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SINGULARITIES AND CHERN-WEIL THEORY, II:
GEOMETRIC ATOMICITY

F. REESE HARVEY and H. BLAINE LAWSON JR.

Abstract

This paper introduces a general method for relating characteristic classes to singu-
larities of a bundle map. The method is based on the notiogeoimetric atomicity

This is a property of bundle maps : E — F which universally guarantees the
existence of certain limits arising in the theory of singular connections. Under this
hypothesis each characteristic forinof E or F satisfies an equation of the form

& =L +4dT,

where L is an explicit localization @b along the singularities af and T is a canon-

ical form with locally integrable coefficients. The method is constructive and leads to
explicit calculations. For normal maps (those transversal to the universal singularity
sets) it retrieves classical formulas of R. MacPherson at the level of forms and cur-
rents (cf. Part I). It also produces such formulas for direct sum and tensor product
mappings. These are new even at the topological level. The condition of geometric
atomicity is quite broad and holds in essentially every case of interest, including all
real analytic bundle maps. An important aspect of the theory is that it applies even in
cases of “excess dimension,” that is, where the the singularity setshave dimen-
sions greater than those of the generic map. The method yields explicit calculations
in this general context. A number of examples are worked out in detail.
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0. Introduction
Among the most useful and interesting results in geometry are those that relate the
singularities of bundle maps to topological invariants. Such theorems cover a broad
range of topics including:
(1) The relationship between the Euler class of a bundle and the zeros of a cross-
section (e.g., Hopf’s theorem on vector fields) or more generally,
(2)  The relationship between the Chern or Pontrjagin classes of a bundle and the
linear dependency locus of a family of cross-sections.
(3) Formulas relating the characteristic classes of a manidiolthe higher com-
plex tangencies to a smooth immersign—> C".
(4) Formulas relating topological invariants to the high-order tangency sets of a
pair of foliations.
(5) Thom-Porteous invariants associated to the singularities of a smooth mapping
between manifolds.
(6) The differentiable Riemann-Roch-Grothendieck theorem for embeddings.
We present here a method for deriving such results in quite general circumstances.
It retrieves all known formulas of the type above (as shown in [HL2], [HL3]) and
generates many new ones, several of which are derived in this paper. More importantly
the method applies in highly nongeneric cases where, say, the singularity sets are
of greater than “expected” dimension. In particular, it applieany real analytic
bundle mapx, and even when the singularity setsmfhave excess dimension, it
yields straightforward calculations and explicit formulas.
The method is also interesting in that it delivers formulas thaloaiad andcanon-
ical on the underlying manifold. Given a smooth map E — F between bundles
with connection over a manifold and given a Chern-Weil characteristic forb{$2)
in the curvature for eitheE or F, we obtain a formula of the type

O(Q) = Y Reg (@) + dTo. (0.1)
k
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where& () is a current associated to the locus wherdrops rank byk, Rek is an
explicit residue form defined alor («), andTg is anLﬁ)c—form onX. In most cases
of interest, one has

dS (@) =0 and d(Reg S(«) =0

for all k. When the residues are constants, the fogrepresents a Cheeger-Simons
differential character associated doand the connections ok and F (see [CS],
[HLZ]).

The key to our method is the concepiggfometric atomicitya property of bundle
maps which holds in surprising generality and is often easily verified. The main fact
is that whenevew : E — F has this property, canonical formulas of type (0.1) exist
for every®.

Actually, more is true. To study bundle mapswe have developed a theory of
singular connections and characteristic currents (see [HL2]). For givem intro-
duced a smooth family of connectiobg, 0 < t < oo, onE (or F), which starts with
the given connection at= oo and tends to a singular pullback (or pushforward) con-
nection ag — 0. For each Ad-invariant polynomigb, classical Chern-Weil theory
gives formulas

D(Q) = D(Q2) +dT, (0.2)

whereTy is a canonical, smooth transgression formXam he natural questions, posed
in [HL2] and answered in special cases, are the following.

Question 0.1
When does lim., g T; exist as a current oX?

If the transgression currentimi_o T; exists, so does theharacteristic current
lim¢—0 ® ().

Question 0.2
If lim{_ o T; exists, how does one compute {igy ®(2)?

This paper provides a very general answer.
THEOREMO.3
Supposex : E — F is geometrically atomic. Then for evedy, the limitlim¢_.o T;

exists. Furthermore, there is a canonical method for compuimg.,.o ® (2).

The limit ast — 0 of formula (0.2) is our formula (0.1).
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The concept of geometric atomicity is elementary. Think @fs a cross-section
of the bundleH = Hom(E, F), and define itsadial spanto be the subset

1
TaE{Eaer:0<t<ooandxeX}CH.

Consider the compactificatidd ¢ G = G (E @ F) by the Grassmann bundle i
planes inE @ F, wherem = rank(E). Note thatTO? = T, — Zero(w) is a submanifold
of dimension = diniX) + 1. Thene is defined to bgeometrically atomic (GAj TOE’
has locally finite volume ir.

This property of geometric atomicity holds in nearly every situation of interest.

To begin, anyx which isnormal that is, transversal to the submanifolds c H
where the rank drops W, is geometrically atomic. The resulting formulas constitute
a local version of the classical MacPherson formulas (see [M1]-[M3]). This was
established in [HL4, Part I] and is reviewed here for the sake of completeness in §3.

A fundamental and surprising fact is theaty real analytic bundle mag is GA
Thus no matter how badly the singularitiescobehave—no matter how bizarre the
degeneracy sets afare—the limiting currents exist for all characteristic forms. Fur-
thermore, these limits are very oftenplicitly computableFor a simple illustration
consider a real analytic sectienof a rankn complex bundle whose zero s&ta)
is a submanifold of codimensiork2and take® = ¢, as thenth Chern form. When
k = n anda vanishes to first order, formula (0.1) has the faQ) = [Z(«)] +dT.

This is the normal case. However, whkn< n, one easily computes the limit and
generically finde, () = ch—k(R2)[Z(«@)] + dT (see Exam. 9.1).

Interestingly,any real-valued functionf : X — R, considered as an endomor-
phism of any vector bundIg, is GA.

An important area to which this theory applies is the one where bundle maps are
constrained in a specific manner, such as requiringedthme a section of a given sub-
bundleS of Hom(E, F). This precludes being normal, but the GA condition is still
generic within the constrained class. Perhaps the simplest example is the global direct
sum of bundle maps. These are essentially never normal; their singularity sets have
the wrong dimension. However, generic direct sums (and tensor procuet§A
Also, Clifford multiplication on spinor bundles by a GA section of a vector bundle is
again GA.

As just noted, generic direct sums are GA. In fact, we show that for a generic pair
of bundle map& : E — F ando’ : E' — F/, botha ando’ are individually normal
and their singularity sets are mutually transversal. In 884 and 5 we apply our theory
to derive detailed formulas of type (0.1) for both direct sums and tensor products

a®e  E®E — FaF and o®cad:EQE — F®F/,

where in each case the right-hand side is a sum of explicitly calculated residues
times the current$>k () N S (a’)] where Ti(a) = {x € X : rankoay =
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min(dim(E), dim(F)) — k}. These formulas are new even at the topological level.

In fact, the direct sum and tensor product formulas are new and interesting even
for the simplest case of sections of vector bundles. These cases are examined in §86
and 7, where detailed calculations are made for Chern classes, the Chern character,
and for general multiplicative sequences.

We point out that there is a certain geometric simplicity in our approach that can
mislead the reader into thinking that some of these results are easy. Establishing gen-
eral formulas even in the “universal” and “normal” cases is a formidable task by more
conventional mean¥*°-stratified sets are complicated objects. Just to produce the
topological formulas as in [M1], [M2] requires a careful resolution of the singularities
of the stratification and computation of the residue classes. With our method a harder
problem is solved. We show in all basic cases that each characteristic form is ex-
plicitly cohomologous to a finite sum of locally closed submanifolds (defined by the
singularities of the bundles mappings) multiplied by intrinsically defi@&€d-forms.

We then prove that each of these summands has an extension as a current to the man-
ifold X. In fact, we show that each summand extends as a currémitef massand
furthermore is celosedon X. These facts are difficult to establish by conventional
analytic means.

An important consequence of our approach is that it leadgenaral ansatthat
applies directly and enables explicit computations in very general circumstances—
where bundle maps can have badly behaved singularities. The principles of this gen-
eral method are presented in §9. It essentially boils down to computing the boundary
of the current onG given by integration over the submanifolf. This is often a
straightforward matter. Oncg T2] is computed, formulas are derived by the opera-
tor calculus introduced in 82. Many examples of this method are worked out here in
detail.

Formally this general method is like the algebro-geometric procedure of “pulling
to the normal cone,” which gives an intrinsic computation of intersection classes even
when intersections are not of proper dimension (cf. [Fu]).

It is tempting to think that the current® from formula (0.1) fit into a theory of
secondary characteristic classes. If all the residueg &esinteger constants, this is
indeed the case. Then for such pdits «), the currenily represents a canonical dif-
ferential character via the de Rham—Federer theory presented in [HLZ]. To date, there
is no analogous theory that takes into account transgressions between smooth forms
and “partially recitifiable” currents, which appear in (0.1). However, if one restricts
attention to forms with constant integer residues, the situation is already quite rich.
For example, one can give a new proof of the Chern product formula for differential
characters (see [CS]).
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Standing assumptions
Throughout the papeE — X andF — X denote smooth bundles that are either
both real or both complex. It is assumed that each bundle is furnished with a metric
and a connection. However, in general the connection need not respect the metric. The
manifold X is not assumed to be compact.

For simplicity, X is assumed to be oriented. This hypothesis is generally unnec-
essary. Any submanifold with oriented normal bundle defines a current (cf. [R]). So
if the bundle HondE, F) is oriented (which is automatic whéhand F are oriented
or of even rank), the radial span of any section has oriented normal bundle, and the
operator calculus of §2 can be carried through.

A remark on terminology

On the total space of the bundte: Hom(E, F) — X, there is a tautologically de-
fined bundle maj : 7*E — n*F given bya(a) = a. Under local trivializations of
E andF, « reduces to the tautological map over H@f', C"); that is, it is indepen-
dent of base variables. Furthermore, every bundle mapping — F over X is the
pullbacke = a*(a) of &. For these reasonsis called theuniversalmapping. There
are analogous universal mappings of direct sum and tensor product type.

Historical comment: Notions of atomicity
The first notion of atomicity, introduced in [HS], applied only to sections of a vector
bundle. It consisted of analytic conditions on the section under which its vanishing de-
termines a well-defined, integrally flat current dual to the Euler class. In[HL2], the no-
tion of k-atomicity was introduced for bundle maps E — F (for 0 < k < ranka).
The condition ok-atomicity guaranteed the existence &tk degeneracy current for
a which was integrally flat and of the expected dimension. These currents appear in a
variety of important geometric situations and play a role in residue theorems relating
singularities to characteristic forms (cf. [HL3]).

The notion of geometric atomicity for a bundle majgs substantially more gen-
eral than these. It is a minimal condition under which the limits discussed in the
introduction exist and lead to formulas of type (0.1). Geometrically atomic bundle
maps need not be-atomic for anyk.

1. Geometric atomicity
In this section we reexamine the concept of geometric atomicity introduced in [HL4].
The definition given here is different from but equivalent to the original one. In prac-
tice the new definition is easier to apply.

Let E — X andF — X be smooth vector bundles (both real or both complex)
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of rankm < n, respectively, over a manifol® of dimensiornv, and let
a:E— F

be a smooth bundle mapping. This mapping can be considered as a section of the
bundle
H = Hom(E, F),

for which we have th&rassmann compactification
G=GnE®F)

by the bundle ofm-dimensional linear subspaces®f® F. The embeddingd ¢ G
is defined by taking the graph.
We now consider theadial spanof « in H defined by

1
Taz{foc(x):0<t<oo andxex}.

Note thatch’ = T, — Zerolx) is an oriented submanifold of dimension+ 1 in H.
Of course Zer@x) is contained in the zero section bf, which is a submanifold of
dimensionv.

Definition 1.1

The bundle mapping is calledgeometrically atomidf T, has locally finite(v + 1)-
measure irG, or equivalently, ifT0 is a submanifold of locally finite volume ifs.
When this holds, integration ova@f defines a current of dimensiont-1 onG which
will also be denoted by,,.

Example 1.2
When dink(E) = dimg(F) = 1, every bundle mapping : E — F is geometrically
atomic.

The proof is obvious sincé’of’ is an open subset of the!-bundleG = Pr(R &
Hom(E, F)). Note in particular that every real-valued continuous function is geo-
metrically atomic when considered an endomorphism of the trivial line bundle—or
any other bundle for that matter.

Example 1.3
Any real analytic bundle magp : E — F is geometrically atomic.

This is proved below.
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Note that sections of a vector bundteare in natural one-to-one correspondence
with bundle mappings : K — F, whereK is the trivial (real or complex) line
bundle.
Example 1.4
Any section of a vector bundle which is atomic in the sense of [HS] is geometrically
atomic.
See [HLE].
Example 1.5
Any normal bundle map is geometrically atomic. Such maps are open and dense in
the C1-topology (see §3 for details).
Example 1.6
Suppose that : E — F is a geometrically atomic bundle map, and suppose there
exists a map
p : Hom(E, F) — Hom(E', F’)
with the properties that for eache X, px : Hom(Ex, Fx) — Hom(Ej, Fy) is a
homogeneous polynomial map, ane@xtends smoothly to the Grassmann compacti-
fications
p:Gm(E®F) — Gm(E' & F.
Thenp o « is geometrically atomic.
Proof
If T, has locally finite volume, then so does§T,) = TpoT. O
Example 1.7
Leto € I'(V) be a geometrically atomic section of a vector bundlevhich acts by
Clifford multiplication on associated spinor bundi8$. Then the bundle mapping
oe: St — S, given by Clifford multiplication, is also geometrically atomic.
Proof
Take the embeddinyg c Cliff (V) ¢ Hom(S*, S7), and apply Example 1.6. O
Example 1.8
Direct sums and tensor products of bundle mappings are generically geometrically
atomic.
D
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See Appendix A.
The following sufficient criterion is often easy to verify.

LEMMA 1.9
Given a bundle map : E — F as above, consider the submanifold

ﬂd—e::{(t,%a(x)) :0<t<ooand xe X} CIP’lleG.

If 7 has locally finite volume iﬁ’]%qi x G, thena is geometrically atomic.

Proof
Note thatT = p,Z wherep: ]P’]}g x G — G is projection, and recall that the property
of having locally finite mass is preserved under smooth proper maps. m|

Proof of Example 1.3
Choose locaC®-trivializations of E and F above a localC®-coordinate system on
U c X. Consider the closure

T = Cl{(x, %a(x)) xeU,a(x)#0 and 0<t < oo} C U x Pr(R @ Ho),

whereHg is the space ofm x n)-matrices. Letyo, Y1, ..., Ymn) be the homogeneous
coordinates foPr (R @ Hp) where(yi, ..., Ymn) are the standard linear coordinates
on Hop. Our claim is thafT is an irreducible semianalytic subset of dimension 1
and therefore has locally finite + 1)-measure iJ x Pr(R & Hp). It then follows
that the image o under the map) x Pr(R @ Ho) — U x Gm(Ho) has locally
finite (v + 1)-measure as desired.

To prove the claim, note that in the affine coordinate system whieee 1, T? is
defined by the conditiongj«j (X) = yjai (X) andyji (X) > 0 for alli, j whenever
a(x) # 0. Thus, after excluding the trivial case where= 0, we see thaT is a
real semianalytic subset of this chart as claimed. Now consider the affine coordinate
systemy wherey; = 1. HereT/ is defined by the equationgaj (x) = Yjui (X), and
aj(X) = yjaa(x) fori, j > 2, andyjaj (x) > O for alli, whenever (x) # 0. ThusT
is semianalytic in all coordinate charts as claimed. |

Remark 1.10

In [HL4] a section was defined to be geometrically atomic if the §ét =
{(/Da(x),a(X)) : 0 <t < oo andx e X} has locally finite(v + 1)-measure

in the fibre producG @ G. The two definitions are equivalent. To see this simply ap-
ply the diffeomorphism oF : G@ H — G @ H given byF (P, a) = (P,a— a(x)).
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Remark 1.11

Geometric atomicity is the key hypothesis of the theorems of this paper. There are
analytic conditions that are equivalent to geometric atomicity. This equivalence will
be presented in [HL6]. However, it might be useful to mention in this paper at least
one special case. Suppasés a smooth complex-valued function (i.&,andF are

trivial C-line bundles). Then is geometrically atomic if and only #*(®) has locally
Lebesgue integrable coefficients, whé¥e= (—vdu + udv)/(u? + v2) = dé is the
standard angle form oR2 = C.

Example 1.1ZA map that is not GA)

We noted in Example 1.2 that any continuous real-valued function, considered as a
bundle endomorphism (of any real bundle) is geometrically atomic. The correspond-
ing statement for complex-valued functions is false even irffecase. This leads

to the simplest maps that are not GA. For a specific example consider the smooth
map f : R" — C, n > 2, defined byf (x) = exp(—1/[Ix[IZ + i (1/]|x]|"~1)). Since

f*© = d(1/|x|"1) is not locally Lebesgue integrablé, is not GA by Remark

1.11.

2. The operator calculus
The principal interest in the radial span of a flow stems from the fact that any current
on the Grassmann compactificati@hdetermines a continuous operator from forms
onG to generalized forms oK. The underlying kernel calculus is a simple adaptation
of that given in [HP]. This calculus is particularly important for generalized Chern-
Weil theory.

Letr : G — X be the Grassmann compactificationtdf= Hom(E, F) as in
§1. Following [R], we denote b¥*(Y) the space of smooth differentigiforms on a
manifold Y, and by2’X(Y) > &X(Y) the generalize#t-forms (or currents of degree
k)onY.

Definition 2.1
To each current of dimensionv +r (wherev = dim(X)) we associate a continuous
linear operator

T: &(G) — 2™ " (X)

by setting
T(w) = we{w AT}

LEMMA 2.2
Let T be as above. Then the operator corresponding to its bourdirynder the
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correspondence in Definition 2.1 is
doT+ (-1 Tod.
Proof
This is a straightforward adaptation of [HP] (see [HL5, App. A], for example).o
Suppose now thak, is the current orG associated to the radial span of a geometri-
cally atomic bundle map : E — F (see Def. 1.1). Then
0T, =[0] — P, (2.2)
where[0] denotes the zero sectionldf ¢ G andP is characterized in the next result.
PROPOSITION2.3
Leta : E — F be a geometrically atomic bundle map. Then for every smooth
differential formw on G, the limit
2
P @) = lim (?a) () (2.2)
exists on X. Furthermore, the operaffy determined by the current, gives a chain
homotopy
j*(w) — P(w) = dTy(w) + Te(dw) forall w € £4(G), (2.3)
where j: X — G isthe inclusion as the zero section. The foffipéw) (and T, (dw))
are always Lt .
Note that equation (2.3) is just the operator equation corresponding to the current
equation (2.1) above.
Proof
To see more clearly what is going on, it is useful to “desingularize"Consider the
currents orR x G corresponding to the submanifolds-with-boundary
1
Toss = {(t ;a(x)) :s<t<s andx e X}
oriented so that 1 1
— / J— J— —
0Ty ss = {8} X F(ga) (s} x F(Sa>,
wherel'(8) denotes the graph of a sectiprof H € G. Letp: R x G — G be a
projection, and set’ = 7 o p: R x G — X. These maps are proper dps s, and
one sees that 1 1
* *
/ k — — — —
n*{p ® A aTa,s,s} - (S/a) (@) (Soe> (@). (2.4)
D



“d1375rev.jI” — 2003/6/11 — 11:31 — page 12 — #12 GE

12 HARVEY and LAWSON

However, sincer’ = 7 o p, we have
TP o ATy s s} = (0 0 Pu{p'o A 0T s 5} = mf@ A 3(PeToss)).  (2.5)
Note that, sincd,, is of finite volume, one has

lim lim pTyss = To-

s'—>o00s—0

We conclude from equations (2.3) and (2.4) that

lim (l,a)*(w) — lim <}a>*(w) = 7w A 0Ty} = A A Ta) + Tldo A Ty,
=00 \S s—0\S
which proves equations (2.2) and (2.3).

For the last assertion, note that= (Id x7).(p*® A Ty sg) is @ smooth form
on[s, '] x X. In fact, it is exactly the pullback ab by the section(1/t)a. Now
7' =mop=pro (ldxm), where pr: [s,s'] x X — X is the projection. Hence
T {p*w A 3Ty s} = pr.¢ is a smooth form orX since it is obtained by integration
of a smooth form over the fibre of pr. Sin€g is a submanifold of finite volume, these
smooth forms are converging locally in mass norm to the lifpitw) = 7. {w A 3Ty}
However, on smooth forms the mass norm coincides withLth@orm. Hence, the
limit lies in L locally. O

The importance of the above calculus comes from the following.WLet— G
denote thdautological m-plane bundlever the total space of the Grassmann bundle
7w : G — X.Suppose thdE andF are equipped with orthogonal connections (unitary
connections in the complex case). Then from these connections and the splitting

T*E@n*F=U@U",

we obtain connections dd andU-. Suppose thab is an Ad-invariant polynomial
on the Lie algebra of the structure group®f(either O(m) or U (m)), and consider
the characteristic fornrd(QV) on G. It is shown in [HL2, 1.8] that

(%a)*QD(QU) = o(Qu), (2.6)

where(S_zt is the curvature of théme-t pullback connection an*E. This is a family

of connections constructed directly &from the given data and a universal choice
of smoothing function. In the limit as— 0, these connections tear, and the curvature
becomes concentrated along the singularities.dlthough the limiting connection

is not everywhere defined, it is possible that the limit of the characteristicdlirﬁt)
exists as a current. When it does, it gives a localization ofltkgharacteristic class
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on the singularities o&. The analogous situation holds for invariant polynomigils
on the Lie algebra of the structure groupfof

Settingo = ®(QY) or @ = w(QVU") and applying Proposition 2.3 give the
following.

THEOREM2.4
Suppose that : E — F is geometrically atomic. Then for all Ad-invariant polyno-
mials ® and ¥ as above, the limits

P (d) = tli_r)n0d>(<§t) and  P(W) = tliﬂqoxy(?z’t)

exist in the space of currents on X. Furthermore, there are canonically defined forms
To and Ty with LE -coefficients on X such that

(QF) = IP(®) +dTo and w(QF)=PW)+dTy.

The remainder of this paper is devoted to computing the opeltor various cir-
cumstances. This amounts to calculating the boundary of the caifgint G. It turns
out thatd T, is closely tied to the primary singularities of the mappingie begin
by recalling the calculation for “generic” or “normal” maps done in §l.

3. Normal mappings

In this section we review the notation, methods, and results from [HL5]E_ahd
F be as above, and recall that for each intdge < k < m = rankE, we have the
primary singularity set

Tk = {a € Hom(E, F) : dim ker(a) = k}. (3.1)
The closures of th&y’s give a filtration
0}=XmCEZm1CEZm2C---C Zog=HomeE, F).

These sets fit into a dynamical pattern on the Grassmann compactificatien
Gm(E @ F) as follows. Consider the multiplicative flogy : G — G induced
by gt : E®F — E ® F wheregi(e, f) = (te, f). Note that the subset
H = Hom(E, F) C G is g¢-invariant; in fact, fora € H,

1
pr(@) = {a-

The fixed-point set of this flow oG can be written as

m
F=]]F (3.2)
k=0
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where
Fk = Gk(E) x Gm—k(F).

The stable and unstable manifoldskfin G are given by
Sk = {P € G: dim(PNE) =k} and  Yx={P e G:dim(PNF) = m—k},
respectively, with projections
Tk 5 P <2 Ty,
given by
Pr(Q) =(QNE, pre(Q)  and  p(P) = (pre(P), PNF),

wherepg : E®@F — Eandpg : E® F — F are the projections. Note that
T«kNH=¢fork <m.

Consider now the pullbacks = 7*E,F = n*F H = n*H, G = n*G over
7 : H — X, and note the diffeomorphisns= H® E,F=H®F,H=H ® H,
G = H e G c G G. For eactk we define a subbundle

7k : Pk — Xk
of the restrictionG| 5, by setting
Pc={(Q.P) € =k ® T : p(Q) = p2(P)}, (3.3)

wherenk(Q, P) = Q. This is a smooth fibre bundle whose fibre at a paiat xNH
is
m @ = Gy(kera @ cokera). (3.4)

Over the total space dfl there is aautological sectionx : E — F given bya(a) =
a.

PROPOSITION3.1 ([HLA4])
The tautological section is geometrically atomic. Its radial spah = T, satisfies

m
OT =01 - Y P
k=0

where[0] is the current corresponding to the zero sectiontbfand Py is given as
above.
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Remark 3.2
In fact, it is shown in [HL4] thafT extends to a current in the total space of the
extended bundl& = G @ G — G and that

m m
aT = Z P, — Z Px,
k=0 k=0

whereP, is a fibre bundld®, — Y under projection to the other factor Gf= G &

G. In this setting the picture becomes much more symmetric. Each of the subvarieties
Px and P, is written as a fibre product over the fixed-point $gtin the diagonal.
Furthermore, under time-reversal in the flow the variefigandP, exchange roles.

This expanded picture enables one to write formulas of the type given below for
“meromorphic” bundle mappings (cf. [Z]).

Suppose now thab is an Ad-invariant form as above, and consider the characteristic
form w = ®(QY) on G whereU — G is the tautologicam-plane bundle. The
restriction ofw to the subsel®, can be written aa)|Pk: & (Q'Me®Uk) pecause of the
canonical splitting

U|Pk= Ima & Uy, (3.5)

whereUx — Gg(kera @ cokera) is the tautologicak-plane bundle along the fibres
(3.4) of the projectionrk. The calculus of 82 (withX replaced byH) now leads to
the following theorem.

THEOREM 3.3 (Universal case)

Let® and W be Ad-invariant polynomials on the Lie algebras of the structure groups
of E and F as in Theorem 2.4. Then there exist canonitﬁl—ﬂormsT(b and Ty on

H satisfying the equations:

m m
®(@%) =) Reso[Zl +dTe  and  W(Q") =) Resy[Zk] +dTy,
k=0 k=0

whereRe% ¢ andReg y are smooth residue forms A&y given by
Rego = (). P{QM®%)  and  Resy = (m). w{Qke® @Yy,

whereUy — Gy (kera @ cokere) is the tautological k-plane bundle over the Grass-
mann compactification of the normal bunilem(kera, cokere) to Xy.

For certain generic sections of HgE, F), this result can be pulled back ¥.
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Definition 3.4
A sectionae of H = Hom(E, F) is normalif it is transversal to each of the submani-
folds Xk c H for k > 0. Under this assumption, each of the sets

(@) = (@)1 (ZW) = {x € X : dim(keray) = K}

is a smooth submanifold with locally finite volume and orientable normal bundle in
X (see [HL4, Cor. 10.2]) and therefore defines a rectifiable cuf@ptx)].

PROPOSITION3.5 ([HL4, Prop. 9.4])
A normal bundle mag is geometrically atomic.

THEOREM3.6 ([HL4, Th. 10.3])

Leta : E — F be a normal bundle map over a manifold X. Then for each Ad-
invariant polynomial® as above, there exists a canonicqu;form Te on X such
that

m
?(QF) = ) Rexo[Zk(@)]+dTs, (3.6)
k=0

whereRex ¢ is a smooth residue form ank(«) given by
Reg o = (m), d{QM*®Yx), (3.7)

where U — Gy (kera @ cokerw) is the tautological k-plane bundle over the Grass-
mann compactification of the normal bundlem(kera, cokera) to X ().

Similarly, for each Ad-invariant polynomial as above, there is anﬂgm—form Ty
with

m
v(QF) =) Resu[Zk(@)]+dTy, (3.8)
k=0

whereReg ¢ is @ smooth residue form abk(«) given by

Reg v = (m0), ¥ {Qker® @y, (3.9)

This is a local form of MacPherson’s formula (see [M1]-[M3]) at the level of forms
and currents. The proof consists in showing that due to the transversalitytioé
singularity stratificatior®, («) on X is modeled on the universal one, and the residue
calculations are similar.

An analogous result holds for real analytic bundle maps (see [HL4, 811] for de-
tails). The singular currents appearing in the formulas above are proved to have the
following properties in [HL4, §12].
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THEOREM3.7

Each of the current§Zk (a)], Rek o[ Zk ()], andRek w[Zk ()] is d-closed on X.
Furthermore, after changingd (or Ty) by adding a flat current, we may assume
that the connection used to compute the residue in (3.7) (or (3.9)) is a direct sum
connection.

Many explicit examples are worked out in detail in [HL4].

4. Direct sum mappings
A bundle map that can be expressed as a directe@n’ : E® E' — F® F'is
generally not normal as a map frobh@ E’ to F & F’, and MacPherson’s formula
does not hold. In fact, generically the codimension of the singulaEget @ ') is
much smaller than the predicted codimension for normal mappings. Nevertheless, the
methods developed here apply to yield interesting formulas in this case.

LetE, F,H c Gbeasin 81, and leE’, F/, H' c G’ denote a second such
set-up over the same manifokl Let

7:G6G — X

denote the fibre product of the Grassmann compactificatioms ahdH’. Consider
theflowgi : E®OE dF®F - E@E @ F @ F given bygi(e €, f, f') =

(te, te, f, f/), which can be considered the direct sum of the flows defined in 83 or
the restriction of that flow for the bundle H@g @ E’, F @ F’). This induces a flow

v : GG - GG
whose fixed-point set is the sum of the fibre products

Fix(er) = [ [ Fe @ Fy.
k,k’

whereF, andF/, are the fixed-point sets of the flows on each faG@andG’, respec-
tively (cf. 83). One sees that the stable and unstable manifolds are also fibre products
YX(Fk @ Fé,) = ZKEBZ((, and T(F @ Fli’) = TkEBTiQ,.

Ouir first result is an analogue of Theorem 3.1 with the compornteplaced by
fibre products of the stable and unstable manifolds above.
We consider first the “universal” case on the total space of the bundle

7:HOH — X (4.1)

We denote the pullbacks*E, n*E’, n*F, n*F’,n*H C #*G, ... by bold letters
E,E,F,F,H c G, and so on. Note that over the total spaceHofp H’ there is a
tautological sectiom @ o’ of the bundle HonE @ E', F & F').
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PROPOSITIONA.1
The tautological sectioa @ &’ is geometrically atomic. Furthermore, its radial span
T = Ty« Satisfies the equation

m m

T =[01->" > PdP. (4.2)
k=0k’'=0

wherePy C G andP, C G’ are defined as in (3.3).

Proof

After taking local trivializations of the bundles, F, E’, F’ one sees easily that the
currentT is independent of th&-coordinates; that is, it is a trivial product of the base
with a current defined in the fibre. Thus it suffices to consider the case whiera
point.

WhenX = pt, one sees directly thattis algebraic, and s@® «’ is geometrically
atomic by Example 1.3. One also sees directly thhtis as claimed, namely, the
product of the boundaries is in each factor. To be more precise, Not€ thal,gy
is the submanifold of codimension 1Ty x T, given by

T= {(gr%a, gr%a’) €eGHG :0<t<ooand(@d)eH® H/}.

Now (p, p') € suppdT with 7 (p, p’) = (a,a) only if there exist sequences
(g,a) — (a,a) andti — 0 or oo, such that(gr(1/t)a;, gr(1/t)a)) — (p, p).

In particular, by [HL4] we know thap € Px and p’ € P}, for somek, k'. Since
dimensions are correct, the boundarylaé an integer linear combination of the sub-
manifoldsPy @ P,,. Is is straightforward to see that these coefficients are all one.

Note from the paragraph above that s(p) ¢ GG’ C G (E®E @ FaF).
Note also that each submanifdiy & P|, admits a fibration

with fibre Gy v = Gi(kera @ cokera) x Gy (kera’ @ cokera’).

We now consider characteristic forrgQUeY") = QY @ QUV)YonG & G’
whereU — G andU’ — G’ denote the tautological bundles. Using the splittings
(3.5), equation (4.3), and the operator calculus, we conclude the following.

THEOREM4.2 (Universal case)
Let E, E, F, and F be smooth complex vector bundles with connection on a manifold
X, and assume that = rank(E) < rank(F) and mf = rank(E’") < rank(F’). Let®
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be an invariant polynomial on the Lie algebra of the structure group & E’. Then
there exists an }Uc—form Te on the total space aflom(E, F) @ Hom(E’, F’) so that

m m
O(QFE) =3 3" Resy ik [Zk ® Bl + dTo,
k=0k'=0
Respkk = (i k)@ (QMeENEMeU), (4.4)

wherea : 7*E — n*F anda’ : n*E’ — 7*F’ denote the tautological bundle maps
onHom(E, F) andHom(E’, F'); (7x k)« denotes integration over the fibres of the
compactification G = Gy(kera & cokera) @ Gy (kera’ & cokere’) of the normal
bundleHom(kere, cokera) & Hom(kera’, cokera’) to Xk @ Xy (cf. (4.3)); and U,
UQ, are the tautological bundles overy@&nd Gy .

If rank(E) = rank(F) andrank(E’) = rank(F’), then formula (4.4) becomes

o(QF%F) — (@) = Y Respiwl[Bk @ Ti] +dTo.
k+k'>0

If W is an invariant polynomial on the Lie algebra of the structure group @b F
F’, then there exists anﬂgm—form Ty onHom(E, F) & Hom(E’, F’) so that

m
W(QFF) =3 3" Resy k[ Tk @ i1 +dTy,
k=0k'=0
Lyl NL /L
RESp,k,k/ _ (nk,k/)*‘l/(ﬁ(kem) ®U e (kera')~@®U,; )’ (4.5)

where (kera) denotes the orthogonal complementkafree in E, UkL denotes the
orthogonal complement oflun kera @ cokere, and so on.

We now consider section&, «’) of Hom(E, F) @ Hom(E’, F’) over X.

Definition 4.3
A section(a, o’) of Hom(E, F) @ Hom(E’, F’) is called anormal pairif (a, ) is
transversal to the submanifoldx & X, for all k, K'.

In Appendix A we prove the following proposition.

PROPOSITIONA.4

Normal pairs are residual (in particular, dense) in the-@pology on sections of
Hom(E, F) @ Hom(E’, F"). Any normal pair of sectiongx, «’) is geometrically
atomic. Furthermore, if8 = (a, «’) is a normal pair, then for all kk’, the sub-
manifolds ¢ («) and Sy («’) intersect transversely in X, and=1(Zx & =) =
k(o) N By ().
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Arguing as in the proof of [HL4, Th. 10.3] gives the following result.

THEOREMA4.5

Let X, E, F, E’, F/, ®, andV¥ be as in Theorem 4.2, and suppose thatex’) : E @

E’' — F & F’is a direct sum mapping that is a normal pair in the sense of Definition
4.3. Then there exists arﬁ)lc-form Te on X so that

m
@ (QFPE) = 33 " Resgp i [Tk(@) N By ()] + dTo,
k=0k'=0

Resp k= (ﬂk,k')*fb(QIma@Uk@lmw@U‘i’), (4.6)

where (7 )« denotes integration over the fibres of the compactificatiqn.G=
Gy (kera @ cokera) @ Gy (kero’ @ cokera’) of the normal bundle t&k (x) N X!, (o),
and where { — Gk and U, — Gy are the tautological bundles.

If rank(E) = rank(F) andrank(E’") = rank(F’), then formula (4.6) becomes

(QF%F) — (@) = Y Resp [ Bk(@) N Ti@)] +dTo.
k+k'>0

If W is an invariant polynomial on the Lie algebra of the structure group @b F
F’, then there exists anl{lm-form Ty on X so that

m m
k=0k'=0

1 1 L L
Resy Kk = (i k)W (R SV dtkera) el (4.7)

Remark 4.6

The analogue of Theorem 3.7 holds in this context. For gerierie’) the currents
[Zk(@) N 2y, (o')] and Res k k[ Zk(@) N Xy, (o')] are eachd-closed and one may
assume, after changing the transgression by a flat current, that the connection on

Ima @ Ux @ Ima’ @ U/, is a direct sum connection. Thus,df is a multiplicative
sequencén the sense of Hirzebruch, then the residue in (4.6) can be rewritten

ReS ki = (T )+ P(QUO) D (QU)} (M) o (™). (4.8)

Example 4.{Diagonal maps)
Letaj : Ej — Fj be a map of complex line bundles ovérfor j = 1,..., m, and
consider the direct sum mapping

o= (a1,...,0m) - E1®-- - DEn— F1D--- D Fn.
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Let ®(Q) = c(Q) = det(l + (i/(27))R) be the total Chern class. Note that for a
generic mapy : E — F of line bundles onX, we haveX;(«) = Div(x) (= the zero
set ofa as a section oE* @ F) andXg = X. Furthermoreg,.c(QUx) = (—1)K for
k=0,1and
1 if k=1
C(lea) — ?
54 c(2F) = 14 c1(QF) if k=0.
From Theorem 4.5 and equation (4.8) we deduce the following formula for a generic
diagonal may:
c(QF1 O OEm = 3" (—D)™*ke(@Fi) ... c(@Fi) Div(a;;) - Div(eyr ) +dT
i1<--<ik
=Y " c(@) Div(e) +dT
|
m
= [ [tc@") - Div(ej)} +dT,
j=1
where the first sum is over élandfiy, ..., ik, i7,....,i_ } ={1 ..., m}.
5. Tensor product mappings
In this section we consider the tensor product of two bundle mappings
a:E—F and o :E — F
over av-manifold X. We shall see that for normal paifa, «’) (cf. Def. 4.3), the
sectionae ® o’ is geometrically atomic, and we derive a general formula that has
many interesting special cases.

We begin by examining the universal case. ket H & H' — X be as in
(4.1), and note that over the total spacetbf® H’ there is a tautological pair of
sections(e, &). As in 84 we denoter*E, n*E’, 7*F andn*F’ by E, E/, F andF’,
respectively. Thee ® o’ gives a section of the bundle

Hom = HOME®E,F®F) — H @ H’, (5.1)
which has compactification
G=Gm(E®E)® F®F)) > HaH, (5.2)
wherem = dim E andm’ = dimE'.
PROPOSITIONS.1
The universal sectiom ® o’ over H@ H’ is geometrically atomic. Furthermore, the
S



Display too wide for
page; this break OK?

“d1375rev.jI” — 2003/6/11 — 11:31 — page 22 — #22

22 HARVEY and LAWSON

boundary of T is given by integration over a finite number of manifolds of finite
volume inG.

Proof
Suppose thakX is a point. ThenT,g, is an irreducible real algebraic subset of the
Zariski dense subsétom in G, and so its closure is an irreducible algebraic subset
of G. Hence its regular points are a submanifold of finite volum& if-urthermore,
its current boundary T, iS Supported in its topological boundafy,ge — Tege’,
which is an algebraic variety of smaller dimension. By the Federer support theorem
(see[F, 4.1.15)), it follows directly thaiT, g, is given by integration over the regular
points of those components B, g, — Tage’ Naving dimension equal to diff,ge) —
1.

For the general case, we consider local trivializations of the bundles over a do-
main Q C X and note that ovef2 the submanifoldl, g IS @ product x Tp in
Q x Go, whereTp andGg correspond to the case of a point considered above.o

We now want to compute the boundary of the curfemgfiven by integration over the
submanifoldT,ge . We do this by computing the contribution over each of the sub-
manifoldsxx @ ¥, ¢ H @ H’. We begin by noting from the proof of Proposition 5.1
thatdT consists of integration over a finite number of real algebraic varieties extended
by local trivialization in theX-variables. Thus th&-variables play no essential role
here; we can tredtT as an analytic chain. In particular, we can decompose

m m
T =H->"Y P, (5.3)

k=0k'=0

whereH = [H@®H'] is the zero section and whePg corresponds to the subvarieties
Y among those comprisingl such that

YNz (k@ =) is dense ir.

We see that in fact eadPy is an irreducible variety. To describe it, we set some
notation. Consider a point
(@) € Tk ® Ty,

and write
K = kerq, | =Ima, K’ = kera/, I"=1Ime'.
With respect to the decompositiois= K @ K+ andE’ = K’ @ K'*, we can write

o« =(0,a), wherea: K+ — I,
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and
o =(0,a), wherea’ : K+ — I’ (5.4)

THEOREMb5.2
Let

T=H- Y Pw
k,k’>0

be the decomposition (5.3). ThEp = 0, and for k+k' < m+m', the currentPy
is given by integration over a submanifolgyPc G with fibration

kK - Puw —> Zk @D EI/(” (5.5)

wheremyy is the restriction of the projection in (5.2). Atea@h o’) € Zx ® X/, the
fibre of mk consists of all mrplanes of the form

KeoK)e (el eg@aeLl)egr(lea) (5.6)
for L e Hom(K, I1+) and L € Hom(K’, I'%), where a &’ are given in (5.4). Thus
Tge (e, @) = Hom(K, 1) @ Hom(K', 1"4),

and Ry can be written as a twisted fibre product
Pac = {Bk® T} xpxry, {@r@8T,) & (k@ gr@))}, (5.7)

whereYyk, Tli, are the unstable manifolds of the fixed-point segsﬂ’r’(, as in 82, and
the operationy is defined in Appendix B.

Proof of Theorem 5.2
Given(o, o) € Tk ® X/, we have

K=kefa®ca) =(KQK)®(KLoK)® (K ®K™),
l=Ime®a) =1 1.

Recall that
. 1
tllmogr{fa ®o/} —K x| €GRE®E') x Gu_r(F® F)),

whereM = mm andR = (m — k)(m' — k’). By [HL4], we know that the points of
Mo (e, &) must lie in the fibre
Hom(K, 1)
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aboveK x | in this fixed-point set. To see which points occur, we must consider
sequences of the foroy ® o}, where

aj=(Lj.a) > (0,@ and o) = (L}, a) > (0a)

for Lj € Hom(K,I%1), L) € Hom(K’, 1't), a; € Hom(K+, 1), anda; e
Hom(K '+, I"). For eachj we have

1 , 1 , 1 /
gr(;aj ®Otj> = {(voo, V10, V01, V11 ?Lj ® L (voo), Ta® L} (v10),
1o 1
T ® a; (vo1), ?aj ® aj (Ull)}

for all (voo, v10, vo1, v11) € (K ® K') & (KL @ K') & (K ® K') @ (K+ ®@ K'*).
Thus

1 1
or (o3 ® ) = {00 TL; ® L} (v00) s voo € K © K’}
1
& { (w0, 72 ® L} (v10) s v0 € KT @ K’}
1 / /L
® {(UOL ij ® &j(vo1) :vo1 € K® K }

1
® {(v11, T8 ®2j(u) v € K+ ® K/l}~ (5.8)

The support of the curref will lie in the set of limit points of such sequences of
graphs of(1/tj)aj ® o} wheretj — 0.

Settingaj = (tjL,a), «j = (tjL’, @) and sending; — O give planes of the
form (5.6). We show that all other limit points lie in a subanalytic Betith the
property that

dim(B) < dim{ Hom(K, I +) x Hom(K’, ')} = k(n = m+k) + K'(n' = m' +K).
(5.9)
It then follows from the Federer flat support theorem (see [F, 4.1.15]; cf. [HL5, 2.7])
that
Pk = ik [Pk’

for someny € Z. A straightforward local calculation shows thaj = 1.

To establish (5.9), we proceed case by case as follows. Suppose first that

ILIILS | Ll _ Ll

lim = 00, lim —— = o0, and lim —— = .
j—o00 tj jooo 1

Without loss of generality, we can assume that the limits

J = lim Im(Lj) and J = lim Im(L/j)
j—o00

]—>00
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exist. Here the limit of the sequences of graphs (5.8) are of the form
UeJ)yoldelNeded)ed el).

Thus the space of such limits is the product of Grassmani@an$ ) x Gy (1'1)
whose dimension ik(n — m) + k/(n” — m’), and equation (5.9) holds.
The next case to consider is where
ILj IIL’J- |
m

_ =c> 0, lim —— = o0, and lim —— = 0.
j—o00 i j—oo 1 jooo 1

We may assume by passing to subsequencesifgiL ® L/j — Lo ® L. We
get limits of the form

Ll ® L)@ (ML 1N @IMLL) (1 1),
The space of such limits is parameterized by
Hom(K, 1) x Hom(K’, I'%)/k,

wherek = C or R depending on the case. We see that equation (5.9) holds. Note
incidentally that this calculation shows that

since its support is too small.

Consider now the case where |im(|L ||L’j |/tj) = 0. We must consider sev-
eral possibilities. The first, where
L L]
lim u:c and _I|m—1=c,

jooo 1 jooo tj

is the generic case. In all other cases one sees that equation (5.9) holds. For example,
suppose that

| /

L. .
lim I—'|=oo and lim — =c>0.
]—>00 tj jooo
Then limits are of the form
KeKye(@ea)ograeL el o1,

whereJ is as above andl;, = lim;(1/tj)L]. The dimension of all such limits is
k(in —m) + k'(n" — m’ + k), and so equation (5.9) holds. The remaining cases are
similar. O
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We now consider the tautological bundle
U— Gmm(E®E, F®F)

and giveU andU~ connections induced from the tensor product of given connections
onE, E/, F, F’ via the splittingl @ U+ = (E ® E’) & (F ® F’). Then by equation
(5.6) the restriction ob to the fibres ofP has the form

Ulp,, = (ker@) @ ker@)) & (Im(a) ® Im(@)) & (gr@®Uy) & (U@ gr(@)),
(5.10)
where
Uc— G(K®1H) and Ul — Gp(K' @ 1)

are the tautological bundles restricted to the affine charts (Harht-) and

Hom(K’, 1'+) and® is defined in Appendix B. This gives us the following theorem.

THEOREM5.3 (Universal case)

Let® be an invariant polynomial on the Lie algebra of the structure group &f [E'.
Then the characteristic fornp (2E®E') satisfies the following equation on the total
space of Hp H’:

m m

O(QF¥F) =3 ) " Regy [Tk © By 1 +dT,
k=0k’=0

where T is a canonical ,’E,C-form on H® H’ andRes; kk is a smooth residue form
onXk & E{d given byResy mm = 0 and otherwise

ReSy ki = ki cD{Q(kera®kera’)@(lma®|ma’)ea(gr(a)éuli,)@(uk@)gr(a’))} (5.11)
Kk = * , .

where
Uk — Gk(kere @ Ima™)  and Uy, —> G(kera' @ Ima'™)

are the tautological bundles, antky is the mapping (5.5).

Proof
Start with Theorem 5.2 and apply the operator calculus of 82. m|

There is a companion result proved in the same manner.

THEOREM5.4 (Universal case)
LetW be an invariant polynomial on the Lie algebra of the structure group &f IF'.
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Then the characteristic forn¥ (2F®F') satisfies the following equation on the total
space of Hp H’:

m m

w(QFPF) =3 Y " Resy i [Zk @ =] +dT,
k=0k'=0

where T is a canonical ﬂﬁc-form on He H’ andResy ki is a smooth residue form
onXk & E{(, given byResy mm = 0 and otherwise

Resy ke = Tk, ¥ { Q(kerL a®kert oY@ (IM* a®@Imt oeEr@dU, ) & Uk gr@))* }
5 - k

’

(5.12)
where

Ux —> Gi(kera & Im* «) and Uy, — Gy (kera' & Imt o)

are the tautological bundles, antd is the mapping (5.5). Her(-:gr(a)@Uig/)L de-
notes the orthogonal complementgn(a)@)uﬁ, in the subspaceéker- o ® kera’) @
(Ima ® Imto’). Similarly, (Ux® gr(@))+ denotes the complement ikere ®
kert o) & (Im*+ o ® Ima).

The residue (5.12) can be reexpressed using adjoint transformations as follows:

W { o(ma*®im )@ (kera* @kera™)@(gr@)®U, (U & gr@*)) }
(5.12)

Resy kk = ki«

wherea* denotes the adjoint &. This is derived using Lemma B.2(iii).

Note the coincidence of formulas (5.11) and (%)12his can be deduced directly
from the fact that the family of pushforward connections docoincides with the
family of pullback connections of the adjoint (cf. [HL2]).

These results carry over to normal pairs. The following is proved in Appendix A.

PROPOSITIONS.5
Let(a, ') be a normal pair of sections of the bundled-H’ over X. Then the tensor
product sectionr ® o’ over X is geometrically atomic.

THEOREMb5.6

Leta : E — F anda’ : E' — F’ be smooth bundle maps over a manifold X with
the property tha(a, «’) is a normal pair. Then for any polynomidl as in Theorem
5.3, the characteristic fornd (2E®E') satisfies the following equation on X:

m m

O (QECE = Z Z Resp ki [Zk(@) N Ty (@)] + dTo,
k=0k'=0
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where T is a canonical lrloc—form on X andResp ki is a smooth residue form
onZk(«) N I, (a’) given as in Theorem 5.3.

Similarly for any polynomiallV as in Theorem 5.4, the characteristic form
v (QF®F') satisfies the equation

m m

w(QFPF) =3 Y " Resy ke [Zk(@) N e (@)] +dTy,
k=0 k'=0

where Ty is a canonical L,})C—form on X andResy yk is a smooth residue form on
k() N Xy, (o) given by Theorem 5.4.

Remark 5.7
The analogue of Theorem 3.7 holds also in this context (cf. Rem. 4.6).

There are many interesting special cases. Note, for example, the simple case where
we take the product «, wheref is a regular function oiX. Another interesting case

is the tensor produet ® ¢’ of two sectionsr € I'(F) ando’ € T'(F’). We examine

some of these in the next two sections.

6. The direct sum of cross-sections
The formulas for direct sum and tensor product mappings are particularly interesting
in the case of sections. Consider cross-sections

c:C—F and o¢':C— F/,

whereC = C x X denotes thérivialized line bundle, and suppose, ¢’) is a normal
pair (cf. Def. 4.3). Under this hypothesis each of the sections’, ando @ o’ has
a smooth divisor. Furthermore, Oiv) and Divc’) meet transversely and DOiv &
o) = Div(c) N Div(c).
Now letIL be a multiplicative series of characteristic polynomials in the sense of
Hirzebruch P]. Then Theorem 4.5 and Remark 4.6 give us

L(QFEF) = L(Q°HLQ"") + Reg ., L(Q° ) Div(o) + Reg, o L(Q2° ) Div(c’)
+ ReSs, ya0’ Div(e) NDiv(c) +dTy,
with
Res., = L@,

whereU is the tautological line bundle over : P(C & F) — X, and the other
residues are defined similarly.
For example, suppode = c, the total Chern class. Then we have
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c(QF8F) = o (@) + ¢(Q°) Div(o) + c(Q°) Div(c’)
+ Div(c) NDiv(c’) +dTe.

Taking the top component of this equation gives the classical formula

Cran (2F®F) = Div(o) N Div(e’) +dT.

7. The tensor product of cross-sections
Let
c:C—F and o¢:C— F

be sections as in 86, and consider the tensor product section
c®0' :C— FQF.
Section 5 gives the following equation of currents on the total spat€® (F ®
F')):
AT =[C]—[Imo ® Ima']
—[P{C® (F® Mo}y, ] — [PIC® (Mo ® F)}|p, o]

where[C] denotes the embedding ¥fas the zero section, afitn o ® Im o] is the
submanifold given by graphing the sectien® o'] of P(F ® F’) over X — Div(c) U
Div(c’).
If U denotes the tautological bundle oWC @ (F ® F’)), one calculates that
1
U ][C] =F®F,

UL||ma®Imo/ =C®(mo®Imo’),

and

UL|P{C€B(F®Ima/)} =Ui @ (F®Im@)?h),

whereUlL is the Whitney dual of the tautological line bundle over the projective
bundle
n:P{C® (F®Imo')} — Div(o).

Suppose now tha¥ is an invariant polynomial for the group Gk wheren =
dimF andn’ = dim F’. Then we obtain the following formula ox:

\I/(QF®F/) _ W(QCaa(lmo@Ima/)L) + Res, Div(c) + Res Div(e") +dT

where
Res, = n*\D(QUIL@(F@)Im(G/)l))
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and Reg is defined similarly. In particular, i = LL is a multiplicative series in the
sense of Hirzebruch?], then
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with ) .
Red =7, L(QY1) and Re§ =z L(QU1).

For the top Chern class, one gets the formula
’ /L . 1 ’ .
G (2F®F) = G2 (RF®7 ) Div(0) + Cyn-1)(Q° ) Div(o’) +dT

generalizing the classical line bundle case. Another interesting case is the Chern char-
acter
(_l)n+1 (_1)ﬂ’+l

ch(@F) ch(@F') = ch(@® ") 1 ———Div(o) + ——

— Div(o/) +dT.

Note that these formulas are interesting in the simple case wilerg just
a complex-valued functionf (a section of the trivial line bundle). Note that
Zero(fo) = Zero(f) U Zero(o) will generically have a component of codimension
2.

8. Mappings given by Clifford multiplication

The methods presented here apply directly to quaternion-linear maps — F
between quaternionic bundles. More generally, one can consider bundle mappings
given by Clifford multiplicatione : St(V) — S (V), where S*(V) are spinor
bundles for a vector bundM with spin structure, and whereis a cross-section of

V. This case is related to the differentiable Riemann-Roch theorem for embeddings
and is covered extensively in [HL2].

9. The general method
Each of the previous sections is simply an application of the following general
method, which applies to nearly any geometrically atomic bundleanag — F.

Step 1Compute
0Ty —[01=P = E ni[R,
i

where theP, are oriented-dimensional manifolds of finite volume i@ and then;
are integers.
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Step 2For each compute

U{PI and/or UL|PI.

Step 3Given invariant polynomial® or ¥ as above, compute the current
(@) AR} or  m(w(@Y)AR)

for eachi, wherexr : G — X is the bundle projection(In doing this, use the
fact that the tangent bundle to the fibresmofs HomU, U+) and thatU @ U+ =
T (E®F).)

The result
There are formulas oX of the form

o(QF) =) m(e@) AR} +dTo

and

v(QF) =Y mw@ ) AR} +dTe.

Important note

The first step is the crucial one and is often done as follows.

(1) Compute the topological bounda&y,pTo? of the radial span o#.

2 SupposeatOpTo? = |U; B, whereP; is a smooth orientable submanifold of
dimensionv fori > 0 andPy is a set of Hausdorff-measure zero. Then by
the Federer flat support theorem (see [F, 4.1.15]) we know that

0T =Y _Ni[R]
i>0
for integers; and choices of orientations on the. Of course, one of thgR, ]

will be the zero section [0].
(3) Determine the integersg by local calculation at some convenient pointff

Example 9.1

There are important bundle maps that do not lie in the generic classes of 8§83 -8.
A good example, related to “excess intersection” theory (see [Fu]), arisesavhen

C — F is a section ofF whose zero se¥ is of larger than expected dimension.
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Assume for simplicity that- is normally nondegenerate; that is, the differendal
gives an isomorphismdo : N = Fo C F of the normal bundle of with a subbundle
of F alongZ. Then direct calculation shows that

9Ty — [0 = Q+P(C & Fo),

where
Q={lc(x]eP(Fp):xe X—D} cP(Ca®F).

Write F |Z = Fo®F1, and letny = dim F, with n = ng+n1. LetU be the tautological
line bundle or’(C @ F), and letU be its complementamg-plane bundle. Leh‘.lol
be the corresponding object 81C & Fp). Then one sees that

Ut lpcary=Yo ®F1  and  U*'[,=C@o' @ F, (9.1)

whereo!t = Fg © Im(0). Letcn(QY") = det2Y") denote the top Chern form of
U-L. Then from equations (9.1) we see that

1 1 1
CH(QU )|P(CGBF0)= CnO(QUO ) . Cnl(QFl) and Cn(QU )|Q = 0

From the fact that, cno(QUOL) = 1, we obtain the equation

cn(QF) = e (@Y - (2] 4+-dT (9.2)

for the top Chern form of on X.

Example 9.2

Considers : C2 — Hom(C,C?) = C? given byo(z1,22) = (25, 2123) =
Z217>(21, 22). Note thato = fog, whereog(z) = z and f is the scalar func-

tion f(z2) = z12». Both og and f are atomic sections with Digp) = {0} and
Div(f) = {z1 — axis} U {zo — axis}. However, these divisors do not meet in general
position since they intersect in zero, and the results of 87 do not apply. Nevertheless,
one can computéT, . In fact, settingC" = P(C @ C"), we have

1 -
T, = {(z,—f(z)z) eC?xC2:0<t<o0 andze(Cz},
t
and one finds straightforwardly that
0T, —[0]=(0xC) x (Cx0) +(Cx0 x(Ox(C)+(0,0)x@.

Notice the contribution at0, 0) which does not appear in the case of normal pairs.
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10. Nonlinear residue integrals
One might suspect that the boundary componénggppearing in our general method
are always linear (i.e., projective space) bundles over a subs¥t tifis true that
the fibres are always compactifications of homogeneous conés ifowever, these
cones may be nontrivial, as seen in the following example.
Example 10.1
An example of a boundary component of the graph of a geometrically atomic bundle
map which is not a vector bundle ovEk(«) but a bundle of homogeneous cones.
Consider the bundle mappirfy: C¥+2 — Ck+2 overC"*+2, given as follows:
2 zw 0
f(zawag:[?""(n): 0 w2 0
0 0 Id
The¢'s play no essential role but are there to emphasize thage¢hericsuch map
can have nonempty degeneracy setsf) for ¢ = 1, 2. (Recall that for normal maps
the codimension oE is £2.)
Note that
T1(f)={z=0U{w=0—{z=w =0}
and
Yo(f) ={z=w = 0}.
LEMMA 10.2
Let Tt denote the radial span of f. The piece of the boundélry which lies above
3o(f) is a fibre bundler : B — X»(f) whose fibre above any point is the set of
planes in the GrassmannianG,(Ck+2 @ C*+2) of the form
22 zw K 2
graph 5| ®@C*" for (z,w) € C*,
0 w
whereCK = Im(ld) is in the second factor ofXt2 g Ck+2.
Remark 10.3
Note that the above graph @ @ C? is the 2-plane
Izw = {(u, v, 22U + zwv, wzv) U, v € (C}.
S
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The union of these does not constitute a linear subspacklah(C?, C?). The
Plicker coordinates are

Tzw = (€1 + Z2€3) A (&2 + Zwes + wey)
=€ A&+ Zwe A €3+ we A ey — 226 A &3 + Z2wles A ey,

which would be aquadraticcurve if the planes could be put into a linear family.

Proof of Lemma 10.2
We have the radial span

T=T¢= {(x,%f(x)):xe@”*zand O<t< oo}.

We work atx = 0. (Other points of2, are the same.) We have the short exact se-
quence

(Ck—i-Z fo

0—- K — — | = 0,

wherel = Im fg = CK andK = ker fg = C2. The contribution t&®T above Oc X,
is supported in the subset

Hom(K, 1)y @ ({0} @ 1),
which in our case turns out to be
Hom(C?2, C?) & ({0} & CX).

To see which points we get, we examine the limits of the planes: gtafth f (x)) as
t, X — 0. Write the Taylor expansion

f(0+h) = fo+ dfo(h) + d?fo(h) + d3fo(h) + - -,
and observe that
1 1
graph( £ () = { (v, T (fo+d oty +d2 ot +d* fo(m+---) ) : v e €2,
t t
We now use the short exact sequence above to write
Ck+2 =Kol

and express the graph as

graph(%f(h)) = {(k,i; t}(fo+df0(h)+d2fo(h)+---)(k,i)) S(ki)eKal }
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On points of the form0, i), we have
{(oi; =i +o(hlliD)) i e 1} ={@© ti;i+o(hp:iel},

and takingg — 0, |h| — 0, we get the subspace of poiri®§ & | ¢ {0} & Ck+2.

Now restrict to points of the fornk, 0). Let f denote the restriction of to K,
and suppose thait fo is the first nonvanishing term in the Taylor expansiorfNO(In
our casef = 2.) Then, settingy = t¥/*hg, we have

graph(% f(h)) ) {(k 0: t1(o| fo(h) + d2 fo(h) + -+ ) (k. 0)) - (k,0) e K}
- {(k %(df f?,(tl/@ho)+---)(k)) ke K}
= {(k, (@ fo(ho) + o(t¥9)) (k) : k € K}
=0, graph{d‘(f],)(ho)}.

Thus, if 1
o 1o 1
P(ho) = tI[)nograph{t f(t ho)},
then
Ptho D{0}@1 and  P(ho) D graph{d‘(f|,)o(ho)}.

These two spaces are transversal, and so we conclude that
P(ho) = ({0} ® I) @ graph{d‘(f |, )o(ho)}.

Thus, if we letNp denote the normal space Ep( f) at zero, then the support of
oT above zero is contained in the set of plafghg) for hg € Np, that is, compress-
ing notation, we have

suppdT) Nz~ 20 < | (gr{d"(f| o} +1). (10.1)
veNg
In our casef = 2 andd?(f |, )o= f|,. O

Equation (10.1) is quite general and characterizes the fibre of the allowed support of
dT above a degeneracy set.

11. Final remark: Toric varieties

The general methods introduced here seem well suited to the study of toric varieties.
These are compler-manifolds with an action 06, = C* x --. x C* (n-times)
having a dense orbit. The generators of the action give a bundlem&@’ — T X,
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which is geometrically atomic but rarely normal. However, our methods can be used
to localize characteristic classes Xfon the singular orbits of the action. Explicit
calculations of the residues can be carried out as in 889 and 10.

Among the simplest examples are the projective sp&ewith an action of
Gn = Gpy1/D, whereD is the main diagonal subgroup, given by

Gotn(Z0: -+ Zn]) = [€9Zp: -+ 1 ENzZy].

This gives a bundle map"*1/C - (1,1,...,1) = C" — TP" defined by

n
d
(to, ..., th) — JT*{ ch:)thka_zk}’

whererr : C™*1—{0} — P"is the projection. (Note that, (> z:d/9z¢) = 0). Now
in each of the affine coordinate chadg = {[z] € P" : z # 0} the bundle maj

can be written as diagonalbundle mapping1 @ - - - ® an : C" — C". To see this, it
suffices by symmetry to consider only the cas®ef= {[1: 2z, :---: 23] : z€ C"}.

For this we mafC" — C™1/C — TP" by

n

(t.. t0) > ) WZd/97 = Lz, ... thZn).
k=1

(We can drop ther, since these vector fields are tangent to the affine ¢hgajtNow

the calculation of the residues is local, and in this chart we have the map written
explicitly as a direct sum. Hence, we can apply 84 to this case. In particular, for the
total Chern class, we can apply Example 4.7 to compute the residues, and we find the
following. Let Ax = {[z] € P" : z« = 0} denote thekth coodinate hyperplane, and
setA; = Aj; N---NAj, for| ={i1 <--- <ip}. The configuratiorfA}, of linear
subspaces giveB" the combinatorial pattern of thesimplex. Let Sk = (J{A :

li| = p} denote its “codimensiom- skeleton.” Then applying Example 4.7 in each
coordinate chart shows that for every integer

for a canonical loc-fornT. Our techniques apply similarly to more complicated and
interesting toric varieties.

Appendices

A. Normal pairs are generic
LEMMA A.l
Letr : H — X be a smooth vector bundle over a compact manifold, and suppose
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that = c H is a submanifold such that the restriction : ¥ — X is a smooth
fibration over X. Then the set of cross-sectians I'(H) which are transversal t&
is open and dense in thel@opology.
Proof
Leta1 € I'(H) be given, and choose sectians . . ., am such that
spanfa1(X), ..., am(X)} = Hx forall x € X.
This gives a smooth bundle surjectign: R™ x X — H defined byA(t, x) =
>t (X). From the transversality theorem for families (cf. [HL1]), we conclude that
sinceA s transversal t&@, the sectionA; (x) = A(t, X) is transversal t& for almost
all't e R™. This proves the density. The openness is clear. m|
LEMMA A.2
Letr : H — X andX C H be as above, and suppose that H' — X, X’ c H is
another such set-up over X. Then the set of paits’) € I'(H) x I'(H’) such that
a ®a' istransversal ta @ £’ in H @ H’, and is open and dense in thé- @pology.
Proof
Given(ay, ay) € T'(H) xI'(H'), choosga;, o) fori = 2,..., msothatry, ..., am
anda, . . ., ay, are spanning the set of sections as above. The argument now proceeds
as in the proof of Lemma A.1. |
COROLLARY A.3
Normal pairs are open and dense in thé-@pology. If the manifold X is noncom-
pact, then normal pairs are residual (a countable intersection of open dense subsets)
in the Cl-topology.
PROPOSITIONA.4
For any normal pair(c, o), the direct sum mapping & o’ and the tensor product
mappinge ® o’ are geometrically atomic.
Proof
Fix a pointp € Zk(a) N X, (a). By transversality, there exist local coordinates
(x,a,a) € R" x Hom(keray, cokerap) x Hom(kerap, cokerap) for a neighborhood
of p such that in these coordinates
Sk(a) = {a =0} and T, (@) ={a =0}

and for¢ > k and?’ > k' we have

S(e) = {dimkera = ¢} and T, (a') = {dimkera’ = ¢}. (A.1)

D
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Furthermore, in these coordinates the pair of bundle maps can be written

(@, @)y =(a@b,a @b, (A.2)
whereb = b(x, a, @) is an invertible(m x m)-matrix at each point and similarly far
(cf. [HL4, 810]). From equations (A.1) one sees easily that the submaniihl@e N
%, (') all have locally finite volume irX. Using equation (A.2), one concludes that
along these submanifolds the finite volume property of the radial span of eithef
or e ® o’ reduces to that of the universal case. o
B. The operator ®
Consider vector spac&s V', W, W’ and the obvious projection

pr:Vew®(Vew)— (VeV)e (WaW).
Definition B.1
Given subspaceSc V & W andS c V' & W/, we define
S®S = pr{S® S}.
Given a linear map : V — W, we let g«) denote its graph iv & W.
LEMMA B.2
The operatior® has the following properties:
() grie ® ') = gr@)® gr(a’) for linear mapsx : V. — W anda’ : V' — W/;
(i) dim(S®S) =dim(S)dim(S)if SNV =SNW = {0};
(i) ifS cW,then S c W W.
Furthermore, if the spaces have inner products &)d denotes the adjoint, then
(iv)  grl@ ® o)+ = gr(e®)® gr(e™) for linear mapsx : V.— W anda’ : V/ —
W,
Proof
The proof is straightforward. m|
COROLLARY B.3
Leta: V — W be an injective linear map. Then taking the projected tensor product
with the graph of a gives a well-defined algebraic map
G (V' & W) T2 G ((V e V) & (W e W),
where m= dim(V) and i = dim(V’). Furthermore, under this mapping, one has
that Gy (V') — Gmm (V ® V) and Gy (W) — G (W @ W).
S



“d1375rev.jI” — 2003/6/11 — 11:31 — page 39 — #39 ﬁ}

—®

SINGULARITIES AND CHERN-WEIL THEORY, Il 39

References

[BC] R. BOTTands.-S. CHERN Hermitian vector bundles and the equidistribution of the
zeroes of their holomorphic sectiqscta Math.114(1965), 71-112.
MR 32:3070

[CS] J. CHEEGERandJ. SIMONS “Differential characters and geometric invariants” in
Geometry and Topology (College Park, Md., 1983/84)cture Notes in Math.
1167, Springer, Berlin, 1985, 50—-80. MR 879:53059

[ChS]  s.-s. CHERNandJ. SIMONS Characteristic forms and geometric invariangnn. of
Math. (2)99(1974), 48—-69. MR 50:5811

[F] H. FEDERER Geometric Measure Thear@rundlehren Math. Wis4.53 Springer,
New York, 1969. MR 41:1976

[Fu] W. FULTON, Intersection TheoryErgeb. Math. Grenzgeb. (2) Springer, New York,
1984. MR 85k:14004

[GS1] H.GILLET andC. SOULE, Characteristic classes for algebraic vector bundles with
Hermitian metric | Ann. of Math. (2)131(1990), 163 —-203. MR 91m:14032a

[GS2] , Characteristic classes for algebraic vector bundles with Hermitian metric, Il
Ann. of Math. (2)131(1990), 205-238. MR 91m:14032b

[HL1] F R.HARVEY andH. B. LAWSON JR, On boundaries of complex analytic varieties, |
Ann. of Math. (2)102(1975), 223—-290. MR 54:13130

[HL2] , A Theory of Characteristic Currents Associated with a Singular Connection
Astérisque213 Soc. Math. France, Montrouge, 1993. MR 95hb:58005

[HL3] , Geometric residue theoremmamer. J. Math117(1995), 829 -873.
MR 96¢:53112

[HL4] , Singularities and Chern-Weil Theory, I: The local MacPherson formula
Asian J. Math4 (2000), 71—-95. MR 20029:58003

[HL5] , Finite volume flows and Morse thegeénn. of Math. (2)153(2001), 1 - 25.
MR 2002c:58018

[HLS6] , On the weak existence of divisors and transgressianappear.

[HLZ]  R.HARVEY, H. B. LAWSON,andJ. ZWECK, The de Rham—Federer theory of differential
characters and character dualityo appear in Amer. J. Math.

[HP] R. HARVEY andJ. POLKING, Fundamental solutions in complex analysis, I: The
Cauchy-Riemann operatqrBuke Math. J46 (1979), 253—-300. MR 81c:32042a

[HS] F. R. HARVEY andsS. SEMMES Zero divisors of atomic functiong&nn. of Math. (2)
135(1992), 567 —600. MR 939:58003

[HZ] R. HARVEY andJ. ZWECK, Stiefel-Whitney currentd. Geom. Anal8 (1998),
805-844. MR 2001c:53104

[M1] R. MACPHERSON “Singularities of vector bundle maps” Proceedings of Liverpool
Singularities Symposium, | (1969/1970¢cture Notes in Mathl92, Springer,
Berlin, 1971, 316 —318. MR 43:4055

[M2] , “Generic vector bundle maps” Dynamical Systems (Salavador, Brazil,
1971) Academic Press, New York, 1973, 165—175. MR 49:3962

[M3] , Singularities of maps and characteristic classeh.D. dissertation, Harvard
University, Cambridge, Mass., 1970.

—®



“d1375rev.jI” — 2003/6/11 — 11:31 — page 40 — #40 ﬁ}

40 HARVEY and LAWSON

[NR] M. S. NARASIMHAN andS. RAMANAN, Existence of universal connectiogmer. J.
Math.83(1961), 563 -572. MR 24:A3597

[R] G. DE RHAM, Variétés diferentiables: Formes, courants, formes harmoniques
Actualites Sci. Indust., Hermann, Paris, 1973. MR 49:11552

[S] L. SCHWARTZ, Théorie des distributiondPubl. Inst. Math. Univ. Strasbourf—10,
Hermann, Paris, 1966. MR 35:730

[Z] J. ZWECK, Chern currents of singular connections associated with a section of a
compactified bundldndiana Univ. Math. J44 (1995), 341 —384. MR 97h:53078

Harvey
Department of Mathematics, Rice University, Houston, Texas 77251, USA,
harvey@math.rice.edu

Lawson
Department of Mathematics, Stony Brook University, Stony Brook, New York 11794-3651,
USA,; blaine@math.sunysb.edu



