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The Chow Moving Lemma is a theorem whi
h asserts that a given algebrai
 s-
y
le

on a smooth algebrai
 variety X 
an be moved within its rational equivalen
e 
lass to

interse
t properly a given r-
y
le on X provided that r + s � dim(X) (
f. [Chow℄, [S2℄).

In the past few years, there has been 
onsiderable interest in studying spa
es of algebrai



y
les rather than simply 
y
les modulo an equivalen
e relation. With this in mind, it is

natural to ask whether one 
an move a given \bounded family" of s-
y
les on the smooth

variety X to interse
t properly a given \bounded family" of r-
y
les. The main point of

this paper is to formulate and prove just su
h a result. In Theorem 3.1, we demonstrate

that for any integer e and any smooth proje
tive variety X, one 
an simultaniously and

algebrai
ally \move" all e�e
tive s-
y
les of degree � e on X so that ea
h su
h 
y
le meets

every e�e
tive r-
y
le of degree � e on X in proper dimension.

The primary motivation for this Moving Lemma for Cy
les of Bounded Degree was

the possibility of a duality theorem between 
ohomology and homology theories de�ned

in terms of homotopy groups of 
y
le spa
es. Using Theorem 3.1, we have proved su
h

a duality theorem for 
omplex quasi-proje
tive varieties in [F-L2℄. We prove our Moving

Lemma for varieties over an arbitary in�nite �eld, permitting a proof in [F-V℄ of a duality

theorem for \motivi
 
ohomology and homology".

The reader will �nd that our Moving Lemma has numerous good properties. First of

all, the move is given as an algebrai
 move (parametrized by a pun
tured proje
tive line)

on Chow varietes. Although this move is \good" only for s-
y
les of bounded degree, it

is de�ned on all e�e
tive s-
y
les. Moreover, the move starts at \time 0" by expressing

an e�e
tive s-
y
le Z as a di�eren
e of e�e
tive s-
y
les both of whi
h have interse
tion

properties no worse than Z. Finally, our Moving Lemma is appli
able to smooth quasi-

proje
tive varieties, for it is stated for a possibly singular proje
tive variety X resulting in

a 
on
lusion of proper interse
tion o� the singular lo
us of X.

The 
lassi
al motivation for the moving lemma was to de�ne an interse
tion produ
t

on algebrai
 
y
les modulo rational equivalen
e, thereby establishing the Chow ring A

�

(X).

Apparently, the 
lassi
al literature overlooked the question of whether or not interse
tion

of 
y
les de�ned via a moving lemma is independent of the move (e.g., [Chev℄, [Chow℄,

[R℄, [S2℄). One dire
t 
onsequen
e of our Moving Lemma is a proof for smooth quasi-

proje
tive varieties that the interse
tion produ
t is indeed well de�ned independent of the


hoi
e of move (Theorem 3.4). Of 
ourse, the interse
tion produ
t now has an intrinsi


formulation for all smooth algebrai
 varieties due to Fulton and Ma
Pherson [Fu℄. We

�
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should emphasize that our arguments are proje
tive in nature, and thus apply dire
tly

only to quasi-proje
tive varieties.

We gratefully a
knowledge helpful 
omments from William Fulton and Vladimir Vo-

evodsky. We are espe
ially indebted to Ofer Gabber who foresaw the validity of su
h a

moving lemma for families and dire
ted us to lo
al estimates arising in the proof of the

key Theorem 1.1.

0. De�nitions, Conventions, and a Brief Outline

We adopt the following 
onventions thoughout. We �x a ground �eld k, 
hoose an

algebrai
 
losure k � k, and 
onsider proje
tive spa
es P

n

over k of various dimensions

n. A proje
tive variety over k is a redu
ed and absolutely irredu
ible algebrai
 k-

s
heme whi
h admits a (Zariski) 
losed embedding in some proje
tive spa
e P

n

. A quasi-

proje
tive variety over k is a Zariski open subset of some proje
tive algebrai
 variety

over k whose 
omplement has de�ning ideal also de�ned over k. The set of geometri


points X(k) of su
h a quasi- proje
tive variety X is the set of morphisms Spe
(k) ! X

of s
hemes over k. For a point x on a quasi-proje
tive variety X, we denote by O

X;x

the

stalk at x 2 X of the stru
ture sheaf of X and by m

x

the maximal ideal of this lo
al

ring. An algebrai
 
y
le Z of dimension r on a quasi-proje
tive variety X is an integral


ombination of 
losed, r-dimensional subvarieties of X, whi
h are (redu
ed, irredu
ible but

not ne
essarily absolutely irredu
ible and) de�ned over k. We say Z is e�e
tive if the

integer 
oeÆ
ients are all positive. Given a 
y
le Z on X, we de�ne its support to be

the algebrai
 subset jZj � X 
onsisting of the union of the irredu
ible 
omponents of Z.

If Y and Z are 
y
les on X of dimension r and s respe
tively with r + s � m = dim(X),

we say that Y and Z interse
t properly if ea
h 
omponent of jY j \ jZj has dimension

� r + s �m. If X is smooth and if Y and Z interse
t properly, then the interse
tion

produ
t Y � Z is a well- de�ned 
y
le of dimension r + s�m on X (See [Fu℄).

Let X � P

n

be a 
losed embedding over k of an m- dimensional proje
tive variety X.

For integers d � 0 and r with 0 � r < dim(X), we denote by C

r;d

(X) the Chow variety

of e�e
tive r-
y
les of degree d on X (
f. [S1℄). The disjoint union

C

r

(X) =

a

d�0

C

r;d

(X)

has the stru
ture of an abelian monoid and is 
alled the Chow monoid. The geometri


points C

r

(X)(k) of this Chow monoid 
onstitute the (dis
rete) monoid of e�e
tive r-
y
les

on X

k

, the base-
hange of X to Spe
(k). (See [F,1.2℄ for a dis
ussion of the the k

0

-rational

points of C

r

(X) for any k

0

=k.)

Given an r-
y
le Y and an s-
y
le Z on a proje
tive variety X � P

n

of dimension

m with r + s � m, the 
lassi
al Chow Moving Lemma (
f. [R℄) asserts the existen
e of

a rational equivalen
e between Z and a ne
essarily ine�e
tive s-
y
le Z

0

whi
h interse
ts

Y properly at all smooth points of X. Roughly speaking the proof pro
eeds as follows.

One 
onsiders a linear proje
tion �

L

: P

M

�! P

m

whose vetex L

�

=

P

M�m�1

does not

meet X and 
onstru
ts the proje
ting 
one C

L

(Z) = �

�

L

(�

L�

(Z)) of Z. Sin
e �

L

�

�

X

is a

�nite morphism, C

L

(X)�X is a well-de�ned s-
y
le on X whi
h 
an be moved to interse
t
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Y properly by moving the 
one C

L

(Z) in P

M

. The idea then is to 
hoose L so that the

residual 
y
le

R

L

(Z) = C

L

(Z) �X � Z

interse
ts Y properly at least at all points outside the rami�
ation lo
us of p

L

def

= �

L

�

�

X

.

Furthermore, any 
omponent of ex
ess interse
tion of jR

L

(Z)j \ jY j lies in ram(p

L

)\ jZj \

jY j. Thus, if we 
hoose L

1

; : : : ; L

m+1

so that \

i

ram(p

L

i

) is 
ontained in the singular lo
us

of X, then after m+ 1 iterations the residual 
y
le R

L

m+1

ÆR

L

m

Æ � � � ÆR

L

1

(Z) will meet

Y properly at all regular points of X.

In our paper we shall 
arry through this argument so that it applies simultaneously

to all e�e
tive 
y
les Y; Z of degree bounded by any spe
i�ed positive integer e. To do

this we 
onsider the reimbeddings X ,! P

M

d

via the Veronese embeddings P

M

,! P

M

d

of degree d. For ea
h d we 
onsider the subset U

X

(d) of linear subspa
es of 
odimension

m + 1 in P

M

d

whi
h do not meet X. The main point is to show that the 
odimension of

\bad L's" in U

X

(d), i.e., those for whi
h R

L

(Z) does not have an improved interse
tion

with Y , goes to in�nity as d goes to in�nity. This is a
hieved in x1.

In x2 we 
onstru
t the moving of the proje
ting 
ones. This is 
onventionally done by

proje
tive transformations of the ambient P

M

. Here we introdu
e a di�erent method whi
h

is related to the movings introdu
ed in [L℄ and algebrai
ized in [F℄ to prove the \algebrai


suspension theorem" in Lawson homology. This argument essentially veri�es that e�e
tive

s-
y
les of bounded degree in P

n


an be moved to interse
t properly a hyperplane. Here

we generalize this argument so that it applies to all e�e
tive r-
y
les of bounded degree,

where s+ r � n, rather than to a single hyperplane.

In x3 we present our main results. In addition to Theorems 3.1 and 3.4 mentioned

above, we prove in Theorem 3.5 that the interse
tion produ
t on homotopy groups of 
y
le

spa
es on a smooth, proje
tive 
omplex variety (
f. [F-G℄) 
an be represented by the

interse
tion of families of 
y
les whi
h have been moved to interse
t properly. In Theorem

3.7, we present a basi
 ingredient of duality theorems for 
y
le spa
es. It is the assertion

that for a 
at map X ! B from a smooth variety, families of s-
y
les on X with s � dimB


an be moved to be equidimensional over B.

1. Residual 
y
les

Consider an m-dimensional proje
tive variety X provided with a 
losed embedding

X � P

n

over k. Choose a positive integer d and de�ne

U

X

� U

X

(d) � P(�(O

P

n

(d)

m+1

))

to be the Zariski open set of those F = (f

0

; : : : ; f

m

) with the property that the zero

lo
us L

F

= ft 2 P

n

: F(t) = 0g misses X and thus has 
odimension m + 1 in P

n

.

(More pre
isely, F is a k-rational point of the indi
ated Zariski open subset.) Ea
h su
h

F determines a �nite morphism (de�ned over k)

p

F

: X �! P

m

(1:0:1)

3



whi
h 
an be viewed as follows. Let v : P

n

�! P

M

denote the Veronese embedding of

degree d (so M =

�

n+d

d

�

� 1). Then ea
h F 2 U

X

determines a surje
tive linear proje
tion

�

F

: P

M

��� > P

m

(1:0:2)

with the property that p

F

= �

F

Æ v

�

�

X

. The 
ondition F(x) 6= 0 for x 2 X is equivalent to

the 
ondition that the linear subspa
e L(F)

def

= the vertex of the proje
tion �

F

, does not

meet v(X).

Suppose now that Y; Z � X are 
losed algebrai
 subsets of pure dimension r and s

respe
tively, where r+s � m. Let Y �Z�� denote (Y �Z)\ (X

2

�diag(X)) and denote

by Y ?

F

Z the following 
losed subset of Y � Z ��:

Y ?

F

Z � f(y; z) : y 6= z; p

F

(y) = p

F

(z)g

for any F 2 U

X

. We begin by investigating the 
ondition on F 2 U

X

that Y ?

F

Z should

have pure dimension r + s�m.

An interesting spe
ial 
ase of the following theorem is the 
ase in whi
h Y equals Z,

a 
y
le of dimension r � m=2 on the proje
tive variety X of dimension m. Then, our

theorem asserts for \most" proje
tions of suÆ
iently high degree that the proje
tion is

inje
tive on 
omponents of Z o� a subset of dimension no greater than 2r �m.

Theorem 1.1 Let X � P

M

be a 
losed embedding over k of an m-dimensional proje
tive

variety X. Consider 
losed algebrai
 subsets Y; Z � X of pure dimension r; s respe
tively,

and assume that r + s � m. Then for any k-rational point F 2 U

X

(d), ea
h irredu
ible


omponent of Y ?

F

Z has dimension � r + s�m.

Fix any integer N > 0, and suppose for ea
h 
losed point w = (y; z) 2 Y �Z �� and

for ea
h ' 2 �(O

P

n

(d)) with '(y) 6= 0 6= '(z) that the map

�(O

P

n

(d)) �! O

Y;y

=m

N+1

y

�O

Z;z

=m

N+1

z

;

sending f to the restri
tions of f=', is surje
tive . Then the subset

B(d)

fY;Zg

� U

X

(d)

of those F for whi
h some 
omponent of Y ?

F

Z has dimension > r + s�m is a (Zariski)


losed subset of 
odimension at least N � r � s.

Proof. Fix w = (y; z) 2 Y � Z �� and denote by B

w

� U

X

� U

X

(d) the subset of those

F = (f

0

; : : : ; f

m

) for whi
h some 
omponent of Y ?

F

Z has dimension > r + s �m at w.

Observe that the germ at w of the variety Y ?

F

Z is de�ned by the equations:

f

i

(y

0

)f

j

(z

0

) = f

j

(y

0

)f

i

(z

0

) for 0 � i; j � m (1:1:1)

in a neighborhood of w = (y; z) in Y �Z. Now there exists a linear 
ombination ' =

P

a

i

f

i

of f

0

; : : : ; f

m

with the property that '(y) 6= 0 6= '(z). For notational 
onvenien
e we

assume that ' = f

0

, and we restri
t attention to those F 2 U

X

for whi
h f

0

(y) 6= 0 6= f

0

(z).
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The general 
ase will follow sin
e U

X

is 
overed by a �nite 
olle
tion of sets of this type.

(In fa
t the set of linear 
ombinations f

i

+ f

j

for 0 � i � j � m will do.)

With this assumption on f

0

one sees dire
tly that equations (1.1.1) are equivalent to

the equations:

g

i

F

(y

0

; z

0

) =

f

i

(y

0

)

f

0

(y

0

)

�

f

i

(z

0

)

f

0

(z

0

)

= 0 for 1 � i � m (1:1:2)

on the germ of Y �Z at w. In parti
ular, the germ at w of Y ?

F

Z has dimension � r+s�m.

We now pro
eed indu
tively to estimate the dimension of the bad set B

w

. We phrase

the problem in terms of the lo
al rings. In what follows, m will always denote the maximal

ideal of the lo
al ring in question. Set R(w;F)

0

= O

Y�Z;w

, and let R(w;F)

i

denote the

lo
al ring O

Y�Z;w

=hg

1

F

; : : : ; g

i

F

i for 1 � i � m. If R(w;F)

i

has pure dimension r+ s� i for

some i < m, then the 
ondition on g

i+1

F

that R(w;F)

i+1

have dimension � r + s � i � 1

is the 
ondition that g

i+1

F

be non-zero in R(w;F)

i;�

� R(w;F)

i

=P

i;�

for ea
h minimal

prime P

i;�

of R(w;F)

i

. This is guaranteed if the 
lass of g

i+1

F

is non-zero in the quotient

R(w;F)

i;�

=m

N+1

for all �.

Let us now �x ' 2 �(O

P

n

(d)) with '(y) 6= 0 6= '(z) and set B

w;'

= fF 2 B

w

: f

0

=

'g. Consider the subset B

i+1

w;'

� B

w;'

of those F for whi
h R(w;F)

i

has pure dimension

r + s � i but R(w;F)

i+1

is not of dimension r + s� (i + 1). By the paragraph above we

know that if F 2 B

i+1

w;'

, then for some �, f

i+1

lies in the kernel K

i+1;�

� ker(G

i+1

�

) of the

linear map

G

i+1

�

: �(O

P

n

(d)) �! R(w;F)

i;�

=m

N+1

(1:1:3)

de�ned by taking the image in R(w;F)

i;�

=m

N+1

of the germ at w = (y; z) of the fun
tion

G

i+1

(F)(y

0

; z

0

) =

f

i+1

(y

0

)

'(y

0

)

�

f

i+1

(z

0

)

'(z

0

)

: (1:1:4)

We make the following 
laim whi
h is proved below.

Claim:


odim(K

i+1;�

) � N: (1:1:5)

We now show how this 
laim proves the theorem. Consider the 
losed subvariety

W � f(y; z;F) : (y; z) 2 (Y ?

F

Z)


l

g � Y � Z � U

X

;

where (Y ?

F

Z)


l

� Y �Z denotes the 
losure of Y ?

F

Z. By upper semi-
ontinuity of the

dimension of the �bres ofW ! U

X

, we 
on
lude that B(d)

fY;Zg

� U

X

is a 
losed subvariety.

Moreover, if

~

B � W denotes pr

�1

3

(B(d)

fY;Zg

), then the �bre of

~

B above w 2 (Y � Z)��

equals B

w

. Therefore if we prove that

The 
odimension of B

w

in fwg � U

X

is � N; (1:1:6)

it will follow that the 
odimension of pr

3

(

~

B) = B(d)

fY;Zg

in U

X

is at least N � r � s as


laimed.
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To prove (1.1.6) we pro
eed as follows. Set � = �(O

P

n

(d)) and let p : U

X

�

�

�(m+1)

�! � denote proje
tion onto the �rst 
oordinate. Then for ' 2 � with '(y) 6=

0 6= '(z) we see that

B

w;'

= p

�1

(') \ B

w

�

=

�

�m

\ B

w

:

It will suÆ
e to prove that the 
odimension of B

w;'

in �

�m

is � N . Note that

B

w;'

=

m

[

i=1

B

i

w;'

;

and that B

1

w;'

�

S

�

K

1;�

. Now for i > 1, the K

i;�

depend on F

k

for k < i. So �x

i > 1, let p : �

�m

! �

�i

be proje
tion onto the �rst i 
oordinates, and let G

i

denote the


omplement of p(B

1

w;'

[ � � � [ B

i

w;'

) � �

�i

. (Note that G

i


onsists of all F

i

= (F

1

; : : : ;F

i

)

su
h that R(w;F)

i

has pure dimension r + s� i). Then for ea
h F

i

2 G

i

we have that

p

�1

�

F

i

�

\ B

i+1

w;'

�

�

[

�

K

i+1;�

�

� �

�(m�i�1)

� �

�(m�i)

where the union over � is �nite. Hen
e (1.1.6) follows from our 
laim (1.1.5).

Thus it remains to prove our 
laim (1.1.5) for i = 0; :::;m� 1. We pro
eed as follows.

Denote by R(y;F)

i;�

the quotient of the lo
al ring O

Y;y

by the pre-image of P

i;�

under the


omposition O

Y;y

�! O

Y�Z;w

�! R(w;F)

i;�

. We de�ne R(z;F)

i;�

analogously. These

rings 
orrespond to the proje
tions to Y and Z of the subvariety with generi
 point P

i;�

.

For i < m one of these proje
tions must have positive dimension (sin
e the subvariety

itself does). Hen
e, for i < m at least one of R(y;F)

i;�

, R(z;F)

i;�

has Krull dimension

� 1. We assume wlog that this is true of R(y;F)

i;�

. Then (by further proje
tion onto a

generi
 line) we know that

dim

�

R(y;F)

i;�

=m

N+1

�

� N: (1:1:7)

Let � = �(O

P

n

(d)) as above and note that the map G

i+1

: � �! O

Y�Z;w

de�ned in

(1.1.4) fa
tors through the subspa
e O

Y;y

�O

Z;z

� O

Y�Z;w

. Passing to quotients gives a

linear map

^

G

i+1

: � �! O

Y;y

=m

N+1

y

�O

Z;z

=m

N+1

z

�

� O

Y�Z;w

=m

N+1

w

�

whi
h by our assumption is surje
tive. Write

^

G

i+1

= (

^

G

i+1

1

;

^

G

i+1

2

) with respe
t to the

splitting above and let �

0

= ker(

^

G

i+1

2

). Then

^

G

i+1

1

: �

0

�! O

Y;y

=m

N+1

y

�f0g is surje
tive.

This produ
es a 
ommutative diagram

�

0

�! O

Y;y

=m

N+1

y

�O

Z;z

=m

N+1

z

�! R(w;F)

i;�

=m

N+1

^

G

i+1

1

& " " '
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O

Y;y

=m

N+1

y

�

�! R(y;F)

i;�

=m

N+1

where

^

G

i+1

1

and � are surje
tive and where ' is inje
tive (sin
e it 
orresponds to pull-ba
k

of fun
tions from the image of proje
tion of the subvariety). Our 
laim now follows from

(1.1.7). This 
ompletes the proof.

In order to apply Theorem 1.1, we show in the following lemma that the surje
tivity

hypothesis of the proposition is satis�ed for all suÆ
iently large degrees d.

Lemma 1.2. Retain the notation of Theorem 1.1. For ea
h N > 0, there exists some d

N

su
h that for all d � d

N

the map

�(O

P

n

(d)) �! O

Y;y

=m

N+1

y

�O

Z;z

=m

N+1

z

(1:2:1)

sending f to the restri
tions of f=' is surje
tive for all 
losed points (y; z) 2 Y � Z ��,

all ' 2 �(O

P

n

(d)) with '(y) 6= 0 6= '(z).

Proof. Sin
e O

P

n

;y

! O

Y;y

, O

P

n

;y

! O

Z;z

are surje
tive lo
al homomorphisms, it suÆ
es

to 
onsider the spe
ial 
ase Y = P

n

= Z. Moreover, base-
hanging by a �eld extension

Spe
(k

0

)! Spe
(k) merely tensors the map (1.2.1) with k

0

over k. Consequently, it suÆ
es

to assume that both y; z are rational points of P

n

. By the two-point homogeneity of P

n

under PGL

n+1

, it thus suÆ
es to verify the existen
e of d

N

for a single pair of (rational)

points (y; z) 2 P

n

�P

n

.

The map sending f to the restri
tions of f=' in O

Y;y

=m

N+1

y

and O

Z;z

=m

N+1

z

has

image whose dimension is independent of the 
hoi
e of ' with '(y) 6= 0 6= '(z) sin
e the

quotient of any two su
h 
hoi
es of ' is invertible in both O

Y;y

and O

Z;z

. Hen
e, it will

suÆ
e to 
onsider the 
ase where ' = X

d

0

for some X

0

2 �(O

P

n

(1)).

Let R = k[X

1

=X

0

; : : : ; X

n

=X

0

℄ denote the 
oordinate algebra of the aÆne variety

A

n

= P

n

� fX

0

= 0g, where we assume that X

0

(y) 6= 0 6= X

0

(z). Sin
e m

N+1

y

;m

N+1

z

are


oprime in R, the Chinese Remainder Theorem implies that

R �! R=m

N+1

y

� R=m

N+1

z

is surje
tive. Let d

N

be the minimal degree d for whi
h polynomials of degree � d

N

in R

map via this surje
tive map onto R=m

N+1

y

� R=m

N+1

z

. Then for any d � d

N

, (1.2.1) is

surje
tive.

Let X be a proje
tive variety provided with a 
losed embedding X � P

n

over k and


onsider non-negative integers r; d. For any non-negative integer e, set

C

r;�e

(X) =

a

d�e

C

r;d

(X):

In the next proposition we 
onsider the Veronese embeddings of X of degree d. We


onsider all 
y
les of �xed degree � e (in the original embedding) and examine those

7



proje
tions whi
h are \bad" for pairs of su
h 
y
les. The main assertion is that the


odimension of these bad proje
tions goes to in�nity with d.

Proposition 1.3. Let X � P

n

be a 
losed subvariety of dimension m, let r; s be non-

negative integers with r + s � m, and let e be a positive integer. There exist (Zariski)


losed subsets B(d)

e

of the quasi-proje
tive variety U

X

(d),

B(d)

e

� U

X

(d) � P(�(O

P

n

(d)))

m+1

;

for d > 0 with

lim

d!1


odimB(d)

e

=1

whi
h satisfy the following property: for any e�e
tive r-
y
le Y on X of degree � e and

any e�e
tive s-
y
le Z on X also of degree � e, jY j ?

F

jZj has pure dimension r + s �m

whenever F is a k-rational point of U

X

(d)� B(d)

e

.

Proof. For notational brevity, let C

r;e

denote C

r;�e

(X). We de�ne

W

e

� X

2

� C

r;e

� C

s;e

� U

X

(d)

to be the 
losed subariety of those quintuples (y; z; Y; Z;F) for whi
h y � z lies in the


losure of some 
omponent of Y ?

F

Z. The prin
iple of upper semi-
ontinuity applied to

W

e

over C

r;e

� C

s;e

� U

X

(d) implies that

V

e

� C

r;e

� C

s;e

� U

X

(d)

is a 
losed subvariety, where V

e


onsists of those triples (Y; Z; F ) su
h that Y ?

F

Z has

some irredu
ible 
omponent of dimension > m� r � s. Thus,

B(d)

e

= pr

3

(V

e

) � U

X

(d)

is a 
losed subvariety of U

X

(d).

Observe that the �bre of V

e

above (Y; Z) 2 C

r

� C

s

is B

fY;Zg

(in the notation of

Proposition 1.1). Let E

r

= dimfC

r;e

g; E

s

= dimfC

s;e

g. By Theorem 1.1 and Lemma

1.2, for any N we may �nd d

N

so that B(d)

fY;Zg

� U

X

(d) has 
odimension at least

N � E

r

� E

s

� r � s for d � d

N

. Hen
e, B

e

(d) has 
odimension � N � r � s for d � d

N

.

Finally, if Y; Z are e�e
tive r; s 
y
les of degrees � e and if Y ?

F

Z has some 
omponent

of dimension > r + s�m, then (Y; Z;F) determines a point of V

e

so that F 2 B(d)

e

.

Chow's 
lassi
al te
hnique of moving Z to interse
t Y properly entails 
onsideration

of a Veronese embedding P

n

! P

M

and a linear plane L � P

M

of 
odimension m + 1

missing X. We let �

L

: P

M

� �� > P

m

denote the linear proje
tion with 
enter L and

p

L

: X ! P

m

denote the �nite morphism given as the restri
tion of �

L

to X. Departing

from the 
lassi
al 
onstru
tion (
f [R℄), we de�ne the proje
ting 
one of a 
y
le Z on X

to be the 
y
le

C

L

(Z)

def

= �

�

L

(p

L�

(Z)) � P

M

;

8



where p

L�

denotes proper push-forward and �

�

L

denotes the algebrai
 join operation (�)#L

sending a 
y
le W on P

m

to W#L on P

m

#L = P

M

(
f. [L,2.10℄). This di�ers from

the 
lassi
al de�nition whi
h is given by the dis
ontinuous 
onstru
tion of sending an

irredu
ible 
y
le Z to �

�

L

(p

L

(Z)), where p

L

(Z) is the irredu
ible, redu
ed image of Z.

Sin
e p

L

is a �nite map, the interse
tion produ
t C

L

(Z) �X is de�ned for all 
y
les

Z on X. We re
all that p

L

: X ! P

m

is 
at at any smooth point x 2 X (
f. [Mat,20.D℄).

Thus, if no 
omponent of Z is 
ontained in the singular lo
us of X, then C

L

(Z) �X 
an

alternatively be des
ribed as the 
losure in X of p

ns�

L

(p

L�

(Z)), where p

ns

L

: X

ns

! P

m

is

the restri
tion to p

L

to the 
omplement of the singular lo
us of X.

One 
onsiders the residual 
y
le

R

L

(Z)

def

= C

L

(Z) �X � Z:

This is a linear 
onstru
tion on 
y
les, sending e�e
tive 
y
les to e�e
tive 
y
les (
f. Lemma

1.6).

Given Y and Z, one wants to 
hoose L so that R

L

(Z) has an improved interse
tion

with Y . A key to this is the following lemma proved in [R℄ for the 
lassi
al de�nition of

residual 
y
le involving the 
lassi
al proje
ting 
one �

�

L

(p

L

(Z)) �X. Denote by ram(p

L

)

the rami�
ation lo
us of the �nite map p

L

: X �! P

m

. (In parti
ular ram(p

L

) 
ontains

all the singular points of X.)

Proposition 1.4 (
f. [R; Lemma 6℄) Let Z, X and L be as above and 
onsider a geometri


point y : Spe
(k)! jR

L

(Z)j above a 
losed point y 2 jR

L

(Z)j. Then either:

(i) There exists a geometri
 point z : Spe
(k) ! jZj over a 
losed point z 2 jZj

with z 6= y and p

L

(z) = p

L

(y), or:

(ii) y 2 ram(p

L

).

Proof. Sin
e the 
onstru
tion of the residual 
y
le is additive, we may assume that Z is

irredu
ible. By de�nition of R

L

(Z), if y =2 Z, then there exists a point z 2 Z with z 6= y

and p

L

(z) = p

L

(y). Thus, we may assume y 2 Z.

If [Z : p

L

(Z)℄ > 1 (i.e., if the fun
tion �eld of Z is a non-trivial extension of that of

p

L

(Z)), then either (i) is satis�ed for some z : Spe
(k) ! Z or in a formal neighborhood

of y at least two sheets of Z (above a formal neighborhood of p

L

(y) 2 P

m

) interse
t at y.

This latter situation implies that in a formal neighborhood of y 2 X at least two sheets of

X interse
t at y so that y 2 ram(p

L

).

If [Z : p

L

(Z)℄ = 1 and if Z is a 
omponent of R

L

(Z), then as shown in [R; Lemma 6℄

p

L

must ramify along all of Z. Namely, a \general" point of Z is ne
essarily smooth on Z

and would also be smooth on X if p

L

does not ramify along Z. At su
h a point, p

L

is etale

and so the multipli
ity of Z in p

ns�

L

(p

L�

(Z)) is 1; this 
ontradi
ts the assumption that Z

is a 
omponent of R

L

(Z).

Finally, assume that [Z : p

L

(Z)℄ = 1 and that Z is not a 
omponent of R

L

(Z).

Sin
e y 2 jR

L

(Z)j, y lies in some 
omponent R of R

L

(Z) not equal to Z. Then, in a

formal neighborhood of y 2 jR

L

(Z)j at least two sheets (one determined by Z and another

determined by R) interse
t at y so that y 2 ram(p

L

).
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As in (1.0.1) and (1.0.2), for ea
h (m + 1)-tuple F = (f

0

; : : : ; f

m

) of homogeneous

forms of degree d on P

n

, we 
onsider the asso
iated linear proje
tion �

F

: P

M

��� > P

m

with 
enter L(F). If X � P

n

is a subvariety of dimension m and if F 2 U

X

(d), we denote

by p

F

: X ! P

m

the �nite map given by restri
ting �

F

to X � P

M

(embedded via the

Veronese embedding). For any 
y
le Z on X we set

C

F

(Z) = �

�

F

(p

F�

((Z))) = C

L(F)

(Z) and R

F

(Z) = C

F

(Z) �X � Z:

Corollary 1.5. Consider a proje
tive variety X of dimension m provided with a 
losed

embedding X � P

n

. Let Y be an r-
y
le and Z an s-
y
le on X with r + s � m � 0.

Assume F 2 U

X

(d) satis�es the 
ondition that jY j ?

F

jZj has no 
omponent of ex
ess

dimension (i.e., > r + s�m). Then any 
omponent of jY j \ jR

F

(Z)j of ex
ess dimension

must be 
ontained in jY j \ jZj \ ram(p

F

).

Proof. By de�nition of jY j ?

F

jZj, any y 2 (jY j \ jR

F

(Z)j) � jZj ne
essarily lies in

pr

jY j

(jY j?

F

jZj). By Proposition 1.5, any y 2 (jY j\jR

F

(Z)j)�ram(p

F

) admits a geometri


point (y; z) : Spe
(k) ! jY j ?

F

jZj whi
h proje
ts to y over y, so that y also lies in

pr

jY j

(jY j ?

F

jZj). Thus, the 
omplement of jY j \ jZj \ ram(p

F

) in jY j \ jR

F

(Z)j lies in

pr

jY j

(jY j ?

F

jZj) whose 
omponents have dimensions less than or equal to that of the

maximal dimension of the 
omponents of jY j ?

F

jZj.

We shall use the following property of the 
onstru
tion of residual 
y
les. We re
all

that a 
ontinuous algebrai
 map f : X ! Y with Y proje
tive is a set-theoreti
 map

on geometri
 points whi
h is indu
ed by a 
orresponden
e �

F

� X � Y (
f. [F℄).

Lemma 1.6. Let F be a k-rational point of U

X

(d) � P(�(O

P

n

(d)))

m+1

. Then R

F

(Z) is

an e�e
tive s-
y
le on X whenever Z is itself an e�e
tive s-
y
le on X. Moreover, sending

Z to R

F

(Z) determines a 
ontinuous algebrai
 map

R

F

(�) : C

s;�e

(X)! C

s;�e

0

(X);

where e

0

is a positive integer depending upon d; e and the degree of X.

Proof. The fa
t that R

F

(�) sends e�e
tive 
y
les on X to e�e
tive 
y
les on X follows

immediately from the observation that ea
h of the operations in the de�nition of R

F

(�)

is a well de�ned operation on e�e
tive 
y
les.

We employ various fun
toriality properties proved in [F℄. The Veronese embedding

� : P

n

! P

M

of degree d determines a morphism

�

�

: C

s;�e

(X)! C

s;�d

s

e

(�(X)):

The linear proje
tion p

F

: �(X)! P

m

determines a morphism

p

F�

: C

s;�d

s

e

(�(X))! C

s;�d

s

e

(P

m

):
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The join 
onstru
tion determines a 
ontinuous algebrai
 map

�

�

F

: C

s;�d

s

e

(P

m

)! C

s+M�m;�d

s

e

(P

M

):

Furthermore, interse
tion produ
t in P

M

determines a 
ontinuous algebrai
 map

(�) �X : C

s+M�m;�d

s

e

(P

M

)! C

s;�d

s

ef

(P

M

)

where f equals the degree of �(X). Finally, the additive stru
ture of the Chow monoid is

also given by 
ontinuous algebrai
 maps. Thus, sending Z to R

F

(Z) � �

�

F

(p

P

m

�

(Z))�X�Z

is a 
ontinuous algebrai
 map.

In the following theorem, we verify that an iteration of the residual 
y
le 
onstru
tion

enables one to arrange (by 
hoosing the degrees of proje
tions suÆ
iently large) that the

iterated residual 
y
le for Z meets Y properly for all e�e
tives 
y
les Y; Z of degree � e.

Theorem 1.7 Let X � P

n

be a 
losed subvariety of dimension m, and let U � X be the

Zariski open subset 
onsisting of the smooth points of X. For any (m+1)-tuple of positive

integers d = (d

0

; : : : ; d

m

), there is a (Zariski) open dense subset

R

X

(d) �

m

Y

i=0

U

X

(d

i

) �

m

Y

i=0

P(�(O

P

n

(d

i

))

m+1

)


onsisting of (m+ 1)-tuples F

�

� (F

0

; : : : ;F

m

) with the property that

U \ ram(p

F

0

) \ : : : \ ram(p

F

m

) = ;:

For any non-negative integers r; s with r + s � m and any positive integer e, there

exists a (Zariski) 
losed subset

B(d)

e

� R

X

(d)

su
h that

(a) The 
odimension of B(d)

e


an be made arbitrarily large for all appropriately 
hosen

d whi
h are suÆ
iently large (
f. (1.8) below).

(b) For all e�e
tive r-
y
les Y and s-
y
les Z of degree � e on X and for all k-rational

points F

�

2 R

X

(d)�B(d)

e

, ea
h 
omponent of

jY j \ jR

F

�

(Z)j ; R

F

�

(Z) � R

F

m

Æ � � � ÆR

F

0

(Z)

of \ex
ess" dimension (i.e., > r + s�m) is 
ontained in the singular lo
us X � U .

Proof. We 
onsider the (
losed) in
iden
e 
orresponden
e J � U

X

(d

0

)�X : : :�U

X

(d

m

)�

X of those (F

0

; x

0

; : : : ;F

m

; x

m

) with x

j

2 ram(p

F

j
) for all j. Then the 
omplement of

R

X

(d) in U

X

(d) �

Q

m

j=0

U

X

(d

j

) is given by

U

X

(d)�R

X

(d) = prfJ ) \ (U

X

(d)��(X)g;

11



where pr is the proper proje
tion pr : U

X

(d

0

) � X : : : � U

X

(d

m

) � X ! U

X

(d) and

� : X ! X

m+1

is the diagonal embedding. Hen
e, R

X

(d) is open.

For any smooth point of x 2 X, those F 2 U

X

(d) su
h that p

F

rami�es at x is

a proper 
losed subset (de�ned by the 
ondtion that L

F

meet the tangent planes of X

at x). Thus, the subset of those F for whi
h p

F

rami�es everywhere is a proper 
losed

subset of U

X

(d) (empty, if k has 
hara
teristi
 0). We readily see that R

X

(d) is non-

empty by observing that F

�

2 R

X

(d) provided that p

F

0

does not ramify everywhere and

su
h that p

F

j
does not ramify everywhere along any non-empty irredu
ible 
omponent of

ram(p

F

j�1
) \ � � � \ ram(p

F

0

) \ U , for ea
h j with 0 < j � m.

The asserted B(d)

e

is the interse
tion with R

X

(d) of the Zariski 
losed subset

B

0

(d)

e

� U

X

(d)


onstru
ted as the union over j, 0 � j � m, of 
losed subsets

U

X

(d

0

)� : : :U

X

(d

j�1

)� B(d

0

; : : : ; d

j

)

e

� : : :U

X

(d

m

)

for suitably de�ned 
losed subsets B(d

0

; : : : ; d

j

)

e

� U

X

(d

j

). Namely, B(d

0

)

e

� U

X

(d

0

)

is the 
losed subset given by Proposition 1.3 for d

0

; e. By Lemma 1.6, the residual 
y-


les R

F

(Z) 
onstru
ted for F

0

2 U

X

(d

0

) and e�e
tive 
y
les Z on X of degree bounded

by e are of degrees bounded by some e

1

(depending upon both e and d

0

). We de�ne

B(d

0

; d

1

)

e

� U

X

(d

1

) to be the 
losed subset given by Proposition 1.3 for d

1

; e

1

. Con-

tinuing indu
tively, we 
on
lude by Lemma 1.6 that the residual 
y
les R

F

j�1

Æ R

F

0

(Z)


onstru
ted for F

0

2 U

X

(d

0

); : : : ;F

j�1

2 U

X

(d

j�1

) and e�e
tive 
y
les Z on X of degree

bounded by e are of degrees bounded by some e

j

(depending upon e and d

0

; : : : ; d

j�1

). We

de�ne B(d

0

; : : : ; d

j

)

e

� U

X

(d

j

) to be the 
losed subset given by Proposition 1.3 for d

j

; e

j

.

By Corollary 1.5, any 
omponent of ex
ess dimension of jY j \ jR

F

�

(Z)j must be


ontained in jY j \ jZj \ ram(p

F

m

) \ : : : \ ram(p

F

0

) provided that F

�

=2 B

0

(d)

e

. Thus, for

F

�

2 R

X

(d);F

�

=2 B

0

(d)

e

, any 
omponent of ex
ess dimension of jY j \ jR

F

�

(Z)j must be


ontained in ram(p

F

m

) \ : : : \ ram(p

F

0

) � X � U .

By Proposition 1.3, for any integer 
 we may 
hoose ea
h d

j

(depending as above on

e and the d

i

's for i < j) so that B(d

0

; : : : ; d

j

)

e

� U

X

(d

j

) has 
odimension at least 
. This

insures that

B(d)

e

� B

0

(d)

e

\R(d) � R(d)

also has 
odimension at least 
.

Note 1.8. Note from the paragraph above that ea
h d

j

may be 
hosen arbitrarily, so long

as it is suÆ
iently large. This lower bound depends only on 
, e and the 
hoi
e of the

previous integers d

1

; : : : ; d

j�1

.

In x3 we will use Theorem 1.7 in 
onjun
tion with the following proposition whi
h

expresses a 
y
le Z in terms of proje
ting 
ones and the 
y
le R

F

�

(Z). This proposition

follows immediately from Corollary 1.5 and Lemma 1.6.
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Proposition 1.9. Let X � P

n

be a 
losed subvariety of dimension m, let r; s be non-

negative integers with r+ s � m, and let e be a positive integer. Assume that d is 
hosen

so that the 
odimension of B(d)

e

� R

X

(d) is at least 1 and that the �eld k is suÆ
iently

large that there exists a k-rational point F

�

2 R

X

(d) � B(d)

e

. Choose some su
h F

�

.

Consider the equality

Z = (�1)

m+1

R

F

�

(Z) +

m

X

i=1

(�1)

i

�

�

F

i

fp

F

i

�

fR

F

i�1
Æ � � � ÆR

F

0

(Z)gg �X (1:9:1)

and let  

+

F

�

(Z) ;  

�

F

�

(Z) denote the positive and negative parts of the right hand side of

(1.9.1). Then:

(a) For ea
h e�e
tive s-
y
le Z on X, ( 

+

F

�

(Z) ;  

�

F

�

(Z)) is a pair of e�e
tive

s-
y
les on X with the property that

Z =  

+

F

�

(Z)�  

�

F

�

(Z):

(b) For all e�e
tive 
y
les Y; Z on X of dimension r; s whi
h are of degrees � e,

any 
omponent of ex
ess dimension of either jY j \ j 

+

F

�

(Z)j or jY j \  

�

F

�

(Z)j

lies in jY j \ jZj.

(
) This 
onstru
tion determines a 
ontinuous algebrai
 map

 

F

�

= ( 

+

F

�

;  

�

F

�

) : C

s

(X)! C

s

(X)

2

:

Moreover, there is an integer e

0

su
h that

 

F

�

�

C

s;�e

(X)

�

� C

s;�e

0

(X)

2

:

2. Moves in Proje
tive Spa
e

In this se
tion, we 
onsider e�e
tive r-
y
les Y and e�e
tive s-
y
les Z onP

m

of degree

bounded by a �xed positive integer e, where r + s � m. We present a 
onstru
tion on all

s-
y
les on P

m

whi
h moves ea
h su
h Z so that the resulting 
y
le interse
ts properly ea
h

su
h Y . The method we employ generalizes a te
hnique introdu
ed in [L℄ to move s-
y
les

Z of bounded degree to interse
t properly a given hyperplane L � P

m�1

� P

m

. One 
an

interpret this method as taking the \algebrai
 suspension" z

1

#Z � P

m+1

= z

0

#P

m

and

observing that z

1

#Z interse
ts z

0

#L properly provided that z

1

6= z

0

. One then observes

that for most divisors D � P

m+1

of suÆ
iently high degree the proje
tion of (z

1

#Z) �D

o� z

0

meets L properly.

Throughout this se
tion, we 
onsider non-negative integers r; s � m with r + s � m.

We set t � m� r. We shall �x a linear embedding

P

m

� P

m+t

; (m+ t = 2m� r)

13



and some �xed linear subspa
e L

0

� P

m+t

of dimension t� 1 missing P

m

. Thus,

P

m+t

= L

0

#P

m

;

where �#� denotes the \algebrai
 join".

We next introdu
e our \parameter spa
e of moves" for s-
y
les in P

m

.

De�nition 2.1. For any t-tuple of positive integers N = (N

1

; : : : ; N

t

), let

L(N) � Grass

t�1

(P

m+t

)�

t

Y

i=1

P(�(O

P

m+t
(N

i

)))

denote the open set 
onsisting of those (L;D), where D = (D

1

; : : : ; D

t

) whi
h satisfy

(a) L \P

m

= ; = L \ L

0

,

(b) jD

1

j \ : : : \ jD

t

j \ L = ; = jD

1

j \ : : : \ jD

t

j \ L

0

:

For any L 2 Grass

t�1

(P

m+t

), we denote by L

L

(N) the Zariski dense open subset of

Q

t

i=1

P(�(O

P

m+t
(N

i

))) given as the �bre of the proje
tion L(N)! Grass

t�1

(P

m+t

) above

L.

Observe that for any k-rational point (L;D) 2 L(N), the interse
tion produ
t D

1

�

� � � �D

t

is a well de�ned n-
y
le on P

m+t

with support jD

1

j \ � � � \ jD

t

j whi
h meets L#Z

properly and whi
h misses L

0

, the 
enter of the proje
tion �

0

.

In the following proposition, we establish a 
onstru
tible set of arbitrarily high 
odi-

mension of \good moves" for e�e
tive s-
y
les Z of degree � e whi
h satisfy a single

interse
tion 
ondition depending upon a 
hosen (t � 1)- dimensional linear subspa
e L.

We re
all that a subset of a quasi-proje
tive variety is said to be 
onstru
tible if it 
an

be written as a �nite disjoint union of (Zariski) lo
ally-
losed subsets. The key property

of 
onstru
tible subsets is that any map f : X ! Y of quasi-proje
tive varieties sends a


onstru
tible subset C � X to a 
onstru
tible subset f(C) � Y .

Proposition 2.2. Let L be a (t � 1)-dimensional linear subspa
e of P

m+t

satisfying

L \ P

m

= ; = L \ L

0

. For a given positive integer e and a t-tuple of positive integers

N = (N

1

; : : : ; N

t

), there exists a 
onstru
tible subset

B

L

(N)

e

� L

L

(N)

su
h that

(a) For a 
onstant K depending only upon X and e,


odimB

L

(N)

e

� min(N

i

)�K;

(b) For every k-rational point D = (D

1

; : : : ; D

t

) =2 B

L

(N)

e

, the 
y
les

jL

0

#Y j \ jL#Zj \ jD

1

j \ � � � \ jD

i�1

j and jD

i

j

14



meet properly for all i � 0 whenever Y is an e�e
tive r-
y
le and Z is an e�e
tive

s-
y
le both of degree � e on P

m

with the property that L

0

#Y interse
ts L#Z

properly.

Proof. Let

J � C

r;�e

(P

m

)� C

s;�e

(P

m

)�P

m+t

denote the in
iden
e 
orresponden
e of triples (Y; Z; x) satisfying x 2 jL

0

#Y j \ jL#Zj.

We de�ne

G

L;e

� C

r;�e

(P

m

)� C

s;�e

(P

m

)

to be the open subset above whi
h the �bre of the proje
tion

J ! C

r;�e

(P

m

)� C

s;�e

(P

m

)

has proper dimension (i.e., r + s �m + t = s). Note that G

L;e


onsists of pairs of 
y
les

(Y; Z) su
h that L

0

#Y and L#Z interse
t properly. We 
onsider the 
losed subset

~

B

L

(N)

e

� G

L;e

� L

L

(N)


onsisting of those tuples (Y; Z;D) satisfying the 
ondition that L

0

#Y and L#Z interse
t

properly but

jL

0

#Y j \ jL#Zj \ jD

1

j \ � � � \ jD

i�1

j ; jD

i

j

interse
t improperly for some i � t. Finally, we set

B

L

(N)

e

= pr

3�

[(

~

B

L

)(N)

e

℄:

We pro
eed to verify that the �bre

~

B

Y;Z

� L

L

(N) of

~

B

L

(N)

e

above any (Y; Z 2 G

L;e

has 
odimension at least N if ea
h N

i

� N . This will immediately imply the 
odimension

of B

L

(N)

e

� L

L

(N) is greater than some pres
ribed positive integer 
 provided that

N � 
+ dim(C

r;�e

(P

m

)) + dim(C

s;�e

(P

m

)):

The 
ondition that W

j

� jL

0

#Y j \ jL#Zj \ jD

1

j \ : : : \ jD

j�1

j meet jD

j

j improperly is

equivalent to the 
ondition that the restri
tion map

O

P

m+t
(N

j

) �! O

W

j

(N

j

) �! O

W

j;!

(N

j

)

sends D

j

2 �(O

P

m+t
(N

j

)) to 0 for some irredu
ible 
omponent W

j;!

� W

j

. Sin
e W

j;!

has positive dimension, this 
omposition has rank at least N . To see this note that if we

restri
t to some aÆne open A

m

� P

m


ontaining a dense open subset of W

j;!

, then the

dimension of the subspa
e of regular fun
tions on A

m

\W

j;!

of degree � N is at least

N . We 
on
lude that the 
losed subvariety

~

B

Y;Z;j

� L

L

(N) 
onsisting of those D with D

j

meeting W

j

improperly and D

j

0

meeting W

j

0

properly for j

0

< j has 
odimension at least

N . Thus,

~

B

Y;Z

=

a

j

~

B

Y;Z;j

� L

L

(N)
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also has 
odimension at least N .

Proposition 2.2 suggests the following 
onstru
tion of moving 
y
les in P

m

, sending

the s-
y
le Z to '

L;D

(Z).

Proposition 2.3 Let �

0

: P

m+t

��� > P

m

denote the linear proje
tion with 
enter L

0

.

For any e > 0 and any t-tuple N = (N

1

; : : : ; N

t

), the assignment

'

L;D

(Z)

def

= �

0�

((L#Z) �D

1

� : : : �D

t

)

determines a 
ontinuous algebrai
 map

� : C

s

(P

m

)� L(N) �! C

s

(P

m

)

with �

�

C

s;�e

(P

m

)� L(N)

�

� C

s;�ejNj

(P

m

), where jNj

def

=

Q

i

N

i

. This 
onstru
tion has

the following properties:

(a) For any k-rational point (L;D) 2 L(N) and any e�e
tive s-
y
le Z on P

m

,

'

L;D

(Z) is also an e�e
tive s-
y
le on P

m

.

(b) For any k-rational point (L;D) 2 L(N) with the property that D

1

� : : : �D

t

=

jNj �P

m

,

'

L;D

(Z) = jNj � Z

for all e�e
tive s-
y
les Z.

(
) If (L;D) is a k-rational point of L(N) su
h that D =2 B

L

(N)

e

(
f. (2.2)), if Y; Z

are e�e
tive 
yles on P

m

of dimension r; s and degree � e, and if L

0

#Y meets

L#Z properly, then

Y ; '

L;D

(Z)

interse
t properly.

Proof. If Z on P

m

is an s-e�e
tive 
y
le of degree d, then L#Z is an e�e
tive (s+ t)-
y
le

P

m+t

also of degree d. Consequently, (L#Z) �D

1

� : : : �D

t

and thus also '

L;D

(Z) have

degree d � jNj. Moreover, sending hZ; (L;D)i to '

L;D

(Z) determines a 
ontinuous algebrai


map, for � is a 
omposition of operations ea
h of whi
h is given by a 
ontinuous algebrai


map (
f. [F℄).

As observed following De�nition 2.1, the interse
tion produ
t D

1

� � � � �D

t

is a well

de�ned n-
y
le on P

m+t

with support jD

1

j \ � � � \ jD

t

j whi
h meets L#Z properly and

whi
h misses L

0

for any k-rational point (L;D) 2 L(N). Thus, '

L;D

(Z) is a well de�ned

s-
y
le on P

m

.

To prove that '

L;D

(Z) = jNj � Z whenever D

1

� : : : � D

t

= jNj � P

m

, observe that

P

m

� P

m+t

meets L#Z properly (sin
e L\P

m

= ;) and transversely at all regular points

of Z.

If (L;D) 2 L(N), then L

0

#Y , L#Z have pure dimensionm; s+t respe
tively. The hy-

pothesis that L

0

#Y meets L#Z properly thus implies that jL

0

#Y j\jL#Zj has dimension

s. We thus may apply Proposition 2.2 to 
on
lude that if D =2 B(N)

e

, if Y; Z are e�e
tive

16




y
les of degrees � e, and if L

0

#Y meets L#Z properly, then (L

0

#Y )�(L#Z)�D

1

�: : :�D

t

has pure dimension r + s�m. Be
ause L

0

\ jD

1

j \ : : : \ jD

t

j = ;, �

0�

restri
ts to a (well

de�ned) �nite map on j(L#Z) �D

1

� : : : �D

t

j We apply the proje
tion formula to �

0�

to


on
lude that

Y � �

0�

[(L#Z) �D

1

� : : : �D

t

℄ = �

0�

[(L

0

#Y ) � (L#Z) �D

1

� : : : �D

t

℄:

Hen
e, Y

;

'

L;D

(Z) meet properly.

The following lemma will enable us to apply Proposition 2.3 to all e�e
tive 
y
les of

bounded degree.

Lemma 2.4. Let L be a k-rational point of Grass

t�1

(P

m+t

) satisfying L \ P

m

= ; =

L \ L

0

. Then

(L

0

#Y ); (L#Z) interse
t properly

in P

m+t

for every r-
y
le Y , s-
y
le Z on P

m

su
h that either jL

0

#Y j \ L = ; or Y

interse
ts Z properly.

Proof. We �rst 
he
k that if Y; Z interse
t properly, so do (L

0

#Y ); (L#Z) for any 
hoi
e

of L. Observe that

jL

0

#Y j \ P

m

= jY j; jL#Zj \ P

m

= jZj:

Thus, if some 
omponent of jL

0

#Y j \ jL#Zj has dimension > s, then some 
omponent of

jL

0

#Y j \ jL#Zj \ P

m

= jY j \ jZj would have dimension > s� t.

On the other hand, if jL

0

#Y j \ L = ;, then L#z interse
ts L

0

#Y in only �nitely

many points for any z 2 P

m

. Thus, jL

0

#Y j \ jL#Zj has dimension at most s.

Combining Proposition 2.3 and Lemma 2.4, we now verify for any given e that we 
an

\move" all e�e
tive s-
y
les Z of degree � e so that the resulting 
y
les interse
t properly

every e�e
tive r-
y
le Y of degree � e.

As in Proposition 1.9, we require the existen
e of k-rational points avoiding 
ertain

\bad" 
losed subsets of positive 
odimension. The existen
e of su
h k-rational points is

automati
 for an in�nite �eld, but for a �nite �eld all rational points of a given variety

might lie on a subvariety of positive 
odimension. On the other hand, if k is a �nite �eld

and if there are only �nitely many \bad" subvarieties of positive 
odimension, there will

exist some �nite extension k

0

of k su
h that there exist k

0

-rational points avoiding these

\bad sets". Moreover, any extension k

00

of k

0

will evidently have this same property.

Sin
e our de�nitions of \good" and \bad" sets are independent of k, we 
on
lude that

all \suÆ
iently large" �nite �elds k of a given residue 
hara
teristi
 admit the existen
e of

k-rational points missing the \bad" sets. We shall use the expression \k is a suÆ
iently

large �nite �eld" to mean that k admits the existen
e of k-rational points avoiding the

bad sets (of positive 
odimension) o

uring in our 
onstru
tions.

Proposition 2.5. Fix positive integers e and 
. Assume that either k is an in�nite �eld or

a suÆ
iently large �nite �eld. Consider a sequen
e N

1

;N

2

;N

3

; : : : of t-tuples of positive
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integers, and set e

1

= e and e

j+1

= jN

j

je

j

for j > 1. Assume that the N

j

's are 
hosen

so that min

1�i�t

N

j+1;i

> K(e

j

) + 
 where K(e

j

) is the 
onstant in Proposition 2.2a.

Then there exist an integer E � dimC

s;�e

(P

m

) and (t � 1)-dimensional linear subspa
es

L

1

; : : : ; L

E

of P

m+t

, ea
h missing L

0

and P

m

, with the following properties:

(a) For ea
h j,


odim

n

L

L

j

(N

j

)� B

L

j

(N

j

)

e

j

o

� 
;

(b) For any k-rational point

(D

1

; : : : ;D

E

) 2

E

Y

j=1

L

L

j

(N

j

)� B

L

j

(N

j

)

e

j

and any e�e
tive 
y
les Y; Z on P

m

of dimensions r; s and degrees � e,

Y ; '

L

E

;D

E

Æ � � � Æ '

L

1

;D

1

(Z)

interse
t properly.

Proof. Note to begin that assertion (a) follows immediately from Proposition 2.2a, so it

remains to prove assertion (b).

For ea
h (of the �nitely many) irredu
ible 
omponents A




of A = C

r;�e

(P

m

) of

maximal dimension d

e

, 
hoose some k-rational point a(
) 2 A




(possible sin
e k is assumed

either in�nite or suÆ
iently large). Using on
e again the fa
t that k is in�nite or suÆ
iently

large, we may 
hoose some (t � 1)-dimensional linear plane L

1

in P

m+t

missing P

m

; L

0

,

and ea
h L

0

#Y

a(
)

. Let A

1

� A denote the 
losed subvariety of those Y 's su
h that

L

1

\ jL

0

#Y j 6= ;, and observe that ea
h 
omponent of A

1

has dimension stri
tly less

than d

e

. By Proposition 2.3 and Lemma 2.4, Y and '

L

1

;D

1

(Z) interse
t properly for any

e�e
tive r-
y
le Y of degree � e and any e�e
tive s-
y
le Z of degree � e whi
h does not

lie in A

1

whenever D

1

is k-rational point of L

L

1

(N

1

)� B

L

1

(N

1

)

e

1

.

Pro
eeding indu
tively, assume for some j � 1 that we have de�ned the 
losed subva-

riety A

j

� A of 
odimension at least j whi
h satis�es the 
ondition that

Y ; '

L

j

;D

j

Æ � � � Æ '

L

1

;D

1

(Z)

interse
t properly for any e�e
tive r-
y
le Y of degree � e and any e�e
tive s-
y
le Z of

degree � e whi
h does not lie in A

j

. For ea
h (of the �nitely many) irredu
ible 
omponents

A

j;


of maximal dimension 
hoose as above some point a(
) 2 A

j;


and 
hoose L

j+1

missing

P

m

; L

0

, and ea
h L

0

#Y

a(
)

. We set A

j+1

� A

j

equal to the 
losed subvariety of that Y 's

su
h that L

j+1

\ jL

0

#Y j = ;. Applying Proposition 2.3 and Lemma 2.4 on
e again, we


on
lude that

Y ; '

L

j

;D

j

Æ � � � Æ '

L

1

;D

1

(Z)

interse
t properly for any e�e
tive r-
y
le Y of degree � e and any e�e
tive s-
y
le Z

of degree � e whi
h does not lie in A

j

, whenever D

j

is k-rational point of L

L

j

(N

j

) �

B

L

j

(N

j

)

e

j

:
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Finally, we see that this pro
ess stops after E steps, where E � d

e

+ 1:

The following theorem is our \Moving Lemma for Cy
les of Bounded Degree" in the

spe
ial 
ase in whi
h the variety X is proje
tive spa
e P

m

itself.

Theorem 2.6. Fix positive integers e and 
. Assume that either k is an in�nite �eld or a

suÆ
iently large �nite �eld. Choose N

1

; : : : ;N

E

and L

1

; : : : ; L

E

as in Proposition 2.5 and

let

0

def

= (D

1

; : : : ;D

E

) 2

E

Y

j=1

L

L

j

(N

j

)

be a k-rational point su
h that D

j;1

� � � � � D

j;t

= jN

j

j � P

m

for ea
h j; 1 � j � E. (For

example, suppose that D

j;i

= N

j;i

H

j;i

where H

j;1

; : : : ; H

j;t

are k-rational hyperplanes in

general position.) Let

` �

E

Y

j=1

P(�(O

P

m+t
(N

j

))) �

E

Y

j=1

t

Y

i=1

P(�(O

P

m+t
(N

j;i

)))

be any k-rational line through 0 
hosen so that

`

Æ

� ` \

E

Y

j=1

L

L

j

(N

j

)� B

L

j

(N

j

)

e

j

� `

is dense. Then there exists a 
ontinuous algebrai
 map

� : C

s

(P

m

)� `

Æ

! C

s

(P

m

)

with the following properties. Set �

p

= �

�

�

C

s

(P

m

)�fpg

.

(a) �

0

(Z) =

Q

E

j=1

jN

j

j � Z for any e�e
tive s-
y
le Z.

(b) For any k-rational point p 2 `

Æ

, �

p

determines a linear map on e�e
tive s-
y
les

on P

m

.

(
) For any e�e
tive s-
y
le Z, the restri
tion of � to fZg�`

Æ

determines a rational

equivalen
e Z

�

� P

m

� ` whose �bre above a point p 2 `

Æ

is the 
y
le with

Chow point �

p

(Z).

(d) For all e�e
tive 
y
les Y; Z on P

m

of dimensions r; s and degrees � e and all

k-rational points p 2 `

Æ

� 0,

Y ; �

p

(Z)

interse
t properly.

Proof. Iterating the 
ontinuous algebrai
 map � of Proposition 2.3, we obtain the 
on-

tinuous algebrai
 map

~

� : C

s

(P

m

)� L(N

1

)� � � � � L(N

1

)! C

s

(P

m

):
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We de�ne � to be the restri
tion of

~

� to C

s

(P

m

)� `

Æ

.

Property (a) is given by Proposition 2.3.b, whereas property (b) follows from Propo-

sition 2.3.a. To verify property (
), we let � denote the generi
 point of ` and k(�) denote

the fun
tion �eld of `. Then �(Z; �) determines a 
y
le on P

m

rational over some radi
iel

extension of k(�) (
f. [F℄). On the other hand, sin
e the operations used to de�ne � send


y
les to 
y
les, we see that the 
y
le Z

�

with Chow point �(Z; �) is in fa
t a 
y
le on

P

m

k(�)

. The 
losure of this 
y
le, Z

�

on P

m

� `, is the asserted rational equivalen
e. (Ob-

serve that Z

�

is ne
essarily 
at over ` so that the �bre p 2 ` is given by spe
ialization of

Z

�

.) Finally, property (d) follows from Proposition 2.5.

3. Main Theorem and Consequen
es

Using Theorem 1.7, Proposition 1.9, and Theorem 2.6, we now prove our \Moving

Lemma for Cy
les of Bounded Degree".

Theorem 3.1. Let X � P

n

be a proje
tive variety of dimension m. Assume that either

k is an in�nite �eld or a suÆ
iently large �nite �eld. Let r; s; e be non-negative integers

with r + s � m. Then there exists a Zariski open neighborhood O � P

1

of a k-rational

point 0 2 P

1

and a 
ontinuous algebrai
 map

	 = (	

+

;	

�

) : C

s

(X)�O ! C

s

(X)

2

satisfying the following properties. Set  

�

p

= 	

�

�

�

C

S

(X)�fpg

. Then:

(a) For some positive integer M and some k-rational point F

�

2 R

X

(d)�B(d)

e

,


hosen as in 1.9, one has

 

+

0

= (M + 1) �  

+

F

�

+M �  

�

F

�

;  

�

0

= (M + 1) �  

�

F

�

+M �  

+

F

�

where  

+

F

�

;  

�

F

�

: C

s

(X)! C

s

(X) are the 
ontinuous algebrai
 maps of Propo-

sition 1.9.a. In parti
ular, for every e�e
tive s-
y
le Z,

Z =  

+

0

(Z)�  

�

0

(Z):

(b) For any k-rational point p 2 O,  

�

p

determines a pair of linear maps on e�e
tive

s- 
y
les

(
) For any e�e
tive s-
y
le Z on X, the restri
tion of 	 to fZg � O determines

a rational equivalen
e Z

 

� P

n

� P

1

whose �bre above a point p 2 O is

 

+

p

(Z)�  

�

p

(Z).

(d) For all e�e
tive 
y
les Y; Z on X of dimensions r; s and degrees � e and all k-

rational points p 2 O�f0g, any 
omponent of ex
ess dimension (i.e., > r+s�m)

of either jY j \ j 

+

p

(Z)j or jY j \ j 

�

p

(Z)j lies in the singular lo
us of X.

Proof. Choose F

�

as in Proposition 1.9 and re
all the equality

Z = (�1)

m+1

R

F

�

(Z) +

m

X

i=1

(�1)

i

�

�

F

i

fp

F

i

�

fR

F

i�1
Æ � � � ÆR

F

0

(Z)gg �X (1:9:1)
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and the fa
t that  

�

F

�

are given as the positive and negative parts of the right hand

side of (1.9.1). Let e

0

� e be a positive integer bounding the degrees of p

F

i

�

(Y ) and

of p

F

i

�

(R

F

i�1
Æ � � � Æ R

F

0

(Z)) as Y and Z vary over e�e
tive r-
y
les and s-
y
les on X

(respe
tively) of degrees � e, and i varies from 1 to m.

We now apply Theorem 2.6 with e repla
ed by e

0

and with some �xed 
 > 1. In

fa
t we apply the theorem twi
e. We 
hoose two sequen
es N = (N

1

; : : : ;N

E

) and N

0

=

(N

0

1

; : : : ;N

0

E

0

) with N

j;i

and N

0

j;i

suÆ
iently large as required in Proposition 2.5, so that

E

Y

j=1

jN

j

j =M + 1 ;

E

0

Y

j=1

jN

0

j

j =M

for some positive integerM . To see that this is possible re
all that the integers N

j;i


an be


hosen arbitrarily subje
t to the inequalities of 2.5. Consequently we may 
hoose the N

j;i

's

and the N

0

j;i

so that

Q

j

jN

j

j and

Q

j

jN

0

j

j are relatively prime. Then there exist positive

integers a and a

0

so that a

Q

j

jN

j

j � a

0

Q

j

jN

0

j

j = �1. We may assume, by reordering the


hoi
e if ne
essary, that the di�eren
e is +1, and we then repla
e N

E;t

with aN

E;t

and

N

0

E

0

;t

with a

0

N

0

E

0

;t

.

By Proposition 2.5 we obtain sequen
es (L

1

; L

2

; : : : ; L

E

) and (L

0

1

; L

0

2

; : : : ; L

0

E

0

) of (t�

1)-dimensional linear subspa
es, for whi
h the 
on
lusions of 2.5 hold.

We now apply Theorem 2.6 (twi
e) for the fN

j

g, fL

j

g (and the fN

0

j

g, fL

0

j

g) 
hosen

above. We �x k-rational points 0 and 0

0

and k-rational lines ` and `

0

as in Theorem 2.6,

and we let

�

N

: C

s

(P

m

)� `

Æ

! C

s

(P

m

) and �

0

N

0

: C

s

(P

m

)� (`

0

)

Æ

! C

s

(P

m

)

be the 
ontinuous algebrai
 maps 
onstru
ted in 2.6 for this data.

We now 
hoose a dense open subset O � P

1

and point 0 2 O together with open

immersions f : O ,! `

Æ

and f

0

: O ,! (`

0

)

Æ

sending 0 to 0 and 0

0

respe
tively. We let �

N;p

denote the restri
tion of �

N

to C

s

(P

m

)�ff(p)g for any k-rational point p 2 O. We de�ne

	

N

by

	

N

(Z; p) = (�1)

m+1

(M+1)�R

F

�

(Z)+

m

X

i=1

(�1)

i

�

�

F

i

�

�

N;p

�

p

F

i

�

(R

F

i�1
Æ� � �ÆR

F

0

(Z))

		

�X;

and de�ne 	

N

0

similarly. Finally, we de�ne 	

�

to be the positive and negative parts of

	

N

�	

N

0

, so that

	

+

(Z; p)�	

�

(Z; p) = 	

N

(Z; p)�	

N

0

(Z; p):

The fa
t that 	

+

;	

�

are 
ontinuous algebrai
 maps follows immediately from Propo-

sition 1.9 and Theorem 2.6. Property (a) is part of our de�nition of 	

�

. Property (b)

follows immediately from Proposition 1.9 and Theorem 2.6.b. The proof of property (
) is

merely a repetition of the proof of Theorem 2.6.
.
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To verify property (d), observe that Theorem 1.7.b implies that any 
omponent of

ex
ess dimension of jY j\jR

F

�

(Z)j lies in the singular lo
us of X. On the other hand, sin
e

p

F

i
is a �nite map,

Y ; �

�

F

i

�

�

N;p

�

p

F

i

�

(R

F

i�1
Æ � � � ÆR

F

0

(Z))

		

�X

interse
t properly for any i; 1 � i � m, if and only if

p

F

i

�

(Y ) ; �

N;p

�

p

F

i

�

(R

F

i�1
Æ � � � ÆR

F

0

(Z))

	

interse
t properly. These do interse
t properly whenever Y; Z are e�e
tive 
y
les of degrees

� e and p 2 O�f0g by Theorem 2.6.d. The analogous remarks apply with N repla
ed by

N

0

. This 
ompletes the proof.

Remark 3.2. The proof of Theorem 3.1 in fa
t proves the more general result that one


an \move" e�e
tive s-
y
les Z of degrees � e to meet properly (o� the singular lo
us of

X) all e�e
tive 
y
les Y of dimension � m� s and degree � e. Namely, we verify that the

arguments of se
tion 1 apply when C

r;�e

(X) is repla
ed by

C

�n�s;�e

(X) �

a

r�m�s;d�e

C

r;d

(X):

Similarly, the arguments of se
tion 2 apply when we repla
e C

r;�e

(P

n

) by C

�s;�e

(P

n

) and

t = n� r by s.

When k = C our Main Theorem 
an be phrased di�erently and in a way that may

appeal to 
omplex geometers. In this 
ase the p-
y
les form a topologi
al abelian group

where the topology is 
ompa
tly generated by the images of C

p;�e

(X) � C

p;�e

(X) under

the natural proje
tion

� : C

p

(X)� C

p

(X) �! Z

p

(X)

We set Z

p;�e

(X)

def

= �

�

C

p;�e

(X)� C

p;�e

(X)

	

Corollary 3.3. Let X � P

n

C

be a 
omplex proje
tive variety of dimension m. Let r; s; e

be non-negative integers with r + s � m. Then there exists a Zariski open neighborhood

O of f0g in C, and a 
ontinuous algebrai
 map

~

	 : C

s

(X)�O �! C

s

(X)

2

su
h that � Æ	 indu
es by linearity a 
ontinuous map

	 : Z

s

(X)�O �! Z

s

(X)

satisfying the following properties. Set  

p

= 	

�

�

Z

s

(X)�fpg

for p 2 O.

(a)  

0

= Id:

22



(b) For any Z 2 Z

s

(X) and any p 6= 0 in O, the restri
tion

	

�

�

fZg�O

: fZg � O �! Z

s

(X);

determines a rational equivalen
e between Z and  

p

(Z).

(
) For any p 2 O,  

p

is a 
ontinuous group homomorphism.

(d) For any Z 2 Z

s;�e

(X); Y 2 Z

r;�e

(X) and any p 6= 0 in O, ea
h 
omponent of

ex
ess dimension (i.e., > r + s�m) of the interse
tion

jY j \ j 

p

(Z)j

is 
ontained in the singular lo
us of X.

Remark. We may paraphrase Corollary 3.3 in terms of families of 
y
les. Let us say

that a 
olle
tion fY

�

;� 2 Ag of r-
y
les on X is a family of 
y
les of bounded degree

if there exists some positive integer e and some fun
tion g : A ! Z

r;�e

(X) su
h that

Y

�

= g(�) for all � 2 A. Then Corollary 3.3 asserts that for a given family fY

�

;� 2 Ag of

r-
y
les of bounded degree and a given family fZ

�

; � 2 Bg of s-
y
les of bounded degree,

	 provides a 
ontinuous move of all s-
y
les on X with the following property: for any

� 2 A; � 2 B; p 2 O � f0g ea
h 
omponent of jY

�

j \ j 

p

(Z

�

)j of ex
ess interse
tion lies in

the singular lo
us of X.

Moreover, Corollary 3.3 further asserts how su
h a move is algebrai
, thereby moving

one \algebrai
 family" to another.

As demonstrated in [R℄, [S℄, any s-
y
le Z 
an be moved to interse
t properly any r-


y
le Y on a smooth, m-dimensional variety X with r+s � m. This does not immediately

imply that the interse
tion produ
t is well de�ned, for one must verify that if Z

0

; Z

00

are

both obtained from Z by moving Z and both interse
t Y properly, then Y �Z

0

; Y �Z

00

are

rationally equivalent. As we see in the proof of the following theorem, the fa
t that su
h

an interse
tion produ
t is well de�ned is a straight-forward 
onsequen
e of Theorem 3.1

Theorem 3.4 Let X be a smooth, quasi-proje
tive variety of dimension m and let Y; Z be


y
les on X of dimension r; s with r + s � m. If both Z

0

and Z

00

are rationally equivalent

to Z and interse
t Y properly, then Y � Z

0

; Y � Z

00

are also rationally equivalent.

Proof. We �rst 
onsider the 
ase in whi
h k is either an in�nite �eld or a \suÆ
iently

large" �nite �eld as in the statement of Theorem 3.1. We may assume that the rational

equivalen
es relating Z to Z

0

and Z

00

are given by irredu
ible, smooth, rational 
urves.

Thus, setting T = Spe
k[x; y℄=xy, there is a (
at) family Z

T

= fZ

t

: t 2 Tg on T �X of


y
les on X parametrized by T giving a rational equivalen
e between Z = Z

0;0

, Z

0

= Z

1;0

,

and Z

00

= Z

0;1

. Choose some proje
tive 
losure X of X.

Write Z

T

= Z

+

T

� Z

�

T

, where Z

+

T

; Z

�

T

are 
at families of e�e
tive 
y
les over T .

Let B

i

; i = 1; 2 denote the two bran
hes of T and let Z

+

B

i

(respe
tively, Z

�

B

i

) denote the

restri
tion of Z

+

T

(resp., Z

�

T

) to B

i

. Then the 
losures Z

�

B

i

in B

i

�X of Z

�

B

i

are 
at over
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B

i

. Let Z

�

i

denote the �bres of Z

�

B

i

above (0; 0), and let Z

�

0

denote the 
losures in X of

the �bres of Z

�

T

above (0; 0). Then

Z

+

i

= Z

+

0

+ A

+

i

; Z

�

i

= Z

�

0

+A

�

i

where A

+

1

; A

�

1

; A

+

2

; A

�

2

are e�e
tive 
y
les on X supported on X �X.

We de�ne

^

Z

+

T

= (Z

+

B

1

+ (A

+

2

� T )) + (Z

+

B

2

+ (A

+

1

� T ))

and observe that

^

Z

+

T

determines a 
ontinuous algebrai
 map '

+

: T ! C

s

(X) be
ause the

restri
tions to B

1

; B

2

are 
at and their futher restri
tions to (0; 0) are equal. We similarly

de�ne

^

Z

�

T

determining '

�

: T ! C

s

(X), and set

' = ('

+

; '

�

) : T ! C

s

(X)

2

:

We now apply Theorem 3.1 with e greater than the degrees of some 
losure of the positive

and negative parts of Y as well as the degrees of

^

Z

+

t

;

^

Z

�

t

for all t 2 T to obtain

~

	 Æ ('� 1) : T � ` �! C

s

(X)

2

;

for some and some k rational line `. Then for all k-rational points p 2 ` � f0g, the

restri
tion

~

 

R

: R �! C

s

(X)

2

(3:4:1)

of

~

	 Æ ('� 1) to

R � (f(1; 0)g � `) [ (T � fpg) [ (f(0; 1)g � `)

provides a rational equivalen
e between (

^

Z

T

)

1;0

and (

^

Z

T

)

0;1

through 
y
les ea
h of whi
h

meet Y properly when restri
ted to X. Thus, sending t 2 R to Y � (

~

 

R

(t))

�

�

X

) determines

a rational equivalen
e between Y � Z

0

; Y � Z

00

.

Suppose now that k is an arbitary �nite �eld and k ! k

0

is a �nite �eld extension

with k

0

suÆ
iently large. Let � : X

k

0

! X denote the �nite, 
at map given by base

extension, where X

k

0

� X �

Spe
(k)

Spe
(k

0

); this is a map of algebrai
 k s
hemes, but

not a map of quasi-proje
tive algebrai
 varieties over k. By the pre
eding argument, the

rational equivalen
e 
lass of �

�

(Y � Z

0

� Y � Z

00

) is 0 in the Chow group of r + s � m-


y
les on X

k

0

. Sin
e �

�

Æ �

�

equals multipli
ation by d

0

= [k

0

: k℄ on 
y
les, �

�

Æ �

�

also equals multipli
ation by d

0

on rational equivalen
e 
lasses of 
y
les. By 
onsidering

�

�

(Y � Z

0

� Y � Z

00

) for two su
h su
h suÆ
iently large �eld extensions k ! k

0

; k ! k

00

of relatively prime degrees d

0

; d

00

over k, we 
on
lude that Y � Z

0

; Y � Z

00

are rationally

equivalent on X.

In [F-G℄, an interse
tion produ
t was de�ned on the Lawson homology groups of a

smooth, 
omplex, quasi-proje
tive variety X of dimension m:

L

r

H

2r+i

(X)
 L

s

H

2r+j

(X) �! L

r+s�m

H

2(r+s�m)+i+j

(X); r + s � m:
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This produ
t was de�ned using an argument involving the Fulton-Ma
Pherson \Defor-

mation to the normal 
one" te
hnique together with a homotopy li�ng argument. The

following 
onsequen
e of Theorem 3.1 gives a more 
on
rete 
onstru
tion of this interse
-

tion produ
t for X proje
tive as well as smooth. Even in this 
ase, the 
onstru
ton of

[F-G℄ remains useful in establishing the numerous good properties of this produ
t.

Theorem 3.5 Let X be a smooth, 
omplex proje
tive variety of dimension m and let r; s

be non-negative integers with r+ s � m. Let Z

r

(X) denote the topologi
al abelian group

of r-
y
les on X obtained as the \naive" group 
ompletion of the abelian monoid C

s

(X)

provided with the analyti
 topology. Then the pairing on homotopy groups indu
ed by

the interse
tion produ
t of [F-G℄

�

i

(Z

r

(X))
 �

j

(Z

s

(X))

�

�! �

i+j

(Z

r+s�m

(X))


an be represented as follows: given homotopy 
lasses � 2 �

i

(Z

r

(X)); � 2 �

j

(Z

s

(X)),

there exist representative (base point preserving) maps a : S

i

! Z

r

(X); b : S

j

! Z

s

(X)

su
h that a(t); b(u) interse
t properly for all t 2 S

i

; u 2 S

j

and su
h that the map sending

t ^ u to the interse
tion of a(t) and b(u) is a 
ontinuous map a � b : S

i+j

! Z

r+s�m

(X)

whi
h represents � � �.

Proof. Sin
e the topology on Z

k

(X) is 
ompa
tly generated by the images of C

k;�e

(X)

2

for e > 0, we may 
hoose e suÆ
iently large that arbitrary representatives a; b

0

of �; � lift

to 
ontinuous maps ~a :

~

S

i

! C

r;�e

(X)

2

,

~

b

0

:

~

S

j

! C

s;�e

(X)

2

.

The 
ontinuous algebrai
 map 	 of Theorem 3.1 
hosen for this e determines a 
on-

tinuous map (for the analyti
 topology)

	 : Z

s

(X)�O ! Z

s

(X)

with the property that  

0

(i.e., the restri
tion of 	 to Z

s

(X)�f0g) is the identity. De�ne

b = 	 Æ (b

0

� i

p

) : S

j

! Z

s

(X)�O ! Z

s

(X)

for some p 2 O � f0g, where i

p

: S

j

! O is the 
onstant map with value p. By Theorem

3.1.d and our 
hoi
e of e, the r-
y
les a(t); b(u) interse
t properly for all t 2 S

i

; u 2 S

j

.

The interse
tion of 
y
les meeting properly is 
ontinuous, so that a; b determine a


ontinuous map a � b : S

i+j

! Z

r+s�m

(X). The fa
t that this map represents � �� follows

from [F-G;3.5.a℄.

Remark 3.6. Our te
hniques fail to provide a representation of the interse
tion produ
t

on Lawson homology group of 
omplex, smooth varieties X whi
h are quasi-proje
tive

but not proje
tive. This is be
ause the \moves" we 
onstru
t for s-
y
les on a smooth


ompletion X of X do not restri
t to moves on s- 
y
les on X �X.

We �nish with a theorem that 
aptures the fundamental assertion of the duality theory

in [F-L2℄. It says that on a 
at family of varieties, any 
y
le (of dimension greater than
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that of the base) 
an be moved so that it be
omes itself a family of 
y
les in this family of

varieties. The assertion holds in fa
t for any algebrai
 
olle
tion of 
y
les on the family.

Theorem 3.7 Let X be a smooth proje
tive variety, f : X ! B a 
at morphism of

varieties over k, and s an integer � dim(X)� dim(B). Assume that k is an in�nite �eld.

Then for any positive integer e, there exist a Zariski open neighbrohood O � P

1

of a

k-rational point 0 2 P

1

and 
ontinuous algebrai
 maps

	 = (	

+

;	

�

) : C

s

(X)�O ! C

s

(X)

2

satisfying the following properties (where  

�

p

denotes the restri
tion of 	

�

to C

s

(X)�fpg):

(a) Z =  

+

0

(Z)�  

�

0

(Z) for every e�e
tive s-
y
le Z on X.

(b) For any e�e
tive s-
y
le Z, the restri
tion of 	 to fZg�O determines a rational

equivalen
e Z

O

� X �P

1

whose �bre equals  

+

p

(Z)�  

�

p

(Z).

(
) For every e�e
tive s-
y
le Z of degree � e, the 
y
les  

+

p

(Z);  

�

p

(Z) interse
t

properly ea
h �bre f

�1

(b); b 2 B of f whenever p is a rational point of O�f0g.

Proof. Apply Theorem 3.1 with e repla
ed by the larger of the integer e of the statement

of this theorem and the maximum of the degrees of the �bres f

�1

(b); b 2 B of f .
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