Chapter I

Minimal Submanifolds

We begin with a study of ‘the differential geometry of submanifolds

of riemannian spaces. Our ultimate aim in this discussion is to derive and
explain the formulas of first and second variation of the area integral. We
have included a brief discussion of certain fundamental geometric concepts.
A detailed treatment of these basics, given in much the same language, can

be found in Helgason [1], Hicks [1] or the paper of Simons [1].

§1. Connections. Let M be an m-dimensional differentiable manifold, and
denote by BEM the space of smooth vector fields on M. (We assume everything
to be class Cm, however, in general C2 is enough.) Let E——> M be a

3 3; smooth vector bundle over M. E may be considered as a generali;ed product

. k .
of M with the vector space R, and thus the smooth sections Cm(E) can

pasith b g

be considered as generalized Rk—valued functions. 1In this light it is

1 ~ natural to look for a way to differentiate the 'functions" c”(B) with

ff ‘% respect to vector fields on M. For the trivial bundle M x Rk

>
differentiation is canonical. In general, however, there are many equally
E acceptable rules for the differentiation of sections, and each such rule

is called a connection.

- Definition 1.1. A connection on E 1is a rule which assigns to each
X € BGM a linear map Vx : Cm(E) —_ Cm(E) such that
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(1) Vylfo) = (x{)o+ 7,0

(ii) V(f X+gY)G = f'on + g(/yo

for all o e COO(E), X, Y € )(M and for a1l C° functions f and g on M.

When E = T(M), the tangent bundle of M, V is called a connection

We recall some elementary facts concerning connections.
A. For pe M, X e XM and O € COO(E), the value (VXU)p depends only

on Xp and the values of o along any curve <(t) with «(0) = 0 and

dy
a (0= X,

B. Given a connection V on E, we obtain in a natural manner‘a connection

sk
on its dual bundle E by requiring that ¥V commute with contraction

* * * *
Ep ® Ep——> IR in each fibre. In particular, for o ¢ c®(E), chr

is defined by the formula:

*

X(@ (@) = (V40 o1+ 0 (Vyo),

0
where X e\fM and o € C (E).

C. Let E' and E" be bundles with connections (7' and /' respectively.

We can define a connection V on E' @ E" and E' ® E' by setting

V(Oﬂ@cll) = vlo-l @ VHJH and

V(O"®O'")

(VIO-I) ®c"+ 0 & (V"O‘").




11
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In particular, a connection  can be defined cn Hom(E', E") = (E') ® k.
by setting

(VA) (o) = P"(A(0") ~ A(V'o)).
Briefly, we can write

VA = [V, A).

We recall that the fundamental invariant of a connection'is the

_C_L_l_r_\f':ii:y.re R, defined for X, Y € XM as the map R\{ v : COO(E,)——--"} C.m(}if;)
given by
' R = . Y
E x, v - Ve Vyl = Vi vy
R is a tensor field (i.e., it depends only on: the values of its arguments

at the point in question) which measures the lack of commutativity of second
derivatives in the connection.
In the case E = T(M) there is a second important tensor associated

to a connection, the torsion T, defined for X, Y € ;t’]\/‘ as the vector fiela

T :VY-VYX-V

X, Y X (X, YY)

Suppose now that E is a smooth vector bundle over M equipped with o

* %
riemannian inner product; that is, we are given g ¢ C (E QE ) where for

each p ¢ M, g is a positive definite inner product on Ep' Then a

connection |7 on L is called riemannian if \/g = 0, i.e., if
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X - glo,7) = g(VXG.T) + g(a, VXT)

’

forall X X andall 0,7 ¢ c®(E).
Of course, when T(M) has an inner product structure, M is

called a riemannian manifold and we recall the following fundamental lemma.

iemma l.2. There exists a unique torsion-zero riemannian connection,

called the Levi-Civita connection,on any riemannian manifold.

From this point on, all manifolds will be riemannian and will be

equipped with the Levi-Civita connection. Given a vector bundle E over

~

M with connection §/ we can then define an invariant second derivative

as follows. For X,Ye X and O € Cw(E), we set

M

Vx, v° ~ 6xeyc - €7J(7XY° '

This derivative depends only on the values of X and Y at the pointin
guestion, i.e., it is a tensor in these variables. Of course the arguments

X and Y can not be freely interchanged, in fact;

(1-1) ‘, Vi, v " Vv, x = Bx, v

metric _g.(- , ) (which we shall also denote as <, > ) and connection Y .
Let MC M be riemannian submanifolc which for convenience, and without
loss of generality, we assume to be properly embedded in M. Then there

is an orthogonal splitting
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T(M)| = T(M) @ N(M)
M

- where N(M) is the normal bundle of M in K/I; and Y/ induces natural

~ riemannian connections {/ in T(M)‘ and N(M) by setting

e
i

B N
E for X, Y ¢ ¥M and v e COO(N(M)). Here ( )T and ( ) denote orthogonal

projection on T(M) and N(M). Note that this definition uses Fact A above

 _- for Y7 . Note also that {/ on T(M) is torsion-free and, thus, is the

Levi-Civita connection on M.
We now have two connections 6 and V & Von T & N. Their

. difference is a tensor of fundamental importance in the geometry of M in

i

i’ M. We split the difference tensor into tangent and normal components
;' and write

= N

3 Pry T Vx?

= v — T

XYy o= v

- e v(vx )

‘Then we have

‘ Lemma 1. 3.

(1) B is symmetric; i.e., BX, = BY,X'
(2) The two pieces are '"adjo:nt':

<A"(X),Y} = - wBy Y> )
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Proof.
- N_ = N
& @, 0" = (T XX, YD)
= ([T ,07
(2) A"X, YD = (Ty v ¥

X<v, YY) - (v,VXY>

- v, BX, Y>

Definition 1.4. The symmetric, N(M)-valued bilinear form B defined

above is called the second fundaméntal form of M in K/I The normal vector

field

K = trace (B)

is called the mean curvature vector field of M in 1\7[

Note that K 1is an invariant of the pair MC M; That is to say that
an isometry of M which maps M onto M must preserve K.

We shall show in the next section that K can be interpreted
essentially as (minus) the gradient of tae area function on the space of

immersions of M into M. In view of this, we make the following

Definition 1. 5. M is called a minimal submanifold if and only if K = 0.

§3. The first variational formula. Our purpose here is to interpret the

mean curvature vector field K of MC M in terms of the behavior of the




area of M under deformations. |

Theorem 1.1. Let M be a compact submanifold of M with boundary 9M.

Suppose that E is a vector field on M such that E| OM = 0, and let th

denote the flow generated by E in a neighborhood of M in M. Then,

3 setting V/(t) = volurne(qot(M)). we have

.
gtlf' - - [ (K,E> av .
1 =0 M -

Proof. We shall give a proof which works in a much more general situation.

. Let us consider (pt as giving an immersion of M into M, and let us

] . denote by th the volume element of the metric induced on M by @,.
b
. Then

Vi) = | av.,
M
and so

k k
TUY d

(1. 2) = [ S—q@av).
at™ Y

.  The question then is how to express th. Let us fix a point p € M and choose a

, € are ortho-
m

basis e ,...,e of Tp(M) with the property that € e

1 m ‘
0. Let wl, A be the dual basis of 1-forms. Then the
m

normal at t =

. &
metric at time t at p has the form dst = Egij(t)wi ® wj, where

850 = <(@)yey @), .
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it follows that

th = \/J(t)wl Ao ,\Qm

where _H(t) = det((gij(t))).
This formula can be written more simply as follows. Recall that
if V 1is a vector space with inner product <° , '> , then there exists a

natural inner product on AmV given on simple vectors by

<le. .3 Avm WA Awm> = det((<vi, WJ.> N.
Thus, if we set £ = STSERPIN (& = LiA e A0 = dVo), then
(1. 3) a7, = I (@)% |l v,

For the moment then, we can fcrget the manifold M and consider
. m — m "
the action of the flow got on A T(M). Let £ = €l A-c a8 € A~ Tp(M)

be any simple vector of unit length and consider

A = l@e)ut |1° = woE, )

where E denotes the metric tensor ex:ended to AmT(K'/I). Then for each

k20,

(1. 4 A0 = (LX), )

where ;{;E denotes Lie derivative with respect to E.
We now want to express these derivatives in terms of basic geometric

objects. The first of these is the following. For E ¢ X

M’ we define a tensg
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- aF ¢ Hom(T(M), T(M)) by

@ (X) = V,E.

&
i

. (See Fact A.) (I then extends naturally as a derivation to the entire tensor

» m
E
a (le...Avm) = Z le...AQ(vj)A...,\vm.

- . ) E
. We make some observations concerning @ .

L. CEE is antisymmetric if E is a Killing vector field.
2. (U is symmetric if E is a gradient vector field (or more
generally if the one-form w(X) = <X, Ep is closed).

3. Since €"7Ex -?XE = [E, X], we have
. 5) Vg - a’ - Ly

where this equation is valid on the entire tensor algebra of- M. (Note that

all three terms in (1. 5) extend as derivations. Of course,

= E
;CE == VE and (& = 0 on functions.)

We are now ready to prove the taeorem. By formula (1. 5) and the

fact that V_g = 0, we have

A7'(0)

ll

(X e)E,€)
= E - .
= ([T~ ANE)E )
- (AR)E L )
2@ e, £) + gt @F)
2 {a(E), £,
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. nis already establishes the following intermediate result.

Theorem 1.1'. Let £ be the field of unit m-vectors on M (defined up to

s1gn) such that at any pe M, gp = €A nl for some orthonormal basis

el, c ey ern of Tp(M). Then under the zssumptions of Theorem 1,

—gtl/m - [ La®ie), e av.
M

To complete the proof of Theorem 1.1 we observe that at any p € M,

m
<C¢E(€ ), §> = < 21 elA. % /\ve.EA' v Aem, elA. . Aem>
J:

- N kD4 aiv ET.

j
i - =47, E, 57

i

- 27 ENe>+2(7 ET, e

i 5 e, J . €. J

i i

Ei - 2(e ENe Y- CENLT e > +aiv o

Since IM div ET = 0, the result follows from Theorem 1.1'.

Note that in Theorem 1.1 we need only suppose that ET | oM = 0.

Furthermore, the same proof goes through for noncompact manifolds M

provided E|M has compact support, and U is redefined as the volume of

a compact neighborhood of supp(E) in M.
Observe that by Theorem 1, a given immersion F : M—> M is

minimal if ond only if F 1is a critical point of the volume function

Vo Imm%oM(M, M)—> R
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in the spacce of immersions of M into M, which are fixed on the boundary.

Examples ol minimal sulhnanifolds,

. n, ) ] . .
1. Let FF: M— JR be an immersion of an m-manifold into

= i 2
cuclidean n-space. Then F is mninimal if and only if ¥V I = 0. (Vz is

the laplacian of M defined at pe M as

2 m
v = ):/ Y]e.: e
j=1 J oy
where el, SR Cm are orthonormel.) This follows from the general factl that
2
YV F =K

2 .
Proof, \7 I = ¢ F = e_eiF - {7 ej)F = ej- (FF =) - F*(\,_" e.) =

: o e N, .
O LV 2 ’

{ F e, - N \;ll“ B, _}_«ﬂ.c," ")
In particulas, I 1is a minimal immersion if and only if the
coordinates of Fb are harmonic functions on M (in the induced metric).
In the case dim M = 2, a minimal surface can be defined as a harmonic,
conformal iminersion of a Riemann surface into IRn.

2. I F:M-—> C" is a holo morphic immersion of a complex
manifold, then ¥ is autematically minimal. This will be proven in
greater generality in Chapter II.

n+l

3. Let S"={xXxem" x| =1). Then ¥ : M ——>s" is

minimal if and only if

Y F = - mF.
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A Theorem of Wu-Yi Hsiang [1] states that evetry compact homogeneous

space can be minimally immersed into S with some invariant metric
A . | 2
{n sufficiently large). Furthermore, every compact surface but IP (IR) can be

minimaily immersed into S3 (cf. Lawson [1]).

§4. The second variational formula. We have seen that minimal immersions

are critical points of the volume function. At critical points one usually
considers the '""Hessian' of second derivatives to determine the character of
the critical point,

Let us fix M, M and E as in Theorem 1. We saw above (cf.
. 2 2 . o
formulas (1.2), (l.3) and (1. 4)) that to compute d U/dt" it is sufficient
to calculate ''(0) = (XEIEE)(g ,€). We want to express this in terms of

E —
the tensor &7, the curvature of M, =tc. To do this we need the following.

Definition 1.7. For E ¢ xl\_/[' we define the tensor VE .E ¢ Hom (T(-I\_/[), T(K/I))

’

by setting

|
&
I
Qi
Hq)
<
|
&

E, X

(T @) (X)

for X e XI\_/I As before, Vg .E extends to AmT(i\_/I) as a derivation.

Lemma 1. 8.

7 Gl 6 = (lafe,e) + 1d%)17 + (T =)
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:" roof. By (l.5) we have:

(LR 8 (6, €)

1

— — E - "
(T~ dVTy- @Ie)EL 2)

- (V- AR 6)

- @ "Dk, &) + (@ Ae)EL £)

(T A@ENE L E) + (AT DE &)

1

+ 2gatale, &) + 20, @ty

1]

2T, aD)E. 6> + <A ale . e> + @e ATEY)

Putting together formulas (1.2), (1.3), (1, 4) and Lemma 1.8 we have

. Theorem 1. 2. (The second variational formula). Under the assumptions of

. Theorem 1. we have

2,
ETUI S {-<afe, s (e gD
dt M

t=0

+ (@, @Y +(Ty BV} Qv

where £ is the field of unit m-vectors on M representing the tan&en“t |

. planes of M (cf. Thm. L.11).




22

Cioservations

~E <
1. If E is a Killing field then L~ is skew symmetric and

Vx, vE = Ry g¥

E

for all X, Y. It follows that (V4 gE = 0 <aEg,g> = 0 and

2
<(IECLE§,§> = - ||O;Eg HZ Thus -3%[(0) = d—zzi(O) = 0 as expected, since
dt

E generates a l-parameter group of isometries.
2. By the first variational formula it is sufficient to consider fields
E such that E|M is normal.

3. If M is minimal and E is normal, then

1l
(@]

@ty = - <x,ED

on M.

4. The term V E above essentially involves curvature. Indeed, f

E,§
for X e TP(F—A) we have

i VXVEE 4 VVXEE t Ry xE
CL,E(E) E?2 -
= A (X) 1CIL)(X)+REXE.
Therefore,
(1. 6)

E
(g e Br8) = <@ Bl ey -dan i) e) +(Rg (ELD,
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if M is minimal the integral of the first term on the right is zero by
. . E 2 . ;
orem l.1'. We point out that (@ ) , extended as a derivation, does
equal the product of the derivations (J_ * CL . We shall always indicate
E E
former by (U )2 and the latter by @ - CLE

Combining Theorem 1.2 and the above observations gives

orem 1l.2'. I_f M 1is minimal and ElM is normal, then

E __‘ - [ 00%)* + (@7 a”-0HhE. 8 +(R (B8} av
M )
t

I
o

: - N
iemannian connection ¥ in the normal bundle of M given by \7Xv = (VXV) .

o0

We now consider the Laplacian Vz : C (N(M))—— COO(N(M)) of this connection,

‘ COS(N(M)) the compactly supported normal vector fields which vanish on
he boundary of M. This space has a naturgl inner product given by
(vyu) = f {vyp > dv
M :

or v,u ¢ CO(N(M)).
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) 2
Lemma 1. 9. % is a symmetric, negative semidefinite operator on COZ(N(M)).

"2roof. A straightforward calculation shows that at any point p € M,

(7%, 1> + {uv, Tud>) dv = d* Q

where € is the one-form with Q(X) = <va,u> and <Vv,Vu> = E<Ve v,ve u>

) J J
for el, i 5w em orthonormal. It follows that

f<§72v‘,u> dv = - 'J‘<Vv,Vu> dv.

We shall now express the integrand in (1. 7) in terms of VZ. Let us fix a

point p € M and choose el,. i % ,em and Vl, — um pointwise orthonormal, local
tangent and normal vector fields respectively. Then setting g = ©IAT T AC
i we ha. <
R m _
i (1) Q. £ = .E e]_’\.”/\vejEl\'“Aem:E_ ;el’\“.A<ve_E’ei>ei’\'”’\em
j=1 ji j
+ 2. E elA' ‘o A<VejEpvk>VkA' L Aem =
j k
+ E Z<VevE| Vk> el,\' ° AVI:A' $ se Aem
J k j
Therefore,
E. . 2 < 2 N2
1os” =2 24T, Eo )" = 2@, B) |
J k J J J

||VE I 4 e —<V2E, E> mod (terms which integrate to v.‘




o1

(11) (CQ-EO-E-(O_E)Z)g -5 en /57 Ep A7, Ep v pe_.

i s €. e, m

3 i) i ' J

_:erefore,

aaa®-@hhe. ey = T KT, \><V \s\ > - <v LESNALY
i, j=1
0

= - 2: (E,B_ >
: i, j=1 €%

- t
Consider the transpose B : Np(M)——-> Tp(M) @ Tp(M) of B: Tp(M) ® TP(M)———>

i
H
i
i

| t
~(M). We get @ = Bo B: Np(M)—-> Np(M) with the following property:

1 -
ED(E),E) = <tB(E),tB(E)> z < B(E), e ®@e. >2 = L <E, B, >
: , i, j=1 ) i, U

2

i) <R (B.E>= D(R,  Eey=5(R, e E>def { RE),ED.
, ’ 1 i’

We now arrive at the conclusion.

1

Theorem 1.2, If M is minimal and E|M e -CO(N(M)), then

s

dZA

(1. 8) = - [ { -V*E-B(E}+R(E), E) aV.

dt 't=0 M

Suppose now that M is a compact submanifold with boundary, and

:"ons"ider the operator Z on COS(N(M)) given by

f:;v2—6+ﬁ.
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We define a bilinear form II(*,°¢), called the index form, on COS(N(M)) by
II(v,u) = f <;C)v,u> dv.
M

Zg is a symmetric, strongly elliptic operator. Therefore II(-,") is a
symmetric bilinear form which can be diagonalized on COS(N(M)) with

finite dimensional eigenspaces E and eigenvalues

N,

1

< \. < <,,, —> .
)\1 > X3 00

In analogy with standard Morse theory we can then define

Index (M) = dim( @ E.)
A

<0

Nullity (M) = dim(EO)

Note that a vector field v lies in E_ if and only if of(v) = 0. Sucha

0

field is called a Jacobi field.

Of course, in the case of geodesics (dimM-=1), formula (1. 8) reduces
to the well known:

2
(1.8") v, = [ <- 2Ry o) ds
Y ds

where s = arc length, y is the velocity vector field of the geodesic 7, andii
D/ds = covariant differentiation along 7. (Note, B=0.)

Formula (1.8') and its form involving boundary terms for v#Z 0 on
M, together with the general theory above, have been used by Morse, Syng 1
Bott and others té do some of the most fundamental work in geometry. (See

Milnor [1], for example.)
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One of the basic theorems in the Morse Theory of geodesics has been
o éneralized by Smale and Simons to general minimal submanifolds as follows.

Let MC M be a compact minimal submanifold with boundary M # @,

such that
(1) ft = F(-,t) : M—> M is a diffeomorphism of M onto an open
subset of M forall t>0; and f 5 = identity.

(i) £ (M) < f (M) if t 2 s.
t - s -

Given such a contraction we define IIt to be the index form of the
. minimal submanifold ft(M), and set Nt = Nullity (ft(M)). It follows from

';x the general theory of the laplacian that there exists an ¢ > 0 (depending

0

~ Theorem 1.3. (Morse, Smale [1], Simons [1].) For any contraction of € ,-type

*  we have

Index (M) = ¥ Nt.
>0

In particular, there are a finite number of ti > 0 such that Nt > 0.
i

The boundaries 0f " (M) are called ccnjugate boundaries.
i
Unfortunately for dim M > 1 it has not yet been possible to use this

theorem to study the topology of Imm';M(M, ﬁ). Our purpose in these notes is

to instead generalize the variational techniques due to Synge.
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We Jeave as an interecting e¢xercise the computation of the index and

nullity of the tutally geodesic subsphercs of s”.




