)

of \exess" dimension (i.e., > r + s�m) is ontained in the singular lous X � U .

Proof. We onsider the (losed) inidene orrespondene J � U

X

(d

0

)�X : : :�U

X

(d

m

)�

X of those (F

0

; x

0

; : : : ;F

m

; x

m

) with x

j

2 ram(p

F

j
) for all j. Then the omplement of

R

X

(d) in U

X

(d) �

Q

m

j=0

U

X

(d

j

) is given by

U

X

(d)�R

X

(d) = prfJ ) \ (U

X

(d)��(X)g;

11



where pr is the proper projetion pr : U

X

(d

0

) � X : : : � U

X

(d

m

) � X ! U

X

(d) and

� : X ! X

m+1

is the diagonal embedding. Hene, R

X

(d) is open.

For any smooth point of x 2 X, those F 2 U

X

(d) suh that p

F

rami�es at x is

a proper losed subset (de�ned by the ondtion that L

F

meet the tangent planes of X

at x). Thus, the subset of those F for whih p

F

rami�es everywhere is a proper losed

subset of U

X

(d) (empty, if k has harateristi 0). We readily see that R

X

(d) is non-

empty by observing that F

�

2 R

X

(d) provided that p

F

0

does not ramify everywhere and

suh that p

F

j
does not ramify everywhere along any non-empty irreduible omponent of

ram(p

F

j�1
) \ � � � \ ram(p

F

0

) \ U , for eah j with 0 < j � m.

The asserted B(d)

e

is the intersetion with R

X

(d) of the Zariski losed subset

B

0

(d)

e

� U

X

(d)

onstruted as the union over j, 0 � j � m, of losed subsets

U

X

(d

0

)� : : :U

X

(d

j�1

)� B(d

0

; : : : ; d

j

)

e

� : : :U

X

(d

m

)

for suitably de�ned losed subsets B(d

0

; : : : ; d

j

)

e

� U

X

(d

j

). Namely, B(d

0

)

e

� U

X

(d

0

)

is the losed subset given by Proposition 1.3 for d

0

; e. By Lemma 1.6, the residual y-

les R

F

(Z) onstruted for F

0

2 U

X

(d

0

) and e�etive yles Z on X of degree bounded

by e are of degrees bounded by some e

1

(depending upon both e and d

0

). We de�ne

B(d

0

; d

1

)

e

� U

X

(d

1

) to be the losed subset given by Proposition 1.3 for d

1

; e

1

. Con-

tinuing indutively, we onlude by Lemma 1.6 that the residual yles R

F

j�1

Æ R

F

0

(Z)

onstruted for F

0

2 U

X

(d

0

); : : : ;F

j�1

2 U

X

(d

j�1

) and e�etive yles Z on X of degree

bounded by e are of degrees bounded by some e

j

(depending upon e and d

0

; : : : ; d

j�1

). We

de�ne B(d

0

; : : : ; d

j

)

e

� U

X

(d

j

) to be the losed subset given by Proposition 1.3 for d

j

; e

j

.

By Corollary 1.5, any omponent of exess dimension of jY j \ jR

F

�

(Z)j must be

ontained in jY j \ jZj \ ram(p

F

m

) \ : : : \ ram(p

F

0

) provided that F

�

=2 B

0

(d)

e

. Thus, for

F

�

2 R

X

(d);F

�

=2 B

0

(d)

e

, any omponent of exess dimension of jY j \ jR

F

�

(Z)j must be

ontained in ram(p

F

m

) \ : : : \ ram(p

F

0

) � X � U .

By Proposition 1.3, for any integer  we may hoose eah d

j

(depending as above on

e and the d

i

's for i < j) so that B(d

0

; : : : ; d

j

)

e

� U

X

(d

j

) has odimension at least . This

insures that

B(d)

e

� B

0

(d)

e

\R(d) � R(d)

also has odimension at least .

Note 1.8. Note from the paragraph above that eah d

j

may be hosen arbitrarily, so long

as it is suÆiently large. This lower bound depends only on , e and the hoie of the

previous integers d

1

; : : : ; d

j�1

.

In x3 we will use Theorem 1.7 in onjuntion with the following proposition whih

expresses a yle Z in terms of projeting ones and the yle R

F

�

(Z). This proposition

follows immediately from Corollary 1.5 and Lemma 1.6.
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Proposition 1.9. Let X � P

n

be a losed subvariety of dimension m, let r; s be non-

negative integers with r+ s � m, and let e be a positive integer. Assume that d is hosen

so that the odimension of B(d)

e

� R

X

(d) is at least 1 and that the �eld k is suÆiently

large that there exists a k-rational point F

�

2 R

X

(d) � B(d)

e

. Choose some suh F

�

.

Consider the equality

Z = (�1)

m+1

R

F

�

(Z) +

m

X

i=1

(�1)

i

�

�

F

i

fp

F

i

�

fR

F

i�1
Æ � � � ÆR

F

0

(Z)gg �X (1:9:1)

and let  

+

F

�

(Z) ;  

�

F

�

(Z) denote the positive and negative parts of the right hand side of

(1.9.1). Then:

(a) For eah e�etive s-yle Z on X, ( 

+

F

�

(Z) ;  

�

F

�

(Z)) is a pair of e�etive

s-yles on X with the property that

Z =  

+

F

�

(Z)�  

�

F

�

(Z):

(b) For all e�etive yles Y; Z on X of dimension r; s whih are of degrees � e,

any omponent of exess dimension of either jY j \ j 

+

F

�

(Z)j or jY j \  

�

F

�

(Z)j

lies in jY j \ jZj.

() This onstrution determines a ontinuous algebrai map

 

F

�

= ( 

+

F

�

;  

�

F

�

) : C

s

(X)! C

s

(X)

2

:

Moreover, there is an integer e

0

suh that

 

F

�

�

C

s;�e

(X)

�

� C

s;�e

0

(X)

2

:

2. Moves in Projetive Spae

In this setion, we onsider e�etive r-yles Y and e�etive s-yles Z onP

m

of degree

bounded by a �xed positive integer e, where r + s � m. We present a onstrution on all

s-yles on P

m

whih moves eah suh Z so that the resulting yle intersets properly eah

suh Y . The method we employ generalizes a tehnique introdued in [L℄ to move s-yles

Z of bounded degree to interset properly a given hyperplane L � P

m�1

� P

m

. One an

interpret this method as taking the \algebrai suspension" z

1

#Z � P

m+1

= z

0

#P

m

and

observing that z

1

#Z intersets z

0

#L properly provided that z

1

6= z

0

. One then observes

that for most divisors D � P

m+1

of suÆiently high degree the projetion of (z

1

#Z) �D

o� z

0

meets L properly.

Throughout this setion, we onsider non-negative integers r; s � m with r + s � m.

We set t � m� r. We shall �x a linear embedding

P

m

� P

m+t

; (m+ t = 2m� r)
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and some �xed linear subspae L

0

� P

m+t

of dimension t� 1 missing P

m

. Thus,

P

m+t

= L

0

#P

m

;

where �#� denotes the \algebrai join".

We next introdue our \parameter spae of moves" for s-yles in P

m

.

De�nition 2.1. For any t-tuple of positive integers N = (N

1

; : : : ; N

t

), let

L(N) � Grass

t�1

(P

m+t

)�

t

Y

i=1

P(�(O

P

m+t
(N

i

)))

denote the open set onsisting of those (L;D), where D = (D

1

; : : : ; D

t

) whih satisfy

(a) L \P

m

= ; = L \ L

0

,

(b) jD

1

j \ : : : \ jD

t

j \ L = ; = jD

1

j \ : : : \ jD

t

j \ L

0

:

For any L 2 Grass

t�1

(P

m+t

), we denote by L

L

(N) the Zariski dense open subset of

Q

t

i=1

P(�(O

P

m+t
(N

i

))) given as the �bre of the projetion L(N)! Grass

t�1

(P

m+t

) above

L.

Observe that for any k-rational point (L;D) 2 L(N), the intersetion produt D

1

�

� � � �D

t

is a well de�ned n-yle on P

m+t

with support jD

1

j \ � � � \ jD

t

j whih meets L#Z

properly and whih misses L

0

, the enter of the projetion �

0

.

In the following proposition, we establish a onstrutible set of arbitrarily high odi-

mension of \good moves" for e�etive s-yles Z of degree � e whih satisfy a single

intersetion ondition depending upon a hosen (t � 1)- dimensional linear subspae L.

We reall that a subset of a quasi-projetive variety is said to be onstrutible if it an

be written as a �nite disjoint union of (Zariski) loally-losed subsets. The key property

of onstrutible subsets is that any map f : X ! Y of quasi-projetive varieties sends a

onstrutible subset C � X to a onstrutible subset f(C) � Y .

Proposition 2.2. Let L be a (t � 1)-dimensional linear subspae of P

m+t

satisfying

L \ P

m

= ; = L \ L

0

. For a given positive integer e and a t-tuple of positive integers

N = (N

1

; : : : ; N

t

), there exists a onstrutible subset

B

L

(N)

e

� L

L

(N)

suh that

(a) For a onstant K depending only upon X and e,

odimB

L

(N)

e

� min(N

i

)�K;

(b) For every k-rational point D = (D

1

; : : : ; D

t

) =2 B

L

(N)

e

, the yles

jL

0

#Y j \ jL#Zj \ jD

1

j \ � � � \ jD

i�1

j and jD

i

j

14



meet properly for all i � 0 whenever Y is an e�etive r-yle and Z is an e�etive

s-yle both of degree � e on P

m

with the property that L

0

#Y intersets L#Z

properly.

Proof. Let

J � C

r;�e

(P

m

)� C

s;�e

(P

m

)�P

m+t

denote the inidene orrespondene of triples (Y; Z; x) satisfying x 2 jL

0

#Y j \ jL#Zj.

We de�ne

G

L;e

� C

r;�e

(P

m

)� C

s;�e

(P

m

)

to be the open subset above whih the �bre of the projetion

J ! C

r;�e

(P

m

)� C

s;�e

(P

m

)

has proper dimension (i.e., r + s �m + t = s). Note that G

L;e

onsists of pairs of yles

(Y; Z) suh that L

0

#Y and L#Z interset properly. We onsider the losed subset

~

B

L

(N)

e

� G

L;e

� L

L

(N)

onsisting of those tuples (Y; Z;D) satisfying the ondition that L

0

#Y and L#Z interset

properly but

jL

0

#Y j \ jL#Zj \ jD

1

j \ � � � \ jD

i�1

j ; jD

i

j

interset improperly for some i � t. Finally, we set

B

L

(N)

e

= pr

3�

[(

~

B

L

)(N)

e

℄:

We proeed to verify that the �bre

~

B

Y;Z

� L

L

(N) of

~

B

L

(N)

e

above any (Y; Z 2 G

L;e

has odimension at least N if eah N

i

� N . This will immediately imply the odimension

of B

L

(N)

e

� L

L

(N) is greater than some presribed positive integer  provided that

N � + dim(C

r;�e

(P

m

)) + dim(C

s;�e

(P

m

)):

The ondition that W

j

� jL

0

#Y j \ jL#Zj \ jD

1

j \ : : : \ jD

j�1

j meet jD

j

j improperly is

equivalent to the ondition that the restrition map

O

P

m+t
(N

j

) �! O

W

j

(N

j

) �! O

W

j;!

(N

j

)

sends D

j

2 �(O

P

m+t
(N

j

)) to 0 for some irreduible omponent W

j;!

� W

j

. Sine W

j;!

has positive dimension, this omposition has rank at least N . To see this note that if we

restrit to some aÆne open A

m

� P

m

ontaining a dense open subset of W

j;!

, then the

dimension of the subspae of regular funtions on A

m

\W

j;!

of degree � N is at least

N . We onlude that the losed subvariety

~

B

Y;Z;j

� L

L

(N) onsisting of those D with D

j

meeting W

j

improperly and D

j

0

meeting W

j

0

properly for j

0

< j has odimension at least

N . Thus,

~

B

Y;Z

=

a

j

~

B

Y;Z;j

� L

L

(N)

15



also has odimension at least N .

Proposition 2.2 suggests the following onstrution of moving yles in P

m

, sending

the s-yle Z to '

L;D

(Z).

Proposition 2.3 Let �

0

: P

m+t

��� > P

m

denote the linear projetion with enter L

0

.

For any e > 0 and any t-tuple N = (N

1

; : : : ; N

t

), the assignment

'

L;D

(Z)

def

= �

0�

((L#Z) �D

1

� : : : �D

t

)

determines a ontinuous algebrai map

� : C

s

(P

m

)� L(N) �! C

s

(P

m

)

with �

�

C

s;�e

(P

m

)� L(N)

�

� C

s;�ejNj

(P

m

), where jNj

def

=

Q

i

N

i

. This onstrution has

the following properties:

(a) For any k-rational point (L;D) 2 L(N) and any e�etive s-yle Z on P

m

,

'

L;D

(Z) is also an e�etive s-yle on P

m

.

(b) For any k-rational point (L;D) 2 L(N) with the property that D

1

� : : : �D

t

=

jNj �P

m

,

'

L;D

(Z) = jNj � Z

for all e�etive s-yles Z.

() If (L;D) is a k-rational point of L(N) suh that D =2 B

L

(N)

e

(f. (2.2)), if Y; Z

are e�etive yles on P

m

of dimension r; s and degree � e, and if L

0

#Y meets

L#Z properly, then

Y ; '

L;D

(Z)

interset properly.

Proof. If Z on P

m

is an s-e�etive yle of degree d, then L#Z is an e�etive (s+ t)-yle

P

m+t

also of degree d. Consequently, (L#Z) �D

1

� : : : �D

t

and thus also '

L;D

(Z) have

degree d � jNj. Moreover, sending hZ; (L;D)i to '

L;D

(Z) determines a ontinuous algebrai

map, for � is a omposition of operations eah of whih is given by a ontinuous algebrai

map (f. [F℄).

As observed following De�nition 2.1, the intersetion produt D

1

� � � � �D

t

is a well

de�ned n-yle on P

m+t

with support jD

1

j \ � � � \ jD

t

j whih meets L#Z properly and

whih misses L

0

for any k-rational point (L;D) 2 L(N). Thus, '

L;D

(Z) is a well de�ned

s-yle on P

m

.

To prove that '

L;D

(Z) = jNj � Z whenever D

1

� : : : � D

t

= jNj � P

m

, observe that

P

m

� P

m+t

meets L#Z properly (sine L\P

m

= ;) and transversely at all regular points

of Z.

If (L;D) 2 L(N), then L

0

#Y , L#Z have pure dimensionm; s+t respetively. The hy-

pothesis that L

0

#Y meets L#Z properly thus implies that jL

0

#Y j\jL#Zj has dimension

s. We thus may apply Proposition 2.2 to onlude that if D =2 B(N)

e

, if Y; Z are e�etive

16



yles of degrees � e, and if L

0

#Y meets L#Z properly, then (L

0

#Y )�(L#Z)�D

1

�: : :�D

t

has pure dimension r + s�m. Beause L

0

\ jD

1

j \ : : : \ jD

t

j = ;, �

0�

restrits to a (well

de�ned) �nite map on j(L#Z) �D

1

� : : : �D

t

j We apply the projetion formula to �

0�

to

onlude that

Y � �

0�

[(L#Z) �D

1

� : : : �D

t

℄ = �

0�

[(L

0

#Y ) � (L#Z) �D

1

� : : : �D

t

℄:

Hene, Y

;

'

L;D

(Z) meet properly.

The following lemma will enable us to apply Proposition 2.3 to all e�etive yles of

bounded degree.

Lemma 2.4. Let L be a k-rational point of Grass

t�1

(P

m+t

) satisfying L \ P

m

= ; =

L \ L

0

. Then

(L

0

#Y ); (L#Z) interset properly

in P

m+t

for every r-yle Y , s-yle Z on P

m

suh that either jL

0

#Y j \ L = ; or Y

intersets Z properly.

Proof. We �rst hek that if Y; Z interset properly, so do (L

0

#Y ); (L#Z) for any hoie

of L. Observe that

jL

0

#Y j \ P

m

= jY j; jL#Zj \ P

m

= jZj:

Thus, if some omponent of jL

0

#Y j \ jL#Zj has dimension > s, then some omponent of

jL

0

#Y j \ jL#Zj \ P

m

= jY j \ jZj would have dimension > s� t.

On the other hand, if jL

0

#Y j \ L = ;, then L#z intersets L

0

#Y in only �nitely

many points for any z 2 P

m

. Thus, jL

0

#Y j \ jL#Zj has dimension at most s.

Combining Proposition 2.3 and Lemma 2.4, we now verify for any given e that we an

\move" all e�etive s-yles Z of degree � e so that the resulting yles interset properly

every e�etive r-yle Y of degree � e.

As in Proposition 1.9, we require the existene of k-rational points avoiding ertain

\bad" losed subsets of positive odimension. The existene of suh k-rational points is

automati for an in�nite �eld, but for a �nite �eld all rational points of a given variety

might lie on a subvariety of positive odimension. On the other hand, if k is a �nite �eld

and if there are only �nitely many \bad" subvarieties of positive odimension, there will

exist some �nite extension k

0

of k suh that there exist k

0

-rational points avoiding these

\bad sets". Moreover, any extension k

00

of k

0

will evidently have this same property.

Sine our de�nitions of \good" and \bad" sets are independent of k, we onlude that

all \suÆiently large" �nite �elds k of a given residue harateristi admit the existene of

k-rational points missing the \bad" sets. We shall use the expression \k is a suÆiently

large �nite �eld" to mean that k admits the existene of k-rational points avoiding the

bad sets (of positive odimension) ouring in our onstrutions.

Proposition 2.5. Fix positive integers e and . Assume that either k is an in�nite �eld or

a suÆiently large �nite �eld. Consider a sequene N

1

;N

2

;N

3

; : : : of t-tuples of positive

17



integers, and set e

1

= e and e

j+1

= jN

j

je

j

for j > 1. Assume that the N

j

's are hosen

so that min

1�i�t

N

j+1;i

> K(e

j

) +  where K(e

j

) is the onstant in Proposition 2.2a.

Then there exist an integer E � dimC

s;�e

(P

m

) and (t � 1)-dimensional linear subspaes

L

1

; : : : ; L

E

of P

m+t

, eah missing L

0

and P

m

, with the following properties:

(a) For eah j,

odim

n

L

L

j

(N

j

)� B

L

j

(N

j

)

e

j

o

� ;

(b) For any k-rational point

(D

1

; : : : ;D

E

) 2

E

Y

j=1

L

L

j

(N

j

)� B

L

j

(N

j

)

e

j

and any e�etive yles Y; Z on P

m

of dimensions r; s and degrees � e,

Y ; '

L

E

;D

E

Æ � � � Æ '

L

1

;D

1

(Z)

interset properly.

Proof. Note to begin that assertion (a) follows immediately from Proposition 2.2a, so it

remains to prove assertion (b).

For eah (of the �nitely many) irreduible omponents A



of A = C

r;�e

(P

m

) of

maximal dimension d

e

, hoose some k-rational point a() 2 A



(possible sine k is assumed

either in�nite or suÆiently large). Using one again the fat that k is in�nite or suÆiently

large, we may hoose some (t � 1)-dimensional linear plane L

1

in P

m+t

missing P

m

; L

0

,

and eah L

0

#Y

a()

. Let A

1

� A denote the losed subvariety of those Y 's suh that

L

1

\ jL

0

#Y j 6= ;, and observe that eah omponent of A

1

has dimension stritly less

than d

e

. By Proposition 2.3 and Lemma 2.4, Y and '

L

1

;D

1

(Z) interset properly for any

e�etive r-yle Y of degree � e and any e�etive s-yle Z of degree � e whih does not

lie in A

1

whenever D

1

is k-rational point of L

L

1

(N

1

)� B

L

1

(N

1

)

e

1

.

Proeeding indutively, assume for some j � 1 that we have de�ned the losed subva-

riety A

j

� A of odimension at least j whih satis�es the ondition that

Y ; '

L

j

;D

j

Æ � � � Æ '

L

1

;D

1

(Z)

interset properly for any e�etive r-yle Y of degree � e and any e�etive s-yle Z of

degree � e whih does not lie in A

j

. For eah (of the �nitely many) irreduible omponents

A

j;

of maximal dimension hoose as above some point a() 2 A

j;

and hoose L

j+1

missing

P

m

; L

0

, and eah L

0

#Y

a()

. We set A

j+1

� A

j

equal to the losed subvariety of that Y 's

suh that L

j+1

\ jL

0

#Y j = ;. Applying Proposition 2.3 and Lemma 2.4 one again, we

onlude that

Y ; '

L

j

;D

j

Æ � � � Æ '

L

1

;D

1

(Z)

interset properly for any e�etive r-yle Y of degree � e and any e�etive s-yle Z

of degree � e whih does not lie in A

j

, whenever D

j

is k-rational point of L

L

j

(N

j

) �

B

L

j

(N

j

)

e

j

:
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Finally, we see that this proess stops after E steps, where E � d

e

+ 1:

The following theorem is our \Moving Lemma for Cyles of Bounded Degree" in the

speial ase in whih the variety X is projetive spae P

m

itself.

Theorem 2.6. Fix positive integers e and . Assume that either k is an in�nite �eld or a

suÆiently large �nite �eld. Choose N

1

; : : : ;N

E

and L

1

; : : : ; L

E

as in Proposition 2.5 and

let

0

def

= (D

1

; : : : ;D

E

) 2

E

Y

j=1

L

L

j

(N

j

)

be a k-rational point suh that D

j;1

� � � � � D

j;t

= jN

j

j � P

m

for eah j; 1 � j � E. (For

example, suppose that D

j;i

= N

j;i

H

j;i

where H

j;1

; : : : ; H

j;t

are k-rational hyperplanes in

general position.) Let

` �

E

Y

j=1

P(�(O

P

m+t
(N

j

))) �

E

Y

j=1

t

Y

i=1

P(�(O

P

m+t
(N

j;i

)))

be any k-rational line through 0 hosen so that

`

Æ

� ` \

E

Y

j=1

L

L

j

(N

j

)� B

L

j

(N

j

)

e

j

� `

is dense. Then there exists a ontinuous algebrai map

� : C

s

(P

m

)� `

Æ

! C

s

(P

m

)

with the following properties. Set �

p

= �

�

�

C

s

(P

m

)�fpg

.

(a) �

0

(Z) =

Q

E

j=1

jN

j

j � Z for any e�etive s-yle Z.

(b) For any k-rational point p 2 `

Æ

, �

p

determines a linear map on e�etive s-yles

on P

m

.

() For any e�etive s-yle Z, the restrition of � to fZg�`

Æ

determines a rational

equivalene Z

�

� P

m

� ` whose �bre above a point p 2 `

Æ

is the yle with

Chow point �

p

(Z).

(d) For all e�etive yles Y; Z on P

m

of dimensions r; s and degrees � e and all

k-rational points p 2 `

Æ

� 0,

Y ; �

p

(Z)

interset properly.

Proof. Iterating the ontinuous algebrai map � of Proposition 2.3, we obtain the on-

tinuous algebrai map

~

� : C

s

(P

m

)� L(N

1

)� � � � � L(N

1

)! C

s

(P

m

):
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We de�ne � to be the restrition of

~

� to C

s

(P

m

)� `

Æ

.

Property (a) is given by Proposition 2.3.b, whereas property (b) follows from Propo-

sition 2.3.a. To verify property (), we let � denote the generi point of ` and k(�) denote

the funtion �eld of `. Then �(Z; �) determines a yle on P

m

rational over some radiiel

extension of k(�) (f. [F℄). On the other hand, sine the operations used to de�ne � send

yles to yles, we see that the yle Z

�

with Chow point �(Z; �) is in fat a yle on

P

m

k(�)

. The losure of this yle, Z

�

on P

m

� `, is the asserted rational equivalene. (Ob-

serve that Z

�

is neessarily at over ` so that the �bre p 2 ` is given by speialization of

Z

�

.) Finally, property (d) follows from Proposition 2.5.

3. Main Theorem and Consequenes

Using Theorem 1.7, Proposition 1.9, and Theorem 2.6, we now prove our \Moving

Lemma for Cyles of Bounded Degree".

Theorem 3.1. Let X � P

n

be a projetive variety of dimension m. Assume that either

k is an in�nite �eld or a suÆiently large �nite �eld. Let r; s; e be non-negative integers

with r + s � m. Then there exists a Zariski open neighborhood O � P

1

of a k-rational

point 0 2 P

1

and a ontinuous algebrai map

	 = (	

+

;	

�

) : C

s

(X)�O ! C

s

(X)

2

satisfying the following properties. Set  

�

p

= 	

�

�

�

C

S

(X)�fpg

. Then:

(a) For some positive integer M and some k-rational point F

�

2 R

X

(d)�B(d)

e

,

hosen as in 1.9, one has

 

+

0

= (M + 1) �  

+

F

�

+M �  

�

F

�

;  

�

0

= (M + 1) �  

�

F

�

+M �  

+

F

�

where  

+

F

�

;  

�

F

�

: C

s

(X)! C

s

(X) are the ontinuous algebrai maps of Propo-

sition 1.9.a. In partiular, for every e�etive s-yle Z,

Z =  

+

0

(Z)�  

�

0

(Z):

(b) For any k-rational point p 2 O,  

�

p

determines a pair of linear maps on e�etive

s- yles

() For any e�etive s-yle Z on X, the restrition of 	 to fZg � O determines

a rational equivalene Z

 

� P

n

� P

1

whose �bre above a point p 2 O is

 

+

p

(Z)�  

�

p

(Z).

(d) For all e�etive yles Y; Z on X of dimensions r; s and degrees � e and all k-

rational points p 2 O�f0g, any omponent of exess dimension (i.e., > r+s�m)

of either jY j \ j 

+

p

(Z)j or jY j \ j 

�

p

(Z)j lies in the singular lous of X.

Proof. Choose F

�

as in Proposition 1.9 and reall the equality

Z = (�1)

m+1

R

F

�

(Z) +

m

X

i=1

(�1)

i

�

�

F

i

fp

F

i

�

fR

F

i�1
Æ � � � ÆR

F

0

(Z)gg �X (1:9:1)
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and the fat that  

�

F

�

are given as the positive and negative parts of the right hand

side of (1.9.1). Let e

0

� e be a positive integer bounding the degrees of p

F

i

�

(Y ) and

of p

F

i

�

(R

F

i�1
Æ � � � Æ R

F

0

(Z)) as Y and Z vary over e�etive r-yles and s-yles on X

(respetively) of degrees � e, and i varies from 1 to m.

We now apply Theorem 2.6 with e replaed by e

0

and with some �xed  > 1. In

fat we apply the theorem twie. We hoose two sequenes N = (N

1

; : : : ;N

E

) and N

0

=

(N

0

1

; : : : ;N

0

E

0

) with N

j;i

and N

0

j;i

suÆiently large as required in Proposition 2.5, so that

E

Y

j=1

jN

j

j =M + 1 ;

E

0

Y

j=1

jN

0

j

j =M

for some positive integerM . To see that this is possible reall that the integers N

j;i

an be

hosen arbitrarily subjet to the inequalities of 2.5. Consequently we may hoose the N

j;i

's

and the N

0

j;i

so that

Q

j

jN

j

j and

Q

j

jN

0

j

j are relatively prime. Then there exist positive

integers a and a

0

so that a

Q

j

jN

j

j � a

0

Q

j

jN

0

j

j = �1. We may assume, by reordering the

hoie if neessary, that the di�erene is +1, and we then replae N

E;t

with aN

E;t

and

N

0

E

0

;t

with a

0

N

0

E

0

;t

.

By Proposition 2.5 we obtain sequenes (L

1

; L

2

; : : : ; L

E

) and (L

0

1

; L

0

2

; : : : ; L

0

E

0

) of (t�

1)-dimensional linear subspaes, for whih the onlusions of 2.5 hold.

We now apply Theorem 2.6 (twie) for the fN

j

g, fL

j

g (and the fN

0

j

g, fL

0

j

g) hosen

above. We �x k-rational points 0 and 0

0

and k-rational lines ` and `

0

as in Theorem 2.6,

and we let

�

N

: C

s

(P

m

)� `

Æ

! C

s

(P

m

) and �

0

N

0

: C

s

(P

m

)� (`

0

)

Æ

! C

s

(P

m

)

be the ontinuous algebrai maps onstruted in 2.6 for this data.

We now hoose a dense open subset O � P

1

and point 0 2 O together with open

immersions f : O ,! `

Æ

and f

0

: O ,! (`

0

)

Æ

sending 0 to 0 and 0

0

respetively. We let �

N;p

denote the restrition of �

N

to C

s

(P

m

)�ff(p)g for any k-rational point p 2 O. We de�ne

	

N

by

	

N

(Z; p) = (�1)

m+1

(M+1)�R

F

�

(Z)+

m

X

i=1

(�1)

i

�

�

F

i

�

�

N;p

�

p

F

i

�

(R

F

i�1
Æ� � �ÆR

F

0

(Z))

		

�X;

and de�ne 	

N

0

similarly. Finally, we de�ne 	

�

to be the positive and negative parts of

	

N

�	

N

0

, so that

	

+

(Z; p)�	

�

(Z; p) = 	

N

(Z; p)�	

N

0

(Z; p):

The fat that 	

+

;	

�

are ontinuous algebrai maps follows immediately from Propo-

sition 1.9 and Theorem 2.6. Property (a) is part of our de�nition of 	

�

. Property (b)

follows immediately from Proposition 1.9 and Theorem 2.6.b. The proof of property () is

merely a repetition of the proof of Theorem 2.6..
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To verify property (d), observe that Theorem 1.7.b implies that any omponent of

exess dimension of jY j\jR

F

�

(Z)j lies in the singular lous of X. On the other hand, sine

p

F

i
is a �nite map,

Y ; �

�

F

i

�

�

N;p

�

p

F

i

�

(R

F

i�1
Æ � � � ÆR

F

0

(Z))

		

�X

interset properly for any i; 1 � i � m, if and only if

p

F

i

�

(Y ) ; �

N;p

�

p

F

i

�

(R

F

i�1
Æ � � � ÆR

F

0

(Z))

	

interset properly. These do interset properly whenever Y; Z are e�etive yles of degrees

� e and p 2 O�f0g by Theorem 2.6.d. The analogous remarks apply with N replaed by

N

0

. This ompletes the proof.

Remark 3.2. The proof of Theorem 3.1 in fat proves the more general result that one

an \move" e�etive s-yles Z of degrees � e to meet properly (o� the singular lous of

X) all e�etive yles Y of dimension � m� s and degree � e. Namely, we verify that the

arguments of setion 1 apply when C

r;�e

(X) is replaed by

C

�n�s;�e

(X) �

a

r�m�s;d�e

C

r;d

(X):

Similarly, the arguments of setion 2 apply when we replae C

r;�e

(P

n

) by C

�s;�e

(P

n

) and

t = n� r by s.

When k = C our Main Theorem an be phrased di�erently and in a way that may

appeal to omplex geometers. In this ase the p-yles form a topologial abelian group

where the topology is ompatly generated by the images of C

p;�e

(X) � C

p;�e

(X) under

the natural projetion

� : C

p

(X)� C

p

(X) �! Z

p

(X)

We set Z

p;�e

(X)

def

= �

�

C

p;�e

(X)� C

p;�e

(X)

	

Corollary 3.3. Let X � P

n

C

be a omplex projetive variety of dimension m. Let r; s; e

be non-negative integers with r + s � m. Then there exists a Zariski open neighborhood

O of f0g in C, and a ontinuous algebrai map

~

	 : C

s

(X)�O �! C

s

(X)

2

suh that � Æ	 indues by linearity a ontinuous map

	 : Z

s

(X)�O �! Z

s

(X)

satisfying the following properties. Set  

p

= 	

�

�

Z

s

(X)�fpg

for p 2 O.

(a)  

0

= Id:

22



(b) For any Z 2 Z

s

(X) and any p 6= 0 in O, the restrition

	

�

�

fZg�O

: fZg � O �! Z

s

(X);

determines a rational equivalene between Z and  

p

(Z).

() For any p 2 O,  

p

is a ontinuous group homomorphism.

(d) For any Z 2 Z

s;�e

(X); Y 2 Z

r;�e

(X) and any p 6= 0 in O, eah omponent of

exess dimension (i.e., > r + s�m) of the intersetion

jY j \ j 

p

(Z)j

is ontained in the singular lous of X.

Remark. We may paraphrase Corollary 3.3 in terms of families of yles. Let us say

that a olletion fY

�

;� 2 Ag of r-yles on X is a family of yles of bounded degree

if there exists some positive integer e and some funtion g : A ! Z

r;�e

(X) suh that

Y

�

= g(�) for all � 2 A. Then Corollary 3.3 asserts that for a given family fY

�

;� 2 Ag of

r-yles of bounded degree and a given family fZ

�

; � 2 Bg of s-yles of bounded degree,

	 provides a ontinuous move of all s-yles on X with the following property: for any

� 2 A; � 2 B; p 2 O � f0g eah omponent of jY

�

j \ j 

p

(Z

�

)j of exess intersetion lies in

the singular lous of X.

Moreover, Corollary 3.3 further asserts how suh a move is algebrai, thereby moving

one \algebrai family" to another.

As demonstrated in [R℄, [S℄, any s-yle Z an be moved to interset properly any r-

yle Y on a smooth, m-dimensional variety X with r+s � m. This does not immediately

imply that the intersetion produt is well de�ned, for one must verify that if Z

0

; Z

00

are

both obtained from Z by moving Z and both interset Y properly, then Y �Z

0

; Y �Z

00

are

rationally equivalent. As we see in the proof of the following theorem, the fat that suh

an intersetion produt is well de�ned is a straight-forward onsequene of Theorem 3.1

Theorem 3.4 Let X be a smooth, quasi-projetive variety of dimension m and let Y; Z be

yles on X of dimension r; s with r + s � m. If both Z

0

and Z

00

are rationally equivalent

to Z and interset Y properly, then Y � Z

0

; Y � Z

00

are also rationally equivalent.

Proof. We �rst onsider the ase in whih k is either an in�nite �eld or a \suÆiently

large" �nite �eld as in the statement of Theorem 3.1. We may assume that the rational

equivalenes relating Z to Z

0

and Z

00

are given by irreduible, smooth, rational urves.

Thus, setting T = Spek[x; y℄=xy, there is a (at) family Z

T

= fZ

t

: t 2 Tg on T �X of

yles on X parametrized by T giving a rational equivalene between Z = Z

0;0

, Z

0

= Z

1;0

,

and Z

00

= Z

0;1

. Choose some projetive losure X of X.

Write Z

T

= Z

+

T

� Z

�

T

, where Z

+

T

; Z

�

T

are at families of e�etive yles over T .

Let B

i

; i = 1; 2 denote the two branhes of T and let Z

+

B

i

(respetively, Z

�

B

i

) denote the

restrition of Z

+

T

(resp., Z

�

T

) to B

i

. Then the losures Z

�

B

i

in B

i

�X of Z

�

B

i

are at over
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B

i

. Let Z

�

i

denote the �bres of Z

�

B

i

above (0; 0), and let Z

�

0

denote the losures in X of

the �bres of Z

�

T

above (0; 0). Then

Z

+

i

= Z

+

0

+ A

+

i

; Z

�

i

= Z

�

0

+A

�

i

where A

+

1

; A

�

1

; A

+

2

; A

�

2

are e�etive yles on X supported on X �X.

We de�ne

^

Z

+

T

= (Z

+

B

1

+ (A

+

2

� T )) + (Z

+

B

2

+ (A

+

1

� T ))

and observe that

^

Z

+

T

determines a ontinuous algebrai map '

+

: T ! C

s

(X) beause the

restritions to B

1

; B

2

are at and their futher restritions to (0; 0) are equal. We similarly

de�ne

^

Z

�

T

determining '

�

: T ! C

s

(X), and set

' = ('

+

; '

�

) : T ! C

s

(X)

2

:

We now apply Theorem 3.1 with e greater than the degrees of some losure of the positive

and negative parts of Y as well as the degrees of

^

Z

+

t

;

^

Z

�

t

for all t 2 T to obtain

~

	 Æ ('� 1) : T � ` �! C

s

(X)

2

;

for some and some k rational line `. Then for all k-rational points p 2 ` � f0g, the

restrition

~

 

R

: R �! C

s

(X)

2

(3:4:1)

of

~

	 Æ ('� 1) to

R � (f(1; 0)g � `) [ (T � fpg) [ (f(0; 1)g � `)

provides a rational equivalene between (

^

Z

T

)

1;0

and (

^

Z

T

)

0;1

through yles eah of whih

meet Y properly when restrited to X. Thus, sending t 2 R to Y � (

~

 

R

(t))

�

�

X

) determines

a rational equivalene between Y � Z

0

; Y � Z

00

.

Suppose now that k is an arbitary �nite �eld and k ! k

0

is a �nite �eld extension

with k

0

suÆiently large. Let � : X

k

0

! X denote the �nite, at map given by base

extension, where X

k

0

� X �

Spe(k)

Spe(k

0

); this is a map of algebrai k shemes, but

not a map of quasi-projetive algebrai varieties over k. By the preeding argument, the

rational equivalene lass of �

�

(Y � Z

0

� Y � Z

00

) is 0 in the Chow group of r + s � m-

yles on X

k

0

. Sine �

�

Æ �

�

equals multipliation by d

0

= [k

0

: k℄ on yles, �

�

Æ �

�

also equals multipliation by d

0

on rational equivalene lasses of yles. By onsidering

�

�

(Y � Z

0

� Y � Z

00

) for two suh suh suÆiently large �eld extensions k ! k

0

; k ! k

00

of relatively prime degrees d

0

; d

00

over k, we onlude that Y � Z

0

; Y � Z

00

are rationally

equivalent on X.

In [F-G℄, an intersetion produt was de�ned on the Lawson homology groups of a

smooth, omplex, quasi-projetive variety X of dimension m:

L

r

H

2r+i

(X)
 L

s

H

2r+j

(X) �! L

r+s�m

H

2(r+s�m)+i+j

(X); r + s � m:
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This produt was de�ned using an argument involving the Fulton-MaPherson \Defor-

mation to the normal one" tehnique together with a homotopy li�ng argument. The

following onsequene of Theorem 3.1 gives a more onrete onstrution of this interse-

tion produt for X projetive as well as smooth. Even in this ase, the onstruton of

[F-G℄ remains useful in establishing the numerous good properties of this produt.

Theorem 3.5 Let X be a smooth, omplex projetive variety of dimension m and let r; s

be non-negative integers with r+ s � m. Let Z

r

(X) denote the topologial abelian group

of r-yles on X obtained as the \naive" group ompletion of the abelian monoid C

s

(X)

provided with the analyti topology. Then the pairing on homotopy groups indued by

the intersetion produt of [F-G℄

�

i

(Z

r

(X))
 �

j

(Z

s

(X))

�

�! �

i+j

(Z

r+s�m

(X))

an be represented as follows: given homotopy lasses � 2 �

i

(Z

r

(X)); � 2 �

j

(Z

s

(X)),

there exist representative (base point preserving) maps a : S

i

! Z

r

(X); b : S

j

! Z

s

(X)

suh that a(t); b(u) interset properly for all t 2 S

i

; u 2 S

j

and suh that the map sending

t ^ u to the intersetion of a(t) and b(u) is a ontinuous map a � b : S

i+j

! Z

r+s�m

(X)

whih represents � � �.

Proof. Sine the topology on Z

k

(X) is ompatly generated by the images of C

k;�e

(X)

2

for e > 0, we may hoose e suÆiently large that arbitrary representatives a; b

0

of �; � lift

to ontinuous maps ~a :

~

S

i

! C

r;�e

(X)

2

,

~

b

0

:

~

S

j

! C

s;�e

(X)

2

.

The ontinuous algebrai map 	 of Theorem 3.1 hosen for this e determines a on-

tinuous map (for the analyti topology)

	 : Z

s

(X)�O ! Z

s

(X)

with the property that  

0

(i.e., the restrition of 	 to Z

s

(X)�f0g) is the identity. De�ne

b = 	 Æ (b

0

� i

p

) : S

j

! Z

s

(X)�O ! Z

s

(X)

for some p 2 O � f0g, where i

p

: S

j

! O is the onstant map with value p. By Theorem

3.1.d and our hoie of e, the r-yles a(t); b(u) interset properly for all t 2 S

i

; u 2 S

j

.

The intersetion of yles meeting properly is ontinuous, so that a; b determine a

ontinuous map a � b : S

i+j

! Z

r+s�m

(X). The fat that this map represents � �� follows

from [F-G;3.5.a℄.

Remark 3.6. Our tehniques fail to provide a representation of the intersetion produt

on Lawson homology group of omplex, smooth varieties X whih are quasi-projetive

but not projetive. This is beause the \moves" we onstrut for s-yles on a smooth

ompletion X of X do not restrit to moves on s- yles on X �X.

We �nish with a theorem that aptures the fundamental assertion of the duality theory

in [F-L2℄. It says that on a at family of varieties, any yle (of dimension greater than
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that of the base) an be moved so that it beomes itself a family of yles in this family of

varieties. The assertion holds in fat for any algebrai olletion of yles on the family.

Theorem 3.7 Let X be a smooth projetive variety, f : X ! B a at morphism of

varieties over k, and s an integer � dim(X)� dim(B). Assume that k is an in�nite �eld.

Then for any positive integer e, there exist a Zariski open neighbrohood O � P

1

of a

k-rational point 0 2 P

1

and ontinuous algebrai maps

	 = (	

+

;	

�

) : C

s

(X)�O ! C

s

(X)

2

satisfying the following properties (where  

�

p

denotes the restrition of 	

�

to C

s

(X)�fpg):

(a) Z =  

+

0

(Z)�  

�

0

(Z) for every e�etive s-yle Z on X.

(b) For any e�etive s-yle Z, the restrition of 	 to fZg�O determines a rational

equivalene Z

O

� X �P

1

whose �bre equals  

+

p

(Z)�  

�

p

(Z).

() For every e�etive s-yle Z of degree � e, the yles  

+

p

(Z);  

�

p

(Z) interset

properly eah �bre f

�1

(b); b 2 B of f whenever p is a rational point of O�f0g.

Proof. Apply Theorem 3.1 with e replaed by the larger of the integer e of the statement

of this theorem and the maximum of the degrees of the �bres f

�1

(b); b 2 B of f .
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