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MORSE THEORY AND STOKES’ THEOREM

F. REESE HARVEY & H. BLAINE LAWSON, JR.

Abstract

‘We present a new, intrinsic approach to Morse Theory which has interesting
applications in geometry. We show that a Morse function f on a manifold
determines a submanifold T of the product X x X, and that (in the sense
that Stokes theorem is valid) T has boundary consisting of the diagonal
A C X x X and a sum

P = Z Up X Sp
pECT(f)

where S;, and Uj are the stable and unstable manifolds at the critical point
p. In the language of currents,

0T = A — P.(Stokes Theorem)

This current (or kernel) equation on X X X is equivalent to an operator
equation

doT+ Tod=1I-P,((Chain Homotopy))

where P is a chain map onto the finite complex of currents Sy spanned by
(integration over) the stable manifolds of f. The operator P can be defd on
an exterior form a by
P(a) = lim gja
t—00

where ¢; is a gradient flow for f. The de Rham differential in the complex
Sy is easily computed in terms of the flow lines. The chain homotopy
equation also holds on certain integral chain complexes. Poincaré duality
over Z follows from time-reversal in our operator equations. The method has
many generalizations and applications. Residue theorems are established
for functions with critical manifolds of higher dimension. The methods
apply immediately to equivariant cohomology. Cup product formulas and
a Lefschetz-type theorem are proved for the Thom-Smale Complex. Other
applications include a new proof of the Carrell-Lieberman Theorem and a
proof of a local version of the MacPherson Formula for characteristic classes
and bundle maps.

The research of both authors was partially supported by the NSF.
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0. Introduction

In this paper we present an approach to Morse Theory which is
stronger than the classical theory and has some interesting applications.
It leads to formulas relating characteristic forms and singularities, and it
unifies a body of results on holomorphic actions. It applies directly to the
equivariant case. It also has the virtue of fitting neatly into the modern
theory of invariants arising from topological quantum field theory.

This work resulted from addressing the following.

Question. Consider a flow ¢; : X — X generated by a smooth
vector field on a compact manifold X. Under what cicumstances does
the limit

: *
e = lim ¢
> t—o00 P

exist for a given smooth differential form « on X7

We do not demand that ay, be smooth. Even so, one would expect
the answer to be “rarely, if ever”. However, we shall prove that for generic
gradient dynamical systems, this limit does exist and has a beautiful,
simple structure.

In fact, we shall show that setting

(0.1) Pla) &

lim ¢*a
t—o0

defs a continuous operator of degree 0
P:&(X) — D(X)

from smooth forms to generalized forms, i.e., currents. This operator
is chain homotopic to the inclusion I : £*(X) < D'*(X), that is, there
exists a continuous operator

T:£(X) — D™(X)
of degree -1 such that
(0.2) doT+Tod = I-P.

By de Rham [12], I induces an isomorphism in cohomology. Hence
so does P.

The existence of P and T satisfying (0.1) and (0.2) is established for
any flow of finite volume. This concept, which is central to our paper, is
introduced in §2. A flow ¢, is said to have finite volume if the graph
of the relation © %< y, defined by the forward motion of the flow, has
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finite (n + 1)-dimensional volume in X x X, where n = dim(X). Any
flow whose space-time graph

T, = {(t,cp%(x),x) :0<t<1l and z€X} C RxX xX

is of finite volume has this property.

Consider now a Morse function f : X — R with (finite) critical set
Cr(f). Suppose there is a riemannian metric on X for which the gradient
flow ¢; of f has the following properties:

1. ¢ is of finite volume.

2. The stable and unstable manifolds, S,, U, for p € Cr(f), are of
finite volume in X.

3. p=<q = A <A forall p,qg e Cr(f), where A, denotes the index
of p and where < is the closure of the relation —<.

Note that p < ¢ means there is a piecewise flow line connecting p in
forward time to q.

We shall prove in §14that such metrics always exist. In fact they
are dense in the set of all metrics which are canonically flat in some
neighborhood of Cr(f), and conjecturally they are dense in all metrics.

Under the hypotheses (1)—(3) the operator P is shown to have the
following simple form:

(0.3) Pla) = > rp(a)[S)]
pECT(f)

for all @ € £*(X), where

otherwise

if d =
o= flor 1o

and where [Sy] denotes the current defined by integration over S,. Note
that the image of P is the finite dimensional vector subspace

Sf = spanR{[S’p]} .
peCr(f)

It follows from (0.2) that Sy is d-invariant, i.e., that (Sy, d) is a complex,
and furthermore that the inclusion 8y C D’*(X) induces an isomorphism

H* (Sp) = Hie gham(X)
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This immediately yields the classical strong Morse inequalities.
The exterior derivative restricted to Sy has the form

dSp] = Z Tipg[Sq)-

qeCr(f)

The constants n,, are integers which are non-zero only when A, = A, —1
and are computed, in the Morse-Smale case, by counting flow lines from p
to g (cf. §4). This follows directly from Stokes’ Theorem. One concludes

that
SJ? = spanz{[Sp]}
peCr(f)

is a finite-rank subcomplex of the integral currents Z,(X) whose inclusion
induces an isomorphism

H* (§7) = H*(X; Z)

Poincaré duality (over Z) is now directly deduced from time-reversal
in the flow (8§5).

The analogous relative theorems for a Morse exhaustion function
on a non-compact manifold, including Alexander-Lefschetz duality, are
proved in §7.

Our method of proof involves converting the operator equation (0.2)
to a kernel equation

(0.4) T = [A] - P

on X x X, where A denotes the diagonal. There is a general correspon-
dence between operators K : £*(X) — D'*(X) of degree ¢ and currents
K of dimension n — £ on X x X ([21], See Appendix A.) Under this
transformation: I corresponds to [A], the pull-back of forms by ¢; cor-
responds to the graph of ¢;, and the chain homotopy d c K + K o d
corresponds to the current boundary K. Thus equation (0.4) carries
back directly to equation (0.2).

The current T in (0.4) is simply defined by integration over the graph
of the relation 3<. If the space-time graph T, has finite volume, then
T = pr, T, where pr : R x X x X — X x X is the projection. Our
finite-volume assumption on 7" implies that 7" is a rectifiable current and
therefore that its current boundary is flat in the sense of Federer [14].
Applying the Federer Support Lemma, we conclude that

(0.5) P =3 [U]x[S,k

peCr(f)
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Thus, T provides a homology between the diagonal and the sum
of Kiinneth currents in X x X given by products of the unstable and
stable manifolds of the flow. In other words, our Morse function gives a
canonical chain approximation to the diagonal together with an explicit
homology. This “transgression current” T' = T plays a role in defining
more subtle invariants of manifolds and knots.

The entire procedure outlined above can be applied to functions with
non-degenerate critical manifolds, i.e., functions of Bott-type. Suppose
f is such a function and F}, j = 1,...,v are the connected components
of the critical set. In this case the kernel P in (0.4) is written as a sum
of fibre-products

v

(0.6) P = > [Ujxp 8.

j=1

of the stable and unstable manifolds of the flow. Here the subcomplex
image(P) is not finite-dimensional. However, for each smooth form «
we have

P(a) = 3 Res;(a)[S)]
j=1

where Res;(«) is a smooth, integrable residue form on the manifold S;
computed directly in terms of a.

This approach works nicely in the case of holomorphic C*-actions
with fixed-points on Kédhler manifolds. Here there is an underlying func-
tion of Bott-type. One finds a complex analogue of the current 7" and
replaces equation (0.4) with a d9-equation. General results of Sommese
imply that 7" and all of the stable and unstable manifolds of the flow are
subvarieties of finite-volume. One retrieves, in particular, classical results
of Bialynicki-Birula [5] and of Carrell-Lieberman-Sommese [9], [10]. The
approach also fits directly into MacPherson’s Grassmann graph construc-
tion and Gillet-Soulé’s construction of transgression classes appearing in
the refined Riemann-Roch Theorem [17].

The arguments apply literally without change to the case of equiv-
ariant cohomology. It yields rapid calculations in certain cases and has
been used by J. Latschev to derive a spectral sequence associated to
functions in the equivariant case.

The method can be applied to derive an equation of forms and cur-
rents which relates the singularities of a smooth bundle map A: F — F
to characteristic forms of E and F. At the level of cohomology this re-
trieves a formula of MacPherson [25], [26]. This work, which is discussed
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briefly in §9, began in [18] and then inspired the Morse Theory presented
here.

Much has been written about assigning topological invariants of man-
ifolds and knots to “Feynman graphs”. Primary invariants of this type,
such as those discussed in [3] and [4], can be constructed using operators
P. The invariants of Kontsevich and Vasseliev (cf. [24], [8]) involve the
currents T.

It should be remarked that while the Morse Theory due to Ed Wit-
ten [34] involves the de Rham complex, it is distinctly different from the
approach presented here. Witten considers the conjugates d; of exterior
differentiation d by the function e~/ for ¢ > 0 and examines the asymp-
totics of the associated Hodge laplacians. Elliptic operators do not enter
the story in our approach. Moreover, a crucial simplifying component
of our approach (namely, the calculus of [21] for the operator d) is not
available for other operators such as the Laplacian or d;. It would be
interesting to find a more direct connection between the two theories.

The idea of using the stable manifolds of a generic gradient flow
to give a cell structure to a manifold goes back to R. Thom [33] (See
also [30] and [29].) F. Laudenbach was the first to consider the stable
currents as de Rham currents [23]. He studied Morse-Smale flows and
computed the boundary operator in the Thom-Smale complex by using
Stokes’ Theorem as we do here.

The authors would like to thank Janko Latschev for many useful
comments during the preparation of this work.

1. Finite volume flows

Let X be a compact smooth manifold of dimension n, and let ¢, :
X — X be the flow generated by a smooth vector field V on X. Consider
the operator Py : £*(X) — £*(X) on the space of smooth differential
forms which is given by pull-back

Py(a) = ¢ ().

We will exhibit a chain homotopy operator T; : £¥(X) — &F1(X)
satisfying
(A) dOrI‘t—}—’I‘tOd:I—:Pt7
and show that under a “finite volume” condition it is possible to take
the limit as ¢ — oo. We thereby obtain operators

(B) T=1lmT; and P = lim Py
t—00 t—o00
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satisfying:
(C) doT+Tod=1—P.

Now operator equations such as (A) and (C) are difficult to solve
directly, but as we shall see in §3, they can be converted into current
equations on the product manifold X x X which are much more tractable.
For example, equation (A) becomes the current equation

(A) 8Tt:[A]7Pt on X XX
where A C X x X is the diagonal and

by = [graph(pr)] = {(pi(2),7) = = € X}

is the (reverse) graph of the diffeomorphism ¢;. The remaining condi-
tions are that

(B) T=1lm7; and P =lim P
t—o00 t—o00

exist and satisfy

() oTr =[A]—-P on X x X.

Here T3, T', and P are currents on X x X yet to be determined. Details
of the above correspondence are discussed in §3. The remainder of this
section is devoted to solving the second set of equations (A), (B), (C).

Equation (A) is particularly easy to solve. Consider the family of
compact manifolds with boundary:

(1.1) Ti = {(s,p5(z),z) : 0<s<tandz € X}

contained in R x X x X. Obviously, 7; has the two boundary components
{0} x A and {t} x P,. Assume X is oriented (this condition will be
dropped later) and orient T; so that

(1.2) 0T = {0} x A — {t} x P,.
Let pr: R x X x X — X x X denote projection and set
(1.3) T, = (pr).(T5).

Since 0 commutes with (pr),, the push-forward of (1.2) by pr, gives
equation (A).
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The current T; can be equivalently defined by
(1.3 T, = ®.(]0,t] x X)

where & : R x X — X x X is the smooth mapping given by ®(s,z) =

(¢s(z),z). This mapping is an immersion exactly on the subset R x (X —

Z(V)) where Z(V) = {z € X : V(z) = 0}. Thus if we fix a riemannian

metric g on X, then ®*(g % g) is a symmetric positive semi-definite tensor

whose associated volume is > 0 exactly on the subset R x (X — Z(V)).
This brings us to one of the central concepts of the paper.

Definition 1.1. A flow ¢; on X is called a finite volume flow
if Rt x (X — Z(V)) has finite volume with respect to the metric in-
duced by the immersion ®. (This concept is independent of the choice
of riemannian metric on X.)

Theorem 1.2. Let ¢, be a finite volume flow on a compact manifold
X. Then both the limaits

(B) P = lim [graph o] and T = lim T}
t—o00

t—o0

exist as currents, and by taking the boundary of T we obtain the equation
of currents

() oTr =[A]—-P on X x X.

relating P to the diagonal A in X x X

Proof. Since ¢, is a finite-volume flow, the current 7' = ®.((0, 00) x
X) is the limit in the mass norm of the currents T; = ®,((0,¢) x X) as
t — 00. The continuity of the boundary operator and equation (A) imply
the existence of limy_,~, P; and also establish equation (C). q.e.d.

Remark 1.3. Since (¢(z),2) = (y,p—t(y)) if y = pr(z), it follows
that
T" = ¢, ((—00,0) X X)

is also a well-defined current for a finite-volume flow. It corresponds to
the push-forward of T' under the flip (y,z) — (z,y) on X x X.

Remark 1.4. The immersion ® : R x (X — Z(V)) > X x X is an
embedding outside the subset R x Per(V') where

Per(V)={z € X : pt(z) =z for somet >0}
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are the non-trivial periodic points of the flow. Thus, if Per(V) has
measure zero, then Tj is given by integration over the embedded finite-
volume submanifold ®(R;), where R; = (0,t) x (X — Z(V) U Per(V)).
If furthermore the flow has finite volume, then 7' is given by integration
over the embedded, finite-volume submanifold ®(Rx).

There is evidence that any flow with periodic points cannot have
finite volume. Now a gradient flow never has periodic points, and such
flows are generically of finite volume (§14.). However, finite-volume flows
are much more general than gradient flows. For a first example, note that
any flow with fixed points on S' has finite volume.

Remark 1.5. If we define a relation on X x X by setting 2 — <y
if y = p(z) for some 0 < ¢ < oo, then T is just the (reversed) graph
of this relation. This relation is always transitive and reflexive, and it
is antisymmetric if and only if ¢; has no periodic orbits (i.e., = < is a
partial ordering precisely when ¢; has no periodic orbits).

Remark 1.6. A standard method for showing that a given flow is
finite volume can be outlined as follows. Pick a coordinate change ¢t — p
which sends 400 to 0 and [tg, 00] to [0, po]. Then show that
(1.4)

T = {(p,pyp)(2),7) : 0<p<po} has finite volume in R x X x X.

Pushing forward to X x X then yields the current 7" with finite mass.
Perhaps the most natural such coordinate change is r = 1/¢. Another
natural choice (if the flow is considered multiplicatively) is s = e~t. Of
course finite volume in the r coordinate insures finite volume in the s
coordinate since 7 — s = e /" is a C®-map.
Many interesting flows can be seen to be finite volume as follows.
Proposition 1.7. If X is analytic and T C R x X x X is contained
in a real analytic subvariety of dimension n+1, then ¢, is a finite volume

flow.

Proof. The manifold points of a real analytic subvariety have (locally)
finite volume. q.e.d.

A flow need not be a gradient flow to be a finite volume flow.

Example 1.8. (The standard degenerate flow on S™) Consider the
translational flow ;(y) = y + tu on R"™ where u € R™ is a unit vector.
We can identify R™ with S™ — {00} so that ¢; extends to S™ as a finite
volume flow. To do this choose coordinates z = y/|y|> on R" = 5™ —{0}.
Then

T+ tlz|?u
(1.5) pr(z) = Tu+ a2
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(The vector field V == ¢;|,_, is given by V (y) = u on R" = §" — {oo},
and by V(z) = |z|?u — 2{z,u)z on R" = S" — {0}.)

The flow ¢ is finite volume flow on S™. To see this let r = 1/¢ and
note that

T={(rz,2) : z=¢1(x),0<r <oo and z€R"=5"—-{0}}

is defined by

2lru + z|? = r(rz + |z|?u)
so that Proposition 1.7 is applicable. Note that co (z = 0) is the only
zero of V. Although V is not a gradient vector field, it is the limit of
gradient vector fields.

Our next problem is to explicitly compute the current P and its
associated operator P under additional assumptions on the flow. We
shall show that when V is a “good” gradient vector field for a Morse
function, the operator P is projection onto the finite complex of currents
spanned by the stable manifolds of the flow. Furthermore, for any given
Morse function the “good” gradients are generic (cf. §14).

2. Morse-Stokes gradients; axioms

Let f € C*°(X) be a Morse function on a compact n-manifold X,
and let Cr(f) denote the (finite) set of critical points of f. Recall that
f is a Morse function if its Hessian at each critical point is non-
degenerate. The standard Morse Lemma asserts that in a neighborhood
of each p € Cr(f) of index A, there exist canonical local coordinates
(Uly ey Un, V1, ooy Uy ) Tor |u| < ) Jv| <7 with (u(p),v(p)) = (0,0) such
that

(2.1) flu,v) = f(p) = |uf® + o],

Fix a riemannian metric on X and let ¢; denote the flow associated to
V f. We assume our metric has the form |du|? + |dv|? in some canonical
coordinate system (u,v) about each p € Cr(f). Therefore, in these
coordinates the gradient flow is given by

wi(u,v) = (e tu, elv)

Metrics with this property will be called canonically flat near Cr(f).

Now to each p € Cr(f) are associated the stable and unstable
manifolds of the flow, defined respectively by
(2.2)
Sp={z € X: lim gy(z) =p}  and  Up={zcX: lim ¢ z)=p}.
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For coordinates (u,v) at p, chosen as above, we consider the disks
Sp(e) = {(u,0) : Ju|] < €} and Up(e) = {(0,v) : |v| < €}
and observe that

(23) S = U ot (Sp(e)) and Up = U @t (Up(e)) -

—00<t<0 0<t<+00

Hence, S, and U, are submanifolds (but not closed subsets) of X with
(2.4) dimS, = X, and dimU, =n— A,

where ), is the index of the critical point p. For each p we choose an
orientation on U,. This gives an orientation on the normal bundle of
Sp via the splitting T, X = T,U, ® T,S,. We thereby obtain a kernel
[Up] % [Sp] on X x X (See A.9.).

The flow ¢ induces a partial ordering on X by setting x < y if there
is a continuous path consisting of a finite number of foward-time orbits,
which begins with z and ends with y. This is the closure of the partial
ordering of Remark 1.5.

Definition 2.1. The gradient flow of a smooth function f on a
riemannian manifold X is called Morse-Stokes if

1. f is a Morse function.
2. The flow is a finite-volume flow.

3. Each of the stable and unstable manifolds S, and U, for p € Cr(f)
has finite volume.

4. (iv) If p < g and p # ¢ then A, < Ay, for all p, ¢ € Cr(f).

Remark 2.2. In Section 14 we shall prove that if the gradient flow
of f is Morse-Smale, then it is Morse-Stokes. Furthermore, for any Morse
function f on a compact manifold X there exist riemannnian metrics on
X for which the gradient flow of f is Morse-Stokes. These metrics are
constructed to be canonically flat near C'r(f) and are dense in all metrics
with this property.

Theorem 2.3. Let f € C°(X) be a Morse function on a compact
riemannian manifold whose gradient flow is Morse-Stokes. Then there
is an equation of integral currents

(2.5) T = [A] - P
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on X X X, where T is an embedded submanifold of finite volume, A C
X x X is the diagonal, and where

(2.6) P = Z [Up] X [Sp]

peCr(f)

Proof. For each critical point p € Cr(f) we define

ﬁpd:erUq:{ateX:p<ar}.

p=q

Lemma 2.4. Let f € C*°(X) be any Morse function whose gradient
flow s of finite volume, and let spt P C X x X denote the support of the
current P defined in Theorem 1.2. Then

spt P C U (71, x Sp.
p€ECr(f)

Proof. Since P = limy_,o0 Py and P, = {(p¢(z),z) : € X}, it is clear
that (y,z) € spt P only if there exist sequences z; — z in X and s; — 0o
in R such that y; = ¢, (z;) — y. Let L(x;,vy;) denote the oriented
flow line from z; to y;. Since the lengths of these lines are bounded,
compactness implies that a subsequence converges to a piecewise flow
line L(z,y) from z to y. By the continuity of the boundary operator on
currents, OL(z,y) = [y] — [x]. Finally, since s; — oo there must be at
least one critical point on L(z,y), and we define p = lim,_, o ().

q.e.d.

Consider now the compact subset
2= U, xS ¢ XxX.

p<q
P#q

Note that from (2.4) and Axiom (iv) in Definition 2.1 that
(2.7) dim(¥) < n—1.

Set ¥ =X U{(p,p) : p€ Cr(f)}.

Lemma 2.5. Let f € C*°(X) be a Morse function and consider the
embedded submanifold

T = {(y,z) : = ¢ Cr(f), and y = @i(x) for some 0 <t < oo}.
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of X x X —=%'. Then the closure T of T is a proper C™-submanfold with
boundary
T=A- > UyxS,
peCr(f)
in X xX =%

Proof. We first show that it will suffice to prove the assertion in a
neighborhood of (p,p) € X x X for p € Cr(f). Consider (3,7) € T —T.
If (g,Z) ¢ X', then the proof of Lemma 2.4 shows that either (7,Z) € A
or (§,%) € Uy x Sy, for some p € Cr(f). Near points (Z,Z) € A, T ¢
Cr(f), one easily checks that T is a submanifold with boundary A. If
(y,z) € Up x Sp, then for sufficiently large s > 0, the diffeomorphism
Ys(y,z) = (p—s(y), ps(z)) will map (7, Z) into any given neighborhood
of (p,p). Note that 15 leaves the subset U, x S, invariant, and that ;"
maps T into T. Hence, if 0T = A — U, x S, in a neighborhood of (p, p),
then 0T = —U, x S, near (y,).

Now in a neighborhood O of (p,p) we may choose coordinates as in
(2.1) so that T consists of points (y,z) = (u,v,u,v) with & = e ‘u and
? = elv for some 0 < t < co. Consequently, in O the set T is given by
the equations

u=su and v = sv for some 0<s<1.
This obviously defines a submanifold in O — {(p,p)} with boundary con-
sisting of A and the set {u =0, v =0} = (U, x Sp)NO. q.ed.

Lemma 2.5 has the following immediate consequence

(2.8) spt P— Y UpxS,pCy
peCr(f)

We now apply the following elementary but important result of Fed-
erer.

Proposition 2.6. ([14, 4.1.15]). Let [W] be a current in R" defined
by integration over a k-dimensional oriented submanifold W of locally
finite volume. Suppose spt (d[W]) C R, a linear subspace of dimension
¢ <k—1. Then d[W]=0.

Combining this with (2.7) and (2.8) proves (2.6) and completes the
proof of Theorem 2.3. q.e.d.
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Remark 2.7. In [14, 4.1.15] Federer actually proves the following
general result. Let Y be a locally flat current of dimension k& defined in
a convex open subset U of R”.

(i) If the Hausdorff measure of spt (dY') is zero in dimension k — 1,
then dY = 0.

(ii) If spt (dY) C UNRFL then dY = ¢[U NRF!] for some ¢ € R.
Moreover, if Y is locally rectifiable, then ¢ is an integer.

This result is philosophically central to our paper.

Remark 2.8. Using the flow given in Example 1.8 and the methods
above, one constructs an (n+ 1)-current 7" on S™ x S™ with the property
that

OT = S™ x {x} + {x} x S".

This is a singular analogue of the form used by Bott and Taubes to study
knot invariants [8].

3. The operator equations

We now explain how to pass from the current equations (A), (B), (C)
to the operator equations (A), (B), (C) discussed in §1. This kernel
calculus was introduced in [21]. There is a brief appendix on currents
with definitions and notation at the end of the paper. The discussion
here includes the non-orientable case.

Let X and Y be compact manifolds, and let 7y and wx denote
projection of Y X X onto Y and X respectively. Then each partially
twisted current (or kernel) K € D'*(Y x X), determines an operator
K:E&*(Y) — D'"(X) by the formula

(3.1) K(a) = (mx) (K A mya).
The formula (3.1) can be rewritten as
K(a)(B) = K(mya Amxf)

where 5 € £*(X) is a twisted form on X. This definition is motivated
by the following example.

Example 3.1. Suppose ¢ : X — Y is a smooth map, and let
P (o) = ¢*() be the pull-back operator on on differential forms. Now
a differential form ¢*«a defines a current by setting

(3.2) (¢"a)(B) = /X (6°a) A
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for all twisted forms § € g*(X ). Consider the graph of ¢ given by
graphp = {(p(z),z) : ¢ € X} C Y x X. Integration over the graph of
¢ determines a kernel or (partially twisted) current on Y x X, by this
same formula (3.2). Namely,

(33) graphgl(rianmih) = [ p'ans.
X
The left hand side equals

([graph ¢] A my-a) (% B) = ((mx)«([graph o] A 75-)) (B).

Therefore,

(3.4) P (o) = (mx)«([graph ¢] A 7y-).

To complete the transfer of the operator equations (A) and (C) to
current equations on X X X, we need the following result.

Lemma 3.2. Suppose the operator K : E*(Y') — D" (X) has kernel
K e D"(Y x X). Suppose that K lowers degree by one, or equivalently,
that deg(K) = dimY — 1. Then

(3.5) The operator do K +Kod has kernel 0K.

Proof. The boundary operator 0 is the dual of exterior differentiation.
That is 0K is defined by (0K)(ny-a A 1% 5) = K(d(mya A 75 3)). Also,
by definition, (K(da), 8) = K (7 (do) A 7% 6), and

(d(K(a)), B) = (1) K(a)(dB) = (~1)** K (n5(a) Ak dp),

since K(«) has degree equal to degae — 1. g.e.d.
The results that we need are summarized in the following table.

Operators Kernels
I [A]
P = ¢f P, = [graph ¢y]
K
K
doK+Kod 0K

Table 3.6
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This completes the transfer of the operator equations (A), (B), (C)
to the current equations (A), (B), (C). From Theorems 1.2 and 2.3 we
immediately deduce the following.

Theorem 3.3. Let f € C°(X) be a Morse function on a compact
riemannian manifold X whose gradient flow ¢, is Morse-Stokes. Then
for every differential form o € E¥(X), 0 < k < n, one has

P(a) = tlifgo pra= Z Tp()[Sp]
peCr(f)
where the “residue” r,(c) of o at p is defined by

rp(a) :/U a

P

if k =n— X and 0 otherwise. Furthermore, there is an operator T of
degree -1 on E*(X) with values in flat currents, such that

(3.7) doT+Tod = I—-P

From Theorem 3.3, we see that P : £*(X) — D'*(X) maps onto the
finite-dimensional subspace of currents

def
(38) Sf :e Span{[sp] }pECr(f)
and that
(3.9) Pod = doP.

This together with (3.7) implies the following.

Corollary 3.4. The subspace Sy is d-invariant and is therefore a
subcomplex of D'*(X). The linear map

P: & (X) — Sy

is a map of cochain complexes which induces an isomorphism

~

P: Hyp(X) =— H*(Sy).
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4. Z-complexes, Z/pZ-complexes

We now observe that the complex (Sy,d) is actually defined over the
integers. Consider the lattice

def
S% =< spany [Sp]}peCr(f)

and note that S% forms a subgroup of the integral currents Z(X) on X.

Theorem 4.1. The lattice S% is preserved by exterior differentiation
d, that is, (S%,d) is a subcomplex of (Sy,d). Furthermore, the inclusion
of complezes (szc;,d) C (Z(X),d) induces an isomorphism

H(S?) = H.(X;7)

Proof. Corollary 3.4 implies that for any p € Cr(f) we have

(4.1) d[Sp] = Z Np,q [Sq]

Ag=Ap—1

for real numbers n,,. Furthermore, since [S,] is rectifiable, we have
npq € Z for all p,q by Remark 2.7, and the first assertion is proved.
Now the domain of the operator P extends to include any C' chain
¢ which is transversal to the submanifolds U,, p € Cr(f), while the
domain of T extends to any C! chain ¢ for which X x c is transversal
to T'. Standard transversality arguments show that such chain groups
(over Z) compute H,(X;Z). The result then follows from (3.7). q.e.d.

Corollary 4.2. Let G be a finitely generated abelian group. Then
there are natural isomorphisms

H(Sf®7G) = H.(X;G).

Part one of Theorem 4.1 has an elementary proof when the flow is
Morse-Smale, which means by definition that S}, is transversal to U, for
all p, g € Cr(f). Suppose the flow is Morse-Smale and that p,q € Cr(f)
are critical points with A\; = A, —1. Then U; N S, is the union of a finite
set of flow lines from ¢ to p which we denote I', ;. To each v € Iy 4 we
assign an index n, as follows. Let B, C S, be a small ball centered at
p in a canonical coordinate system (cf. (2.1) ), and let y be the point
where v meets 0B.. The orientation of .S, induces an orientation on
T,(0B¢), which is identified by flowing backward along v with T;(S,).



18 F. REESE HARVEY & H. BLAINE LAWSON, JR.

If this identification preserves orientations we set m, = 1, and if not,
ny = —1. As in [23] Stokes” Theorem gives us the following (cf. [34]).

Proposition 4.3. When the gradient flow of f is Morse-Smale, the
coefficients in (4.1) are given by

Npg = (—1)% Z Ny

Y€lp,q

Proof. Given a form o of degree )\, — 1, we have

— )\p — — 1

(1) d[S,](@) /S o= i [
where S,(r) = ¢_,(Sp(€)) as in §3. It suffices to consider forms o with
support near ¢ where \; = A, — 1. Near such g, the set S,(r), for large
r, consists of a finite number of manifolds with boundary, transversal to
U,. There is one for each v € ', ;. As r — oo along one such vy, dS,(r)
converges to =S, where the sign is determined by the agreement (or not)
of the orientation of dSp(r) with the chosen orientation of 5. g-e.d.

Remark 4.4. The integers n,, have a simple definition in terms
of currents. Set Sp(r) = ¢_,(Sp(€)) and Uy(r) = ¢, (Uy(e)) (cf. (2.3)).
Then for all r sufficiently large

(4.2 Moy = (1) /X [Ug(r)] A d[S, ()]

where the integral denotes evaluation on the fundamental class.

5. Poincaré duality

There is a simple proof of Poincaré duality in this context. Suppose
that X is compact and oriented. Given two oriented submanifolds A
and B of complementary dimensions in X which meet transversally in
a finite number of points, we define A @ B = [, [A] A [B] to be the
algebraic number of intersections points (counting a point +1 depending
on orientations as usual). Let Cry(f) = {p € Cr(f) : A\p = k}. Then
for any k we have

(5.1) Use S, = 0pq for all p,q € Cri(f).

This gives a formal identification

(5.2) Uy E 2]} eonyy = Hom (S%, Z).
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Therefore, taking the adjoint of d gives a differential § on L{% with the
property that Hn,*(u%,é) ~ H*(X;Z). On the other hand the argu-
ments of §§1-4 (with f replaced by —f) show that L{% is d-invariant with
H, (Z/l%, d) =2 H.(X;Z). However, these two differentials on L{% agree up
to sign as we see in the next lemma.

Lemma 5.1. One has
(5.3) (dU,) e S, = (=1)"*U, e (dS,)

for allp € Cri(f) and q € Crip_1(f), and for any k.

Proof. One can see directly from the definition that the integers
Np,q are invariant (up to a global sign) under time-reversal in the flow.
However, for a simple current-theoretic proof consider the 1-dimensional
current [Uy(r)]A[Sp(r)] consisting of a finite sum of oriented line-segments
in the flow lines of T’ ; (cf. Remark 4.4). Note that

d([Ug(MIAISp(r)]) = (d[Ug(rA[S(r)] + (=1)"FFH U (r)]Ad [S,(r)])
and apply (4.2). q.e.d.

Corollary 5.2. (Poincaré Duality)

H"M(X,7Z) = Hy(X;Z)  for all k.

Note 5.3. Inour operator picture the Poincaré duality isomorphism

can be realized in a nice way. Let
Tiot = T"+T = {(y,z) : y=i(z) for some t € R}.

Then we obtain the operator equation

do Ty + Tiorod = P—P

P= Z [Up] X [Sp] and p= Z [Sp] x [Up).
peCT(f) peCr(f)

This chain homotopy induces an isomorphism H, (Z/{%) ~ H, (C%), which
after identifying Z/le with the cochain complex via (5.1) and (5.3), gives
the duality isomorphism 5.2. When X is not oriented, a parallel analysis
yields Poincaré duality with mod 2 coefficients.
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6. Critical submanifolds of higher dimension

The methods introduced above apply in much greater generality. As
seen in §1, one only needs the flow ¢; to be of finite volume to guarantee
the existence of an operator P () = limy_, o ¢ () which is chain homo-
topic to the identity. In this and the following sections we shall examine
some important examples.

Let f : X — R be a smooth function whose critical set (i.e., the set
where df = 0) is a finite disjoint union

of compact submanifolds F; in X. We assume that Hess(f) is non-
degenerate on the normal spaces to Cr(f). Then for each j, there are
stable and unstable manifolds

Si={zeX : tl_l)I& oi(x) € Fy} and
Uy={zeX : til{rloowt(x) € F;}

with projections

(6.1) S; 3k B U
where
7j(e) = lim ¢y(z)  and  oj(r) = lim ¢y(z).

For each j, let n; = dim(F}) and set A\; = dim(S;) —n;. Then dim(U;) =
n — \j. For p € F; we define A\, = \; and n, = n;.

Definition 6.1. The gradient flow ¢; of a smooth function f €
C*(X) on a riemannian manifold X is called a generalized Morse-
Stokes flow if:

(i) The critical set of f consists of a finite number of submanifolds
Fy, ..., F, on the normals of which Hess(f) is non-degenerate.

(ii) The manifolds T, and T, and the stable and unstable manifolds
S, Uj for 1 < j < v are submanifolds of finite volume. Furthermore, for
each j, the fibres of the projections 7; and o; are of uniformly bounded
volume.

(i) p<qg = MN+n,<) Vp,q € Cr(f).
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These axioms are easily verified in a number of important cases in
the algebraic and analytic category. The first main result concerning
such flows is the following.

Theorem 6.2. Suppose p; is a gradient flow satisfying the gener-
alized Morse-Stokes conditions 6.1 on a compact oriented manifold X.
Then there is an equation of currents

T = [A] - P

on X x X, where T, A, and P are as in Theorem 1.2, and

v

(6.2) P = Y [Ujxr Sj]

i=1

where U X p; S; ={(y,2) € U; x S; C X x X : oj(y) =7j(z)} denotes
the fibre product of the projections (6.1)

Proof. The argument follows closely the proof of Theorem 2.3. De-
tails are omitted. q.e.d.

Janko Latschev has found a Smale-type condition which yields this
result in many cases where the hypothesis of 6.1 (iii) does not hold. In
particular, Latschev’s condition implies only that: p < ¢ = A, < A,.
Details appear in [22].

As in §3, this result can be translated into operator form.

Theorem 6.3. Let ¢; be a gradient flow satisfying the generalized
Morse-Stokes Conditions on a manifold X as above. Then for all smooth
forms a on X, the limit

P(a) = lim (a)

t—00

exists and defines a continuous linear operator P : £*(X) — D'*(X)
with values in flat currents on X. This operator fits into a chain homo-

topy

(6.3) doT+Tod =1—P.

Furthermore, P is given by the formula

(6.4) P() = 3 Resj(a) S]]
j=1
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(6.5) Resj(a) = 7} {(Uj)* <a|U]_)}

Proof. This is a direct consequence of Theorem 6.2 except for the
formulae (6.4)-(6.5). To see this consider the pull-back square

t
Uj XFJ- Sj E——d Uj

(6.6) S;l lgj

-
Sj —]> Fj

where ¢; and s; are the obvious projections. One sees from the definitions

(cf §3) that
P(a) = > (s { )" (al,) } -
7j=1
The commutativity of the diagram (6.6) allows us to rewrite these terms
as in (6.5). q.e.d.

Corollary 6.4. Suppose that A\, +ny+1 < Xy for all critical points
p < q. Then the homology of X is spanned by the images of the groups
H)\jH(S_j) forj=1,..,v and ¢ > 0.

Proof. Under this hypothesis 9(U; x5; S;) = 0 for all j, and so (6.2)
yields a decomposition of P into operators that commute withd.  q.e.d.

We can make this corollary more precise. Note that 7; : S; — Fj can
be given the structure of a vector bundle of rank A;. The closure S_] C
X is a compactification of this bundle with a complicated structure at
infinity. ( See [11] for example.) There is nevertheless a homomorphism
©; : H.(Fj) — Hy,4.(S;) which after pushing forward to the one-
point compactification of Sj, is the Thom isomorphism. This leads to
the following (cf. [2]).

Theorem 6.5. Suppose that A\, +ny +1 < Ay for all critical points
p < q and that X and all F; and S; are oriented. Then there is an
isomorphism

H.(X) = P H.(F))
j

This result holds without the orientation assumptions if one takes ho-
mology with appropriately twisted coefficients. Much stronger versions
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of Theorems 6.3 and 6.5, are found in [22]. They include an extension
to integral homology groups. Latschev also derives a spectral sequence
associated to any Bott-Smale function satisfying a natural Smale-type
transversality hypothesis. One virtue of this sequence is that the differen-
tials are explicitly computable. Assuming for simplicity that everything
is oriented, the E'-term is given by

By = D H/(F;2)
Aj=p
and Ef = H.(X;Z)

7. The relative case

In standard Morse Theory one often studies the change in the topol-
ogy as one passes from {z : f(z) < a} to {z : f(z) < b}. Our approach
is easily adapted to this case.

Let f : X — R be a proper Morse function, where X is not necessarily
compact, and suppose that X carries a metric as in 14.3. Let a < b be
regular values of f and consider the compact manifold with boundary

Z = fY([a,b)).

On Z we define a vector field V = (¢ o f)V f where 9 : [a,b] — [0,1] is a
smooth function satisfying: (i) ¢ ~1(0) = {a, b}, (ii) ¢ is linear on [a, a+€]
and [b—e, b], (iii) ¥ = 1 on [a+2¢, b—2¢], (iv) f(Cr(f))NZ C (a+2€,b—2¢)
for some small € > 0.

Let ¢, : Z — Z be the flow of V. Note that o; is complete and fixes
the boundary 0Z. By 14.3, the stable and unstable manifolds of each
p € Cr(f) have finite volume in Z, and so also does T' = {(y,z) : y =
oi(z) for some ¢, 0 <t < oo} CZ x Z.

We decompose the boundary

def

0z = [71(b) — fH(a) = O~ Oa

In analogy with the fibre products appearing in §6 we have the following
submanifolds of Z x Z:

S() = {(y,z) € ZxZ : y€ Dy and tl_i>m oi(z) =y} and

=

2

SN
I

{(y,z) € Zx Z : x €9, and t_l}ir_n ©i(y) = z}.
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Theorem 7.1. On Z X Z there is an equation of integral currents

(7.1) oT = [Al= Y [Up] x[S] = [U(0a)] — [S(%))-

peCr(f)nz
Proof. Consider T; C R x X x X defined as in (1.1) and note that
OT; = {0} x [Az] —{t} x [graph @] — [0, ] X [Agz].
Set T; = pr, 7; and observe that since pr,([0,¢] X [Asz]) =0,
9Ty = [A] — [graphey].

By hypothesis T' = lim;_, o, T; has finite volume, and a direct application
of the arguments of §2 establishes (7.1).  q.e.d.

Equation (7.1) can be translated to an operator equation. However,
here we want the operator to act on the relative forms:

(7.2) £(2,8) = {aEE*(Z) : a|ab:0}.

We begin with the case where f > a and so 9, = .

Theorem 7.2. Suppose f : X — RT is a proper Morse function.
Let Z = f~(—o0,b] where b is a regular value of f, and consider the
operator

P:£&%(Z,02) — D" (2)
defined by

(7.3) P(a) = lim ¢} ()

t—o0

where @, is the truncated gradient flow defined above. This operator is
well defined and continuous. In fact, there exists a continuous operator
T :E%(Z,0Z) — D'*(Z) of degree -1 with values in flat currents, such
that

(7.4) doT+Tod =1 P

Furthermore, P is given by the formula

(7.5) Pla) = 3 rp(a)[S))

peCr(f)nz



MORSE THEORY AND STOKES’ THEOREM 25

where rp(a) = fUp «. In particular, P is a continuous chain mapping

onto the finite dimensional complex

de.
sz 2 wang {15} ,
peCr(f)NZ

with differential given as in 3.5, and P induces an isomorphism

Hip(2,02) 5 H(Syz).

Proof. This is deduced exactly as are Theorems 3.3, 3.5. We need
only note that the operator given by [S(0p)] is zero on £*(Z,0Z). This
follows directly from the definition 3.1 and the fact that m1(S(9,)) =
61, =0Z. q.e.d.

In the more general case where 9, # () we compose our operators with
the projection map w : £¥(Z) — £*(Z,0Z)', (which is adjoint to the
inclusion £*(Z,0Z) C £*(Z)). In this case the operator corresponding
to [U(d,)] is zero. Specifically, letting 7, : X x X — X denote projection
onto the k" factor, we have that

(U(0a)(), ) = ((m), {maA[U(B)]}, B) = 0
since 71 (U(0,)) = 0, and ﬁ|a = 0. We conclude the following.
Theorem 7.3. The operators

T, P:E(Z2,00Z) — D" (Z,0,7)
corresponding to the currents T, P from Theorem 7.2 satisfy the equation
doT+Tod =I-P

where

P = Z Tp[Sp)

peCr(f)NZ

and rp(a) = fUp a. Thus, P gives a continuous chain mapping of the
relative deRham complex £*(Z, 0p) onto the finite dimensional complex

def
Stz = SPG"R{[SP]}pGCT(f)mZ

with differential given as in 3.5. This induces an isomorphism

Hin(2,002) 5 H(Spz).
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Remark 7.4. Taking 9,Z = () and 9,Z # 0 in Theorem 7.3 (and
interchanging the roles of a and b) gives the version of Theorem 7.2
corresponding to going backwards in time. That is, one considers

def .. %
P(a) = lim ¢ja
and obtains a projection operator
P:&E(Z) — Spz C D (Z,0)

where Sy 7 is a finite complex defined over Z.

Remark 7.5. (Duality) Arguing exactly as in §5 one can retrieve
the duality theorem

(7.6) H¥(Z,0,7;7) = Hp 1(Z,0,7 : 7)

which gives, in the special case where either 0,Z = 0 or 0,Z = 0, the
Lefschetz Duality Theorem.

8. Holomorphic flows and the Carrell-Lieberman-Sommese
theorem

The ideas in this paper have interesting consequences in the holo-
morphic case. For example, given a C*-action ¢; on a compact Kahler
manifold X, there is a complex graph

T {(t,pt(2),2) EC*x X x X : t€C* and z € X}

C PO)xX xX

analogous to the graphs considered above.

Theorem 8.1. ([32]) If ¢; has fized-points, then T has finite volume
and its closure T in P1(C) x X x X is an analytic subvariety.

The relation of C*-actions to Morse-Theory is classical. One can
decompose ¢; into an “angular” S'-action and a radial flow. Averaging
a Kihler metric over S! and applying an argument of Frankel [14], we
find a function f : X — R of Bott-Morse type whose gradient generates
the radial action. One can now apply the methods of this paper, in
particular those of §6.
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Thus when ¢; has fixed-points, 7 gives a rational equivalence between
the diagonal A in X x X and an analytic cycle P whose components con-
sist of fibre products of stable and unstable manifolds over components
of the fixed-point set of the action.

When the fixed-points are all isolated, P becomes a sum of analytic

Kiinneth components P = Y~ S}, x (71,, and we recover the well-known fact
that the cohomology of X is freely generated by the stable subvarieties
{gp}peZero(w). It follows that X is algebraic and that all cohomology the-
ories on X (eg. algebraic cycles modulo rational equivalence, algebraic
cycles modulo algebraic equivalence, singular cohomology) are naturally
isomorphic. (See [5], [13], [15]).

When the fixed-point set has positive dimension, one can recover
results of Carrell-Lieberman-Sommese for C*-actions ([9], [10]), which
assert among other things that if dim(X ") = k, then HP9(X) = 0 for
lp —q| > k.

9. The local MacPherson formula

The ideas in this paper also have an interesting application to the
study of curvature and singularities. Suppose

a:FE—F

is a map between smooth vector bundles with connection over a manifold
X. Let G = G(E ® F) — X denote the Grassmann bundle of k-planes
in E® F where k = rank(E). There is a flow ¢; on G induced by the
flow ¢y : E® F — E & F where (e, f) = (te, f). This is a very simple
generalized Morse-Stokes flow on G. On the “affine chart”Hom(E, F),
one has that ¢y(4) = 1 A.

Note that here it is more natural to consider the flow multiplicatively
(¢ts = @t o @s) than additively. Consider RT = {[1 : {] e P}(R) : 0 <
t < oo} C PYR) C P!(C). Note that this inclusion is compatible with
the inclusion of the complex multiplicative group C* C P!(C).

Definition 9.1. The section « is said to be geometrically atomic
if the graph

T(a) = {(t,x, %a(:v)) :0<t<1 and :EEX}

has finite volume in P}(R) x X x G.

This hypothesis is sufficient to guarantee the existence of lim;_,o af ®

where a; = %a and where @ is any differential form on G. Choosing



28 F. REESE HARVEY & H. BLAINE LAWSON, JR.

® = P(Qy) where ®y is an Ad-invariant polynomial on d<ix(R) and
Qu is the curvature of the tautological k-plane bundle over G, one can
establish a local version of a basic formula of MacPherson [25], [26].
Details appear in [20].

10. Equivariant Morse theory

The ideas developed here carry over virtually intact to the setting
of equivariant cohomology. The reason the method works directly is
the simple but important fact that a closed, invariant submanifold is
equivariantly closed (See Corollary 10.2 below). In this section we de-
rive some consequences of the method which usefully apply to Morse
functions arising in algebra and geometry (e.g., from moment map con-
structions). Deeper results have been obtained by J. Latschev [22]. We
shall adopt the exposition of Cartan’s equivariant de Rham theory found
in [6] and [7].

Let G be a compact Lie group with Lie algebra 0 acting on a compact
n-manifold X. By an equivariant differential form on X we mean a
G-equivariant polynomial map « : 8 — £*(X). The set of equivariant
forms is denoted by

E6(X) = {5*(0") @ €1 (X))

and is graded by declaring elements of SP(9*) ® £9(X) to have total
degree 2p + ¢. The equivariant differential dg : £5(X) — 5™ (X) is
defined by setting
(dga) (V) = da(V) —iga(V)

for V € 0 where the vector field V is the image of V under the natural
linear map 0 — I'(T'X), and where iy denotes contraction with V.

The complex E,(X) of equivariant currents is similarly defined
by replacing smooth forms £*(X) by forms E*(X) with distribution co-
efficients.

Consider now a G-invariant function f € C*°(X) and suppose that
X is provided with a G-invariant riemannian metric. Then ¢, Vf =V f
for all ¢ € G and so the gradient flow of f commutes with the action of
G. Suppose that the gradient flow has finite volume and let

(10.1) T = A—P

denote the current equation derived in §1. Let G act on X x X by the
diagonal action ¢ - (z,y) = (9z, gy).
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Lemma 10.1. The current T satisfies:

(i) gT=T for all g € G, and
(i) igT =0 forall V € 0.
So also does the current P.

Proof. The current T' corresponds to integration over the finite vol-
ume submanifold {(z,y) € X x X — A : 3t € (0,00) s.t. y = ¢i(x)}.
Since g () = ¢t(gz), assertion (i) is clear. The invariance of T implies
the invariance of P by (10.1). For assertion (ii) note that for any n-form
fon X xX

(7)) = [ iv6 =0

since V' is tangent to T'. Similarly, iz A = 0. Since do iy +iyod = Ly
(Lie derivative) and LT = 0, we conclude that iz P =0. q.e.d.

Corollary 10.2. Consider T=1®T € 1@E" (X x X)“ as an
equivariant current of total degree (n — 1) on X x X. Consider A and
P similarly as equivariant currents of degree n. Then

(10.2) 0T =A—P.

in the complex of equivariant currents on X x X.

The correspondence between operators and kernels discussed in §1
carries over directly to the equivariant context. Currents in ]Eg’e (X xX)
yield G-equivariant operators £*(X) — E***(X), and hence operators
EL(X) — ELM(X). Equations of type (10.2) translate into operator
equations

(10.3) dgoT+Todg =1—P.

Applying the arguments of §3 proves the following.

Proposition 10.3. Let ¢ be an invariant flow on a compact G-
manifold X. If @y has finite volume, then the limit

(10.4) Pla) = tliglogotoz
ezists for all @ € EL(X) and defines a continuous linear operator P :

EL(X) — D'G(X) of degree 0, which is equivariantly chain homotopic
to the identity on £5(X).

Applying the methods of §§2-3 and the fact that

5*(8%)Y = H*(BG)
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gives the following result.

Theorem 10.4. Let f € C®°(X) be an invariant Morse function
on a compact riemnannian G-manifold whose gradient flow s is Morse-
Stokes. Then the continuous linear operator (10.4) defines a map of
equivariant complezes

P:EL(X) — S (@) ® S,

where Sy = span{[Sy]},eccr(y) as in (3.8) and where the differential on
S5*(@*)Y ® Sy is 1 ® 0. This map induces an isomorphism

HA5(X) S H*(BG) ® H*(X)

Examples of this phenomenon arise in moment map constructions.
For a simple example consider G = (S1)"*!/A acting on PZ via the
standard action on homogeneous coordinates [zg, ..., z,], and set f([z]) =
> klzk|?/]12]|2. One sees immediately the well-known fact that HJ(PZ) is
a free H*(BG)-module with one generator in each dimension 2k for k =
0,...,n. This extends to all generalized flag manifolds and to products.

It has been pointed out by Janko Latschev that there exists an in-
variant Morse function for which no choice of invariant metric gives a
Morse-Stokes flow.

On the other hand the method applies to much more general functions
and yields results as in §§5-9. Suppose for example that f is an invariant
function whose critical set consists of a finite number of non-degenerate
critical orbits O; = G/H;, i = 1,...,N. Janko Latschev (cf. [22], [1])
has established a spectral sequence with (assuming for simplicity that
everything is oriented)

B, = P HL(0) = P H'(BH,)
Ai=p Ai=p

and computable differentials such that

Ef, = H(X).

11. Flat bundles and local coefficients

Our method applies immediately to forms with coefficients in a flat
bundle £ — X. In this case the kernels of §2 are currents on X x X
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with coefficients in Hom(7{E,73E). Given a Morse-Stokes flow ¢; on
X we consider the kernel T = h ® T" where T is defined as in §2 and
h: E,, ;) — Ey is parallel translation along the flow line. One obtains
the equation
8TE = AE — Pg

where Ap = Id® A and Pp = 3, hy ® ([Up] x [Sp]) with by : By —
E, given by parallel translation along the broken flow line. Thus, h,
corresponds to Id : B, — E, under the canonical trivializations F Up§

Uy x E, and E|Sp% Sp X E,. We obtain the operator equation
(11.1) doTg+Tgod = 1-Pg

where P maps onto the finite complex

Sp € @ Ep @ [Sp]
p€eCT(f)

by integration of forms over the unstable manifolds. The restriction of
d to Sg is given as in 4.3 by d(e ® [Sp]) = D hpq(e)[Sy] where hy, 4 =
(—=1)* >, hy and hy @ Ep — Ey is parallel translation along v € Ty g
By (11.1) the complex (Sg,d) computes H*(X; E).

Reversing time in the flow shows that the complex Ur = @, E, ®[U))]
with differential defined as above computes H*(X; E*). As in §5 the ob-
vious dual pairing of these complexes establishes the generalized Poincaré
duality. Furthermore, one can extend all this to integral currents twisted
by representations of 71 (X) in GL,(Z) or GL,(Z/pZ) and obtain duality
with local coefficient systems.

12. Products

Our method has a number of interesting extensions. For example,
consider the triple diagonal Az C X x X x X as the kernel of the wedge-
product operator

A:EX(X) ® EX(X) — E*(X).

Let f and f’ be functions with Morse-Stokes flows ¢; and ¢} respectively.
Assume that for all (p,p’) € Cr(f) x Cr(f') the stable manifolds S, and
S!, intersect transversely in a manifold of finite volume, and similarly
for the unstable manifolds U, and U;,. Degenerating A3 gives a kernel

T = {(pt(z),py(z),z) EX x X x X : x€X and 0<t< oo}
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and a corresponding operator T : £*(X) @ £*(X) — £*(X) of degree -1.
One calculates that 9T = Az — M where

M = > [Up] % [Uy] x [S, N 8L
(P )ECT(f)XCr(f")

The corresponding operator M : £*(X) ® £*(X) — £*(X) is given by

(12.1)  M(e,3) = > )(/Upa> </Up B) [Sp N Sp]-

(p,p")ECT(f)xCr(f’

The arguments of §§1-3 adapt to prove the following.

Theorem 12.1. There is an equation of operators N — M = d o
T+ Tod from E*(X x X) to E(X) (where A denotes restriction to the
diagonal). In particular for a, 8 € £*(X) we have the chain homotopy

(12.2) aApf—M(a,f) = dT(a,p) + T(da,B) + (—1)*T(a, dB)

between the wedge product and the operator (12.1).

Note that the operator M has range in the finite dimensional vector
space

M € spang{ [S, N 5,1}

(p.p")ECT(F)XCr(fN)"

It converts a pair of smooth forms «, 8 into a linear combination of the
pairwise intersections of the stable manifolds [Sp] and [S},]. If da = dfg =
0, then

(12.3) M(a,) = anf - dT(a,f),

and so M(a, ) is a cycle homologous to the wedge product a A 3. This
operator also has the following properties.

Theorem 12.2. The operator M maps onto the subspace M. Fur-
thermore, for forms a, 8 € £*(X), it satisfies the equation

(12.4) dM(a, ) = M(de, 8) + (—1)%9°*M (e, df)

Proof. To see that M is onto (as a linear map from £*(X x X)) it
suffices to see that for each non-empty intersection S, N S}, the current
[Sp N S]’),] is in the range. However, by transversality we see that if
SpN S, # 0, then A\p+Xy > n, and son > (n—Ap)+(n—2Ay). Therefore,
by transversality we have dim(U, N Ué,) < 0 for all ¢,q'. It follows that
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we can find differential forms o and S such that fUpa = [ B=1
pl
and [ a = [ B =0forall ¢ # pand ¢ # p'. Then by (12.1),

q
M(w, 8) = [Sp N SZ’,,] and the assertion is proved.
Equation (12.4) follows from the fact that dM = 0, which implies
that doM + M od = 0, together with the standard formula for d(a A §).
q.e.d.

Tt follows immediately that d(M) C M. In fact one can see from the
transversality assumptions that for (p,p’) € Cr(f) x Cr(f') one has

d[S, NSyl = Y myglSyN U]
geCr(f)
=+ (—l)n_)\p Z n;,/q/ [Sp n U(;/]
q€Cr(f)

(12.5)

where the ny, are defined as in §4. Thus we retrieve the cup product
over the integers in the Morse complex.

Example 12.3. A fundamental example of a pair satisfying our
hypotheses is given by f,—f where the gradient flow is Morse-Stokes.
In this case U, = Sp and S), = U, for all p € Cr(f) = Cr(—f). Thus
formula (12.1) becomes

M(a,8) = Y (/Ua> (Lg)[smep,].

p,p'€Cr(f)

In particular we have the following.

Proposition 12.4. Suppose the gradient flow of f is Morse-Stokes.
Then for any cycle Y in X which is transversal to all the U, and Sp,
p € Cr(f), we have the formula

(12.6) /Ya/\,B = p,p/ezcr(f) (/Up a) (/Sp ﬁ) (S, N U,y NY].

whenever da = df = 0.
Example 12.5. Suppose dega = n — deg 8 = k. Then (cf. [23,

Prop. 12]) /Xa/\ﬁ . (/U a) (/S ﬁ)

peCTL(f)
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13. A Lefschetz theorem for the Thom-Smale complex

Let X be a compact oriented riemannian manifold, and let U, Sy,
p € Cr(f) be the unstable and stable manifolds of a Morse-Stokes flow
on X, oriented as in §2. Recall the Lefschetz number of a smooth
mapping F' : X — X defined by

Lef(F) = Y (—1)'trace {F, : H(X;R) — H;(X;R)}

i

Theorem 13.1. Suppose F' : X — X is a smooth mapping such that
F maps S, transversally to U, for all ¢ = p (i.e., F|Sp 1s transversal to
Up and F(S,) NU,; =0 for all ¢ = p and q # p). Let C, = {z € S :
F(z) € Up}. Then

Lef(F) = > (=)™ > 0.(F)

peCr(f) z€C)
where
1 if F.T;(Sp) agrees in orientation with the normal
f
ox(F) % space to Uy at F(z)
-1 otherwise.

Proof. Our transversality assumption implies that the graph I'p =
{(F(z),z) : € X} in X x X meets the cycle P only in its regular points
U, Up x Sp and it is transversal there. We recall that Lef(F) = [A] e [['p]
in X x X. By (2.5) and the fact that I'r and P meet nicely, we conclude
that Lef(F') = [P] o [['r] which is easily computed as claimed. q.e.d.

Note that when F' = Id, the hypotheses are satisfied and we get
the standard computation of the Euler characteristic from the Morse
complex.

14. The genericity theorem

Let f € C*°(X) be a Morse function on a compact manifold X. In
this section we shall prove that there exists a riemannian metric on X
for which the gradient flow satisfies the Morse-Stokes conditions of §2.
The authors have subsequently discovered that some of the material in
this section could be reduced by appealing to a paper of Laudenbach
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[23]. For completeness we have kept the details. To begin we recall the
following.

Definition 14.1. The gradient flow of f for a riemannian metric on
X is called Morse-Smale if the stable and unstable manifolds S, and
U, intersect transversely for all p,q € Cr(f).

To simplify arguments we shall demand a little more. Recall that
at each p € Cr(f) there exist canonical local coordinate systems

(u,v) : Op 5 Vp where

(14.1) Vo = {(u,0) €RY xR :|u> <7, and |v]* <7y}

such that u(p) = v(p) = 0 and f(u,v) = f(p) — |u> + |v|%

Definition 14.2. A riemannian metric ds? is said to be canonically
flat near Cr(f) if ds? = |du|?+|dv|* in some canonical linear coordinate
system about each p € Cr(f).

We shall prove the following.

Theorem 14.3. Let f € C*®°(X) be a Morse function on a compact
manifold X. Suppose X is given a riemannian metric which is canoni-
cally flat near Cr(f) and for which the gradient flow ¢, is Morse-Smale.
Then @y satisfies the Morse-Stokes conditions 2.1

Theorem 14.4. If f € C®(X) is a Morse function and ds® is
any riemannian metric on X, then ds®> can be modified outside some
neighborhood of Cr(f) so that ¢, becomes Morse-Smale. In fact this
modification can be made arbitrarily small in the C'°°-topology.

Taken together these theorems prove the following.

Theorem 14.5. Given any Morse function f on a compact manifold
X, there exists a riemannian metric on X for which the gradient flow is
Morse-Stokes.

Furthermore, this metric can be chosen to be canonically flat near

Cr(f).

Proof of Theorem 14.3. We first observe that if the flow of f is
Morse-Smale, then

(14.2) p=<qg = XN <X

for all p,q € Cr(f). To see this suppose p and ¢ are joined by an
(unbroken) flow line £. Then U, NS, D £ and so by the transversality
condition, dim(U, N'Sy) = (n — Ap) + Ag —n > 1.
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Now let a; < -+ < ay, be the critical values of f. For each ay let
Cr(f,ar) C Cr(f) be the set of critical points of f with critical value ay.
Each p € Cr(f,ax) has a canonical local coordinate system as in (14.1)
where the metric is flat. We may assume that the radius r;, is the same
for all p € Cr(f,ar). Call this radius 7. By shrinking the neighborhoods
O, we may assume that these canonical coordinate systems are pairwise
disjoint and that ag41 — rk41 > ap + 1 for all k. Furthermore, by
multiplying f by some scalar @ >> 1 and further shrinking the O, we
can assume that r, = 2 for all p € Cr(f).

Now our manifold decomposes into “blocks”:

(14.3) X = BLUQuUPLUQ,UP,UQyU... Py
where
P, = fﬁl[ak—l,ak—}—l] and Qr = fﬁl[ak+1,ak+1—1].

Note that P, and @) are compact manifolds with boundary. The mani-
folds Py can be further decomposed. Let (’);, C O, be the subset defined
by the equations |u||v| <1 and —1 < |v|? — |u|? < 1. Then

P, = R, U U O;
peCr(f,ar)

where Ry is the closure of P, — Up Op-
Let 95 be the (incomplete) flow on X — Cr(f) generated by W =
grad f/||grad f||?, so that

f(hs(x)) = f(x) + s

whenever 1)5(z) is defined. Using this vector field in the obvious way (cf.
[27]) we obtain smooth product structures

(14.4) Qr = (07Qk) x[0,1]

(14.5) Ry = (07 Ry) x [0,1]

where 0~ Q. = Q4 ﬁfﬁl(ak + 1) and 0" R, = RN fﬁl(ak — 1). Note
that 0~ Ry is a compact manifold with non-empty boundary.

Consider now the unstable manifold U, for some p € Cr(f,ax) and
some k. We shall show that vol(U,) < co. To begin note that U, N
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O, = {(0,v) €V, : |v| < 1} is a smoothly embedded closed disk of

dimension ¢ % 5 — Ap and clearly has finite /-volume. Its boundary
Up N (0~ Q) is a smoothly embedded sphere, and via (14.4) we have
UpNQk = (UpNO~Qg) x [0, 1] which also has finite /-volume.

We now show that U, N Py has finite £-volume. To begin note that
via (14.5) we have a smooth product U, N R4 = (Uy N0~ Ri41) % [0,1]
(which extends beyond the boundary of Ry so we needn’t worry about
how U, meets this boundary). Since U,N0~ Ry is a subset of a compact
(¢ — 1)-manifold, we see that U, N Ry has finite {-volume.

It remains to show that U, N O{'] has finite volume for g € Cr(f,ay).
This is equivalent to showing that U, N Oy has finite volume, where Of
is defined by |u] < 1 and |v] < 1. (To see this push inward along the
flow.) For simplicity, from here on we shall denote Oy by O, and Vy by
Vg

Since ¢ > p we know from (14.2) that

dimU, > dimU,.
In our local coordinate box
Vo= {(u,v) € RM xRN+ Ju <1, Jo] <1}

the flow is generated by

(14.6) wi(u,v) = (e tu,ev)
We decompose 9V, into two pieces:

A= {(u,v) : |Jul=1, |v| <1} and
B={(wo) : Wl <1, lo| =1}.

There are subsets
Ayg=ANS, ={(u,0) : Ju| =1} =5
By=BnU,={(0,v) : o] =1} =" A1
The flow determines a diffeomorphism

d:A— Ay > B— By

B(u,v) = <|vu, ﬁ;)

given by
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Note that ®(u,v) is the unique point in B which lies on the flow line
through (u,v).

Let A ™ A be the “oriented blow-up” of A along Ay where Ay is
replaced by the oriented normal lines to Ay. Let B ™ B be defined
similarly. A has coordinates (i,%,t) where || =1, [§| = 1and 0 < ¢ < 1
and 74 (4, 9,t) = (4,t5). B has the same coordinates with g (4, d,t) =
(td, D).

® lifts to a map ® : A — B which in these coordinates is the identity
map (and so, in particular, a diffeomorphism).

Now since U, is transversal to S; we know that:

where U, N Ap is a compact submanifold of codimension ), in Ay, and
where for any subset Y C Ay, C(Y) is the cone on Y defined by

CY) = {(tu,0) : ueY and 0 <t <1}
Now transversality also tells us that in a neighborhood of
Y = Up N Ap

the set U, N A is of the form Y x R" %, Furthermore, Up N A has a
“smooth proper transform” to ;I, i.e., the lift of U, N (A — Ap) to A
has closure which is a smooth manifold/_vgjt/h boundary diffeomorphic to
Y x §"~*«~1 Denote this closure by UpNnA.

We can now describe the structure of Up in our coordinate box. To
begin we observe that

—~—

U,NB = 13U, N A)
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and recall that ® is a diffeomorphism. It follows that U, N B is a C*
stratified set with two strata. The top stratum is U, N B. The singular
stratum is exactly By =2 S" %=1, In a neighborhood of this singular
stratum, U, N B is diffecomorphic to C(Y) x S"*¢~! where Y = U, N Ajy.

Since Up, N B is the image of a manifold of finite (£ — 1)-volume

(namely m) under the smooth proper map ng o :1;, it follows that
U, N B has finite (£ — 1)-volume.

Conclusion 14.6 The closure of U, N 07 Q41 is a compact C*-
stratified set of finite (¢ — 1)-volume, whose top stratum is U, N0~ Q1
and whose singular strata are exactly the spheres U, N 0~ Q4 for ¢ €

Cr(f, ags1)-

From the above analysis we can also conclude that U, has finite
volume in V,. Set

V, = St x g2 [0,1] % [0, 1]
and consider the map II : qu — V, given by
(a,0,s,t) = (sb,td)

where || = |6] = 1. We identify A with the subset where s = 1 (and B
with ¢ = 1). Then II restricts to be the projections 74 and 7p.
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Consider the mapping

U:V,— A

given by
U(a,0,s,t) = (4,9,1,st).

Then U has the following two important properties. Let M C 1{ be
a closed submanifold with M C QA which is transversal to JyA =
SAa—l x §n=Aa=1 x {1} x {0}. Then

U is strongly transversal to M (See below),

(M) = Vyn| e (maM)
>0

By strong transversality we mean that if we extend M beyond 302 by
adding a collar, and if we extend IT to S* ! x §" A1 x (—¢, 1] x (—¢, 1]
using the same algebraic formula, then the extended II is transversal to
the extended M. Hence, (II"' (M), 011 ' (M)) is a smooth submanifold
with corners neatly embedded into (ﬁq, 8]7(1).

In particular, if dim(M) = £ — 1, then¥ (M) has finite /-volume and
so does II(¥~1(M))

Remark 14.7. Note that the above comments also apply if M is a
compact C* stratified set in A which in a collar neighborhood 9y A x [0, €)
of 9pA is of the form My x [0,€).

We have now passed the first critical level beyond a; and the closure
of U, has exited as a compact C'*° stratified set, whose singularities are
the submanifolds U, for ¢ > p and ¢ € Cr(f, axy1).

We now compound the process. The product structure (14.4) shows
that U, N Qk+1 has finite f-volume (since it is a product of a smooth



MORSE THEORY AND STOKES’ THEOREM 41

stratified set of finite (¢ — 1)-volume with [0, 1]). For similar reasons,
Up N Rj42 has finite /-volume, and it remains to examine what happens
as we pass through the canonical coordinate boxes of critical points ¢ at
level k + 2.

At points of U, N S for ¢ € Cr(f,axs2), the above analysis can be
applied locally. However, to prove finite volume one must also consider
points x € Up NSy where ﬁp is singular. At such points x the singular
set of Up N S, consists of all points of Uy in a neighborhood of z, for
some ¢' < ¢. Now Uy is transversal to Sy, and Up is locally of the form
C(Y) x Uy for some manifold Y. Consequently U, N S, is locally of the
form C(Y) x R and U, is locally of the form C(Y) x Rl x R*~*a for
some ¢ > 0. In particular, Up N A has a smooth proper transform to
A. This proper transform has a neat collar structure at the boundary as
discussed in 14.7.

Applying the analysis above one concludes that U, N 0™ Qi42 is a
compact C* stratified set of finite ¢-volume whose singular strata consist
precisely of the sets U;N O~ Qo for critical points ¢ > p of level < k+2.
The same analysis also shows (using Remark 14.7) that U, has finite ¢-
volume in a neighborhood of each critical point of level k + 2.

One can now proceed inductively through the critical levels to prove
that U, has finite /-volume.

Since S) is the unstable manifold for -grad(f) = grad(—f), we have
also proved that each S, has finite volume.

It remains to prove that the graph 7 has finite volume. For this
we first observe that the arguments above apply directly to prove the
following result. We say that the gradient flow of a smooth function F
with non-degenerate critical manifolds is tame in a neighborhood of each
critical point there are coordinates (x,u,v) such that VF = (0, —2u, 2v).

Proposition 14.8. Let ®; be a tame gradient flow of a proper
function F : X — R with non-degenerate critical manifolds. Let ¢ be a
non-critical value of F and suppose that ¥ C {F < ¢} is defined as the
backward time image of a compact manifold ¥y C {F = c}. Suppose that
3 s transversal to all the unstable manifolds of the flow. Then X has
finite volume.

We now consider the gradient flow

@t(s,m,y) = (etsa (p*t(y)az)

of the function
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on R x X x X (with metric ds? on R). The critical set of F' consists of
the non-degenerate critical manifolds

P, = {0} x {p} x X
for p € Cr(f). The stable and unstable manifolds at P, are given by
S, ={0} xU,x X and U,=Rx S, xX.

We consider the invariant manifold

T = {(eisa@s(x),x) i —oo < s < oo and :cEX}
and the subdomain
T = {(e_sa%(x)ax) : 0<s< oo and xEX}.

Note that 7 is merely the union of orbits passing through A = {(1,z,z) :
x € X} and
T = U ®,(A)
s<0

is the union of the backward time orbits of ® which begin at A. Recall
(cf. Remark 1.6) that vol(7) < oo = vol(T) < co. Thus to complete
the proof w shall prove vol(7) < oo by applying Proposition 14.8.

To begin, a straightforward check verifies that

(14.7) 7 is transversal to S, and to U, for all p.

Now the intersection

T(e) € Tn{F=¢},
is always a smooth submanifold since 7T is ®;-invariant, i.e., grad(F|7.) =
grad(F)|T7é 0 on 7. Furthermore, if ¢ > max|f|, then 7 (¢) is compact.

To see this note that 7(c) is not compact iff there exists a sequence
(Sj,l‘j) € R x X with

F(e%, 25,04, (7)) = (e — [l (2) = ¢

for all j and for which there is no convergent subsequence. Clear for
such a sequence we have s; — —oo and so e?i — 0 implying ¢ <
max|f| as claimed. It therefore follows from Proposition 14.8 that for
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any ¢ > max|f|, the submanifold 7~'§C =7 N{F < ¢} has finite volume
in Rx X x X. B
Since = max F = %+max(f), we have T C T< for all ¢ > max|f|+

%. Thus 7T has finite volume, and the proof is complete. q.e.d.

Proof of Theorem 14.4. The following proof is inspired by arguments
of Milnor given for a similar result [28, §4]. Consider the block decompo-
sition (14.3) and the product structure 14.4 given by the flow. Proceeding
in order from k& = 1 we shall modify the metric on each subset

9~ Q x (%%) C 0" Qk x [0,1]

so that under the new gradient flow (which agrees with the old one
outside 9~Qx x (%,2)), the unstable manifolds entering 9~Q) x {0}
become transversal to the stable manifolds at 9~ Qy, x {1}. By invariance
under the flow this implies that each unstable manifold which meets Qy
is transversal everywhere on X to each stable manifold which meets Q.
Modifying the metric at level & does not change the unstable manifolds
below 0~ Q. It also does not change the stable manifolds which originate
below level k. From this one sees that after successively modifying the
metric at level k for kK = 1,...,m — 1, we have established the result.

We now show how to modify the metric. Fix a level & and consider
the submanifolds

M,=U,N 0~ Qg and Ny =5,N 0 Qg

for p,q € Cr(f). We want to change the metric over 0~ Qy X (%, %) SO
that after pushing each M, x {0} forward by the new gradient flow, it
becomes transversal to Ny x {1} for all g. We shall do this as follows.
We shall construct a family of deformations of the metric, smoothly
parameterized by an open subset 2/ C R" for some N. This family will

induce a smooth mapping

U x (07Qr x {0}) 2 87Qp x {1}

such that each ©,(e) = O(u,e) is the diffeomorphism induced by the
new gradient flow (in the product structure of the old gradient flow).

By Sard’s Theorem for Families it will suffice to prove that ®|u>< M,
is transversal to N, for all p, ¢ (since then for almost all choices of u € U,
we have that GU‘M is transversal to N, for each p,q). This condition
will follow automatically if we show that
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00
(14.8) I is surjective at all points of U x 9~ Qy
u

In fact it will suffice to show that there exists ug € U such that

(14.9) % is surjective at all points of {ug} X 07 Qy

for then, by the compactness of 9~ Qy, condition (14.11) will hold
with U replaced by a small neighborhood of ug in U.

We first construct such a map locally on 0~ Q. Let x = (21, ..., Tn—1) :
O 5 R* 1 be a local coordinate chart on @, (which maps onto R 1).
We then have coordinates (z,t) € R"~! x [0,1] for 8~ Qy x [0, 1] where
f(z,t) = t. In these coordinates the given riemannian metric has the
form

<‘7'>(z,t) = ('7')(z,t)+dt2

where (-,-) is a family of inner products on R*~!,

Let M denote the space of symmetric n X n-matrices. Fix a non-
trivial smooth function 4 : [0,1] — [0,1] with support in (3, %). For
each A € M with eigenvalues of absolute value < 1, we define a new
metric (-,-)4 by

Let V = V(A) be the gradient of f in this new metric. Write V =
V' + V40/0t where V' is tangent to R* . Then for any vector field
W = W'+ Wyd/0t we have that

W f=(V,W)a==(9/0t, W) = (I +4{)A)V, W),

which implies that

?
5 = e = (I+9()AV.

Our map © is given by taking the R*~!-component of the integral of
the vector field V. = (I + v(t)A) " 'e,. We write the integal of V as
(©a(m,8),74(x,5)) with respect to the decomposition R*~! x [0,1] C
R*~! x R. Since V is translation invariant in the z-variables, we have

TA(zy8) = TA(S) and Oa(z,8) =0O4(s) +z
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where O 4(s) = ©4(0, s). Note that

diTA(S) = n-component of (I + 1/)(TA(5))A)_1 -en
s

= (n,n)-component of ZQ/J(TA(S))kAk~
k=0

Similarly
—04(s) = pr{(l +9(1a(s)A) " - en}

where pr : R* — R* ! is the linear projection. Hence for all A sufficiently
small,

1
O.(1) = pr/o (I + p(ra(s)A) L - en ds
/1§: k sk
= pr P(1a(s))" A" - e, ds.
1% 0o = A

Therefore, for each 7,7 with 1 < 4,57 < n we have

00 4

1 o
_ i k Ak
= pr/0 kZ:O 6Ai,j¢(TA(S)) A" e, ds

A=0 A=0

1
pr /0 (= (r0(8)) Es;} - en ds

—/11/1(3)ds {Em ifi>j=n
0

0 otherwise.

where E;; is the elementary (i, j)-matrix. This proves the surjectivity of
00 /0A in this coordinate system.

We now modify this family by replacing A with {(z)A where £ €
C§°(R*~1) satisfies £(z) = 1 for |z| < 2. This family of deformations
now extends trivially to all of 0~ Q) and agrees with the one above in a
neighborhood of By = {|z| < 1}.

We now choose a finite family of such local coordinate systems x
Or — Rk =1,...,v such that the open sets (z¥)~'(B;) cover 9~ Qy.
Let ap = &, Ak, for Ay € M, be the global section of End(T(0~Qx))
defined above, and consider the deformations of the metric given by

k .

v

<'a'>A1,--~,Au = () +9() Z(fjA]()v>

Jj=1
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for 3 A = (Ay,...,A,) € MV. Then our calculation above shows that

363A
o3 A 3A=0

is surjective

as desired. q.e.d.

Appendix: Currents and the kernel calculus

Let Z be a compact smooth n-dimensional manifold which is not nec-
essarily orientable. In addition to the space £¥(Z), of smooth differential
forms of degree k, one may consider the space gk(Z), of twisted smooth
forms on Z of degree k. These are sections of the bundle A*T*Z @r O
where Oz is the orientation line bundle for Z. Since the transition func-
tions for Oz are Zy = {—1,+1} C R valued, exterior differentiation d is
naturally defined on any twisted form & € 5~k(Z ). The resulting coho-
mology groups are the de Rham groups H¥(Z; Oz) of Z with coefficients
in the flat line bundle Q.

A basic fact is that for any twisted n-form & € £"(Z) the integral
[, & is well defined. (This generalizes the usual definition since, if Z is
oriented, then £¥(Z) = £¥(Z) are identified.) Following de Rham and
Schwartz [31] we have the following.

Definition A.1. The space of currents of degree k£ on Z is the
topological dual space

le(Z) def gn—k(Z)/

of the space of twisted (n — k)-forms on Z.

Currents of degree k are a generalization of differential forms of de-
gree k. In fact there is an embedding

(14.1) eHz) = p*(2)

which associates to a € E¥(Z), the current defined by

(A.2) a(f) = / aNB,  forall ge&"F(2).
z

Since [, daAf = [,d(aAB)—(=1)F [,andB=(-1)*" [, andB,
it is natural to define the exterior derivative of a current T € D'*(Z) by:
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(A.3) dT)(B) = (-1)* 'T(dB), forall Be & k).

Thus the de Rham complex of smooth forms (£*(7),d) is a subcom-
plex of the de Rham complex of currents (D'*(Z),d). (In fact D'*(Z) are
exactly the distributional sections of A*T™Z, and d the natural extension
of exterior differentiation to these sections.)

Example A.2. Let S be a codimension-£ submanifold of Z which
has finite volume and oriented normal bundle. The identification O |5:
Qg enables us to pull back twisted forms via the immersion i : S — Z,
and so S determines a current [S] € D'*(Z) by integration:

(14.2) [S](3) = /S i*(B), forall Be&*Z).

It is sometiimes also useful to consider the boundary operator 0
which is defined to be the dual of d on £*(Z), i.e.

o=(-1)'d o  D*2).

Remark A.3. Note that in general an oriented compact submani-
fold does not define a current, but does define a twisted current, i.e.,
a linear functional on (untwisted) differential forms.

If T € D'?(Z) and « € £4(Z) then the wedge product

(A5)  TAaeDP(Z) isdefined by (T Aa)(3) =T(aAp).

More generally, for any flat bundle £ — Z we have the spaces
E*(Z; E) of differential forms on Z with coefficients in E, and their ex-
tensions

(14.3) D*(Z;E) ¥ e (Z,E* © 0y)

to currents with coefficients in E.

Next we wish to represent operators on differential forms by currents
on a product space. Let Y and X be manifolds with

dim(Y) = n and dim(X) = m
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and note that Oyxx = 730y ® 75 0Ox where my and mx denote the

projections to Y and X. Consider the space of differential forms £*(Y x

X) dof EX(Y x X;7150x) onY x X twisted by the orientation line bundle

T4 Ox. For example (1) A (1% 6) € EX(Y x X), ifa € &(Y), B e
E*(X). The topological dual spaces

(14.4) DY x X) = DY x X;n50y) = E" (Y x X)),

is called the space of kernels for operators from £*(Y) to D'*(X). Each
kernel K € D™ " (Y x X) determines an operator K : £*(Y) — D' "(X)
by setting

(14.5) K(a)(f) = K(rya Ay f).

Since N N
7y (X)) = EF(Y x X)

the dual map B
(mx)s : D(Y x X) = D'(X)

pushes forward kernels on Y x X to currents on X. Now the right hand

side of (A.7) can be rewritten as ((7x).(K A 73-a))(5)), so that
(A8)'K(a) = (mx)«(K ATy a)

provides an alternate “pull-push” definition of K.

Proposition A.4. Suppose K € D" (Y x X) is a kernel whose
operator K lowers degree by r. Then the kernel 0K € 'Dmfﬂrl(Y x X),
determines the operator

(14.10) Kod+ (—1)"'doK.

Proof. By definition
(0K) (nyra Ak ) = K (d(mra Ay )
which equals

K (m¥da A B) + (—1)%8 K (1o A wicdp).
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But ~ )
(K(da))(B) = K(ry-da Ay ),

and

1l

(—1)%E (K (a))(dB)
(=1)de8am 1K (nh o A T dB).

(d(K(a)))(B)

q.e.d.

Now we list some examples of kernels and their corresponding oper-
ators.

Example A.5. Let ¥ C Y x X be a finite volume submanifold of
codimension-¢ with a given isomorphism 7% Ox ‘Z§ Oy,. Then integra-
tion of forms over ¥ defines a current [$] € D'Y(Y x X).

Example A.6. (The Identity) The identity operator I: £*(X) —

E*(X) on forms is represented by the kernel I = [A], corresponding to
integration over the diagonal A C X x X, since

a(B) = [ anp= [ wianeih=almianid)
X A
Example A.7. (The Pull Back) Suppose ¢ : X — Y. Then the
operator P, o = ¢*a is represented by the kernel F, = [graph ¢]; that is
P, = (nx)«([graph ] A 75-0).

Example A.8. (Projection onto ¢ along ¢). Suppose ¢ € £*(X)
and ¢ € E*(Y). Then K = 73 pAni1p € D' (Y x X) is a kernel inducing

the operator
K(a) —:i:(/ @/\a) P,
Y

where + equals (—1)(des¥)(deg ) Note

K(mha ATy f) = / TG AT ATha A i .
Y xX

Example A.9. (Projection onto [S] along [U]). Suppose S is a
submanifold with oriented normal bundle in X and [U] is an oiented
submanifold of Y. Let [S] denote the current in X and [U] the twisted
current in Y determined by integration. Then K = [U] x [S] € D'*(Y x

X) is a kernel and the corresponding operator is K(o) = =+ (f,; @) [S],
where + equals (71)(deg S)(dega) — (71)(dimY7dimS)(dimU)‘
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