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Abstract.

Let o : E — F be a smooth bundle map between vector bundles with
connection on a manifold X, and let ®(£2) be a Chern-Weil character-
istic form of either E or F'. A notion of “geometric atomicity” for « is

introduced. For any such map a we establish a canonical cohomology

(%) B(Q) — ) Resg  [Si(a)] = dT

where Yp(a) = {z € X : dimker(a) = k}, Resg j is a smooth
residue form along Y4 («), and T is a canonical Llloc—form on X. When
rank E = rank F, (*) can be written

Q") = B(Q") = ) Rese [Si(a)] +dT.
k>0

Normal sections of Hom(FE, F') (those by definition which are transver-
sal to the universal singularity sets 1) are always geometrically atomic,
and for such maps equation (*) expresses a classical formula of R.
MacPherson at the level of forms and currents. Every real analytic
map « is geometrically atomic, no matter how misbehaved its sin-
gularities. For those where each () has the expected dimension,
analogous formulas are established. In all cases, each term in the sum
in equation (*) is a d-closed current. Proofs entail a direct applica-
tion of the methods of singular connections and of finite volume flows
developed by the authors.

Geometrically atomic maps prove to be generic or “typical” in all struc-
tured situations such as: direct sum mappings, tensor product map-
pings, mappings given by Clifford multiplication, etc. In each case the
methods yield new formulas. This will be done in Part II.
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§0. Imtroduction. Some of the most useful theorems in topology are those which relate
singularities of maps to topological invariants, such as Hopf’s Theorem on vector fields
or the Lefschetz Fixed-point Theorem. One of the most general results of this type is
the beautiful formula of R. MacPherson [Mac,] which relates the topology of the primary
singularities of a normal smooth bundle map « : E — F' to characteristic classes of E and
F

In geometry the classical theory of Gauss-Chern-Weil relates topological invariants to
local curvature data. Given two connections on a smooth bundle and a characteristic
polynomial ®, the theory produces a formula: ®(Q;) — ®(Q) = dT, where ; is the
curvature of the i*" connection and T is a canonically defined smooth form. The gauge-
invariant forms 7' are important in the study of the space of connections and they lead to
well-known secondary invariants [CS], [ChS].

The aim here is to combine these results and derive MacPherson-type formulas locally
on the manifold. Assume bundles E and F' are equipped with metrics and connections,
and let o : £ — F be a smooth bundle map. We shall derive formulas which explicitly
express each Chern-Weil form ®(Q2) of E or F as a sum

(0.1) ®(Q) = ) Resgi[Sp(a)] +dT

where (o) = {z : dimker(a,) = k}, Resgj is a smooth residue form defined along
Yi(a), and T is a canonical transgression form with L] -coefficients. The sum on the
right in (0.1) is a characteristic current. It is the Chern-Weil representative of the class ®

for a certain singular connection in the sense of [HLq].
When rank E = rank F, equation (0.1) has the form

o(QF) — ®(QF) = > Resq i [Si(a)] + dT,
k>0
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expressing the difference of the ®-characteristic classes of E and F' in terms of the singu-
larities of «.

If & is a normal bundle map (cf. Definition 9.3) on a compact manifold, then passing
to cohomology in (0.1) yields MacPherson’s formula.

However, there are many important types of bundle mappings which are far from normal,
such as direct sum mappings

ar @ Dag: By @ DE — F1 DD Fy,
tensor product mappings
a1 @ Qag: By @ QFE — F1 @@ F,

and mappings given by Clifford multiplication. We shall establish MacPherson-type for-
mulas in all of these cases. In fact we shall present a method for deriving such formulas in
any case of interest. The method is based on a “finite-volume” property of bundle maps
called geometric atomicity — one of the key ideas of the paper. This property guaran-
tees the existence of formulas for every characteristic polynomial ®. It holds for normal
bundle maps and for all real analytic bundle maps. Furthermore, it cuts robustly across
the cases mentioned above. Within each special case the geometrically atomic maps are
generic.

The concept of geometric atomicity strictly generalizes the notion of atomicity intro-
duced in [HS], that is, any section « : R — F which is atomic is geometrically atomic.
Furthermore, there is an analytic criterion analogous to that in [HS], which implies geo-
metric atomicity. This will be discussed in part II.

A Dbasic feature of geometric atomicity is that it enables the construction of canonical
homologies between universal singularity sets. (See §4.) The main ideas involved here
carry over to dynamical systems and have yielded a new approach to Morse Theory [HL3].

Geometric atomicity guarantees the existence of the limit of characteristic forms for the
families of approximate push-forward connections constructed in [HL;]. Here in Part I we
examine the resulting formulas (0.1) in detail for normal maps and for real analytic maps
whose singularity sets have the expected dimension. For each k. it is proved that

d([Sk(a)]) = d(Ress 4[Sela)]) = 0.

We explicitly compute the residue forms in many cases. We also show they are completely
canonical in the following sense. Along ¥ («) there are orthogonal splittings:

FE = kera® Ima« and F = coker a @ Ima

with respect to which @« = 0 & I. The given connections induce direct sum connec-
tions with respect to these splittings. This in turn induces a connection on the bundle
Hom(ker «, coker av) which is equivalent to the normal bundle of Y¢(«). The residue form
Resg i is expressed directly, in the spirit of Chern-Weil, from these bundles and connec-
tions.



It is a philosophically significant point that all the formulas here drop out directly from
the methods of singular connections introduced in [HL;]. The idea is this. Given any
bundle map « : E — F between bundles with connection, one can construct canonical

families 33, 0 < s < o0, of smooth “push-forward” connections on F' (and “pull-back”

connections %S on E) which begin with the given connection at infinity and limit to a
“singular push-forward connection” (or “pull-back connection”) at 0. Applying standard
Chern-Weil theory to this family essentially yields the results. MacPherson’s special blow-
ups, the canonical residue forms, and (therefore) the topological formula all fall out.

It is possible that versions of the these local formulas over Z /2 can be established using
ideas and results in [HZ].

§1. Characteristic currents. Let £ and F' be smooth vector bundles of rank m and n
respectively over a manifold X, and let

a: F—= F

be a smooth vector bundle map. We suppose that E and F are provided with metrics and
with connections D¥ and DY (which need not respect the metrics). From this data the

H
authors have constructed in [HL;] certain smooth 1-parameter families of connections D

on E and 5),5 on F, for 0 < t < oo, which connect the background connections
%oo = DF and 600 = DF

at time ¢t = oo to certain “singular” pullback and pushforward connections at time ¢ = 0
on E and F respectively. These limiting connections are well defined only outside the
singularities of the map «. However, for Ad-invariant polynomials ® and ¥ on the Lie
algebras of the structure groups of E and F', it is possible that the limits

(1.1) (D) =lmd(D,) and U(D)=lLm¥(D,)

t—0 t—0

. . . . H H
exist in the space of generalized forms (i.e., currents) on X. Here ®( D) = ®( ) denotes

— —
the smooth characteristic form obtained by applying ® to the curvature 2-form €, of D,
in the standard way. In [HL; ;] it is shown that for certain classes of bundle mappings
these limits, called characteristic currents, do exist and give rise to formulas of the sort

Q) —@(D)=dl and U(QF)— (D) = dT

where QF, QF denote the curvature 2-forms of E and F, and where T, T' are forms with
L -coefficients on X. Such formulas give a direct relationship between the singularities
of the bundle map a and characteristic forms of E and F. They generalize classical results
of Poincaré and Hopf and lead to a wide variety of interesting geometric residue theorems.

(See [HL2].)



For example in the category of real oriented bundles, suppose that £ = R is the trivial
line bundle and ¥ is the normalized Pfaffian, so that ¥(Q) = y(Qf") is the Euler-Chern

form of F'. Then for cross-sections « : R — F which are transversal to 0, one obtains
Y(QF) — Div(a) = dT

where Div(«) is the oriented submanifold of zeros of a. This result extends to quite general
cross-sections of F, referred to as atomic sections. (See [HS].)
More generally one can consider the singularity sets

(1.2) Yi(a)={z e X : dim (kera) = k}

for general k. There are similar results relating these singularities to Shur polynomials
in the Chern classes (or Pontrjagin classes) of E and F' (See [HL;]). One also gets local
versions of the differentiable Riemann-Roch Theorem for embeddings.

In the general case one expects to find a formula of the sort

T(QF) = > Resyi[Sk] +dT
k>0

where Resy j is a smooth form defined on ¥j universally in terms of ¥. When rank(E) =
rank(F"), it would have the form

T(QF) - ¥(QF) = > Resy i[Sk] +dT
k>0

The point of this paper is to derive these general formulas and to establish their exis-
tence under fairly weak hypotheses on «. For normal maps we recover the formula of R.
MacPherson [Macy 23] concerning characteristic classes and singularities of bundle maps.
Our formula is “local” on X, in the spirit of modern versions of the Atiyah-Singer Index
Theorem. It is an equation of forms and currents with an explicit transgression term 7.
The MacPherson formula is obtained by passing to cohomology. The class of bundle maps
« for which our local formula holds is broad and includes arbitrary real analytic maps
whose singularity sets have the expected dimension.

Note 1. To simplify exposition we shall assume that £ and F are complex bundles.
Modifications required for the real case will be discussed in the last section on real vector

bundles.

Note 2. The results in [HL;] allow a choice of approximation mode. Here we shall always

H
work with the algebraic approximation mode, where D, has a particularly nice form. For
example if m < n

5),5 = (tZDF—I—ozDEoz*)(ozoz*—l—tz)_l

§2. The universal case. A bundle morphism

«

F _— F

(2.1) \ J
X



as above can be considered to be a cross-section of the vector bundle
Hom(E,F) — X.

Now over the total space of Hom(E, F') there is a tautological bundle morphism

B ., T F
(2.2) \ J
Hom(E, F)

which at A € Hom(FE, F) is given by A itself. Everything is induced by pullback from this
universal case. In particular o*(a) = «, and the set-up in (2.1), metrics and connections
included, is the pullback of that in (2.2). Our methods proceed as follows. We first
analyse the problems posed in §1 for the universal case. We then examine normal maps,
which are transversal to the universal singularities, and show that the universal formula
can essentially be pulled back to X. Finally, using the notion of geometric atomicity, we
establish results for quite general maps «.

We now focus our attention on the universal case (2.2). We begin by observing that
there is a natural compactification

(2.3) Hom(E,F) C G
of Hom(E, F) given by
G =GuEaF) 5 X,

the Grassmann bundle of complex m-planes in E & F. The embedding (2.3) assigns to a
linear map A : B, — F, at « € X 1ts graph P4 in E, & F,. Over G there is a natural
orthogonal decomposition

(2.4) ™ME®F) = UaUt

where U is the tautological m-plane bundle over G.

The multiplicative flow ¢, : E @& F — E & F defined by ¢(e, f) = (te, f) naturally
induces a flow
v G — G for t € C*

which restricts to the linear flow
(2.5) pi(A) = ;A

on Hom(E, F'). The importance of this flow comes from the following fact proved in [HL;
Section 1.8].

Proposition 2.1. Let 3t and 5,5 be the families of connections and ®, ¥ the Ad-
invariant polynomials discussed in §1. Then for all t > 0,

&(D,) = ora(QY) and (D) = oF o),



Note 2.2. In the case where rank(E) = 1 John Zweck [Z] uses 2.1 to calculate the
characteristic currents associated to a section of P(E & F') over X.

63. Morse-Stokes kernels. Proposition 2.1 brings us to study the limits of differential
forms under the flow p; : G — G for 0 <t < co. (Examination of this question led to the
new approach to Morse Theory in [HL;].)

Denote by G2 the fibre product of G with itself over X, and consider the standard em-
bedding R C P'(R) = RU{cc} as an affine algebraic chart. We consider the submanifold

T = {(teuP).P)EPIR)x G™ : 0<t<oo and PeG),

called the total graph of the flow, and orient 7 by some choice of orientation on G. (We

are essentially working locally on X, so its orientability is not a question.) Let [7] denote
the current given by integration over 7 and define

(3.1) T = pr,[T]
where pr: P1(R) x G%? — G%2 is the projection. Closely related to this is the family

Tow = {(t,o(P),P)ET : s<t<s'}

and its pushforward
(3'2) Tsasl = pr*l:,];asl]
for 0 < s < s’ < o0o. Note that 7, o is a compact manifold with boundary

0T,y = {s'} xTy —{s} xTy

where

(3.3) I, © {(¢s(P),P)e G . PeG).
It follows that

(3.4) T, = Ty —T,

in G%?. This brings us to our main observation.

Proposition 3.1. 7 is a submanifold of finite volume in P'(R) x G%? over each compact
subset of X.

Proof. This follows from real analyticity. In local trivializations of £ and F' and local

coordinates on X we have that Hom(E, F') & R” x Hom(C™, C") and G = R xG,,(C™*T™)
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where G,,(C™T") denotes the Grassmannian of complex m-planes in C™*" and p =
dim(X). Now from (2.5) we deduce that in this presentation 7 has the form R? x A
where A is a semi-algebraic subset of P1(R) X G,,(C™T") x G,,(C™T"). Because it is
semi-algebraic, A has finite volume. (See, for example [F].) It follows that 7 does also. 1

Corollary 3.2. The limit

(3.5) T = lim Ty

s —o0

exists in the mass topology on currents on GP2.

Proof. By Proposition 3.1 the analogous limit of 7 ¢ exists and equals 7 on P'(R) x G#2.
Now apply the projection pr which decreases mass. |

Corollary 3.3. The limits

'y =lmTI, and ' o= lim I,

5—0 §—00
exist in integrally flat currents on G2 and

(3.6) dT = T —Ty.

4. Morse-Stokes operators. Each of the results of the previous section can be
reinterpreted from the point of view of operators — operating on forms on G (cf. [HP],
[HL3]). As noted above, we want to understand the limit of the pull-back of differential
forms under the flow ¢4 on G. Consider

2 PTo
GV — G

PHl

G

where pr; and pr, are the projections in the fibre product, and note that the submanifold
I’y = [graphys] determines the pullback operator ¢ via the equation

(4.1) vi(w) = (pry)e {(priw) AT},

This leads us to consider, for each smooth p-form w on G, the smooth (p — 1)-form defined
by the expression

(4.2) Tso(w) = (1) (pry)s {(priw) A Ty} -

8



Note that T, o defines a continuous linear operator of degree -1
T :EY(G) — E£(G).
with “kernel” T ,, on the space of smooth forms on G. The current equation (3.4) gives

rise to the following operator equation.

Proposition 4.1.
{doTs o +T,g0dHw) = pow — Qiw

for all differential forms w € £*(G).
Proof. By (3.4) and (4.1),

dTsg(w) = (pry)s {(=1)**“d{(priw) ATsv }}
= (pry)« {(—l)degw(prl)*dw ANTs s + (priw) A dTS,S/}
= (pra)e {(~ 115 (e, ) o A Ty + (prf ) A (T — T,))
= —Tyu(de) + gow — wiw |

Asin (4.2) above the current or “kernel” T can be used to define the operator
(4.3) T(w) = (=1)4(pry)u {(prjw) AT}

Theorem 4.2. For any smooth k-form w on G, the limits

IH(w) = lim plw and I(w) = lim piw

s—0 §—00

exist in the space of flat currents on GG, and are given by the formulas
(44) To(w) = (—1)H(pry)s {(prie) ATo} and Taolw) = (=1)*(pry)a {(pr} ) ATc}
Furthermore, these limits satisfy the equation

(4.5) dT(w) + T(dw) = T (w) — Ty (w).

Proof. By Corollary 3.2 and equation (4.2) we see that

T(w) = lir%) T o (w)

8 —o0

for all w. The result now follows from Corollary 3.3, equation (4.1) and Proposition 4.1. I
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65. Analysis of the currents I'y and ', — the decomposition. To understand
the operators Iy and I, we must analyse the currents I'y and I' that define them in
(4.4). Since these currents are interchanged by time reversal ¢ — %,
study T'y. Note that each of the graphs I';y C G%? is independent of base parameters.
That 1s, if G‘U% U x Gy, 1s a local trivialization of G, then over U, I'; has the form
{(x,0¢(P),P) : 2 € Uand P € Gy, }, which is invariant under changes of the trivialization
of E and F because the flow commutes with such changes. We conclude that the limit is
similarly independent of base parameters. Consequently we shall drop all mention of X
and simply analyse the multiplicative flow ¢; on G = G,,(C™ & C") induced by the map
(z,w) — (tz,w) on C™ & C™.

To simplify the formulas we assume that m < n. The results hold in all cases as the

1t will suffice to

reader will easily see.
Our first observation is that the fixed point set of the flow in a disjoint union of sub-

manifolds
F=]]F
k>0
where
(51) Fp, = {PeG(C"3aC") : dm(PNC™)=Fk and dim(PNC")=m—Fk}

>~ G(C™) X Gpp(C")
Consider the subsets
S = {P : dim(PNC™)=%k} and YT; = {P : dm(PNC")=m—k}
and note that
S NHom(C™, C") = {4 : dim(kerA) =%k}  and

0} =2,C% 1 CY8n2CSp_3C--CY%=G.

Furthermore, we observe that
Ty NHom(C™,C") = 0§ if k<m and

G — Tm D) Tm—l D) Tm—Z D) Tm—S ... TO = Gm(Cn)

and furthermore

(5.2) Hom(E,F) = G—Y,,_1.

Note 5.1. ¥; and Y, are the stable and unstable manifolds of F} for c,ot_l, that is,
Yy, ={PeqG : 71i1r1% wi(P) € Fi} and YTr,={PeG : tlim wi(P) € Fi}.

This follows immediately from the next Lemma whose proof is easy.

10



Lemma 5.2. For any P € G,

lim ,(P) = (PN C™) & prea(P) = 7y(P)

t—0

lim ¢(P) =pron(P) & (PN C") = my(P)

where prgm and pro. are the projections of C™ & C" onto the factors.
The right hand side of the formulas in Lemma 5.2 give us projections

T

Il
Ey

Proposition 5.3.

m m
E Zk XFk and E Tk XFk

where

T Xp, S ={(P,Q) €T xZ CGXG : m(P)=m(Q)}
and Xy, X g, Ty is defined similarly.

Proof. We shall only sketch the argument since a similar, more general assertion is proved
in [HL3]. From its definition (cf. (3.3) and Corollary 3.3) it is straightforward to show
that suppl'y € T X g, k. Now each of the submanifolds Yy X p, X is a Zariski dense
subset of an algebraic subvariety; in particular it has finite volume in G x G. The Federer
Flat Support Lemma [F; 4.1.15] now implies that I'g = >, ng[Tr X, Zg]. Analysis of the
limit at points of Fj shows that ny =1 (cf. (10.2)). 1

Note that Ty xp, Xj i1s a fibre product over Fj embedded diagonally in G x G. For
x € Fy, the fibre 7, *(2, 2) lies in G x {2} and the fibre 7] *(z, z) lies in {2} x G.
Combining Proposition 5.3 with (4.4) above gives the following.

Corollary 5.4. The operators Iy and I, can be written as

L =) Py and I, = iﬁk

Pi(w) = (pro)e {(priw) A[Ts xp, D]} and Py(w) = (pry)u {(priw) A [Tk x g, Tal)
for any smooth form w on the Grassmann bundle G.
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66. Amnalysis of the currents I'y and ', — the residues. We now show that
the operator Py in Corollary 5.4 has the form Pj(w) = Resg(w)[EZk] where Resg(w) is an

explicitly computable residue form defined on ¥ in terms of w, and analogously P(w) =
Res'y(w)[Y k] where Res'y(w) is a smooth residue form on Y.
We begin with the following observation.

Lemma 6.1. FEach of the submanifolds T} and X has finite volume in G. So also do
the fibre products Ty X p, Y.

Proof. This is evident from the fact that their closures are algebraic subvarieties. i

Definition 6.2. Given a smooth differential form w defined in a neighborhood of Ti.
and a smooth differential form w’ defined in a neighborhood of ¥y, set

Resp(w) = (m)" {(72)sw} and Res'p(w') = (7o) {(m1)s0'}

using the projections

L ™
T, — F — Y.

We shall show that the maps m; and 75 have the natural structure of algebraic vector
bundles over F}.

Proposition 6.3. FEach operator Py can be expressed by the formula
Pir(w) = Resip(w)[Zk].

Furthermore, for any smooth form w on G, Resy(w) is a smooth form on ¥y, which has finite
L'-norm (i.e., finite mass), so that Resy(w)[Xx] is a well defined current on G. Similarly,

P can be written as

Pi(w) = Res'i(w)[Tx].
where Res'j(w) is a smooth L' form on Ty.

Proof. To begin we note that there is a commutative diagram

P2
Tk X Fy, Zk — Zk

(6.1) Pll lm

Ty — F}

where p; and p; are induced from the two projections G x G onto G, i.e., there is a

commutative diagram
P P2
Tk — Tk X Fy, Zk —_— Zk

l l l

GL G x G LG

12



Each of the maps 71 and 72 in (6.1) has the natural structure of an algebraic vector
bundle over Fj. We show this explicitly as follows. Let

£ — Gi(C™) and n — Gu_k(C")

be the tautological bundles of rank k and m — k respectively, and extend them by pullback
to F, = Gi(C™) X Gp—(C™). Then there are commutative diagrams

J2 J1

Hom(&,n1) — T Hom(n, £1) — Y
GL(C™) X G k(C") —— GL(C™) X G i(C") ——  F,

where 7] and 7}, are bundle projections and where at (£,1) € G X Gp—i
j2(a) = ndgraph(a)  and  ji(b) = £ graph(d).

The maps j; and j, are biholomorphisms and give T; and Xj the structure of vector
bundles as claimed. Consider the Grassmann compactificatons

Hom(¢,n™) c  GEanh) Hom(n,£)  C G(n & &)

5 N / o T N / T
Fk Fk

where G(¢ @ nt) is the bundle of k-planes in ¢ & nt and G(n @ €1) is the bundle of

(m — k)-planes in n @ £+, The maps j; extend to surjective algebraic maps

J2 1

G(E@nT) — Ti Gn® &) — i
given on the fibres above (£,n) € Gi X Gp—i by

(62) 32(62) =17 S5 62 and 31 (61) - 5 S, 61

Note 6.4. The normal bundle to ¥j is equivalent to the pullback of the vector bundle
T via the map 75, Similarly the normal bundle to T is the 7y-pullback of .

We now observe that by the commutativity of (6.1) we have
(pra)« {(priw) ATk xp, Tk} = (p2)« {(p1w)}

= (m)" {(m2)ww}
= Resp(w)[X¢]

This proves the formula asserted in 6.3. The integrability of Resi(w) on ¥y is equivalent
to the fact that the current Resy(w)[Xy] has finite mass. This finiteness of mass is a

13



consequence of Lemma 6.1, which implies that (prjw) A [T Xp, Ti] has finite mass, and
the fact that pushforward of currents is mass non-increasing.
This completes the proof of 6.3 for P;. The argument for Py, is completely analogous. I

The proof above used the “Grassmann desingularization” of T} and X3 by the maps J,
and j;. This gives us another way to look at the residues which will be useful to us when
we consider characteristic forms in §9 and onward.

Proposition 6.5. The form Resi(w) can be expressed as
Resp(w) = (m1)" {(72)i0}

where 7o : G(& B nt) — Fy is the Grassmann compactification above, and where & =
Jyw. The analogous statements hold for Res'j(w').

Proof. We have seen that (72 ).(w) = (74 )«(jsw). Since the fibres of 7}, are Zariski dense,
and in particular of full measure, in the fibres of 72, we see that integration of a smooth
form on G(£ @ nt) over the fibres of 7y and over the fibres of 7 are equal. |

§7. The first main theorem. Combining 4.2, 5.4 and 6.3 immediately yields our first
main result.

Theorem 7.1. Let G = G,,,(E® F) be the Grassmann bundle of m-planes in the smooth
vector bundle E & F — X, and let ¢y, 0 < t < oo be the multiplicative flow on G
engendered by (e, f) — (te,f) in E & F. Then there are continuous linear operators I,
I, T: &%(G) — &£"(G) from smooth differential forms to generalized differential forms
(in fact, flat currents) on G with the following properties. For all w € £*(G),

Ih(w) = }EI(lJ Yrw = ZResk(w)[Zk] and Io(w) = tli_}nglocpfw = ZRes'k(w)[Tk]

where

Resg(w) = 1 {(72)sw} and Res'y(w) = my {(m1 )sw }.
Furthermore, T, defined by (4.3), is an operator of degree -1 which satisfies the equation

(7.1) doT+Tod = I, -1}

§8. The formula in the universal case. Let U — G be the tautological bundle and
let ® and ¥ be Ad-invariant polynomials on the Lie algebras of the structure groups of £
and F respectively. Because of Proposition 2.1 we want to apply the Theorem above to
the situation where

W= CID(QU) or W= \I/(QUL).

The main point is to compute the residues. For simplicity we will treat the first case.
According to Proposition 6.3 Resg(w) on ¥, is computed by restricting w to T, integrating

14



over the projection mo and then pulling back to Xy via m;. Note that by the naturality of

the Chern construction
U
w‘n = @ (Q ‘Tk> .

From the proof of Proposition 6.3 we see that on T the bundle U splits as
U‘Tk =@ Uy

where Uy is the restriction to Hom(&,nt) C G(€ & nt) of the tautological k-plane
bundle
Uy — G(E@n™).

Consequently we have from 7.1 that

(8.0) Resy(w) = 71(m2)«® (277%)
Restricting to the coordinate chart Hom(E, F') we get

(8.1) Resy(w) = (). @ ()

where Uy 1s the tautological bundle over the Grassmann compactification
Gr(kera @ cokera) of the normal bundle Hom(kera, cokera) to 2.
On the other hand by (5.2) one sees directly that on the chart Hom(FE, F)

(8.2) Res'y(w) =0 for k<m
and
(8.3) Res' )y (w) = 7} <w‘2m> = CID(QE)

Theorem 8.1. Let E — X and FF — X be smooth complex vector bundles with
rank(E) < rank(F'), and let ® be an invariant polynomial on the Lie algebra of the
structure group of E. Then for any choice of connections on E and F there exists an

L} -form T on Hom(E, F) so that
(8.4) (QF) = ) Resex[Ti] + dT
k=0

Reso r = (72)«® (QIma@Uk>

where a: 7™ E — ©*F denotes the tautological bundle map on Hom(E, F') and where (73),
denotes integration over the fibres of the Grassmann compactification Gy = Gy (kera &
coker a) of the normal bundle Ny,, = Hom(ker a, coker a), and where Uy, is the tautological
k-plane bundle over Gy.
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If rank(E) = rank(F'), then formula (8.1) becomes

d(QF) — Q) = iResM[zk] + dT
k=1

If U is an invariant polynomial on the Lie algebra of the structure group of F', then there
exists an L{_-form T' on Hom(E, F) so that

(8.5) Q) = zm:Res\p,k[Zk] + dT’
k=0

Resyp = (m3), ¥ <Q(kera)Le9U,j>

Note 8.2. The case where rank(E) > rank(F') follows by applying Theorem 8.1 to the
adjoint of a.

Note 8.3. The bundle Hom(coker a, ker ) is the dual of the normal bundle Hom(ker a, coker a)
of X

Proof. If w = ®(QY), then dw = 0. We apply Theorem 7.1 to w and apply (8.1) to
calculate the term Iy(w). We then restrict to Hom(E, F') C G and apply (8.2) and (8. )
calculate T (w). This proves the first part of the theorem. The calculations for ¥(QY )
are completely analogous. i

Remark 8.4. The bundle Im(a) is a pull-back to G of a bundle defined on ¥ via the
fibration G — Y. The tautological bundle Uy carries a natural connection which along
the fibres of G — X is the standard connection. In §12 we shall see that the connection
yielding the curvature form in formula (8.2) for the residue can be assumed to be the
direct sum of the pull-back connection on Im(a) with the projected connection on Uy.
This has particularly nice consequences when @ is a multiplicative series of characteristic
polynomials.

69. Existence for normal bundle maps — geometric atomicity. Let E and F be
smooth complex vector bundles over a manifold X of dimension v, and suppose that

a:F —F

is a smooth bundle map. Given Ad-invariant polynomials ® and ¥ as above, one can ask
when the limits (1.1) exist. We shall now answer this question in some generality, and also
establish the local MacPherson formula for a.

The following concept is crucial here. To begin we recall that a Borel measurable subset
A of a locally compact topological space Z is said to have locally finite y-measure if each
point z € Z has a compact neighborhood U such that u(ANU) < oc.
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Definition 9.1. The section « is called geometrically atomic if the subset
(9.1) T, = {(%aw,aI)EG@Z cx € X and 0<t<oo}

has locally finite (v + 1)-dimensional measure in GP2,

Note. Above the open set X — Zero(«) where o # 0, T, is a submanifold. In fact, it
is a line bundle over this set. The remaining points of T}, consist of the zeros of o and
therefore have locally finite v-dimensional measure. Hence they can be ignored, and the
condition in 9.1 can be replaced by requiring that the remaining submanifold have locally
finite volume in G2, (Thus, the zero-section o = 0 is always geometrically atomic.)

Note. The condition in Definition 9.1 is equivalent to the requirement that for each com-
pact K C X, the subset

Tra = {(law,aI)EG@z cx € K and 0<t<oo}

has finite (v + 1)-dimensional measure in GP2,
The generality of Definition 9.1 is clear from the following result.
Proposition 9.2. If « is real analytic, then it is geometrically atomic.

Proof. The closure of the submanifold
(9.2) T, = {(t, %ozf,ozw) ERXxGP :zeX and 0<t< oo} Cc PY(R) x G*2

is an analytic subvariety of dimension (v + 1) in P*(R) x G%? and hence has locally finite
(v + 1)-measure. It follows that its image T, = pr, 7o, where pr: P}(R) x G%? — G%?% is
the projection, also has locally finite (v + 1)-measure. i

Note The singularities of a real analytic map can be monstrous. In particular, the sets
Yi(a), defined in (1.2), need not have the expected dimension.

Definition 9.3. A bundle map « : X — Hom(E, F) is called normalif it is transversal
to the submanifolds ;. for all k.

Proposition 9.4. Any normal bundle map is geometrically atomic.

The proof is postponed to section 10. Our first main result is the following.

Theorem 9.5. If a is geometrically atomic, then the limits

(9.3) (D) =lm®(D,) and V(D) =lLm¥(D,)

t—0 t—0

exist on X for all Ad-invariant polynomials ® and ¥ on the Lie algebras of the structure
groups of E and F. Furthermore, for all ®, U there exist L{ -forms Tg, Ty on X such
that

(9.4) $QF) - (D) =dls and U(QF)— V(D)) =dTy
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where QF , QF denote the curvature 2-forms E and F respectively.

Proof. Fix s’ > s > 0 and consider the subset
Toss = {(%aw,af) eGP . zeX and s<t< 3'} )

(Note that Ty 5 ¢ = pr, Za,ss where 7, 5 ¢ is the compact submanifold with boundary
defined as in 9.2 with s <t < s'.) As in §3 the assumption of locally finite volume implies
that

hr% Ta,s,s’ = Toz
S—

s —o0

in locally integral currents on G2, and that

(9.5) hrr(l) ATy 5.5 = hm Lo — hn% Fos = Taoo —Tap
where

—{ T, Oy) G@Z:xEX}

We now reinterpret these equations as operator equations and apply them to the forms
®(QY) and \I/(QUL) as in §4. Specifically, to each integral current S of dimension n + ¢
on G2 we associate the operator S : £*(G) — €*(X) of degree —( from forms on G to
currents on X by setting

(9.6) S(w) = pe {(prjw) A S}

where p : G — X is the bundle projection. Note that I}, s(w) = a*¢%(w) where ¢, is the
flow on G defined in (2.5). In particular, if w = ®(QY), then by Proposition 2.1 and the

universality of the construction of 53 we have that
(9.7) L.(w) = 8(QY) = o*3(Q,) = &(Q,).

where Q s 18 the curvature of the universal pushforward connection on Hom(E, F) C G.
Consequently (9.5) and (9.7) imply that

lim () — Lm &(Q,) = dTs

§— 00 s—0
— —
where Ty = Ta(CI)(QU)). By the continuity of D, at infinity we have lims_o ®( Q) =
®(QF). This proves the result for ®. The result for ¥ is similar. |

A determination of the limits in (9.3) for all ® and ¥ will follow from understanding the
limiting current I', . When « is normal we shall see that this current is modeled on the
universal case.
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§10. The local MacPherson formula. In this section we analyse the current 'y . Our
discussion is local on X, so we shall assume that E and F are trivialized bundles. Our
section « is then just a map from X to Hom(C™,C") C G, (C™t") = G.

To begin the analysis we give a simple presentation of the flow ¢, in a neighborhood of
Fr 2 Gi(E) X Gpu—i(F) in G. We return to the notation of §6 and consider the vector

bundle
Hy= Hom(&,nt) @ Hom(n, 1)

lﬂé@ﬂ'l
Fy.
There is a map j : Hry — G defined by

(10.1) j(a,8) = ar(a) @ ax(h)
where gr(a) denotes the graph of a. This map gives a diffeomorphism from a neighborhood
of the zero-section to a neighborhood of Fj in G. We introduce fibre metrics and identify
such a neighborhood of Fj with
U = {(a,b) e H; : |a| <1 and [b] <1}
In this presentation the flow ¢, has the form
ws(a,b) = (%a,sb) .
Now in this neighborhood our set T' can be written as

TnUxU) = {(%a,sb,a,b) lal <1000 <1, | al < 1,180 < 1, and0<3§1}
= {(a,sb,sa,b) : |a| <1,[b] <1, and 0 < s <1}

The boundary of this set is clearly given by
(10.2) HTNn(UxU)} = {(a,0,0,b) : |a| <1,[b| <1} = Ty Xp, Si.

This is in fact a manifold with boundary in U x U — Fj,. We can resolve the singularity at
F}. by considering

{(s,a,sb,3a,b) : |a| <1,[b] <1, and 0<s <1} C RxGxG.

This is a manifold with boundary whose projection is the set above.

Suppose now that « is a normal bundle map and fix ¢ € X with «,, € ¥;. Let
zo = m1(ay, ) € Fi and fix a neighborhood V' of zy in F} with local trivializations

(,= VxCh  and |, = VxC"h
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Thus over V we have
(103) HOIIl(.f,?]J_) D Hom(nvgJ_)‘v = Vx Homk,n—m—l—k X Homm—k,m—k-

where Hom, ; = Hom(C",C?®). In this picture a,, = (z,0,by) for some point by €
Homy,;,—k m—k, which we may assume (by homothety) to satisfy |bg| < 1. Restricting to
triples (v,a,b) with |a| < 1 and |b| < 1 parameterizes a neighborhood in G containing zg
and «,,. In this neighborhood

Zk ~ VX {0} X Homm_k’m_k.

Now the transversality of a to ¥ implies the following.

Lemma 10.1. Suppose « is normal and xq € Sy («). Then there exist local coordinates
on a neighborhood U of xy in X of the form

(y,a) € RY x Homy, »—mtk
where N = v — 2k(n — m + k), such that in the coordinates (10.3) above

(10.4) a(y,a) = (v(y),a,b(y)).

Note that in U, ¥j(«) is the submanifold corresponding to a = 0. Furthermore, Lemma
10.1 shows that in U

(10.5) Yola) = RY x {a € Homy p—mm+r @ dimker(a) = (}

for all ¢ < k. We conclude the following.
Corollary 10.2. If « is normal , then each ¥,(«) has locally finite volume in X .

Proof of Proposition 9.4 Fix 2y € Y;(«a) and choose coordinates on G and X as
above. Note that the map j defined in (10.1) extends smoothly to the compactification
G(E®nt) d Gy @ &), In particular, via (10.3) this gives a map

V x Gp(Cr @ C" ™) x Homyy gt — G

which we compose with our coordinate representation of o above. We then consider the
map

(0,1]xU — GxG

given by
(5,y,a) = (v(y), a,sb(y); v(y),a,b(y)).

The volume element induced by this map is dominated by the volume element induced by
the product mapping

(s,9,a) — (v(y), a,b(y); v(y),a,b(y)).
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Now the map (s,a) — (%a, a) is algebraic and its image is a submanifold of finite volume

in G(C"~m+2k) x G (C"~™+2F) This proves that T, x has finite volume for compact
subsets K C U. 1

We now consider the local MacPherson formula for a normal bundle map «. We have
seen that for each k, ¥j(«) is a smooth submanifold of locally finite volume and of (real)
codimension 2k(n —m + k) in X. Along each ¥j(«) it is clear that kera C E and
Ima C F are smooth vector bundles. Furthermore, the bundle Hom(ker o, coker «) is
naturally equivalent to the normal bundle of ¥¢(a) in X. (See [Macy] for example.) Now
fix g € () and choose coordinates as in Lemma 10.1. Then from (10.5) we see that
for each ¢ < k we have a splitting in U:

Sea) = RY x5

where
Yo C Homk’n_m_i—k C Gk(Cn_m+2k)

is the universal degeneracy locus (where dimkera = (). Our section of GP? can now be
written

(psaly,a), a(y,a)) = (v(y), ta,sb(y); v(y),a,b(y)).

From here it is straightforward to see that in these coordinates on G@z‘U

(10.6) Two = RY xTy

where T is the current in G(C"~™+2k) x G1(C"~™F2F) defined universally in §3 as the
limit of the sets I'y = Cl{(%a,a) : a € Homyg p—m4k} as s — 0. Thus the analysis of §§5-6
applies directly and we conclude the following.

Theorem 10.3. Let E — X and FF — X be smooth complex vector bundles with
rank(E) < rank(F), and let o : E — F be a normal bundle map. Suppose ® is an
invariant polynomial on the Lie algebra of the structure group of E. Then for any choice

of connections on E and F there exists an Ll -form T on X so that

loc
(10.7) Q") = ) Resgx[Si(a)] + dT
k=0

Resg p = (72).® (QIma@U’“>

where (79), denotes integration over the fibres of the Grassmann compactification Gy =
Gr(ker a@coker a) of the normal bundle Ny, = Hom(ker «, coker «) to Yx(«), and where
Uy — Gy is the tautological k-plane bundle.

If rank(E) = rank(F'), then formula (10.7) becomes

d(QF) — Q) = iResM[zk(a)] + dT
k=1
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If U is an invariant polynomial on the Lie algebra of the structure group of F', then there
exists an Li_-form T' on X so that

(10.8) Q) = zm:Res\p’k[Zk(oz)] + dT’
k=0

Resy p = (m2), ¥ <Q(kera)J—69U]j‘>

611. Real analytic bundle maps. In this section we derive a Local MacPherson Formula
for real analytic bundle maps under the assumption that the degeneracy loci have the
expected dimension. We begin with the following general result.

Lemma 11.1. Let o« : E — F be a geometrically atomic bundle map over a smooth

manifold X, and let T'y ¢ be the current from (9.5). Then

(11.1) supp I'n o C UTk X p, Sp(a)
k

Proof. Fix x € Yi(«) and choose local trivializations of E and F' in a neighborhood U of
x so that G@z‘U% U X Gy X Gy where Gy = G, (C™1™). Suppose (x, P', P) € supp Ty 0.
Then there exist sequences x; — = and t; — 0 such that

vi=gloy) — P and vy =gr(gag) =@y — P

where @, is the flow from §2. It is now an elementary argument (as in [HL3, Lemma 2.10])
to see that P must be joined to P’ by a piecewise flow line in G,, which passes through
Fy. In particular, P' € Ty and 73(P') = 71 (P), where m; and 7 are the projections from
§6. Thus (P',P) € Tj xp, Zi(a) as claimed. [

Suppose now that « : E — F' is a real analytic bundle map between complex vector
bundles over a v-dimensional manifold X, and that

rank(E) = m < n = rank(F).

Then for each k the degeneracy locus Y () is an analytic subset of X of some dimension,
say Va k. Therefore, ¥j(a) has locally finite v, p-measure, and integration over the regular
points of Yi(«) defines an integral current [Yi(«)] of dimension v, ;. Recall that the
“expected” dimension of Yy (o) in X is vy = v — 2k(n — m + k).

Theorem 11.2. Let o : E — F be as above and suppose that
(11.2) dim Y (a) < vy
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for each k. Then there exist integer-valued functions ny on Yj(«), constant on each
irreducible component, such that for all ®, ¥ as in 10.3 and all connections on E and F,
there exist L{ -forms T, T' on X such that

CID(QE) = an Resg 1 [Zk(a)] 4+ dT and

k=0

T(QF) = ) ng Resy x[Si(a)] + dT’

k=0

where Resg 1 and Resy  are smooth forms defined on the regular set of Li(«) exactly as

in Theorem 10.3.

Proof. By Theorem 9.5 and its proof (in particular the discussion from (9.5) to (9.7)) we
need only to compute

(11.3) Lio(w) = pef{(priw) ATqo}
where w = ®(QY) or \I/(QUL). Now it follows from assumption (11.2) that
dim{YT; xp, Zp(a)} < v=dimT,

for all k. Hence, from (11.1), the fact that dI'y o = 0, and the Federer Flat Support Lemma
[F;4.1.15] it follows that

Pa,O = an[“fk X Fy, Zk(Oé)]
k

where ny : Sp(a) — Z is locally constant on the regular set and 0 on any component of
dimension < v. Computing (11.3) at regular points of ¥;(«) gives the residue forms as

in §8. |

Note. The function nj represents the order of k-degeneracy of «.

§12. Analysis of the currents Resg ;[X;] and residue calculations. In this section we
shall study the singular currents which appear in our formulas. They have a surprizingly
regular structure and the residues are explicitly computable in many cases. Our first result
is that for regular bundle maps, each of the terms Resg ;[3j] occuring in the main formula
is a d-closed current of finite mass. We begin with the following.

Proposition 12.1. Let « : E — F be as in Theorem 10.3 or Theorem 11.2. Then for
each k, integration over the regular points of Y («) defines a locally rectifiable current

[Xr(a)] in X with

(12.1) d[Sk(a)] = 0
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Proof. Corollary 10.2 and the discussion prior to 11.2 show that ¥;(«) has locally finite
volume in X and therefore defines a locally rectifiable current. Note that

supp {d[Sx(@)]} € [ Sela),

and that codimg ¥¢ = 2¢(n — m + (). Since d[Zi(«)] is a flat current of codimension
2k(n —m+ k) — 1, it follows from [F, 4.1.15] that d[X¢(«)] = 0. I

Proposition 12.2. Let o : E — F, ® and V be as in 10.3 or 11.2. Then for each k, the
currents

Ry, = Resg ;[Zk(a)] and R}, = Resy ;[T ()]

have locally finite mass in X and satisfy

dR, = dR} = 0.

Proof. We begin with the universal case. In Propositions 6.3 and 6.5 it is proved that
the currents R, and R}, have locally finite mass. We recall that this is done as follows.
Consider the desingularization

Ji:Gnaét) — S

of the closure of ¥ given by the Grassmann compactification of ¥y = Hom(n,£1) (cf.
(6.2)). The projection 7 : ¥ — F} extends to a smooth map

%1:G(77@§J‘) —s F.

We pull the bundle T = Hom(&,nt) back via j, and take its Grassmann compactification
G(E @ nt). Let Uy — G(& @ nt) be the tautological bundle. Then we have the identity
U=U;@n (cf. §8), and

Resor = (j1)«® (QU’“@">.

Since ¢ (QU’“@”> is a smooth form on the manifold G(n & ¢1), its push-forward by 7, has
finite mass. Furthermore, since ® (QU’“@”> is d-closed on G(n @ 1), its push-forward is
d-closed on X. A similar argument applies for R}. This gives the result in the universal
case.

The normal case is proved in parallel fashion by using the regular singular structure of
Yk (a) established in §10. Namely, from Lemma 10.1 we see that Y4 (a) has the same singu-
lar structure as ¥y, in the universal case, and the arguments above apply straightforwardly.
In the analytic case one replaces the desingularization j, by resolution of singularities. il

We now address the question of the residue forms themselves. From forumla (8.0) we
see that it would be particularly nice if the connection on U v, = 1D Uy were a direct-sum
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connection D" @& DY, Explicit calculation shows that this is not the case. However, one
could hope that for an invariant form @, there is an equality

12.2 To ® (Q1OUF) = 71,8 (Q" @ QUr
(12.2) (

Qro 0
Q"o QY = (0 QUk>

is the curvature of the direct-sum connection obtained from the given connection by tak-
ing orthogonal projection of the covariant derivative D"PUx back onto the factors 1 and
Ur. This is often the case (cf. [HLq], [Z]). However, the work of John Zweck [Z, Thm.
4.17] on meromorphic sections of vector bundles shows that (12.2) does not always hold.
Nevertheless, we do have the following.

where

Lemma 12.3. The general residue form Resg ;. on ¥} appearing in Theorems 10.3 and
11.2 can be written as

(12.3) Reso p = m2.® (™ & Q) 4 dSy

where S is a smooth form written universally in terms of the curvature and connection

of F and F.

Proof. Consider the linear family D' = (1 — t)DU + t(DIma @ DU’“) joining the given
connection on U = Im a @ Uy and the direct-sum connection, and set S; be the standard
Chern transgression form (cf. [HL]). B

Remark 12.4. The universal expression (12.3) can be regarded in another way. To derive
it, it suffices to consider the universal case. In fact via [NS] it suffices to consider the case
where X = G,,(CM)x G, (C") and E and F are the pull-backs of the tautological bundles
E — Gpn(CM)and F — G,(CY) respectively. Here o, ® (Q”@U’“> is a Upy x Upn-invariant
form on the universal k't fixed-point set Gr(E) x Gn(F). Now Fy = G(E) x Gy(F)
is a product of two-stage flag manifolds, and the invariant forms in a given cohomology
class are not unique. However, any two cohomologous invariant forms differ by the exterior
derivative of an invariant form. To derive equation (12.3) explicitly in any given case, it
suffices to do it on this particular manifold X.

Proposition 12.5. Let «: E — F, ® and ¥ be as in 10.3 and 11.2. For each k let
Rescp’k = f?e/scp’k + dSy,
be the canonical decomposition of the residue form given in (12.3). Then each of the

currents

Ry = Resgi[Si(@)],  SilSi(@)],  and  (dSp)[Sk(a)]

has locally finite mass in X, and furthermore the following equation holds on X:
(12.4) d(Sk[Er(a)]) = d(Sk)[Zx(a)].
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The parallel results hold for Resy .

Proof. The proof that these currents have finite mass follows exactly the lines of the
proof of 12.2. Assertion (12.4) then follows from (12.1). I

Corollary 12.6.  The cycles R, = Resg ;[Zr(a)] and R, = ﬁe/s@,k[Zk(a)] are
cohomologous in the complex of locally flat currents on X. In particular they represent

the same class in H*(X; R). (The analogous assertion holds for Resy ;[3i(«)].)
Combining the above gives the following.

Theorem 12.7. Let o : E — F, ® and ¥ be as in Theorem 10.3 or Theorem 11.2. Then

the following equation holds on X:

®(Q7) = > Resex[Si(a)] +dT
k

where

]_:,{\e/sq)’k = / P <QTFZIma @ QUk>
Tk

and where 7y : Gi(kera @ cokerar) — Yy (av) is the Grassmann compactification of the
normal bundle to Yi(«), Im « C F carries the induced connection, Qmlme ¢ QUi denotes

the curvature of the direct sum connection, and T is a flat current on X. In particular, if
® is a multiplicative series, then

Resg ) = {/ @(QUk)} (O™ @),
T
The analogous result holds for ¥(QF).
It is interesting to examine some basic examples. For convenience we shall drop the tilde

from our notation.

Example 12.8. Let

B(Q) = (2) € det (I + 529)

be the total Chern class and suppose that m = n. Then

Res.1 = c(QIm “)
Rescx = 0 forall k> 1.

Example 12.9. Let
def i
() = ch(2) = exp{77Q)}

be the Chern character and suppose that m = n. Then

Ch(ler oz) _ Ch(Qcoker oz)
cl(ler oz) _ cl(Qcoker oz)

Resen,1 =

Rescny = 0 forall k> 1.
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Example 12.10. Let

B(Q) = cH(Q) E det {(T+ £0)7")

be the total dual Chern class and suppose that m = n. Then a calculation shows that
for any ¢ > 1

1rokerat .1 /Ocoker a\l
RGS(CJ_)(J — _CJ_(QIm oz)f{c (Q ) ¢ (Q ) }

cl(ler oz) _ C(Qcokera)
ReS(CJ-)(’f — CJ_(QIm oz)ch_(ler oz)ch_(Qcoker oz)f
Res(ciyep = 0 forall k> (.

From this example we get the following pretty formulas for a normal bundle map o« : £ — F
over a manifold X where rank(E) = rank(F). Fix any integer ¢ > 1. Then there exists a
flat current Sy on X such that

CJ_(QE)K _ CJ_(QF)K _ _CJ_(QImoz)f { ch(Qere)t — CL(QCOkem)K} 1]

cl(ler oz) _ C(Qcoker oz)
+...

_I_CJ_(QIm oz)ch_(ler oz)ch_(Qcoker oz)f[zf] + de

§13. Results for real vector bundles. Up to this point the bundles E and F have
been assumed to be complex. We now re-examine our results under the assumption that
E and F are real vector bundles. One verifies directly that in this case the fundamental
constructions presented in §§2—12 carry through with virtually no change provided that
the fibre diagonal Ag C GP? and its isotopic deformations Ty, (cf. (3.3)) define currents
on G2, and provided that the projection pr, induces a map (pr,),on currents (cf. (4.1)
and (4.2)).

We recall that currents of dimension p on a manifold Y are defined as the topological
dual space of the space gp(Y) of compactly supported, smooth p-forms twisted by the
orientation bundle Ory of Y (cf. [deR], [S]). Any p-dimensional submanifold with oriented
normal bundle defines such a current. So also does any smooth form of degree n —p on Y,
and in fact every current can be considered to be an (n — p)-form on Y with generalized
coeflicients.

Note that a smooth mapping f : ¥ — Y’ between smooth manifolds induces a continuous
linear map f, on currents if and only if f*Ory: = Ory. When f is a submersion, this
condition is guaranteed if the fibres of f are orientable.

27



Now the normal bundle N to the fibre diagonal G' =2 Ag C GP? is isomorphic to the
bundle of tangent vectors to the fibres of the fibration 7 : G — X. That is, there is a
bundle equivalence

(13.1) N = Hom(U,U')

We recall an important elementary fact. (See [HLo, A.13], for example.)

Lemma 13.1. Let V, V' be real vector bundles over a space Y. If rank(V') — rank(V"')
is even, then Hom(V, V') is orientable.

Recall that rank(U) = rank(E) and rank(U+) = rank(F), and note that the fibres of
the projections pr, : G¥? — G are diffeomorphic to the Grassmannian G,,(R™*") whose
tangent bundle is Hom(U,UL). Observe also that for a normal bundle map « : E — F
the normal bundle to each ¥ («) is isomorphic to Hom(ker «v, coker ). Thus from (13.1)
and the Lemma one deduces

Lemma 13.2. Suppose that rank(F)—rank(E) is even. Then the submanifoldsT', C G%*
define currents on G%%, and the projections pr;,, ¢ = 1,2, induce continuous maps on
currents. Furthermore, if « : E — F is a normal bundle map, then each submanifold

Yi(a) defines a current [Si(«)] on X.

Note that these results are independent of all considerations of orientability for E and
Fon X.

This brings us to the main result of this section.

Theorem 13.3. Let E — X and F' — X be smooth real vector bundles where rank(F') —
rank(E) is even. Then the analogues of all results in §§2—12 hold for these bundles.
Furthermore, if E and F' are given orthogonal connections, then in formulas (6.3), (8.4-5),

(10.7-8) and in Theorems 11.2 and 12.6, one has that

(13.2) Res, =0 for all k odd.

Proof. Once one knows that the submanifolds I'y define currents in G%%, that pr, induces
a continuous map on currents, and that the submanifolds ¥, and T}, define currents in X,
the discussion given in §§2—12 carries through without change in the real case. This gives
the first part of the theorem.

To prove (13.2) we use Theorem 12.6. Observe first that every O,,-invariant polynomial
® is a polynomial in the Pontrjagin forms and that for the total Pontrjagin form we have

P <§U> = p (QU’“> ™*p (lea> .

Hence any polynomial in the Pontrjagin classes p; <§U> can be expressed as a polynomial

in the Pontrjagin classes p; (QU’“> with coefficients which are pull-backs over 7 of forms on
Yi(a). Thus to prove (13.2) it will suffice to prove the following.
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Lemma 13.4. Let V — Y be a smooth riemannian vector bundle of rank M with
orthogonal connection, and let G = G¢(V') — Y be the Grassmann bundle of unoriented
(-planes in V. Let # : U — G be the tautological {-plane bundle, and write 7*V = U@ U,
Give U the connection obtained by projection of the pull-back connection on ©#*V. Then

if rank(V') is odd, one has
/ (QY) =0

for all Oyy-invariant polynomials ® on the Lie algebra O ;.

Proof. To begin we observe that the result holds in the special case where V =1} is the
tautological bundle over the real Grassmannian GM(RN) = Y,. This follows because the

closed form
/ & (QV°)

(where Uj is the tautological bundle over Yj) is Opy-invariant and hence harmonic, but
also of odd degree and therefore zero since H°44(Yy; R) = 0.

The general case follows from the special one because by [NS] there exists an embedding
7:Y < Y, such that 7*Vy =2 V as bundles with connection. It follows from the naturality
of the constructions that there exists a bundle map J : Go(V) — G¢(Vy) covering j such
that *Uy = U as bundles with connection. Thus there is a commutative diagram

v — .

l l

Go(V) ., Go(Vo)

| [ =

Yy — Y

where ; and ; are bundle maps. One concludes that
0 = j(70):® (2) = (m) (7@ (97)) = 7 (2(2")). mm

Note 13.5 . When F (or E) is orientable, these results extend to invariant polynomials
on the Lie Algebra of SO,, (or SO, respectively).
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