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SINGULARITIES AND CHERN-WEIL THEORY, II:
GEOMETRIC ATOMICITY

F. REESE HARVEY and H. BLAINE LAWSON JR.

Abstract
This paper introduces a general method for relating characteristic classes to singu-
larities of a bundle map. The method is based on the notion ofgeometric atomicity.
This is a property of bundle mapsα : E → F which universally guarantees the
existence of certain limits arising in the theory of singular connections. Under this
hypothesis each characteristic form8 of E or F satisfies an equation of the form

8 = L + dT,

where L is an explicit localization of8 along the singularities ofα and T is a canon-
ical form with locally integrable coefficients. The method is constructive and leads to
explicit calculations. For normal maps (those transversal to the universal singularity
sets) it retrieves classical formulas of R. MacPherson at the level of forms and cur-
rents (cf. Part I). It also produces such formulas for direct sum and tensor product
mappings. These are new even at the topological level. The condition of geometric
atomicity is quite broad and holds in essentially every case of interest, including all
real analytic bundle maps. An important aspect of the theory is that it applies even in
cases of “excess dimension,” that is, where the the singularity sets ofα have dimen-
sions greater than those of the generic map. The method yields explicit calculations
in this general context. A number of examples are worked out in detail.
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0. Introduction
Among the most useful and interesting results in geometry are those that relate the
singularities of bundle maps to topological invariants. Such theorems cover a broad
range of topics including:
(1) The relationship between the Euler class of a bundle and the zeros of a cross-

section (e.g., Hopf’s theorem on vector fields) or more generally,
(2) The relationship between the Chern or Pontrjagin classes of a bundle and the

linear dependency locus of a family of cross-sections.
(3) Formulas relating the characteristic classes of a manifoldX to the higher com-

plex tangencies to a smooth immersionX→ Cn.
(4) Formulas relating topological invariants to the high-order tangency sets of a

pair of foliations.
(5) Thom-Porteous invariants associated to the singularities of a smooth mapping

between manifolds.
(6) The differentiable Riemann-Roch-Grothendieck theorem for embeddings.

We present here a method for deriving such results in quite general circumstances.
It retrieves all known formulas of the type above (as shown in [HL2], [HL3]) and
generates many new ones, several of which are derived in this paper. More importantly
the method applies in highly nongeneric cases where, say, the singularity sets are
of greater than “expected” dimension. In particular, it applies toany real analytic
bundle mapα, and even when the singularity sets ofα have excess dimension, it
yields straightforward calculations and explicit formulas.

The method is also interesting in that it delivers formulas that arelocalandcanon-
ical on the underlying manifold. Given a smooth mapα : E → F between bundles
with connection over a manifoldX and given a Chern-Weil characteristic form8(�)

in the curvature for eitherE or F , we obtain a formula of the type

8(�) =
∑

k

Resk Sk(α)+ dT8, (0.1)
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SINGULARITIES AND CHERN-WEIL THEORY, II 3

whereSk(α) is a current associated to the locus whereα drops rank byk, Resk is an
explicit residue form defined alongSk(α), andT8 is anL1

loc-form onX. In most cases
of interest, one has

dSk(α) = 0 and d
(

Resk Sk(α)
)
= 0

for all k. When the residues are constants, the formT8 represents a Cheeger-Simons
differential character associated toα and the connections onE and F (see [CS],
[HLZ]).

The key to our method is the concept ofgeometric atomicity, a property of bundle
maps which holds in surprising generality and is often easily verified. The main fact
is that wheneverα : E → F has this property, canonical formulas of type (0.1) exist
for every8.

Actually, more is true. To study bundle mapsα, we have developed a theory of
singular connections and characteristic currents (see [HL2]). For givenα we intro-
duced a smooth family of connectionsDt , 0 < t ≤ ∞, on E (or F), which starts with
the given connection att = ∞ and tends to a singular pullback (or pushforward) con-
nection ast → 0. For each Ad-invariant polynomial8, classical Chern-Weil theory
gives formulas

8(�) = 8(�t )+ dTt , (0.2)

whereTt is a canonical, smooth transgression form onX. The natural questions, posed
in [HL2] and answered in special cases, are the following.

Question 0.1
When does limt→0 Tt exist as a current onX?

If the transgression currentlimt→0 Tt exists, so does thecharacteristic current
limt→0 8(�t ).

Question 0.2
If lim t→0 Tt exists, how does one compute limt→0 8(�t )?

This paper provides a very general answer.

THEOREM 0.3
Supposeα : E → F is geometrically atomic. Then for every8, the limit limt→0 Tt

exists. Furthermore, there is a canonical method for computinglimt→0 8(�t ).

The limit ast → 0 of formula (0.2) is our formula (0.1).
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4 HARVEY and LAWSON

The concept of geometric atomicity is elementary. Think ofα as a cross-section
of the bundleH ≡ Hom(E, F), and define itsradial spanto be the subset

Tα ≡

{1

t
αx ∈ H : 0 < t <∞ and x ∈ X

}
⊂ H.

Consider the compactificationH ⊂ G ≡ Gm(E⊕F) by the Grassmann bundle ofm-
planes inE⊕ F , wherem= rank(E). Note thatT0

α ≡ Tα−Zero(α) is a submanifold
of dimension = dim(X)+ 1. Thenα is defined to begeometrically atomic (GA)if T0

α

has locally finite volume inG.
This property of geometric atomicity holds in nearly every situation of interest.
To begin, anyα which isnormal, that is, transversal to the submanifolds6k ⊂ H

where the rank drops byk, is geometrically atomic. The resulting formulas constitute
a local version of the classical MacPherson formulas (see [M1] –[M3]). This was
established in [HL4, Part I] and is reviewed here for the sake of completeness in §3.

A fundamental and surprising fact is thatany real analytic bundle mapα is GA.
Thus no matter how badly the singularities ofα behave—no matter how bizarre the
degeneracy sets ofα are—the limiting currents exist for all characteristic forms. Fur-
thermore, these limits are very oftenexplicitly computable. For a simple illustration
consider a real analytic sectionα of a rank-n complex bundle whose zero setZ(α)

is a submanifold of codimension 2k, and take8 = cn as thenth Chern form. When
k = n andα vanishes to first order, formula (0.1) has the formcn(�) = [Z(α)]+dT.
This is the normal case. However, whenk < n, one easily computes the limit and
generically findscn(�) = cn−k(�)[Z(α)] + dT (see Exam. 9.1).

Interestingly,any real-valued functionf : X → R, considered as an endomor-
phism of any vector bundleE, is GA.

An important area to which this theory applies is the one where bundle maps are
constrained in a specific manner, such as requiring thatα be a section of a given sub-
bundleSof Hom(E, F). This precludesα being normal, but the GA condition is still
generic within the constrained class. Perhaps the simplest example is the global direct
sum of bundle maps. These are essentially never normal; their singularity sets have
the wrong dimension. However, generic direct sums (and tensor products)are GA.
Also, Clifford multiplication on spinor bundles by a GA section of a vector bundle is
again GA.

As just noted, generic direct sums are GA. In fact, we show that for a generic pair
of bundle mapsα : E→ F andα′ : E′→ F ′, bothα andα′ are individually normal
and their singularity sets are mutually transversal. In §§4 and 5 we apply our theory
to derive detailed formulas of type (0.1) for both direct sums and tensor products

α ⊕ α′ : E ⊕ E′ −→ F ⊕ F ′ and α ⊗ α′ : E ⊗ E′ −→ F ⊗ F ′,

where in each case the right-hand side is a sum of explicitly calculated residues
times the currents[6k(α) ∩ 6k′(α

′)] where 6k(α) = {x ∈ X : rank αx =
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SINGULARITIES AND CHERN-WEIL THEORY, II 5

min(dim(E), dim(F))− k}. These formulas are new even at the topological level.
In fact, the direct sum and tensor product formulas are new and interesting even

for the simplest case of sections of vector bundles. These cases are examined in §§6
and 7, where detailed calculations are made for Chern classes, the Chern character,
and for general multiplicative sequences.

We point out that there is a certain geometric simplicity in our approach that can
mislead the reader into thinking that some of these results are easy. Establishing gen-
eral formulas even in the “universal” and “normal” cases is a formidable task by more
conventional means.C∞-stratified sets are complicated objects. Just to produce the
topological formulas as in [M1], [M2] requires a careful resolution of the singularities
of the stratification and computation of the residue classes. With our method a harder
problem is solved. We show in all basic cases that each characteristic form is ex-
plicitly cohomologous to a finite sum of locally closed submanifolds (defined by the
singularities of the bundles mappings) multiplied by intrinsically definedC∞-forms.
We then prove that each of these summands has an extension as a current to the man-
ifold X. In fact, we show that each summand extends as a current offinite massand
furthermore is d-closedon X. These facts are difficult to establish by conventional
analytic means.

An important consequence of our approach is that it leads to ageneral ansatzthat
applies directly and enables explicit computations in very general circumstances—
where bundle maps can have badly behaved singularities. The principles of this gen-
eral method are presented in §9. It essentially boils down to computing the boundary
of the current onG given by integration over the submanifoldT0

α . This is often a
straightforward matter. Once∂[T0

α ] is computed, formulas are derived by the opera-
tor calculus introduced in §2. Many examples of this method are worked out here in
detail.

Formally this general method is like the algebro-geometric procedure of “pulling
to the normal cone,” which gives an intrinsic computation of intersection classes even
when intersections are not of proper dimension (cf. [Fu]).

It is tempting to think that the currentsT8 from formula (0.1) fit into a theory of
secondary characteristic classes. If all the residues Resk are integer constants, this is
indeed the case. Then for such pairs(8, α), the currentT8 represents a canonical dif-
ferential character via the de Rham–Federer theory presented in [HLZ]. To date, there
is no analogous theory that takes into account transgressions between smooth forms
and “partially recitifiable” currents, which appear in (0.1). However, if one restricts
attention to forms with constant integer residues, the situation is already quite rich.
For example, one can give a new proof of the Chern product formula for differential
characters (see [CS]).
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6 HARVEY and LAWSON

Standing assumptions
Throughout the paperE → X and F → X denote smooth bundles that are either
both real or both complex. It is assumed that each bundle is furnished with a metric
and a connection. However, in general the connection need not respect the metric. The
manifold X is not assumed to be compact.

For simplicity, X is assumed to be oriented. This hypothesis is generally unnec-
essary. Any submanifold with oriented normal bundle defines a current (cf. [R]). So
if the bundle Hom(E, F) is oriented (which is automatic whenE andF are oriented
or of even rank), the radial span of any section has oriented normal bundle, and the
operator calculus of §2 can be carried through.

A remark on terminology
On the total space of the bundleπ : Hom(E, F) → X, there is a tautologically de-
fined bundle mapα : π∗E→ π∗F given byα(a) = a. Under local trivializations of
E andF , α reduces to the tautological map over Hom(Cm, Cn); that is, it is indepen-
dent of base variables. Furthermore, every bundle mappingα : E→ F over X is the
pullbackα = α∗(α) of α. For these reasonsα is called theuniversalmapping. There
are analogous universal mappings of direct sum and tensor product type.

Historical comment: Notions of atomicity
The first notion of atomicity, introduced in [HS], applied only to sections of a vector
bundle. It consisted of analytic conditions on the section under which its vanishing de-
termines a well-defined, integrally flat current dual to the Euler class. In [HL2], the no-
tion of k-atomicity was introduced for bundle mapsα : E→ F (for 0≤ k ≤ rankα).
The condition ofk-atomicity guaranteed the existence of akth degeneracy current for
α which was integrally flat and of the expected dimension. These currents appear in a
variety of important geometric situations and play a role in residue theorems relating
singularities to characteristic forms (cf. [HL3]).

The notion of geometric atomicity for a bundle mapα is substantially more gen-
eral than these. It is a minimal condition under which the limits discussed in the
introduction exist and lead to formulas of type (0.1). Geometrically atomic bundle
maps need not bek-atomic for anyk.

1. Geometric atomicity
In this section we reexamine the concept of geometric atomicity introduced in [HL4].
The definition given here is different from but equivalent to the original one. In prac-
tice the new definition is easier to apply.

Let E → X andF → X be smooth vector bundles (both real or both complex)
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SINGULARITIES AND CHERN-WEIL THEORY, II 7

of rankm≤ n, respectively, over a manifoldX of dimensionν, and let

α : E −→ F

be a smooth bundle mapping. This mapping can be considered as a section of the
bundle

H ≡ Hom(E, F),

for which we have theGrassmann compactification

G ≡ Gm(E ⊕ F)

by the bundle ofm-dimensional linear subspaces ofE ⊕ F . The embeddingH ⊂ G
is defined by taking the graph.

We now consider theradial spanof α in H defined by

Tα ≡

{1

t
α(x) : 0 < t <∞ and x ∈ X

}
.

Note thatT0
α ≡ Tα − Zero(α) is an oriented submanifold of dimensionν + 1 in H .

Of course Zero(α) is contained in the zero section ofH , which is a submanifold of
dimensionν.

Definition 1.1
The bundle mappingα is calledgeometrically atomicif Tα has locally finite(ν + 1)-
measure inG, or equivalently, ifT0

α is a submanifold of locally finite volume inG.
When this holds, integration overT0

α defines a current of dimensionν+1 onG which
will also be denoted byTα.

Example 1.2
When dimR(E) = dimR(F) = 1, every bundle mappinga : E→ F is geometrically
atomic.

The proof is obvious sinceT0
α is an open subset of theS1-bundleG = PR(R ⊕

Hom(E, F)). Note in particular that every real-valued continuous function is geo-
metrically atomic when considered an endomorphism of the trivial line bundle—or
any other bundle for that matter.

Example 1.3
Any real analytic bundle mapα : E→ F is geometrically atomic.

This is proved below.
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8 HARVEY and LAWSON

Note that sections of a vector bundleF are in natural one-to-one correspondence
with bundle mappingsα : K → F , whereK is the trivial (real or complex) line
bundle.

Example 1.4
Any section of a vector bundle which is atomic in the sense of [HS] is geometrically
atomic.

See [HL6].

Example 1.5
Any normal bundle map is geometrically atomic. Such maps are open and dense in
theC1-topology (see §3 for details).

Example 1.6
Suppose thatα : E → F is a geometrically atomic bundle map, and suppose there
exists a map

ρ : Hom(E, F) −→ Hom(E′, F ′)

with the properties that for eachx ∈ X, ρx : Hom(Ex, Fx) −→ Hom(E′x, F ′x) is a
homogeneous polynomial map, andρ extends smoothly to the Grassmann compacti-
fications

ρ : Gm(E ⊕ F) −→ Gm(E′ ⊕ F ′).

Thenρ ◦ α is geometrically atomic.

Proof
If Tα has locally finite volume, then so doesρ(Tα) = Tρ◦T .

Example 1.7
Let σ ∈ 0(V) be a geometrically atomic section of a vector bundleV which acts by
Clifford multiplication on associated spinor bundlesS±. Then the bundle mapping
σ• : S+→ S−, given by Clifford multiplication, is also geometrically atomic.

Proof
Take the embeddingV ⊂ Cliff (V) ⊂ Hom(S+, S−), and apply Example 1.6.

Example 1.8
Direct sums and tensor products of bundle mappings are generically geometrically
atomic.
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See Appendix A.
The following sufficient criterion is often easy to verify.

LEMMA 1.9
Given a bundle mapα : E→ F as above, consider the submanifold

T
def
→=

{(
t,

1

t
α(x)

)
: 0 < t <∞ and x∈ X

}
⊂ P1

R × G.

If T has locally finite volume inP1
R × G, thenα is geometrically atomic.

Proof
Note thatT = p∗T wherep : P1

R×G→ G is projection, and recall that the property
of having locally finite mass is preserved under smooth proper maps.

Proof of Example 1.3
Choose localCω-trivializations of E and F above a localCω-coordinate system on
U ⊂ X. Consider the closure

T ≡ Cl
{(

x,
1

t
α(x)

)
: x ∈ U, α(x) 6= 0 and 0< t <∞

}
⊂ U × PR(R⊕ H0),

whereH0 is the space of(m×n)-matrices. Let(y0, y1, . . . , ymn) be the homogeneous
coordinates forPR(R⊕ H0) where(y1, . . . , ymn) are the standard linear coordinates
on H0. Our claim is thatT is an irreducible semianalytic subset of dimensionν + 1
and therefore has locally finite(ν + 1)-measure inU × PR(R⊕ H0). It then follows
that the image ofT under the mapU × PR(R ⊕ H0) → U × Gm(H0) has locally
finite (ν + 1)-measure as desired.

To prove the claim, note that in the affine coordinate system wherey0 = 1, T0
α is

defined by the conditions:yi α j (x) = y j αi (x) andyi αi (x) ≥ 0 for all i, j whenever
α(x) 6= 0. Thus, after excluding the trivial case whereα ≡ 0, we see thatT is a
real semianalytic subset of this chart as claimed. Now consider the affine coordinate
systemȳ wherey1 = 1. HereT0

α is defined by the equations:ȳi α j (x) = ȳ j αi (x), and
ᾱ j (x) = ȳ j α1(x) for i, j ≥ 2, andyi αi (x) ≥ 0 for all i , wheneverα(x) 6= 0. ThusT
is semianalytic in all coordinate charts as claimed.

Remark 1.10
In [HL4] a section was defined to be geometrically atomic if the setT ′α =
{((1/t)α(x), α(x)) : 0 < t < ∞ and x ∈ X} has locally finite(ν + 1)-measure
in the fibre productG⊕G. The two definitions are equivalent. To see this simply ap-
ply the diffeomorphism ofF : G⊕ H → G⊕ H given byF(P, a) = (P, a−α(x)).
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10 HARVEY and LAWSON

Remark 1.11
Geometric atomicity is the key hypothesis of the theorems of this paper. There are
analytic conditions that are equivalent to geometric atomicity. This equivalence will
be presented in [HL6]. However, it might be useful to mention in this paper at least
one special case. Supposeα is a smooth complex-valued function (i.e.,E andF are
trivial C-line bundles). Thenα is geometrically atomic if and only ifα∗(2) has locally
Lebesgue integrable coefficients, where2 = (−vdu+ udv)/(u2

+ v2) = dθ is the
standard angle form onR2 ∼= C.

Example 1.12(A map that is not GA)
We noted in Example 1.2 that any continuous real-valued function, considered as a
bundle endomorphism (of any real bundle) is geometrically atomic. The correspond-
ing statement for complex-valued functions is false even in theC∞-case. This leads
to the simplest maps that are not GA. For a specific example consider the smooth
map f : Rn

→ C, n ≥ 2, defined byf (x) = exp(−1/‖x‖2 + i (1/‖x‖n−1)). Since
f ∗2 = d(1/‖x‖n−1) is not locally Lebesgue integrable,f is not GA by Remark
1.11.

2. The operator calculus
The principal interest in the radial span of a flow stems from the fact that any current
on the Grassmann compactificationG determines a continuous operator from forms
onG to generalized forms onX. The underlying kernel calculus is a simple adaptation
of that given in [HP]. This calculus is particularly important for generalized Chern-
Weil theory.

Let π : G → X be the Grassmann compactification ofH = Hom(E, F) as in
§1. Following [R], we denote byE k(Y) the space of smooth differentialk-forms on a
manifoldY, and byD ′k(Y) ⊃ E k(Y) the generalizedk-forms (or currents of degree
k) onY.

Definition 2.1
To each currentT of dimensionν+ r (whereν = dim(X)) we associate a continuous
linear operator

The author’s constructed
“IP” is fine; however, we
cannot make an italic,
blackboard “T”. What
other character would
you like to use for this?

T : E ∗(G) −→ D ′∗−r (X)

by setting
T(ω) ≡ π∗{ω ∧ T}.

LEMMA 2.2
Let T be as above. Then the operator corresponding to its boundary∂T under the
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SINGULARITIES AND CHERN-WEIL THEORY, II 11

correspondence in Definition 2.1 is

d ◦ T+ (−1)r−1T ◦ d.

Proof
This is a straightforward adaptation of [HP] (see [HL5, App. A], for example).

Suppose now thatTα is the current onG associated to the radial span of a geometri-
cally atomic bundle mapα : E→ F (see Def. 1.1). Then

∂Tα = [0] − P, (2.1)

where[0] denotes the zero section ofH ⊂ G andP is characterized in the next result.

PROPOSITION2.3
Let α : E → F be a geometrically atomic bundle map. Then for every smooth
differential formω on G, the limit

IP(ω) = lim
t→0

(1

t
α
)∗

(ω) (2.2)

exists on X. Furthermore, the operatorTα determined by the current Tα gives a chain
homotopy

j ∗(ω)− IP(ω) = dTα(ω)+ Tα(dω) for all ω ∈ E ∗(G), (2.3)

where j : X ↪→ G is the inclusion as the zero section. The formsTα(ω) (andTα(dω))
are always L1loc.

Note that equation (2.3) is just the operator equation corresponding to the current
equation (2.1) above.

Proof
To see more clearly what is going on, it is useful to “desingularize”Tα. Consider the
currents onR× G corresponding to the submanifolds-with-boundary

Tα,s,s′ ≡

{(
t,

1

t
α(x)

)
: s ≤ t ≤ s′ and x ∈ X

}
oriented so that

∂Tα,s,s′ = {s
′
} × 0

( 1

s′
α
)
− {s} × 0

(1

s
α
)
,

where0(β) denotes the graph of a sectionβ of H ⊂ G. Let p : R × G → G be a
projection, and setπ ′ = π ◦ p : R× G→ X. These maps are proper onTα,s,s′ , and
one sees that

π ′∗

{
p∗ω ∧ ∂Tα,s,s′

}
=

( 1

s′
α
)∗

(ω)−
(1

s
α
)∗

(ω). (2.4)
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However, sinceπ ′ = π ◦ p, we have

π ′∗{p
∗ω ∧ ∂Tα,s,s′} = (π ◦ p)∗{p

∗ω ∧ ∂Tα,s,s′} = π∗{ω ∧ ∂(p∗Tα,s,s′)}. (2.5)

Note that, sinceTα is of finite volume, one has

lim
s′→∞

lim
s→0

p∗Tα,s,s′ = Tα.

We conclude from equations (2.3) and (2.4) that

lim
s′→∞

( 1

s′
α
)∗

(ω)− lim
s→0

(1

s
α
)∗

(ω) = π∗{ω ∧ ∂Tα} = dπ∗{ω ∧ Tα} + π∗{dω ∧ Tα},

which proves equations (2.2) and (2.3).
For the last assertion, note thatφ ≡ (Id×π)∗(p∗ω ∧ Tα,s,s′) is a smooth form

on [s, s′] × X. In fact, it is exactly the pullback ofω by the section(1/t)α. Now
π ′ = π ◦ p = pr ◦ (Id×π), where pr: [s, s′] × X → X is the projection. Hence
π ′∗{p

∗ω ∧ ∂Tα,s,s′} = pr∗φ is a smooth form onX since it is obtained by integration
of a smooth form over the fibre of pr. SinceTα is a submanifold of finite volume, these
smooth forms are converging locally in mass norm to the limitTα(ω) = π∗{ω∧∂Tα}.
However, on smooth forms the mass norm coincides with theL1-norm. Hence, the
limit lies in L1 locally.

The importance of the above calculus comes from the following. LetU −→ G
denote thetautological m-plane bundleover the total space of the Grassmann bundle
π : G→ X. Suppose thatE andF are equipped with orthogonal connections (unitary
connections in the complex case). Then from these connections and the splitting

π∗E ⊕ π∗F = U ⊕U⊥,

we obtain connections onU andU⊥. Suppose that8 is an Ad-invariant polynomial
on the Lie algebra of the structure group ofE (eitherO(m) or U (m)), and consider
the characteristic form8(�U ) on G. It is shown in [HL2, I.8] that(1

t
α
)∗

8(�U ) = 8(
←−
� t ), (2.6)

where
←−
� t is the curvature of thetime-t pullback connection onπ∗E. This is a family

of connections constructed directly onE from the given data and a universal choice
of smoothing function. In the limit ast → 0, these connections tear, and the curvature
becomes concentrated along the singularities ofα. Although the limiting connection
is not everywhere defined, it is possible that the limit of the characteristic form8(

←−
� t )

exists as a current. When it does, it gives a localization of the8-characteristic class
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on the singularities ofα. The analogous situation holds for invariant polynomials9

on the Lie algebra of the structure group ofF .
Settingω = 8(�U ) or ω = 9(�U⊥) and applying Proposition 2.3 give the

following.

THEOREM 2.4
Suppose thatα : E → F is geometrically atomic. Then for all Ad-invariant polyno-
mials8 and9 as above, the limits

IP(8) ≡ lim
t→0

8(
←−
� t ) and IP(9) ≡ lim

t→0
9(
−→
� t )

exist in the space of currents on X. Furthermore, there are canonically defined forms
T8 and T9 with L1

loc-coefficients on X such that

8(�E) = IP(8)+ dT8 and 9(�F ) = IP(9)+ dT9 .

The remainder of this paper is devoted to computing the operatorIP in various cir-
cumstances. This amounts to calculating the boundary of the current∂Tα in G. It turns
out that∂Tα is closely tied to the primary singularities of the mappingα. We begin
by recalling the calculation for “generic” or “normal” maps done in §I.

3. Normal mappings
In this section we review the notation, methods, and results from [HL5]. LetE and
F be as above, and recall that for each integerk, 0 ≤ k ≤ m = rankE, we have the
primary singularity set

6k ≡
{
a ∈ Hom(E, F) : dim ker(a) = k

}
. (3.1)

The closures of the6k’s give a filtration

{0} = 6m ⊂ 6m−1 ⊂ 6m−2 ⊂ · · · ⊂ 60 = Hom(E, F).

These sets fit into a dynamical pattern on the Grassmann compactificationG =
Gm(E ⊕ F) as follows. Consider the multiplicative flowϕt : G → G induced
by ϕ̃t : E ⊕ F → E ⊕ F where ϕ̃t (e, f ) = (te, f ). Note that the subset
H = Hom(E, F) ⊂ G is ϕt -invariant; in fact, fora ∈ H ,

ϕt (a) =
1

t
a.

The fixed-point set of this flow onG can be written as

F =
m∐

k=0

Fk, (3.2)
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14 HARVEY and LAWSON

where
Fk = Gk(E)× Gm−k(F).

The stable and unstable manifolds ofFk in G are given by

6k ≡
{

P ∈ G : dim(P∩E) = k
}

and ϒk ≡
{

P ∈ G : dim(P∩F) = m−k
}
,

respectively, with projections

6k
p1
−−→ Fk

p2
←−− ϒk,

given by

p1(Q) =
(
Q ∩ E, prF (Q)

)
and p2(P) =

(
prE(P), P ∩ F

)
,

where prE : E ⊕ F → E and prF : E ⊕ F → F are the projections. Note that
ϒk ∩ H = ∅ for k < m.

Consider now the pullbacksE ≡ π∗E, F ≡ π∗F H ≡ π∗H , G ≡ π∗G over
π : H → X, and note the diffeomorphismsE ∼= H ⊕ E, F ∼= H ⊕ F , H ∼= H ⊕ H ,
G ∼= H ⊕ G ⊂ G⊕ G. For eachk we define a subbundle

πk : Pk → 6k

of the restrictionG
∣∣
6k

by setting

Pk ≡
{
(Q, P) ∈ 6k ⊕ ϒk : p1(Q) = p2(P)

}
, (3.3)

whereπk(Q, P) = Q. This is a smooth fibre bundle whose fibre at a pointa ∈ 6k∩H
is

π−1
k (a) ∼= Gk(kera⊕ cokera). (3.4)

Over the total space ofH there is atautological sectionα : E→ F given byα(a) =

a.

PROPOSITION3.1 ([HL4])
The tautological sectionα is geometrically atomic. Its radial spanT ≡ Tα satisfies

∂T = [0] −
m∑

k=0

Pk,

where[0] is the current corresponding to the zero section ofH and Pk is given as
above.
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Remark 3.2
In fact, it is shown in [HL4] thatT extends to a current̃T in the total space of the
extended bundleG ∼= G⊕ G→ G and that

∂T̃ =
m∑

k=0

P′k −
m∑

k=0

Pk,

whereP′k is a fibre bundleP′k → ϒk under projection to the other factor ofG ∼= G⊕
G. In this setting the picture becomes much more symmetric. Each of the subvarieties
Pk andP′k is written as a fibre product over the fixed-point setFk in the diagonal.
Furthermore, under time-reversal in the flow the varietiesPk andP′k exchange roles.
This expanded picture enables one to write formulas of the type given below for
“meromorphic” bundle mappings (cf. [Z]).

Suppose now that8 is an Ad-invariant form as above, and consider the characteristic
form ω = 8(�U) on G whereU → G is the tautologicalm-plane bundle. The
restriction ofω to the subsetPk can be written asω

∣∣
Pk
= 8(�Im α⊕Uk) because of the

canonical splitting
U

∣∣
Pk
= Im α ⊕ Uk, (3.5)

whereUk → Gk(kerα ⊕ cokerα) is the tautologicalk-plane bundle along the fibres
(3.4) of the projectionπk. The calculus of §2 (withX replaced byH ) now leads to
the following theorem.

THEOREM 3.3 (Universal case)
Let8 and9 be Ad-invariant polynomials on the Lie algebras of the structure groups
of E and F as in Theorem 2.4. Then there exist canonical L1

loc-formsT8 andT9 on
H satisfying the equations:

8(�E) =

m∑
k=0

Resk,8[6k] + dT8 and 9(�F) =

m∑
k=0

Resk,9 [6k] + dT9 ,

whereResk,8 andResk,9 are smooth residue forms on6k given by

Resk,8 = (πk)∗8{�
Im α⊕Uk} and Resk,9 = (πk)∗9{�

(kerα)⊥⊕U⊥k },

whereUk → Gk(kerα ⊕ cokerα) is the tautological k-plane bundle over the Grass-
mann compactification of the normal bundleHom(kerα, cokerα) to 6k.

For certain generic sections of Hom(E, F), this result can be pulled back toX.
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16 HARVEY and LAWSON

Definition 3.4
A sectionα of H = Hom(E, F) is normal if it is transversal to each of the submani-
folds6k ⊂ H for k ≥ 0. Under this assumption, each of the sets

6k(α) ≡ (α)−1(6k) =
{
x ∈ X : dim(kerαx) = k

}
is a smooth submanifold with locally finite volume and orientable normal bundle in
X (see [HL4, Cor. 10.2]) and therefore defines a rectifiable current[6k(α)].

PROPOSITION3.5 ([HL4, Prop. 9.4])
A normal bundle mapα is geometrically atomic.

THEOREM 3.6 ([HL4, Th. 10.3])
Let α : E → F be a normal bundle map over a manifold X. Then for each Ad-
invariant polynomial8 as above, there exists a canonical L1

loc-form T8 on X such
that

8(�E) =

m∑
k=0

Resk,8[6k(α)] + dT8, (3.6)

whereResk,8 is a smooth residue form on6k(α) given by

Resk,8 = (πk)∗8{�
Im α⊕Uk}, (3.7)

where Uk → Gk(kerα ⊕ cokerα) is the tautological k-plane bundle over the Grass-
mann compactification of the normal bundleHom(kerα, cokerα) to 6k(α).

Similarly, for each Ad-invariant polynomial9 as above, there is an L1loc-form T9

with

9(�F ) =

m∑
k=0

Resk,9 [6k(α)] + dT9 , (3.8)

whereResk,8 is a smooth residue form on6k(α) given by

Resk,9 = (πk)∗9{�
(kerα)⊥⊕U⊥k }. (3.9)

This is a local form of MacPherson’s formula (see [M1] – [M3]) at the level of forms
and currents. The proof consists in showing that due to the transversality ofα, the
singularity stratification6∗(α) on X is modeled on the universal one, and the residue
calculations are similar.

An analogous result holds for real analytic bundle maps (see [HL4, §11] for de-
tails). The singular currents appearing in the formulas above are proved to have the
following properties in [HL4, §12].



“d1375rev.jl” — 2003/6/11 — 11:31 — page 17 — #17i
i

i
i

i
i

i
i

SINGULARITIES AND CHERN-WEIL THEORY, II 17

THEOREM 3.7
Each of the currents[6k(α)], Resk,8[6k(α)], andResk,9 [6k(α)] is d-closed on X.
Furthermore, after changing T8 (or T9 ) by adding a flat current, we may assume
that the connection used to compute the residue in (3.7) (or (3.9)) is a direct sum
connection.

Many explicit examples are worked out in detail in [HL4].

4. Direct sum mappings
A bundle map that can be expressed as a direct sumα ⊕ α′ : E ⊕ E′ → F ⊕ F ′ is
generally not normal as a map fromE ⊕ E′ to F ⊕ F ′, and MacPherson’s formula
does not hold. In fact, generically the codimension of the singular set6k(α ⊕ α′) is
much smaller than the predicted codimension for normal mappings. Nevertheless, the
methods developed here apply to yield interesting formulas in this case.

Let E, F , H ⊂ G be as in §1, and letE′, F ′, H ′ ⊂ G′ denote a second such
set-up over the same manifoldX. Let

π : G⊕ G′ −→ X

denote the fibre product of the Grassmann compactifications ofH andH ′. Consider
the flow ϕ̃t : E ⊕ E′ ⊕ F ⊕ F ′ → E ⊕ E′ ⊕ F ⊕ F ′ given by ϕ̃t (e, e′, f, f ′) =
(te, te′, f, f ′), which can be considered the direct sum of the flows defined in §3 or
the restriction of that flow for the bundle Hom(E ⊕ E′, F ⊕ F ′). This induces a flow

ϕt : G⊕ G′→ G⊕ G′

whose fixed-point set is the sum of the fibre products

Fix(ϕt ) =
∐
k,k′

Fk ⊕ F ′k′,

whereFk andF ′k′ are the fixed-point sets of the flows on each factorG andG′, respec-
tively (cf. §3). One sees that the stable and unstable manifolds are also fibre products

6(Fk ⊕ F ′k′) = 6k ⊕6′k′ and ϒ(Fk ⊕ F ′k′) = ϒk ⊕ ϒ ′k′ .

Our first result is an analogue of Theorem 3.1 with the componentsPk replaced by
fibre products of the stable and unstable manifolds above.

We consider first the “universal” case on the total space of the bundle

π : H ⊕ H ′ −→ X. (4.1)

We denote the pullbacksπ∗E, π∗E′, π∗F, π∗F ′, π∗H ⊂ π∗G, . . . by bold letters
E, E′, F, F′, H ⊂ G, and so on. Note that over the total space ofH ⊕ H ′ there is a
tautological sectionα ⊕ α′ of the bundle Hom(E⊕ E′, F⊕ F′).
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18 HARVEY and LAWSON

PROPOSITION4.1
The tautological sectionα⊕ α′ is geometrically atomic. Furthermore, its radial span
T ≡ Tα⊕α′ satisfies the equation

∂T = [0] −
m∑

k=0

m′∑
k′=0

Pk ⊕ P′k′, (4.2)

wherePk ⊂ G andP′k ⊂ G′ are defined as in (3.3).

Proof
After taking local trivializations of the bundlesE, F, E′, F ′ one sees easily that the
currentT is independent of theX-coordinates; that is, it is a trivial product of the base
with a current defined in the fibre. Thus it suffices to consider the case whereX is a
point.

WhenX = pt, one sees directly thatT is algebraic, and soα⊕α′ is geometrically
atomic by Example 1.3. One also sees directly that∂T is as claimed, namely, the
product of the boundaries is in each factor. To be more precise, note thatT = Tα⊕α′

is the submanifold of codimension 1 inTα × Tα′ given by

T =
{(

gr
1

t
a, gr

1

t
a′

)
∈ G⊕G′ : 0 < t <∞ and (a, a′) ∈ H ⊕ H ′

}
.

Now (p, p′) ∈ supp∂T with π(p, p′) = (a, a′) only if there exist sequences
(ai , a′i ) → (a, a′) and ti → 0 or∞, such that(gr(1/ti )ai , gr(1/ti )a′i ) → (p, p′).

Is (gr(1/ti )ai , gr(1/ti )a′i )
OK?

In particular, by [HL4] we know thatp ∈ Pk and p′ ∈ P′k′ for somek, k′. Since
dimensions are correct, the boundary ofT is an integer linear combination of the sub-
manifoldsPk ⊕ P′k′ . Is is straightforward to see that these coefficients are all one.

Note from the paragraph above that supp(∂T) ⊂ G⊕G′ ⊂ Gm+m′(E⊕E′⊕F⊕F ′).
Note also that each submanifoldPk ⊕ P′k′ admits a fibration

πk,k′ ≡ πk ⊕ π ′k′ : Pk ⊕ P′k′ −→ 6k ⊕6′k′ (4.3)

with fibre Gk,k′ = Gk(kerα ⊕ cokerα)× Gk′(kerα′ ⊕ cokerα′).
We now consider characteristic forms8(�U⊕U ′) = 8(�U

⊕ �U ′) on G ⊕ G′

whereU → G andU ′ → G′ denote the tautological bundles. Using the splittings
(3.5), equation (4.3), and the operator calculus, we conclude the following.

THEOREM 4.2 (Universal case)
Let E, E′, F, and F′ be smooth complex vector bundles with connection on a manifold
X, and assume that m≡ rank(E) ≤ rank(F) and m′ ≡ rank(E′) ≤ rank(F ′). Let8
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be an invariant polynomial on the Lie algebra of the structure group of E⊕ E′. Then
there exists an L1loc-form T8 on the total space ofHom(E, F)⊕Hom(E′, F ′) so that

8(�E⊕E′) =

m∑
k=0

m′∑
k′=0

Res8,k,k′[6k ⊕6′k′] + dT8,

Res8,k,k′ = (πk,k′)∗8
(
�

Im α⊕Uk⊕Im α′⊕U ′
k′
)
, (4.4)

whereα : π∗E→ π∗F andα′ : π∗E′→ π∗F ′ denote the tautological bundle maps
on Hom(E, F) andHom(E′, F ′); (πk,k′)∗ denotes integration over the fibres of the
compactification Gk,k′ = Gk(kerα⊕cokerα)⊕Gk′(kerα′⊕cokerα′) of the normal
bundleHom(kerα, cokerα)⊕Hom(kerα′, cokerα′) to 6k⊕6k′ (cf. (4.3)); and Uk,
U ′k′ are the tautological bundles over Gk and Gk′ .

If rank(E) = rank(F) andrank(E′) = rank(F ′), then formula (4.4) becomes

8(�E⊕E′)−8(�F⊕F ′) =
∑

k+k′>0

Res8,k,k′[6k ⊕6′k′] + dT8.

If 9 is an invariant polynomial on the Lie algebra of the structure group of F⊕
F ′, then there exists an L1loc-form T9 onHom(E, F)⊕ Hom(E′, F ′) so that

9(�F⊕F ′) =

m∑
k=0

m′∑
k′=0

Res9,k,k′[6k ⊕6′k′] + dT9 ,

Res9,k,k′ = (πk,k′)∗9
(
�

(kerα)⊥⊕U⊥k ⊕(kerα′)⊥⊕U ′⊥
k′

)
, (4.5)

where(kerα)⊥ denotes the orthogonal complement ofkerα in E, U⊥k denotes the
orthogonal complement of Uk in kerα ⊕ cokerα, and so on.

We now consider sections(α, α′) of Hom(E, F)⊕ Hom(E′, F ′) over X.

Definition 4.3
A section(α, α′) of Hom(E, F) ⊕ Hom(E′, F ′) is called anormal pair if (α, α′) is
transversal to the submanifolds6k ⊕6′k′ for all k, k′.

In Appendix A we prove the following proposition.

PROPOSITION4.4
Normal pairs are residual (in particular, dense) in the C1-topology on sections of
Hom(E, F) ⊕ Hom(E′, F ′). Any normal pair of sections(α, α′) is geometrically
atomic. Furthermore, ifβ = (α, α′) is a normal pair, then for all k, k′, the sub-
manifolds6k(α) and 6k′(α

′) intersect transversely in X, andβ−1(6k ⊕ 6k′) =

6k(α) ∩6k′(α
′).
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20 HARVEY and LAWSON

Arguing as in the proof of [HL4, Th. 10.3] gives the following result.

THEOREM 4.5
Let X, E, F, E′, F ′, 8, and9 be as in Theorem 4.2, and suppose that(α, α′) : E ⊕
E′→ F ⊕ F ′ is a direct sum mapping that is a normal pair in the sense of Definition
4.3. Then there exists an L1

loc-form T8 on X so that

8(�E⊕E′) =

m∑
k=0

m′∑
k′=0

Res8,k,k′[6k(α) ∩6′k′(α
′)] + dT8,

Res8,k,k′ = (πk,k′)∗8
(
�

Im α⊕Uk⊕Im α′⊕U ′
k′
)
, (4.6)

where(πk,k′)∗ denotes integration over the fibres of the compactification Gk,k′ =

Gk(kerα⊕cokerα)⊕Gk′(kerα′⊕cokerα′) of the normal bundle to6k(α)∩6′k′(α
′),

and where Uk → Gk and U′k′ → Gk′ are the tautological bundles.
If rank(E) = rank(F) andrank(E′) = rank(F ′), then formula (4.6) becomes

8(�E⊕E′)−8(�F⊕F ′) =
∑

k+k′>0

Res8,k,k′[6k(α) ∩6′k′(α
′)] + dT8.

If 9 is an invariant polynomial on the Lie algebra of the structure group of F⊕
F ′, then there exists an L1loc-form T9 on X so that

9(�F⊕F ′) =

m∑
k=0

m′∑
k′=0

Res9,k,k′[6k(α) ∩6′k′(α
′)] + dT9 ,

Res9,k,k′ = (πk,k′)∗9
(
�

(kerα)⊥⊕U⊥k ⊕(kerα′)⊥⊕U ′⊥
k′

)
. (4.7)

Remark 4.6
The analogue of Theorem 3.7 holds in this context. For generic(α, α′) the currents
[6k(α) ∩ 6′k′(α

′)] and Res8,k,k′[6k(α) ∩ 6′k′(α
′)] are eachd-closed, and one may

assume, after changing the transgression by a flat current, that the connection on
Im α ⊕ Uk ⊕ Im α′ ⊕ U ′k′ is a direct sum connection. Thus, if8 is a multiplicative
sequencein the sense of Hirzebruch, then the residue in (4.6) can be rewritten

Res8,k,k′ = (πk,k′)∗{8(�Uk)8(�
U ′

k′ )}8(�Im α)8(�Im α′). (4.8)

Example 4.7(Diagonal maps)
Let α j : E j → F j be a map of complex line bundles overX for j = 1, . . . , m, and
consider the direct sum mapping

α = (α1, . . . , αm) : E1⊕ · · · ⊕ Em −→ F1⊕ · · · ⊕ Fm.
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Let 8(�) ≡ c(�) ≡ det
(
I + (i /(2π))�

)
be the total Chern class. Note that for a

generic mapα : E → F of line bundles onX, we have61(α) = Div(α) (= the zero
set ofα as a section ofE∗ ⊗ F) and60 = X. Furthermore,πk ∗c(�Uk) = (−1)k for
k = 0, 1 and

c(�Im α)
∣∣
6k(α)

=

{
1 if k = 1,

c(�F ) = 1+ c1(�
F ) if k = 0.

From Theorem 4.5 and equation (4.8) we deduce the following formula for a generic
diagonal mapα:

c(�E1⊕···⊕Em) =
∑

i1<···<ik

(−1)m−kc(�Fi1 ) · · · c(�Fik ) Div(αi ′1
) · · ·Div(αi ′m−k

)+ dT

=

∑
I

(−1)|I
′
| c(�FI ) Div(αI ′)+ dT

=

m∏
j=1

{c(�F j )− Div(α j )} + dT,

where the first sum is over allk and{i1, . . . , ik, i ′1, . . . , i ′m−k} = {1, . . . , m}.

5. Tensor product mappings
In this section we consider the tensor product of two bundle mappings

α : E −→ F and α′ : E′ −→ F ′

over aν-manifold X. We shall see that for normal pairs(α, α′) (cf. Def. 4.3), the
sectionα ⊗ α′ is geometrically atomic, and we derive a general formula that has
many interesting special cases.

We begin by examining the universal case. Letπ : H ⊕ H ′ → X be as in
(4.1), and note that over the total space ofH ⊕ H ′ there is a tautological pair of
sections(α, α′). As in §4 we denoteπ∗E, π∗E′, π∗F andπ∗F ′ by E, E′, F andF′,
respectively. Thenα ⊗ α′ gives a section of the bundle

Hom ≡ Hom(E⊗ E′, F⊗ F′) −→ H ⊕ H ′, (5.1)

which has compactification

G ≡ Gmm′
(
(E⊗ E′)⊕ (F⊗ F′)

) π
−−→ H ⊕ H ′, (5.2)

wherem= dim E andm′ = dim E′.

PROPOSITION5.1
The universal sectionα ⊗ α′ over H⊕ H ′ is geometrically atomic. Furthermore, the
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boundary of Tα⊗α′ is given by integration over a finite number of manifolds of finite
volume inG.

Proof
Suppose thatX is a point. ThenTα⊗α′ is an irreducible real algebraic subset of the
Zariski dense subsetHom in G, and so its closure is an irreducible algebraic subset
of G. Hence its regular points are a submanifold of finite volume inG. Furthermore,
its current boundary∂Tα⊗α′ is supported in its topological boundaryTα⊗α′ − Tα⊗α′ ,
which is an algebraic variety of smaller dimension. By the Federer support theorem
(see [F, 4.1.15]), it follows directly that∂Tα⊗α′ is given by integration over the regular
points of those components ofTα⊗α′−Tα⊗α′ having dimension equal to dim(Tα⊗α′)−

1.
For the general case, we consider local trivializations of the bundles over a do-

main � ⊂ X and note that over� the submanifoldTα⊗α′ is a product� × T0 in
�×G0, whereT0 andG0 correspond to the case of a point considered above.

We now want to compute the boundary of the currentT given by integration over the
submanifoldTα⊗α′ . We do this by computing the contribution over each of the sub-
manifolds6k⊕6′k′ ⊂ H⊕H ′. We begin by noting from the proof of Proposition 5.1
that∂T consists of integration over a finite number of real algebraic varieties extended
by local trivialization in theX-variables. Thus theX-variables play no essential role
here; we can treat∂T as an analytic chain. In particular, we can decompose

∂T = H −
m∑

k=0

m′∑
k′=0

Pkk′, (5.3)

whereH = [H⊕H ′] is the zero section and wherePkk′ corresponds to the subvarieties
Y among those comprising∂T such that

Y ∩ π−1(6k ⊕6′k′) is dense inY.

We see that in fact eachPkk′ is an irreducible variety. To describe it, we set some
notation. Consider a point

(α, α′) ∈ 6k ⊕6′k′,

and write

K = kerα, I = Im α, K ′ = kerα′, I ′ = Im α′.

With respect to the decompositionsE = K ⊕ K⊥ andE′ = K ′ ⊕ K ′⊥, we can write
Display too wide for
page; this break OK?

α = (0, a), wherea : K⊥→ I ,
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and

α′ = (0, a′), wherea′ : K ′⊥→ I ′. (5.4)

THEOREM 5.2
Let

∂T = H −
∑

k,k′≥0

Pkk′

be the decomposition (5.3). ThenPmm′ = 0, and for k+k′ < m+m′, the currentPkk′

is given by integration over a submanifold Pkk′ ⊂ G with fibration

πkk′ : Pkk′ −→ 6k ⊕6′k′, (5.5)

whereπkk′ is the restriction of the projection in (5.2). At each(α, α′) ∈ 6k ⊕6′k′ the
fibre ofπkk′ consists of all mm′-planes of the form

(K ⊗ K ′)⊕ (I ⊗ I ′)⊕ gr(a⊗ L ′)⊕ gr(L ⊗ a′) (5.6)

for L ∈ Hom(K , I ⊥) and L′ ∈ Hom(K ′, I ′⊥), where a, a′ are given in (5.4). Thus

π−1
kk′ (α, α′) ∼= Hom(K , I ⊥)⊕ Hom(K ′, I ′⊥),

and Pkk′ can be written as a twisted fibre product

Pkk′
∼=

{
6k ⊕6′k′

}
×Fk×F ′

k′

{
(gr(a)⊗̃ϒ ′k′)⊕ (ϒk⊗̃gr(a′))

}
, (5.7)

whereϒk, ϒ ′k′ are the unstable manifolds of the fixed-point sets Fk, F ′k′ as in §2, and
the operatioñ⊗ is defined in Appendix B.

Proof of Theorem 5.2
Given(α, α′) ∈ 6k ⊕6′k′ , we have

K ≡ ker(α ⊗ α′) = (K ⊗ K ′)⊕ (K⊥ ⊗ K ′)⊕ (K ⊗ K ′⊥),

I ≡ Im(α ⊗ α′) = I ⊗ I ′.

Recall that

lim
t→0

gr
{1

t
α ⊗ α′

}
= K × I ∈ GR(E ⊗ E′)× GM−R(F ⊗ F ′),

whereM = mm′ andR = (m− k)(m′ − k′). By [HL4], we know that the points of
π−1

kk′ (α, α′) must lie in the fibre
Hom(K , I⊥)



“d1375rev.jl” — 2003/6/11 — 11:31 — page 24 — #24i
i

i
i

i
i

i
i

24 HARVEY and LAWSON

aboveK × I in this fixed-point set. To see which points occur, we must consider
sequences of the formα j ⊗ α′j , where

α j = (L j , a j )
j→∞
−−−−→ (0, a) and α′j = (L ′j , a′j )

j→∞
−−−−→ (0, a′)

for L j ∈ Hom(K , I ⊥), L ′j ∈ Hom(K ′, I ′⊥), a j ∈ Hom(K⊥, I ), and a′j ∈

Hom(K ′⊥, I ′). For eachj we have
Display too wide for
page; this break OK?

gr
(1

t
α j ⊗ α′j

)
=

{
(v00, v10, v01, v11,

1

t
L j ⊗ L ′j (v00),

1

t
a j ⊗ L ′j (v10),

1

t
L j ⊗ a′j (v01),

1

t
a j ⊗ a′j (v11)

}
for all (v00, v10, v01, v11) ∈ (K ⊗ K ′)⊕ (K⊥ ⊗ K ′)⊕ (K ⊗ K ′⊥)⊕ (K⊥ ⊗ K ′⊥).
Thus

gr
(1

t
α j ⊗ α′j

)
=

{
(v00,

1

t
L j ⊗ L ′j (v00)) : v00 ∈ K ⊗ K ′

}
⊕

{
(v10,

1

t
a j ⊗ L ′j (v10)) : v10 ∈ K⊥ ⊗ K ′

}
⊕

{
(v01,

1

t
L j ⊗ a′j (v01)) : v01 ∈ K ⊗ K ′⊥

}
⊕

{
(v11,

1

t
a j ⊗ a′j (v11)) : v11 ∈ K⊥ ⊗ K ′⊥

}
. (5.8)

The support of the currentPkk′ will lie in the set of limit points of such sequences of
graphs of(1/t j )α j ⊗ α′j wheret j → 0.

Settingα j = (t j L , a), α j = (t j L ′, a′) and sendingt j → 0 give planes of the
form (5.6). We show that all other limit points lie in a subanalytic setB with the
property that

dim(B) < dim
{

Hom(K , I ⊥)×Hom(K ′, I ′⊥)
}
= k(n−m+ k)+ k′(n′ −m′ + k′).

(5.9)
It then follows from the Federer flat support theorem (see [F, 4.1.15]; cf. [HL5, 2.7])
that

Pkk′ = nkk′[Pkk′]

for somenkk′ ∈ Z. A straightforward local calculation shows thatnkk′ = 1.
To establish (5.9), we proceed case by case as follows. Suppose first that

lim
j→∞

|L j ||L ′j |

t j
= ∞, lim

j→∞

|L j |

t j
= ∞, and lim

j→∞

|L ′j |

t j
= ∞.

Without loss of generality, we can assume that the limits

J = lim
j→∞

Im(L j ) and J ′ = lim
j→∞

Im(L ′j )
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exist. Here the limit of the sequences of graphs (5.8) are of the form

(J ⊗ J ′)⊕ (J ⊗ I ′)⊕ (I ⊗ J ′)⊕ (I ⊗ I ′).

Thus the space of such limits is the product of GrassmanniansGm(I ⊥) × Gm′(I ′⊥)

whose dimension isk(n−m)+ k′(n′ −m′), and equation (5.9) holds.
The next case to consider is where

lim
j→∞

|L j ||L ′j |

t j
= c > 0, lim

j→∞

|L j |

t j
= ∞, and lim

j→∞

|L ′j |

t j
= ∞.

We may assume by passing to subsequences that(1/t j )L j ⊗ L ′j → L∞ ⊗ L ′∞. We
get limits of the form

gr(L∞ ⊗ L ′∞)⊕ (Im L∞ ⊗ I ′)⊕ (I ⊗ Im L ′∞)⊕ (I ⊗ I ′).

The space of such limits is parameterized by

Hom(K , I ⊥)× Hom(K ′, I ′⊥)/k,

wherek = C or R depending on the case. We see that equation (5.9) holds. Note
incidentally that this calculation shows that

Pmm′ = 0

since its support is too small.
Consider now the case where limj→∞(|L j ||L ′j |/t j ) = 0. We must consider sev-

eral possibilities. The first, where

lim
j→∞

|L j |

t j
= c and lim

j→∞

|L ′j |

t j
= c′,

is the generic case. In all other cases one sees that equation (5.9) holds. For example,
suppose that

lim
j→∞

|L j |

t j
= ∞ and lim

j→∞

|L ′j |

t j
= c > 0.

Then limits are of the form

(K ⊗ K ′)⊕ (J ⊗ a′)⊕ gr(a⊗ L ′∞)⊕ (I ⊗ I ′),

where J is as above andL ′∞ = lim j (1/t j )L ′j . The dimension of all such limits is
k(n − m) + k′(n′ − m′ + k′), and so equation (5.9) holds. The remaining cases are
similar.
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We now consider the tautological bundle

U −→ Gmm′(E ⊗ E′, F ⊗ F ′)

and giveU andU⊥ connections induced from the tensor product of given connections
on E, E′, F, F ′ via the splittingU⊕ U⊥ = (E ⊗ E′)⊕ (F ⊗ F ′). Then by equation
(5.6) the restriction ofU to the fibres ofPkk′ has the form

U
∣∣
Pkk′
=

(
ker(α)⊗ ker(α′)

)
⊕

(
Im(α)⊗ Im(α′)

)
⊕

(
gr(a)⊗̃U ′k′

)
⊕

(
Uk⊗̃gr(a′)

)
,

(5.10)
where

Uk −→ Gk(K ⊕ I ⊥) and U ′k′ −→ Gk′(K ′ ⊕ I ′⊥)

are the tautological bundles restricted to the affine charts Hom(K , I ⊥) and
Hom(K ′, I ′⊥) and⊗̃ is defined in Appendix B. This gives us the following theorem.

THEOREM 5.3 (Universal case)
Let8 be an invariant polynomial on the Lie algebra of the structure group of E⊗ E′.
Then the characteristic form8(�E⊗E′) satisfies the following equation on the total
space of H⊕ H ′:

8(�E⊗E′) =

m∑
k=0

m′∑
k′=0

Res8,kk′[6k ⊕6′k′] + dT,

where T is a canonical L1loc-form on H⊕ H ′ andRes8,kk′ is a smooth residue form
on6k ⊕6′k′ given byRes8,mm′ = 0 and otherwise

Res8,kk′ = πkk′∗8
{
�

(kerα⊗kerα′)⊕(Im α⊗Im α′)⊕(gr(a)⊗̃U ′
k′

)⊕(Uk⊗̃gr(a′))}
, (5.11)

where

Uk −→ Gk(kerα ⊕ Im α⊥) and U ′k′ −→ Gk′(kerα′ ⊕ Im α′⊥)

are the tautological bundles, andπkk′ is the mapping (5.5).

Proof
Start with Theorem 5.2 and apply the operator calculus of §2.

There is a companion result proved in the same manner.

THEOREM 5.4 (Universal case)
Let9 be an invariant polynomial on the Lie algebra of the structure group of F⊗ F ′.
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Then the characteristic form9(�F⊗F ′) satisfies the following equation on the total
space of H⊕ H ′:

9(�F⊗F ′) =

m∑
k=0

m′∑
k′=0

Res9,kk′[6k ⊕6′k′] + dT,

where T is a canonical L1loc-form on H⊕ H ′ andRes9,kk′ is a smooth residue form
on6k ⊕6′k′ given byRes9,mm′ = 0 and otherwise

Res9,kk′ = πkk′∗9
{
�

(ker⊥ α⊗ker⊥ α′)⊕(Im⊥ α⊗Im⊥ α′)⊕(gr(a)⊗̃U ′
k′

)⊥⊕(Uk⊗̃gr(a′))⊥}
,

(5.12)
where

Uk −→ Gk(kerα ⊕ Im⊥ α) and U ′k′ −→ Gk′(kerα′ ⊕ Im⊥ α′)

are the tautological bundles, andπkk′ is the mapping (5.5). Here(gr(a)⊗̃U ′k′)
⊥ de-

notes the orthogonal complement ofgr(a)⊗̃U ′k′ in the subspace(ker⊥ α ⊗ kerα′) ⊕
(Im α ⊗ Im⊥ α′). Similarly, (Uk⊗̃gr(a′))⊥ denotes the complement in(kerα ⊗
ker⊥ α′)⊕ (Im⊥ α ⊗ Im α′).

The residue (5.12) can be reexpressed using adjoint transformations as follows:

Res9,kk′ = πkk′∗9
{
�

(Im α∗⊗Im α′∗)⊕(kerα∗⊗kerα′∗)⊕(gr(a∗)⊗̃U ′⊥
k′

)⊕(U⊥k ⊗̃gr(a′∗))}
,

(5.12′)
wherea∗ denotes the adjoint ofa. This is derived using Lemma B.2(iii).

Note the coincidence of formulas (5.11) and (5.12′). This can be deduced directly
from the fact that the family of pushforward connections forα coincides with the
family of pullback connections of the adjoint (cf. [HL2]).

These results carry over to normal pairs. The following is proved in Appendix A.

PROPOSITION5.5
Let (α, α′) be a normal pair of sections of the bundle H⊕H ′ over X. Then the tensor
product sectionα ⊗ α′ over X is geometrically atomic.

THEOREM 5.6
Let α : E → F andα′ : E′ → F ′ be smooth bundle maps over a manifold X with
the property that(α, α′) is a normal pair. Then for any polynomial8 as in Theorem
5.3, the characteristic form8(�E⊗E′) satisfies the following equation on X:

8(�E⊗E′) =

m∑
k=0

m′∑
k′=0

Res8,kk′[6k(α) ∩6′k′(α
′)] + dT8,
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where T8 is a canonical L1loc-form on X andRes8,kk′ is a smooth residue form
on6k(α) ∩6′k′(α

′) given as in Theorem 5.3.
Similarly for any polynomial9 as in Theorem 5.4, the characteristic form

9(�F⊗F ′) satisfies the equation

9(�F⊗F ′) =

m∑
k=0

m′∑
k′=0

Res9,kk′[6k(α) ∩6′k′(α
′)] + dT9 ,

where T9 is a canonical L1loc-form on X andRes9,kk′ is a smooth residue form on
6k(α) ∩6′k′(α

′) given by Theorem 5.4.

Remark 5.7
The analogue of Theorem 3.7 holds also in this context (cf. Rem. 4.6).

There are many interesting special cases. Note, for example, the simple case where
we take the productf α, where f is a regular function onX. Another interesting case
is the tensor productσ ⊗ σ ′ of two sectionsσ ∈ 0(F) andσ ′ ∈ 0(F ′). We examine
some of these in the next two sections.

6. The direct sum of cross-sections
The formulas for direct sum and tensor product mappings are particularly interesting
in the case of sections. Consider cross-sections

We cannot make a bold
blackboard “C”. What
other character would
you like to use for this?

σ : C −→ F and σ ′ : C −→ F ′,

whereC = C× X denotes thetrivialized line bundle, and suppose(σ, σ ′) is a normal
pair (cf. Def. 4.3). Under this hypothesis each of the sectionsσ , σ ′, andσ ⊕ σ ′ has
a smooth divisor. Furthermore, Div(σ ) and Div(σ ′) meet transversely and Div(σ ⊕

σ ′) = Div(σ ) ∩ Div(σ ′).
Now letL be a multiplicative series of characteristic polynomials in the sense of

Hirzebruch [?]. Then Theorem 4.5 and Remark 4.6 give us
Please provide a
reference for the
Hirzebruch cite. L(�F⊕F ′) = L(�σ⊥)L(�σ ′⊥)+ ResL,σ L(�σ ′⊥) Div(σ )+ ResL,σ ′ L(�σ⊥) Div(σ ′)

+ ResL,σ⊕σ ′ Div(σ ) ∩ Div(σ ′)+ dTL

with
ResL,σ = π∗L(�U⊥),

whereU is the tautological line bundle overπ : P(C ⊕ F) → X, and the other
residues are defined similarly.

For example, supposeL = c, the total Chern class. Then we have
Display too wide for
page; this break OK?
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c(�F⊕F ′) = c(�σ⊥)c(�σ ′⊥)+ c(�σ ′⊥) Div(σ )+ c(�σ⊥) Div(σ ′)

+ Div(σ ) ∩ Div(σ ′)+ dTc.

Taking the top component of this equation gives the classical formula

cn+n′(�
F⊕F ′) = Div(σ ) ∩ Div(σ ′)+ dT′.

7. The tensor product of cross-sections
Let

σ : C −→ F and σ ′ : C −→ F ′

be sections as in §6, and consider the tensor product section

σ ⊗ σ ′ : C −→ F ⊗ F ′.

Section 5 gives the following equation of currents on the total space ofP(C ⊕ (F ⊗
F ′)):

∂T = [C] − [Im σ ⊗ Im σ ′]

−
[
P{C ⊕ (F ⊗ Im σ ′)}

∣∣
Div(σ )

]
−

[
P{C ⊕ (Im σ ⊗ F ′)}

∣∣
Div(σ ′)

]
,

where[C] denotes the embedding ofX as the zero section, and[Im σ ⊗ Im σ ′] is the
submanifold given by graphing the section[σ ⊗σ ′] of P(F ⊗ F ′) over X−Div(σ )∪

Div(σ ′).
If U denotes the tautological bundle overP(C ⊕ (F ⊗ F ′)), one calculates that

U⊥
∣∣
[C] = F ⊗ F ′,

U⊥
∣∣
Im σ⊗Im σ ′

= C ⊕ (Im σ ⊗ Im σ ′)⊥,

and

U⊥
∣∣
P{C⊕(F⊗Im σ ′)}

= U⊥1 ⊕
(
F ⊗ Im(σ ′)⊥

)
,

whereU⊥1 is the Whitney dual of the tautological line bundleU1 over the projective
bundle

π : P
{
C ⊕ (F ⊗ Im σ ′)

}
−→ Div(σ ).

Suppose now that9 is an invariant polynomial for the group GLnn′ wheren =
dim F andn′ = dim F ′. Then we obtain the following formula onX:

9(�F⊗F ′) = 9(�C⊕(Im σ⊗Im σ ′)⊥)+ Resσ Div(σ )+ Resσ ′ Div(σ ′)+ dT

where
Resσ = π∗9(�U⊥1 ⊕(F⊗Im(σ ′)⊥))
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and Resσ ′ is defined similarly. In particular, if9 = L is a multiplicative series in the
sense of Hirzebruch [?], then

Please provide a
reference for the
Hirzebruch cite.

Display too wide for
page; this break OK?

L(�F⊗F ′) = L(�{σ⊗σ ′}⊥)+ Res′σ L(�F⊗σ ′⊥) Div(σ )

+ Res′σ ′ L(�σ⊥⊗F ′) Div(σ ′)+ dT

with
Res′σ = π∗L(�U⊥1 ) and Res′σ ′ = π∗L(�U ′⊥1 ).

For the top Chern class, one gets the formula

cnn′(�
F⊗F ′) = cn(n′−1)(�

F⊗σ ′⊥) Div(σ )+ cn′(n−1)(�
σ⊥⊗F ′) Div(σ ′)+ dT

generalizing the classical line bundle case. Another interesting case is the Chern char-
acter

ch(�F ) ch(�F ′) = ch(�(σ⊗σ ′)⊥)+
(−1)n+1

n!
Div(σ )+

(−1)n′+1

n′!
Div(σ ′)+ dT.

Note that these formulas are interesting in the simple case whereσ ′ is just
a complex-valued functionf (a section of the trivial line bundle). Note that
Zero( f σ) = Zero( f ) ∪ Zero(σ ) will generically have a component of codimension
2.

8. Mappings given by Clifford multiplication
The methods presented here apply directly to quaternion-linear mapsα : E → F
between quaternionic bundles. More generally, one can consider bundle mappings
given by Clifford multiplicatione : S+(V) → S−(V), where S±(V) are spinor
bundles for a vector bundleV with spin structure, and wheree is a cross-section of
V . This case is related to the differentiable Riemann-Roch theorem for embeddings
and is covered extensively in [HL2].

9. The general method
Each of the previous sections is simply an application of the following general
method, which applies to nearly any geometrically atomic bundle mapα : E→ F .

Step 1.Compute
∂Tα − [0] = P =

∑
i

ni [Pi ],

where thePi are orientedν-dimensional manifolds of finite volume inG and theni

are integers.
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Step 2.For eachi compute

U
∣∣
Pi

and / or U⊥
∣∣
Pi

.

Step 3.Given invariant polynomials8 or 9 as above, compute the current

π∗{8(�U ) ∧ Pi } or π∗{9(�U⊥) ∧ Pi }

for eachi , whereπ : G −→ X is the bundle projection.
(
In doing this, use the

fact that the tangent bundle to the fibres ofπ is Hom(U,U⊥) and thatU ⊕ U⊥ =
π∗(E ⊕ F).

)

The result
There are formulas onX of the form

8(�E) =
∑

i

π∗{8(�U ) ∧ Pi } + dT8

and

9(�F ) =
∑

i

π∗{9(�U⊥) ∧ Pi } + dT9 .

Important note
The first step is the crucial one and is often done as follows.
(1) Compute the topological boundary∂topT0

α of the radial span ofα.
(2) Suppose∂topT0

α =
⋃

i Pi , where Pi is a smooth orientable submanifold of
dimensionν for i > 0 andP0 is a set of Hausdorffν-measure zero. Then by
the Federer flat support theorem (see [F, 4.1.15]) we know that

∂Tα =

∑
i >0

ni [Pi ]

for integersni and choices of orientations on thePi . Of course, one of the[Pi ]

will be the zero section [0].
(3) Determine the integersni by local calculation at some convenient point ofPi .

Example 9.1
There are important bundle maps that do not lie in the generic classes of §§3 – 8.
A good example, related to “excess intersection” theory (see [Fu]), arises whenσ :

C → F is a section ofF whose zero setZ is of larger than expected dimension.
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Assume for simplicity thatσ is normally nondegenerate; that is, the differentialdσ

gives an isomorphismdσ : N ∼= F0 ⊂ F of the normal bundle ofZ with a subbundle
of F alongZ. Then direct calculation shows that

∂Tσ − [0] = Q+ P(C ⊕ F0),

where
Q =

{
[σ(x)] ∈ P(F0) : x ∈ X − D

}
⊂ P(C ⊕ F).

Write F
∣∣
Z = F0⊕F1, and letnk = dim Fk with n = n0+n1. LetU be the tautological

line bundle onP(C ⊕ F), and letU⊥ be its complementaryn-plane bundle. LetU⊥0
be the corresponding object onP(C ⊕ F0). Then one sees that

U⊥
∣∣
P(C⊕F0)

= U⊥0 ⊕ F1 and U⊥
∣∣
Q= C ⊕ σ⊥ ⊕ F1, (9.1)

whereσ⊥ = F0 	 Im(σ ). Let cn(�
U⊥) = det(�U⊥) denote the top Chern form of

U⊥. Then from equations (9.1) we see that

cn(�
U⊥)

∣∣
P(C⊕F0)

= cn0(�
U⊥0 ) · cn1(�

F1) and cn(�
U⊥)

∣∣
Q = 0.

From the fact thatπ∗ cn0(�
U⊥0 ) = 1, we obtain the equation

cn(�
F ) = cn1(�

F1) · [Z] + dT (9.2)

for the top Chern form ofF on X.

Example 9.2
Considerσ : C2

→ Hom(C, C2) ∼= C2 given by σ(z1, z2) = (z2
1z2, z1z2

2) =

z1z2(z1, z2). Note thatσ = f σ0, where σ0(z) = z and f is the scalar func-
tion f (z) = z1z2. Both σ0 and f are atomic sections with Div(σ0) = {0} and
Div( f ) = {z1 − axis} ∪ {z2 − axis}. However, these divisors do not meet in general
position since they intersect in zero, and the results of §7 do not apply. Nevertheless,
one can compute∂Tσ . In fact, settingCn = P(C⊕ Cn), we have

Tσ =

{(
z,

1

t
f (z)z

)
∈ C2

× C2 : 0 < t <∞ and z ∈ C2
}
,

and one finds straightforwardly that

∂Tσ − [0] = (0× C)× (C× 0)+ (C× 0)× (0× C)+ (0, 0)× C2.

Notice the contribution at(0, 0) which does not appear in the case of normal pairs.
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10. Nonlinear residue integrals
One might suspect that the boundary componentsPi appearing in our general method
are always linear (i.e., projective space) bundles over a subset ofX. It is true that
the fibres are always compactifications of homogeneous cones inH . However, these
cones may be nontrivial, as seen in the following example.

Example 10.1
An example of a boundary component of the graph of a geometrically atomic bundle
map which is not a vector bundle over6k(α) but a bundle of homogeneous cones.

Consider the bundle mappingf : Ck+2
→ Ck+2 overCn+2, given as follows:

f (z, w, ζ1, . . . , ζn) =

z2 zw 0
0 w2 0
0 0 Id


The ζ ’s play no essential role but are there to emphasize that thegenericsuch map
can have nonempty degeneracy sets6`( f ) for ` = 1, 2. (Recall that for normal maps
the codimension of6` is `2.)

Note that

61( f ) = {z= 0} ∪ {w = 0} − {z= w = 0}

and

62( f ) = {z= w = 0}.

LEMMA 10.2
Let Tf denote the radial span of f . The piece of the boundary∂T f which lies above
62( f ) is a fibre bundleπ : B → 62( f ) whose fibre above any point is the set of
planes in the Grassmannian Gk+2(Ck+2

⊕ Ck+2) of the form

graph

(
z2 zw
0 w2

)
⊕ Ck for (z, w) ∈ C2,

whereCk
= Im(Id) is in the second factor ofCk+2

⊕ Ck+2.

Remark 10.3
Note that the above graph inC2

⊕ C2 is the 2-plane

0z,w =
{
(u, v, z2u+ zwv, w2v) : u, v ∈ C

}
.
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The union of these does not constitute a linear subspace ofHom(C2, C2). The
Plücker coordinates are

0z,w = (e1+ z2e3) ∧ (e2+ zwe3+ w2e4)

= e1 ∧ e2+ zwe1 ∧ e3+ w2e1 ∧ e4− z2e2 ∧ e3+ z2w2e3 ∧ e4,

which would be aquadraticcurve if the planes could be put into a linear family.

Proof of Lemma 10.2
We have the radial span

T = T f =

{(
x,

1

t
f (x)

)
: x ∈ Cn+2 and 0< t <∞

}
.

We work atx = 0. (Other points of62 are the same.) We have the short exact se-
quence

0→ K → Ck+2 f0
−−→ I → 0,

whereI ≡ Im f0 ∼= Ck andK ≡ ker f0 ∼= C2. The contribution to∂T above 0∈ 62

is supported in the subset

Hom(K , I ⊥)⊕ ({0} ⊕ I ),

which in our case turns out to be

Hom(C2, C2)⊕ ({0} ⊕ Ck).

To see which points we get, we examine the limits of the planes: graph((1/t) f (x)) as
t, x→ 0. Write the Taylor expansion

f (0+ h) = f0+ d f0(h)+ d2 f0(h)+ d3 f0(h)+ · · · ,

and observe that

graph
(1

t
f (h)

)
=

{(
v,

1

t

(
f0+d f0(h)+d2 f0(h)+d3 f0(h)+· · ·

)
(v)

)
: v ∈ Ck+2

}
.

We now use the short exact sequence above to write

Ck+2
= K ⊕ I

and express the graph as

graph
(1

t
f (h)

)
=

{(
k, i ;

1

t

(
f0+d f0(h)+d2 f0(h)+· · ·

)
(k, i )

)
: (k, i ) ∈ K ⊕ I

}
.
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On points of the form(0, i ), we have{(
0, i ;

1

t

(
i + o(|h|‖i ‖)

))
: i ∈ I

}
=

{
(0, t i ; i + o(|h|)) : i ∈ I

}
,

and takingt → 0, |h| → 0, we get the subspace of points{0} ⊕ I ⊂ {0} ⊕ Ck+2.
Now restrict to points of the form(k, 0). Let f̃ denote the restriction off to K ,

and suppose thatd` f̃0 is the first nonvanishing term in the Taylor expansion off̃ . (In
our case,̀ = 2.) Then, settingh = t1/`h0, we have

graph
(1

t
f (h)

)
⊃

{(
k, 0;

1

t

(
d f0(h)+ d2 f0(h)+ · · ·

)
(k, 0)

)
: (k, 0) ∈ K

}
=

{(
k,

1

t

(
d` f̃0(t

1/`h0)+ · · ·
)
(k)

)
: k ∈ K

}
=

{(
k, (d` f̃0(h0)+ o(t1/`))(k)

)
: k ∈ K

}
t→0
−−−→ graph

{
d`( f

∣∣
K )(h0)

}
.

Thus, if

P(h0) ≡ lim
t→0

graph
{1

t
f (t1/`h0)

}
,

then
P(h0) ⊃ {0} ⊕ I and P(h0) ⊃ graph

{
d`( f

∣∣
K )0(h0)

}
.

These two spaces are transversal, and so we conclude that

P(h0) = ({0} ⊕ I )⊕ graph
{
d`( f

∣∣
K )0(h0)

}
.

Thus, if we letN0 denote the normal space to60( f ) at zero, then the support of
∂T above zero is contained in the set of planesP(h0) for h0 ∈ N0, that is, compress-
ing notation, we have

supp(∂T) ∩ π−1(0) ⊆
⋃

v∈N0

(
gr

{
d`( f

∣∣
K )0(v)

}
+ I

)
. (10.1)

In our case,̀ = 2 andd2( f
∣∣
K )0 = f

∣∣
K .

Equation (10.1) is quite general and characterizes the fibre of the allowed support of
∂T above a degeneracy set.

11. Final remark: Toric varieties
The general methods introduced here seem well suited to the study of toric varieties.
These are complexn-manifolds with an action ofGn ≡ C× × · · · × C× (n-times)
having a dense orbit. The generators of the action give a bundle mapα : Cn

−→ T X,
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which is geometrically atomic but rarely normal. However, our methods can be used
to localize characteristic classes ofX on the singular orbits of the action. Explicit
calculations of the residues can be carried out as in §§9 and 10.

Among the simplest examples are the projective spacesPn with an action of
Gn = Gn+1/D, whereD is the main diagonal subgroup, given by

ϕt0,...,tn([z0 : · · · : zn]) = [e
t0z0 : · · · : e

tnzn].

This gives a bundle mapCn+1/C · (1, 1, . . . , 1) ∼= Cn
−→ TPn defined by

(t0, . . . , tn) 7→ π∗

{ n∑
k=0

tkzk
∂

∂zk

}
,

whereπ : Cn+1
−{0} → Pn is the projection. (Note thatπ∗(

∑
zk∂/∂zk) = 0). Now

in each of the affine coordinate chartsUk = {[z] ∈ Pn
: zk 6= 0} the bundle mapα

can be written as adiagonalbundle mappingα1⊕· · ·⊕αn : Cn
→ Cn. To see this, it

suffices by symmetry to consider only the case ofU0 ∼= {[1 : z1 : · · · : zn] : z ∈ Cn
}.

For this we mapCn
→ Cn+1/C→ TPn by

(t1, . . . , t0) 7→
n∑

k=1

tkzk∂/∂zk ∼= (t1z1, . . . , tnzn).

(We can drop theπ∗ since these vector fields are tangent to the affine chartU0.) Now
the calculation of the residues is local, and in this chart we have the map written
explicitly as a direct sum. Hence, we can apply §4 to this case. In particular, for the
total Chern class, we can apply Example 4.7 to compute the residues, and we find the
following. Let 1k ≡ {[z] ∈ Pn

: zk = 0} denote thekth coodinate hyperplane, and
set1I = 1i1 ∩ · · · ∩1i p for I = {i1 < · · · < i p}. The configuration{1I }I of linear
subspaces givesPn the combinatorial pattern of then-simplex. Let Skp =

⋃
{1I :

|i | = p} denote its “codimension-p skeleton.” Then applying Example 4.7 in each
coordinate chart shows that for every integerp,

cp(Pn) = [Skp] + dTp

for a canonical loc-formTp. Our techniques apply similarly to more complicated and
interesting toric varieties.

Appendices

A. Normal pairs are generic
LEMMA A.1
Let π : H → X be a smooth vector bundle over a compact manifold, and suppose
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that 6 ⊂ H is a submanifold such that the restrictionπ : 6 → X is a smooth
fibration over X. Then the set of cross-sectionsα ∈ 0(H) which are transversal to6
is open and dense in the C1-topology.

Proof
Let α1 ∈ 0(H) be given, and choose sectionsα2, . . . , αm such that

span
{
α1(x), . . . , αm(x)

}
= Hx for all x ∈ X.

This gives a smooth bundle surjectionA : Rm
× X −→ H defined byA(t, x) =∑

ti αi (x). From the transversality theorem for families (cf. [HL1]), we conclude that
sinceA is transversal to6, the sectionAt (x) = A(t, x) is transversal to6 for almost
all t ∈ Rm. This proves the density. The openness is clear.

LEMMA A.2
Letπ : H → X and6 ⊂ H be as above, and suppose thatπ : H ′ → X, 6′ ⊂ H is
another such set-up over X. Then the set of pairs(α, α′) ∈ 0(H)× 0(H ′) such that
α⊕α′ is transversal to6⊕6′ in H ⊕ H ′, and is open and dense in the C1-topology.

Proof
Given(α1, α

′

1) ∈ 0(H)×0(H ′), choose(αi , α
′

i ) for i = 2, . . . , m so thatα1, . . . , αm

andα′1, . . . , α
′
m are spanning the set of sections as above. The argument now proceeds

as in the proof of Lemma A.1.

COROLLARY A.3
Normal pairs are open and dense in the C1-topology. If the manifold X is noncom-
pact, then normal pairs are residual (a countable intersection of open dense subsets)
in the C1-topology.

PROPOSITIONA.4
For any normal pair(α, α′), the direct sum mappingα ⊕ α′ and the tensor product
mappingα ⊗ α′ are geometrically atomic.

Proof
Fix a point p ∈ 6k(α) ∩ 6′k′(α

′). By transversality, there exist local coordinates
(x, a, a′) ∈ Rr

×Hom(kerap, cokerap)×Hom(kerap, cokerap) for a neighborhood
of p such that in these coordinates

6k(α) ∼= {a = 0} and 6′k′(α
′) ∼= {a′ = 0},

and for` > k and`′ > k′ we have

6`(α) ∼= {dim kera = `} and 6′`′(α
′) ∼= {dim kera′ = `′}. (A.1)
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Furthermore, in these coordinates the pair of bundle maps can be written

(α, α′) = (a⊕ b, a′ ⊕ b′), (A.2)

whereb = b(x, a, a′) is an invertible(m×m)-matrix at each point and similarly forb′

(cf. [HL4, §10]). From equations (A.1) one sees easily that the submanifolds6`(α)∩

6′
`′
(α′) all have locally finite volume inX. Using equation (A.2), one concludes that

along these submanifolds the finite volume property of the radial span of eitherα⊕α′

or α ⊗ α′ reduces to that of the universal case.

B. The operator ⊗̃
Consider vector spacesV, V ′, W, W′ and the obvious projection

pr : (V ⊕W)⊗ (V ′ ⊕W′) −→ (V ⊗ V ′)⊕ (W⊗W′).

Definition B.1
Given subspacesS⊂ V ⊕W andS′ ⊂ V ′ ⊕W′, we define

S⊗̃S′ ≡ pr{S⊗ S′}.

Given a linear mapα : V → W, we let gr(α) denote its graph inV ⊕W.

LEMMA B.2
The operatioñ⊗ has the following properties:
(i) gr(α ⊗ α′) = gr(α)⊗̃gr(α′) for linear mapsα : V → W andα′ : V ′→ W′;
(ii) dim(S⊗̃S′) = dim(S) dim(S′) if S∩ V = S∩W = {0};
(iii) if S′ ⊂ W′, then S̃⊗S′ ⊂ W⊗W′.

Furthermore, if the spaces have inner products and(•)∗ denotes the adjoint, then
(iv) gr(α ⊗ α′)⊥ = gr(α∗)⊗̃gr(α′∗) for linear mapsα : V → W andα′ : V ′ →

W′.

Proof
The proof is straightforward.

COROLLARY B.3
Let a : V → W be an injective linear map. Then taking the projected tensor product
with the graph of a gives a well-defined algebraic map

Gm′(V
′
⊕W′)

gr(a)⊗̃•
−−−−−→ Gmm′

(
(V ⊗ V ′)⊕ (W⊗W′)

)
,

where m= dim(V) and m′ = dim(V ′). Furthermore, under this mapping, one has
that Gm′(V ′)→ Gmm′(V ⊗ V ′) and Gm′(W′)→ Gmm′(W⊗W′).
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