POTENTIAL THEORY FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

POTENTIAL THEORY FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

with Reese Harvey

(I)

1. GENERALIZED POTENTIAL THEORY

・ロト ・回 ト ・ ヨト ・ ヨ

1. GENERALIZED POTENTIAL THEORY

2. EXAMPLES

・ロト ・回ト ・ヨト ・ヨト

1. GENERALIZED POTENTIAL THEORY

2. EXAMPLES

3. THE RIESZ CHARATERISTIC

(I)

1. GENERALIZED POTENTIAL THEORY

2. EXAMPLES

3. THE RIESZ CHARATERISTIC

4. TANGENTS AND DENSITIES

Image: A matrix

(4) (3) (4) (4) (4)

GENERALIZED POTENTIAL THEORY

・ロト ・回ト ・ヨト ・ヨト

The Idea

To every differential equation on \mathbb{R}^n of the form:

$$f(D^2 u) = 0$$

there is an associated "Potential Theory" based on the functions which satisfy the condition:

 $f(D^2u) \geq 0$

in a generalized sense.

1. The Laplace Equation:

$$\Delta u = \operatorname{tr}(D^2 u) = 0$$

Image: A matrix

• = • •

1. The Laplace Equation:

$$\Delta u = \operatorname{tr}(D^2 u) = 0$$

The Associated Potential Theory:

The Theory of Subharmonic Functions

" $\Delta u \geq 0$ ".

(a) (b) (c) (b)

1. The Laplace Equation:

$$\Delta u = \operatorname{tr}(D^2 u) = 0$$

The Associated Potential Theory:

The Theory of Subharmonic Functions

" $\Delta u \geq 0$ ".

The upper semi-continuous functions which are "sub the harmonics":

 $u \leq h \text{ on } \partial K \Rightarrow u \leq h \text{ on } K$

.

2. The Real Monge-Ampère Equation:

$$\det(D^2 u) = 0 \quad \text{and} \quad D^2 u \ge 0.$$

2. The Real Monge-Ampère Equation:

$$\det(D^2 u) = 0 \quad \text{and} \quad D^2 u \geq 0.$$

The Associated Potential Theory:

The Theory of Convex Functions

 $D^{2}u \geq 0$ ".

3. The Complex Monge-Ampère Equation:

 $\det_{\mathbb{C}}\left\{(D^2u)_{\mathbb{C}}\right\} = 0 \quad \text{and} \quad (D^2u)_{\mathbb{C}} \geq 0.$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

3. The Complex Monge-Ampère Equation:

$$\det_{\mathbb{C}}\left\{(D^2u)_{\mathbb{C}}\right\} = 0 \quad \text{and} \quad (D^2u)_{\mathbb{C}} \geq 0.$$

The Associated Potential Theory:

The Theory of Plurisubharmonic Functions

 $``(D^2u)_{\mathbb{C}} \geq 0".$

(4) E > (4) E

3. The Complex Monge-Ampère Equation:

 $\det_{\mathbb{C}}\left\{(D^2u)_{\mathbb{C}}\right\} = 0 \quad \text{and} \quad (D^2u)_{\mathbb{C}} \geq 0.$

The Associated Potential Theory:

The Theory of Plurisubharmonic Functions

 $``(D^2u)_{\mathbb{C}} \geq 0".$

The upper semi-continuous functions on \mathbb{C}^n whose restriction to every affine complex line is subharmonic

Poincaré, Oka, Grauert, Lelong, Hörmander, etc.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Some Interesting Cases:

$$\sigma_k (D^2 u) = 0$$
 k^{th} Hessian Equation

Some Interesting Cases:

$$\sigma_k (D^2 u) = 0$$
 k^{th} Hessian Equation

$$\sigma_k \left(D^2 u \right)_{\mathbb{C}} = 0$$
 k^{th} Complex Hessian Equation

Some Interesting Cases:

$$\sigma_k \left(D^2 u \right) = 0$$
 k^{th} Hessian Equation

$$\sigma_k (D^2 u)_{\mathbb{C}} = 0$$
 k^{th} Complex Hessian Equation

 $\arctan(D^2 u) = c$ Special Lagrangian Potential Equation

The Usual Set-up

One fixes a continuous function

 $f: \operatorname{Sym}^2(\mathbb{R}^n) \to \mathbb{R},$

and associates to it the nonlinear differential equation

$$f(D^2 u) = 0$$

4 E > 4

The Usual Set-up

One fixes a continuous function

 $f: \operatorname{Sym}^2(\mathbb{R}^n) \to \mathbb{R},$

and associates to it the nonlinear differential equation

 $f(D^2 u) = 0$

and differential subequation

 $f(D^2 u) \geq 0.$

A Geometric Approach – N. V. Krylov and Harvey-L.

Consider instead the closed set

$$F \equiv \{A \in \operatorname{Sym}^2(\mathbb{R}^n) : f(A) \ge 0\}.$$

A Geometric Approach – N. V. Krylov and Harvey-L.

Consider instead the closed set

$$F \equiv \{A \in \operatorname{Sym}^2(\mathbb{R}^n) : f(A) \ge 0\}.$$

Then for $u \in C^2$

$$f(D^2u) \ge 0 \quad \iff \quad D^2u \in F \quad \text{(the subequation)}$$

A Geometric Approach – N. V. Krylov and Harvey-L.

Consider instead the closed set

$$F \equiv \{A \in \operatorname{Sym}^{2}(\mathbb{R}^{n}) : f(A) \ge 0\}.$$

Then for $u \in C^{2}$
$$f(D^{2}u) \ge 0 \iff D^{2}u \in F \quad \text{(the subequation)}$$
and
$$f(D^{2}u) = 0 \iff D^{2}u \in \partial F \quad \text{(the equation)}$$

0

and

・ロト ・回 ト ・ヨト ・ヨト

1. The Laplace Equation:

$$F \equiv \{A \in \operatorname{Sym}^2(\mathbb{R}^n) : \operatorname{tr}(A) \ge 0\}.$$

・ロト ・回ト ・ヨト ・ヨト

1. The Laplace Equation:

$$F \equiv \{A \in \operatorname{Sym}^2(\mathbb{R}^n) : \operatorname{tr}(A) \ge 0\}.$$

2. The Real Monge-Ampère Equation: $det(D^2u) = 0$ and $D^2u \ge 0$.

$$F \equiv \mathcal{P} \equiv \{A \in \operatorname{Sym}^2(\mathbb{R}^n) : A \ge 0\}.$$

1. The Laplace Equation:

$$F \equiv \{A \in \operatorname{Sym}^2(\mathbb{R}^n) : \operatorname{tr}(A) \ge 0\}.$$

2. The Real Monge-Ampère Equation: $det(D^2u) = 0$ and $D^2u \ge 0$.

$$F \equiv \mathcal{P} \equiv \{A \in \operatorname{Sym}^2(\mathbb{R}^n) : A \ge 0\}.$$

Note: The additional condition is natural here.

(I)

1. The Laplace Equation:

$$F \equiv \{A \in \operatorname{Sym}^2(\mathbb{R}^n) : \operatorname{tr}(A) \ge 0\}.$$

2. The Real Monge-Ampère Equation: $det(D^2u) = 0$ and $D^2u \ge 0$.

$$F \equiv \mathcal{P} \equiv \{A \in \operatorname{Sym}^2(\mathbb{R}^n) : A \ge 0\}.$$

Note: The additional condition is natural here.

3. The Complex Monge-Ampère Equation:

$$F \equiv \mathcal{P}^{\mathbb{C}} \equiv \{A \in \operatorname{Sym}^{2}_{\mathbb{R}}(\mathbb{C}^{n}) : A_{\mathbb{C}} \geq 0\}.$$

.

1. The Laplace Equation:

$$F \equiv \{A \in \operatorname{Sym}^2(\mathbb{R}^n) : \operatorname{tr}(A) \ge 0\}.$$

2. The Real Monge-Ampère Equation: $det(D^2u) = 0$ and $D^2u \ge 0$.

$$F \equiv \mathcal{P} \equiv \{A \in \operatorname{Sym}^2(\mathbb{R}^n) : A \ge 0\}.$$

Note: The additional condition is natural here.

3. The Complex Monge-Ampère Equation:

$$F \equiv \mathcal{P}^{\mathbb{C}} \equiv \{A \in \operatorname{Sym}^{2}_{\mathbb{R}}(\mathbb{C}^{n}) : A_{\mathbb{C}} \geq 0\}.$$

$$A_{\mathbb{C}} = \frac{1}{2}(A - JAJ)$$

.

A General Geometric Approach

Start with a general closed **constraint set** $F \subset \operatorname{Sym}^2(\mathbb{R}^n)$ on second derivatives: $D_x^2 u \in F$ for all $x \in X^{\operatorname{open}} \subset \mathbb{R}^n$. for $u \in C^2(X)$.

イロト イポト イヨト イヨト

A General Geometric Approach

Start with a general closed **constraint set** $F \subset \text{Sym}^2(\mathbb{R}^n)$ on second derivatives: $D_x^2 u \in F$ for all $x \in X^{\text{open}} \subset \mathbb{R}^n$. for $u \in C^2(X)$.

Obective: To extend this to a larger class of functions u, called the *F*-subharmonic functions F(X),

and to develop an accompanying potential theory for this class.

Let's Try the Viscosity Approach

Blaine Lawson

イロト イヨト イヨト イヨト

Let's Try the Viscosity Approach

Set

 $USC(X) \equiv \{u: X \to [-\infty, \infty) : u \text{ is upper semicontinuous}\}$

Let's Try the Viscosity Approach

Set

USC(X) $\equiv \{u: X \to [-\infty, \infty) : u \text{ is upper semicontinuous}\}$

Take $u \in \text{USC}(X)$ and require that for any $\varphi \in C^2(X)$, the condition

> $u \leq \varphi$ and $u(x_0) = \varphi(x_0)$ must imply $D_{x_0}^2 \varphi \in F.$
Blaine Lawson

イロト イヨト イヨト イヨト

As it stands. NO.

As it stands. NO.

Note:

If φ satisfies the conditions above for u at a point x_0 , then so does

$$\widetilde{\varphi}(x) = \varphi(x) + \frac{1}{2} \langle A(x - x_0), x - x_0 \rangle$$

where $A \ge 0$.

As it stands. NO.

Note:

If φ satisfies the conditions above for u at a point x_0 , then so does

$$\widetilde{\varphi}(x) = \varphi(x) + \frac{1}{2} \langle A(x - x_0), x - x_0 \rangle$$

where $A \ge 0$.

Conclusion: We must require $F \subset \text{Sym}^2(\mathbb{R}^n)$ to satisfy the condition

 $\mathbf{F} + \mathcal{P} \subset \mathbf{F}$

where $\mathcal{P} \equiv \{A : A \ge 0\}$.

A closed subset $F \subset Sym^2(\mathbb{R}^n)$ is called a subequation if it satisfies the *positivity condition*

 $\textbf{F} + \mathcal{P} \ \subset \ \textbf{F}$

where $\mathcal{P} \equiv \{A \ge 0\}$.

.

A closed subset $F \subset Sym^2(\mathbb{R}^n)$ is called a subequation if it satisfies the *positivity condition*

 $\textbf{F} + \mathcal{P} \ \subset \ \textbf{F}$

where
$$\mathcal{P} \equiv \{A \geq 0\}.$$

A C^2 -function on a domain $X \subset \mathbb{R}^n$ is *F*-subharmonic if

 $D_x^2 u \in F \quad \forall x \in X,$

A closed subset $F \subset Sym^2(\mathbb{R}^n)$ is called a subequation if it satisfies the *positivity condition*

 $\mathbf{F} + \mathcal{P} \ \subset \ \mathbf{F}$

where $\mathcal{P} \equiv \{A \ge 0\}$.

A C^2 -function on a domain $X \subset \mathbb{R}^n$ is *F*-subharmonic if

 $D_x^2 u \in F \quad \forall x \in X,$

and it is F-harmonic if

 $D_x^2 u \in \partial F \quad \forall x \in X,$

• • = • • = •

A closed subset $F \subset Sym^2(\mathbb{R}^n)$ is called a subequation if it satisfies the *positivity condition*

 $\mathbf{F} + \mathcal{P} \ \subset \ \mathbf{F}$

where $\mathcal{P} \equiv \{A \ge 0\}$.

A C^2 -function on a domain $X \subset \mathbb{R}^n$ is *F*-subharmonic if

 $D_x^2 u \in F \quad \forall x \in X,$

and it is F-harmonic if

 $D_x^2 u \in \partial F \quad \forall x \in X,$

We want to extend these notions to upper semi-continuous functions.

	0	1 21	on.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

USC(X) $\equiv \{u : X \to [-\infty, \infty) : u \text{ is upper semicontinuous}\}$

 $USC(X) \equiv \{u: X \to [-\infty, \infty) : u \text{ is upper semicontinuous}\}$

Definition. Fix $u \in USC(X)$. A test function for u at a point $x \in X$ is a function φ , C^2 near x, such that

$$u \leq \varphi$$
 near x

$$u = \varphi$$
 at x

 $USC(X) \equiv \{u: X \to [-\infty, \infty) : u \text{ is upper semicontinuous}\}$

Definition. Fix $u \in USC(X)$. A test function for u at a point $x \in X$ is a function φ , C^2 near x, such that

$$u \leq \varphi$$
 near x

$$u = \varphi$$
 at x

Definition. A function $u \in USC(X)$ is *F*-subharmonic if for every $x \in X$ and every test function φ for *u* at *x*

$$D_x^2 \varphi \in F.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $USC(X) \equiv \{u: X \to [-\infty, \infty) : u \text{ is upper semicontinuous}\}$

Definition. Fix $u \in USC(X)$. A test function for u at a point $x \in X$ is a function φ , C^2 near x, such that

$$u \leq \varphi$$
 near x

$$u = \varphi$$
 at x

Definition. A function $u \in USC(X)$ is *F*-subharmonic if for every $x \in X$ and every test function φ for *u* at *x*

$$D_x^2 \varphi \in F.$$

$$F(X) \equiv$$
 the set of these.

イロト イポト イヨト イヨト 二日

Blaine Lawson

イロト イヨト イヨト イヨト

• $u, v \in F(X) \Rightarrow \max\{u, v\} \in F(X)$

- $u, v \in F(X) \Rightarrow \max\{u, v\} \in F(X)$
- *F*(*X*) is closed under decreasing limits.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- $u, v \in F(X) \Rightarrow \max\{u, v\} \in F(X)$
- *F*(*X*) is closed under decreasing limits.
- *F*(*X*) is closed under uniform limits.

イロト イポト イヨト イヨト

- $u, v \in F(X) \Rightarrow \max\{u, v\} \in F(X)$
- *F*(*X*) is closed under decreasing limits.
- *F*(*X*) is closed under uniform limits.
- If $\mathcal{F} \subset F(X)$ is locally uniformly bounded above, then $u^* \in F(X)$ where

$$u(x) \equiv \sup_{v\in\mathcal{F}} v(x)$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- $u, v \in F(X) \Rightarrow \max\{u, v\} \in F(X)$
- *F*(*X*) is closed under decreasing limits.
- *F*(*X*) is closed under uniform limits.
- If $\mathcal{F} \subset F(X)$ is locally uniformly bounded above, then $u^* \in F(X)$ where

$$u(x) \equiv \sup_{v\in\mathcal{F}} v(x)$$

• If $u \in C^2(X)$, then

 $u \in F(X) \iff D_x^2 u \in F \quad \forall \ x \in X.$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

イロト イヨト イヨト イヨト

Define the **dual** of $F \subset \text{Sym}^2(\mathbb{R}^n)$ by

$$\widetilde{F} \equiv \sim (-\mathrm{Int}F) = -(\sim \mathrm{Int}F)$$

Image: Image:

Define the **dual** of $F \subset \text{Sym}^2(\mathbb{R}^n)$ by

$$\widetilde{F} \equiv \sim (-\mathrm{Int}F) = -(\sim \mathrm{Int}F)$$

• *F* is a subequation $\iff \widetilde{F}$ is a subequation.

Define the **dual** of $F \subset \text{Sym}^2(\mathbb{R}^n)$ by

$$\widetilde{F} \equiv \sim (-\mathrm{Int}F) = -(\sim \mathrm{Int}F)$$

- *F* is a subequation $\iff \widetilde{F}$ is a subequation.
- For each subequation

$$\widetilde{\widetilde{F}} = F$$

Define the **dual** of $F \subset \text{Sym}^2(\mathbb{R}^n)$ by

$$\widetilde{F} \equiv \sim (-\mathrm{Int}F) = -(\sim \mathrm{Int}F)$$

- *F* is a subequation $\iff \widetilde{F}$ is a subequation.
- For each subequation

$$\widetilde{\widetilde{F}} = F$$

• In our analysis

The roles of *F* and \tilde{F} are often interchangeable.

Define the **dual** of $F \subset \text{Sym}^2(\mathbb{R}^n)$ by

$$\widetilde{F} \equiv \sim (-\mathrm{Int}F) = -(\sim \mathrm{Int}F)$$

- *F* is a subequation $\iff \widetilde{F}$ is a subequation.
- For each subequation

$$\widetilde{\widetilde{F}} = F$$

In our analysis

The roles of *F* and \tilde{F} are often interchangeable.

Note that

$$F \cap -\widetilde{F} = \partial F$$

Duality and *F*-Harmonics

Let $F \subset \text{Sym}^2(\mathbb{R}^n)$ be a subequation.

Definition. A function *u* on *X* is *F*-harmonic if

$$u \in F(X)$$
 and $-u \in \widetilde{F}(X)$

These are our solutions to the equation.

Duality and *F*-Harmonics

Let $F \subset \text{Sym}^2(\mathbb{R}^n)$ be a subequation.

Definition. A function *u* on *X* is *F*-harmonic if

$$u \in F(X)$$
 and $-u \in \widetilde{F}(X)$

These are our solutions to the equation.

$$u \in C^2(X)$$
 is *F*-harmonic $\iff D_x^2 u \in \partial F \quad \forall x \in X$.

$$\mathcal{P} \equiv \{A : A \ge 0\}$$

イロト イヨト イヨト イヨト

$$\mathcal{P} \equiv \{A : A \ge 0\}$$

 $\widetilde{\mathcal{P}} = \{ A : A \text{ has at least one eigenvalue } \geq 0 \}.$

$$\mathcal{P} \equiv \{A : A \ge 0\}$$

 $\widetilde{\mathcal{P}} = \{ A : A \text{ has at least one eigenvalue } \geq 0 \}.$

Proposition. For an open set $X \subset \mathbb{R}^n$

$$\mathcal{P}(X) =$$
 the convex functions on X.

(I)

$$\mathcal{P} \equiv \{A : A \ge 0\}$$

 $\widetilde{\mathcal{P}} = \{ A : A \text{ has at least one eigenvalue } \geq 0 \}.$

Proposition. For an open set $X \subset \mathbb{R}^n$

$$\mathcal{P}(X)$$
 = the convex functions on X.

$$\widetilde{\mathcal{P}}(X)$$
 = the subaffine functions on X.

(I) < ((i) <

$$\mathcal{P} \equiv \{A : A \ge 0\}$$

 $\widetilde{\mathcal{P}} = \{ \boldsymbol{A} : \boldsymbol{A} \text{ has at least one eigenvalue } \geq 0 \}.$

Proposition. For an open set $X \subset \mathbb{R}^n$

$$\mathcal{P}(X) =$$
 the convex functions on X.

$$\widetilde{\mathcal{P}}(X)$$
 = the subaffine functions on X.

The homogeneous real Monge-Ampère Equation

$$D^2 u \geq 0$$
 and $\det(D^2 u) = 0$.

October 10, 2014 20 / 63

Blaine Lawson

THEOREM. (2009)

Let $\Omega \subset \mathbb{R}^n$ be a domain whose boundary $\partial \Omega$ is strictly F and \widetilde{F} -convex.

THEOREM. (2009)

Let $\Omega \subset \mathbb{R}^n$ be a domain whose boundary $\partial \Omega$ is strictly F and \tilde{F} -convex. Then for each $\varphi \in C(\partial \Omega)$, there exists a unique $u \in C(\overline{\Omega})$ such that

(1) $u|_{\Omega}$ is *F*-harmonic, and

THEOREM. (2009)

Let $\Omega \subset \mathbb{R}^n$ be a domain whose boundary $\partial \Omega$ is strictly F and \overline{F} -convex. Then for each $\varphi \in C(\partial \Omega)$, there exists a unique $u \in C(\overline{\Omega})$ such that

> (1) $u|_{\Omega}$ is *F*-harmonic, and (2) $u|_{\partial\Omega} = \varphi$.
EXAMPLES

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Standing Assumption from now on:

The subequation $F \subset \operatorname{Sym}^2(\mathbb{R}^n)$ is a *cone* which is invariant under a subgroup

 $G \subset O(n)$

which acts transitively on the sphere

 $S^{n-1} \subset \mathbb{R}^n$.

Eigenvalue Equations

If $F \subset \text{Sym}^2(\mathbb{R}^n)$ is O(n)-invariant,

• = • •

Image: A matrix

Eigenvalue Equations

If $F \subset \text{Sym}^2(\mathbb{R}^n)$ is O(n)-invariant, then it is completely determined by a condition on the **eigenvalues** of $A \in \text{Sym}^2(\mathbb{R}^n)$.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Any such *F* has a **complex and quaternionic counterpart** denoted $F^{\mathbb{C}}$ and $F^{\mathbb{H}}$

Any such *F* has a **complex and quaternionic counterpart** denoted $F^{\mathbb{C}}$ and $F^{\mathbb{H}}$

by applying the same conditions to the hermitian symmetric parts

 $A_{\mathbb{C}}$ and $A_{\mathbb{H}}$

Any such *F* has a **complex and quaternionic counterpart** denoted $F^{\mathbb{C}}$ and $F^{\mathbb{H}}$

by applying the same conditions to the hermitian symmetric parts

 $A_{\mathbb{C}}$ and $A_{\mathbb{H}}$

These subequations are U(n) and Sp(n) invariant.

$$\mathbb{C}^n = (\mathbb{R}^{2n}, J)$$

$$A_{\mathbb{C}} = \frac{1}{2}(A - JAJ).$$

-

• • • • • • • • • • • •

$$\mathbb{C}^n = (\mathbb{R}^{2n}, J)$$

$$A_{\mathbb{C}} = \frac{1}{2}(A - JAJ).$$

The eigenspaces of $A_{\mathbb{C}}$ are complex lines with eigenvalues $\lambda_1, ..., \lambda_n$.

• • • • • • • • • • • • • •

$$\mathbb{C}^n = (\mathbb{R}^{2n}, J)$$

$$A_{\mathbb{C}} = \frac{1}{2}(A - JAJ).$$

The eigenspaces of $A_{\mathbb{C}}$ are complex lines with eigenvalues $\lambda_1, ..., \lambda_n$.

$$\mathbb{H}^n = (\mathbb{R}^{4n}, I, J, K)$$

The quaternionic hermitian symmetric part of $A \in \text{Sym}^2(\mathbb{R}^{4n})$ is

$$A_{\mathbb{H}} = \frac{1}{2}(A - IAI - JAJ - KAK).$$

$$\mathbb{C}^n = (\mathbb{R}^{2n}, J)$$

$$A_{\mathbb{C}} = \frac{1}{2}(A - JAJ).$$

The eigenspaces of $A_{\mathbb{C}}$ are complex lines with eigenvalues $\lambda_1, ..., \lambda_n$.

$$\mathbb{H}^n = (\mathbb{R}^{4n}, I, J, K)$$

The quaternionic hermitian symmetric part of $A \in \text{Sym}^2(\mathbb{R}^{4n})$ is

$$A_{\mathbb{H}} = \frac{1}{2}(A - IAI - JAJ - KAK).$$

The eigenspaces of $A_{\mathbb{H}}$ are quaternionic lines with eigenvalues $\lambda_1, ..., \lambda_n$.

Example: Monge-Ampère Equations

$$\mathcal{P} \quad \Rightarrow \quad \mathcal{P}^{\mathbb{C}}, \ \mathcal{P}^{\mathbb{H}}$$

The complex and quaternionic Monge-Ampère Equations

Blaine Lawson

Potential Theory for Nonlinear PDE's

October 10, 2014 27 / 63

Examples: Other Elementary Symmetric Functions Hessian Equations – Trudinger-Wang-Labutin

$$\Sigma_k \equiv \{A : \sigma_1(A) \ge 0, ..., \sigma_k(A) \ge 0\}$$

$$\sigma_k(A) \equiv \sigma_k(\lambda_1(A), ..., \lambda_n(A))$$

Examples: Other Elementary Symmetric Functions Hessian Equations – Trudinger-Wang-Labutin

$$\Sigma_k \equiv \{A : \sigma_1(A) \ge 0, ..., \sigma_k(A) \ge 0\}$$

$$\sigma_k(A) \equiv \sigma_k(\lambda_1(A), ..., \lambda_n(A))$$

This is the principal branch of the equation

$$\sigma_k(D^2 u) = 0.$$

The equation has (k - 1) other branches.

It also has complex and quaternionic counterparts.

Blaine Lawson

Image: A math a math

Fix a compact set

$$\mathbf{G} \subset G(\boldsymbol{\rho}, \mathbb{R}^n)$$

Image: A matrix

Fix a compact set

 $\mathbf{G} \subset G(\mathbf{p}, \mathbb{R}^n)$

and define

$$m{F}(m{G}) \;=\; ig\{m{A}: \mathrm{tr}\left(m{A}ig|_{m{W}}
ight) \geq 0 \;\;\; orall \; m{W} \in m{G}ig\} \,.$$

(D) (A) (A) (A)

Fix a compact set

 $\mathbf{G} \subset G(\mathbf{p}, \mathbb{R}^n)$

and define

$$F(\mathbf{G}) = \left\{ \mathbf{A} : \operatorname{tr} \left(\mathbf{A} \middle|_{W}
ight) \geq \mathbf{0} \quad \forall \ \mathbf{W} \in \mathbf{G}
ight\}.$$

This is always a subequation.

If $\mathbf{G} = G(1, \mathbb{R}^n)$, then $F(\mathbf{G}) = \mathcal{P}$

If
$$\mathbf{G} = G(1, \mathbb{R}^n)$$
, then $F(\mathbf{G}) = \mathcal{P}$
If $\mathbf{G} = G^{\mathbb{C}}(1, \mathbb{C}^n)$, then $F(\mathbf{G}) = \mathcal{P}^{\mathbb{C}}$

If
$$\mathbf{G} = G(1, \mathbb{R}^n)$$
, then $F(\mathbf{G}) = \mathcal{P}$
If $\mathbf{G} = G^{\mathbb{C}}(1, \mathbb{C}^n)$, then $F(\mathbf{G}) = \mathcal{P}^{\mathbb{C}}$
If $\mathbf{G} = G^{\mathbb{H}}(1, \mathbb{H}^n)$, then $F(\mathbf{G}) = \mathcal{P}^{\mathbb{H}}$

If
$$\mathbf{G} = G(1, \mathbb{R}^n)$$
, then $F(\mathbf{G}) = \mathcal{P}$
If $\mathbf{G} = G^{\mathbb{C}}(1, \mathbb{C}^n)$, then $F(\mathbf{G}) = \mathcal{P}^{\mathbb{C}}$
If $\mathbf{G} = G^{\mathbb{H}}(1, \mathbb{H}^n)$, then $F(\mathbf{G}) = \mathcal{P}^{\mathbb{H}}$

If
$$\mathbf{G} = G(p, \mathbb{R}^n)$$
, then $F(\mathbf{G}) = \mathcal{P}_p$

If
$$\mathbf{G} = G(1, \mathbb{R}^n)$$
, then $F(\mathbf{G}) = \mathcal{P}$
If $\mathbf{G} = G^{\mathbb{C}}(1, \mathbb{C}^n)$, then $F(\mathbf{G}) = \mathcal{P}^{\mathbb{C}}$
If $\mathbf{G} = G^{\mathbb{H}}(1, \mathbb{H}^n)$, then $F(\mathbf{G}) = \mathcal{P}^{\mathbb{H}}$

If
$$\mathbf{G} = G(\mathbf{p}, \mathbb{R}^n)$$
, then $F(\mathbf{G}) = \mathcal{P}_{\mathbf{p}}$

 $\mathbf{G} = \mathrm{LAG} \subset \mathbf{G}^{\mathbb{R}}(n,\mathbb{C}^n)$

(D) (A) (A) (A)

If
$$\mathbf{G} = G(1, \mathbb{R}^n)$$
, then $F(\mathbf{G}) = \mathcal{P}$
If $\mathbf{G} = G^{\mathbb{C}}(1, \mathbb{C}^n)$, then $F(\mathbf{G}) = \mathcal{P}^{\mathbb{C}}$
If $\mathbf{G} = G^{\mathbb{H}}(1, \mathbb{H}^n)$, then $F(\mathbf{G}) = \mathcal{P}^{\mathbb{H}}$
If $\mathbf{G} = G(p, \mathbb{R}^n)$, then $F(\mathbf{G}) = \mathcal{P}_p$
 $\mathbf{G} = \text{LAG} \subset G^{\mathbb{R}}(n, \mathbb{C}^n)$
 $\mathbf{G} = \text{SLAG} \subset G^{\mathbb{R}}(n, \mathbb{C}^n)$

イロト イヨト イヨト イヨト

If $\mathbf{G} = G(1, \mathbb{R}^n)$, then $F(\mathbf{G}) = \mathcal{P}$ If $\mathbf{G} = G^{\mathbb{C}}(1, \mathbb{C}^n)$, then $F(\mathbf{G}) = \mathcal{P}^{\mathbb{C}}$ If $\mathbf{G} = G^{\mathbb{H}}(1, \mathbb{H}^n)$, then $F(\mathbf{G}) = \mathcal{P}^{\mathbb{H}}$ If $\mathbf{G} = G(\mathbf{p}, \mathbb{R}^n)$, then $F(\mathbf{G}) = \mathcal{P}_n$ $\mathbf{G} = \text{LAG} \subset \mathbf{G}^{\mathbb{R}}(n, \mathbb{C}^n)$ $\mathbf{G} = \mathrm{SLAG} \subset \mathbf{G}^{\mathbb{R}}(n,\mathbb{C}^n)$ $\mathbf{G} = G(\phi)$ where ϕ is a calibration.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

For each real number $p \in [1, n]$, define

$$\mathcal{P}_{\boldsymbol{\rho}} \equiv \left\{ \boldsymbol{A} : \lambda_1(\boldsymbol{A}) + \dots + \lambda_{[\boldsymbol{\rho}]}(\boldsymbol{A}) + (\boldsymbol{\rho} - [\boldsymbol{\rho}])\lambda_{[\boldsymbol{\rho}]+1}(\boldsymbol{A}) \geq \boldsymbol{0} \right\}$$

where $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ are the ordered eigenvalues of A.

Image: Image:

For each real number $p \in [1, n]$, define

$$\mathcal{P}_{\rho} \equiv \left\{ \boldsymbol{A} : \lambda_{1}(\boldsymbol{A}) + \dots + \lambda_{[\rho]}(\boldsymbol{A}) + (\boldsymbol{\rho} - [\boldsymbol{\rho}])\lambda_{[\rho]+1}(\boldsymbol{A}) \geq \boldsymbol{0} \right\}$$

where $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ are the ordered eigenvalues of A.

The \mathcal{P}_{p} -subharmonics are *p*-plurisubharmonic functions.

For each real number $p \in [1, n]$, define

$$\mathcal{P}_{\boldsymbol{\rho}} \equiv \left\{ \boldsymbol{A} : \lambda_1(\boldsymbol{A}) + \dots + \lambda_{[\boldsymbol{\rho}]}(\boldsymbol{A}) + (\boldsymbol{\rho} - [\boldsymbol{\rho}])\lambda_{[\boldsymbol{\rho}]+1}(\boldsymbol{A}) \geq \boldsymbol{0} \right\}$$

where $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ are the ordered eigenvalues of A.

The \mathcal{P}_p -subharmonics are *p*-plurisubharmonic functions.

THEOREM. (2012) For *p* an integer:

The restriction of a \mathcal{P}_p -subharmonic to any minimal *p*-dimensional submanifold *Y* is subharmonic in the induced metric on *Y*.

For each real number $p \in [1, n]$, define

$$\mathcal{P}_{\boldsymbol{\rho}} \equiv \left\{ \boldsymbol{A} : \lambda_1(\boldsymbol{A}) + \dots + \lambda_{[\boldsymbol{\rho}]}(\boldsymbol{A}) + (\boldsymbol{\rho} - [\boldsymbol{\rho}])\lambda_{[\boldsymbol{\rho}]+1}(\boldsymbol{A}) \geq 0 \right\}$$

where $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ are the ordered eigenvalues of A.

The \mathcal{P}_p -subharmonics are *p*-plurisubharmonic functions.

THEOREM. (2012) For *p* an integer:

The restriction of a \mathcal{P}_p -subharmonic to any minimal *p*-dimensional submanifold *Y* is subharmonic in the induced metric on *Y*.

 \mathcal{P}_p -harmonics are solutions of the polynomial equation

$$MA_{\rho}(A) = \prod_{i_1 < \cdots < i_{\rho}} (\lambda_{i_1}(A) + \cdots + \lambda_{i_{\rho}}(A)) = 0.$$

THE RIESZ CHARACTERISTIC

・ロト ・回ト ・ヨト ・ヨト

The Riesz Kernel

The Riesz kernel

$$\mathcal{K}_{p}(x) \;\equiv\; \left\{ egin{array}{ccc} |x|^{2-p} & ext{ if } 1 \leq p < 2 \ \log |x| & ext{ if } p = 2 \ -rac{1}{|x|^{p-2}} & ext{ if } p > 2 \end{array}
ight.$$

・ロト ・回ト ・ヨト ・ヨト

The Riesz Kernel

The Riesz kernel

$$\mathcal{K}_{p}(x) \;\equiv\; \left\{ egin{array}{ccc} |x|^{2-p} & ext{ if } 1 \leq p < 2 \ \log |x| & ext{ if } p = 2 \ -rac{1}{|x|^{p-2}} & ext{ if } p > 2 \end{array}
ight.$$

is \mathcal{P}_{ρ} -harmonic in $\mathbb{R}^{n} - \{0\}$ and \mathcal{P}_{ρ} -subharmonic across 0.

Homogeneity of the Riesz Kernel

The Riesz kernel

$$\mathcal{K}_{p}(x) \;\equiv\; \left\{ egin{array}{ccc} |x|^{2-p} & ext{ if } 1 \leq p < 2 \ \log |x| & ext{ if } p = 2 \ -rac{1}{|x|^{p-2}} & ext{ if } p > 2 \end{array}
ight.$$

イロト イヨト イヨト イヨト

Homogeneity of the Riesz Kernel

The Riesz kernel

$$\mathcal{K}_{\mathcal{P}}(x) \;\equiv\; egin{cases} |x|^{2-\mathcal{P}} & ext{ if } 1\leq \mathcal{P}<2\ \log|x| & ext{ if } \mathcal{P}=2\ -rac{1}{|x|^{\mathcal{P}-2}} & ext{ if } \mathcal{P}>2 \end{cases}$$

satisfies

$$K_p(x) = r^{p-2}K(rx)$$
 for all $r > 0$ when $p \neq 2$

$$\mathcal{K}_p(x) \ = \ \mathcal{K}_p(rx) - \sup_{\mathcal{B}_r} \mathcal{K}_p \qquad ext{for all} \quad r > 0 \quad ext{when } p = 2.$$

イロト イヨト イヨト イヨト
Blaine Lawson

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Up to a positive constant (for $x \neq 0$)

$$(D^{2}K_{p})(x) = \frac{1}{|x|^{p}} \Big\{ P_{x^{\perp}} - (p-1)P_{x} \Big\}$$

Up to a positive constant (for $x \neq 0$)

$$(D^{2}K_{p})(x) = \frac{1}{|x|^{p}} \Big\{ P_{x^{\perp}} - (p-1)P_{x} \Big\}$$

where P_x = orthogonal projection onto $\mathbb{R}x$

Up to a positive constant (for $x \neq 0$)

$$(D^{2}K_{p})(x) = \frac{1}{|x|^{p}} \Big\{ P_{x^{\perp}} - (p-1)P_{x} \Big\}$$

where P_x = orthogonal projection onto $\mathbb{R}x$ and $P_{x^{\perp}}$ = orthogonal projection onto the complement.

Image: Image:

Blaine Lawson

-

(日)

Fix an invariant cone subequation

$$\mathsf{F} \subset \operatorname{Sym}^2(\mathbb{R}^n).$$

(D) (A) (A) (A)

Fix an invariant cone subequation

 $F \subset \operatorname{Sym}^2(\mathbb{R}^n).$

Definition. The Riesz characteristic of F is the number

$$p_F = \sup \{ p : P_{e^{\perp}} - (p-1)P_e \in F \}$$

for some (hence, any) $e \neq 0$ in \mathbb{R}^n .

Fix an invariant cone subequation

 $F \subset \operatorname{Sym}^2(\mathbb{R}^n).$

Definition. The Riesz characteristic of F is the number

$$p_F = \sup \{ p : P_{e^{\perp}} - (p-1)P_e \in F \}$$

for some (hence, any) $e \neq 0$ in \mathbb{R}^n .

$$P_{e^{\perp}} - (p-1)P_e = \begin{pmatrix} 1 & & & \\ & & & \\ & & & 1 \\ & & & -(p-1) \end{pmatrix}$$

・ロト ・回 ト ・ヨト ・ヨト

Basic Example: Riesz Charactersitic of $\mathcal{P}_p = p$.

Basic Example: Riesz Charactersitic of $\mathcal{P}_p = p$.

$$F = \mathcal{P} \qquad p_F = 1$$

Basic Example: Riesz Charactersitic of $\mathcal{P}_p = p$.

$$F = \mathcal{P}$$
 $p_F = 1$
 $F = \mathcal{P}^{\mathbb{C}}$ $p_F = 2$

Basic Example: Riesz Charactersitic of $\mathcal{P}_{p} = p$.

Basic Example: Riesz Charactersitic of $\mathcal{P}_{p} = p$.

$$p_F = p$$

イロト イポト イヨト イヨ

Basic Example: Riesz Charactersitic of $\mathcal{P}_{p} = p$.

$$p_F = p \Rightarrow p_{F^{\mathbb{C}}} = 2p$$
 and

イロト イポト イヨト イヨ

Basic Example: Riesz Charactersitic of $\mathcal{P}_p = p$.

$$F = \mathcal{P}$$
 $p_F = 1$ $F = \mathcal{P}^{\mathbb{C}}$ $p_F = 2$ $F = \mathcal{P}^{\mathbb{H}}$ $p_F = 4$

 $p_F = p \Rightarrow p_{F^{\mathbb{C}}} = 2p$ and $p_{F^{\mathbb{H}}} = 4p$

Basic Example: Riesz Charactersitic of $\mathcal{P}_p = p$.

$$F = \mathcal{P}$$
 $p_F = 1$ $F = \mathcal{P}^{\mathbb{C}}$ $p_F = 2$ $F = \mathcal{P}^{\mathbb{H}}$ $p_F = 4$

 $p_F = p \Rightarrow p_{F^{\mathbb{C}}} = 2p$ and $p_{F^{\mathbb{H}}} = 4p$ $F = \Sigma_k \qquad p = \frac{n}{k}$

イロト イポト イヨト イヨト 二日

Basic Example: Riesz Charactersitic of $\mathcal{P}_p = p$.

$$F = \mathcal{P}$$
 $p_F = 1$ $F = \mathcal{P}^{\mathbb{C}}$ $p_F = 2$ $F = \mathcal{P}^{\mathbb{H}}$ $p_F = 4$

 $p_F = p \Rightarrow p_{F^{\mathbb{C}}} = 2p$ and $p_{F^{\mathbb{H}}} = 4p$

$$F = \Sigma_k \qquad p = \frac{n}{k}$$

 $\mathbf{G} \subset G(\boldsymbol{\rho}, \mathbb{R}^n) \qquad \boldsymbol{\rho}_{F(\mathbf{G})} = \boldsymbol{\rho}$

(I) < ((i) <

The δ -uniformly elliptic equation:

$$\mathcal{P}(\delta) \equiv \left\{ A : A + \frac{\delta}{n} \operatorname{tr}(A) I \ge 0 \right\} \qquad p = \frac{n(1+\delta)}{n+\delta}$$

・ロト ・回ト ・ヨト ・ヨト

The δ -uniformly elliptic equation:

$$\mathcal{P}(\delta) \equiv \left\{ \mathbf{A} : \mathbf{A} + \frac{\delta}{n} \operatorname{tr}(\mathbf{A}) \mathbf{I} \geq \mathbf{0} \right\} \qquad \mathbf{p} = \frac{n(1+\delta)}{n+\delta}$$

The trace power equation:

$$F \equiv \{A : tr(A^q) \ge 0\}$$
 $p = 1 + (n-1)^{\frac{1}{q}}$

(I) < ((i) <

The δ -uniformly elliptic equation:

$$\mathcal{P}(\delta) \equiv \left\{ A : A + \frac{\delta}{n} \operatorname{tr}(A) I \ge 0 \right\} \qquad p = \frac{n(1+\delta)}{n+\delta}$$

The trace power equation:

$$F \equiv \{A : tr(A^q) \ge 0\}$$
 $p = 1 + (n-1)^{\frac{1}{q}}$

The Pucci equation: For $0 < \lambda < \Lambda$

$$\mathcal{P}_{\lambda,\Lambda} \equiv \{A \in \operatorname{Sym}^2(\mathbb{R}^n) : \lambda \operatorname{tr} A^+ + \Lambda \operatorname{tr} A^- \ge 0\}, \qquad p = \frac{\lambda}{\Lambda}(n-1) + 1.$$

(D) (A) (A) (A)

SOME INITIAL RESULTS

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Blaine Lawson

THEOREM Let M be a convex cone subequation with Riesz characteristic p,

THEOREM Let *M* be a convex cone subequation with Riesz characteristic *p*, and suppose *F* is any subequation satisfying

 $F + M \subset F$.

THEOREM Let *M* be a convex cone subequation with Riesz characteristic *p*, and suppose *F* is any subequation satisfying

 $F + M \subset F$.

Then any closed set *E* of locally finite Hausdorff p-measure is removable for *F*-subharmonics and *F*-harmonics.

THEOREM Let *M* be a convex cone subequation with Riesz characteristic *p*, and suppose *F* is any subequation satisfying

 $F + M \subset F$.

Then any closed set *E* of locally finite Hausdorff p-measure is removable for *F*-subharmonics and *F*-harmonics.

That is, for $\Omega^{\text{open}} \subset \mathbb{R}^n$ and $u \in F(\Omega - E)$:

THEOREM Let *M* be a convex cone subequation with Riesz characteristic *p*, and suppose *F* is any subequation satisfying

 $F + M \subset F$.

Then any closed set *E* of locally finite Hausdorff p-measure is removable for *F*-subharmonics and *F*-harmonics.

That is, for $\Omega^{\text{open}} \subset \mathbb{R}^n$ and $u \in F(\Omega - E)$:

If u is locally bounded above at points of E,

then *u* extends to $\overline{u} \in F(\Omega)$

THEOREM Let *M* be a convex cone subequation with Riesz characteristic *p*, and suppose *F* is any subequation satisfying

 $F + M \subset F$.

Then any closed set *E* of locally finite Hausdorff p-measure is removable for *F*-subharmonics and *F*-harmonics.

That is, for $\Omega^{\text{open}} \subset \mathbb{R}^n$ and $u \in F(\Omega - E)$:

If u is locally bounded above at points of E,

then *u* extends to $\overline{u} \in F(\Omega)$

If u is continuous on Ω and F-harmonic on $\Omega - E$, then u is F-harmonic on Ω

・ロト ・回 ト ・ヨト ・ヨト

THEOREM. Suppose $1 \le p < 2$.

THEOREM. Suppose $1 \le p < 2$. Then every *F*-subharmonic function is α -Hölder continuous, where $\alpha = 2 - p$.

THEOREM. Suppose $1 \le p < 2$. Then every *F*-subharmonic function is α -Hölder continuous, where $\alpha = 2 - p$.

False for all $p \ge 2$ **.**

THEOREM. Suppose $1 \le p < 2$. Then every *F*-subharmonic function is α -Hölder continuous, where $\alpha = 2 - p$.

False for all $p \ge 2$ **.**

$$\mathcal{K}_{p}(|x|) = \begin{cases} \log |x| & \text{if } p = 2\\ -\frac{1}{|x|^{p-2}} & \text{if } 2
is *F*-subhamonic.$$

THEOREM. Suppose $1 \le p < 2$. Then every *F*-subharmonic function is α -Hölder continuous, where $\alpha = 2 - p$.

False for all $p \ge 2$ **.**

$$\mathcal{K}_{p}(|x|) = \begin{cases} \log |x| & \text{if } p = 2\\ -\frac{1}{|x|^{p-2}} & \text{if } 2 is F-subhamonic.
$$u(z) = \log |f(z)| \quad \text{with } f \text{ holomorphic}$$$$

is plurisubharmonic.

When $F = \mathcal{P}^{\mathbb{C}}$

TANGENTS AND DENSITIES

・ロト ・回ト ・ヨト ・ヨト
Blaine Lawson

Let *F* be a subequaton with Riesz characteristic $p < \infty$.

Let *F* be a subequaton with Riesz characteristic $p < \infty$.

The homogeneity of the Riesz functions leads one to following.

Definition.

Let *F* be a subequaton with Riesz characteristic $p < \infty$.

The homogeneity of the Riesz functions leads one to following.

Definition.

Suppose $u \in F(B_R)$ and consider the family of functions $\{u_r\}_{r>0}$ defined by

(a)
$$u_r(x) = r^{p-2}u(rx)$$
 if $p > 2$,

Let *F* be a subequaton with Riesz characteristic $p < \infty$. The homogeneity of the Riesz functions leads one to following.

Definition.

Suppose $u \in F(B_R)$ and consider the family of functions $\{u_r\}_{r>0}$ defined by

(a)
$$u_r(x) = r^{p-2}u(rx)$$
 if $p > 2$,

(b)
$$u_r(x) = u(rx) - \sup_{B_r} u$$
 if $p = 2$,

Let *F* be a subequaton with Riesz characteristic $p < \infty$. The homogeneity of the Riesz functions leads one to following.

Definition.

Suppose $u \in F(B_R)$ and consider the family of functions $\{u_r\}_{r>0}$ defined by

(a)
$$u_r(x) = r^{p-2}u(rx)$$
 if $p > 2$,
(b) $u_r(x) = u(rx) - \sup_{B_r} u$ if $p = 2$, and
(c) $u_r(x) = \frac{1}{r^{2-p}}[u(rx) - u(0)]$ if $1 \le p < 2$,

Let *F* be a subequaton with Riesz characteristic $p < \infty$. The homogeneity of the Riesz functions leads one to following.

Definition.

Suppose $u \in F(B_R)$ and consider the family of functions $\{u_r\}_{r>0}$ defined by

(a)
$$u_r(x) = r^{p-2}u(rx)$$
 if $p > 2$,
(b) $u_r(x) = u(rx) - \sup_{B_r} u$ if $p = 2$, and
(c) $u_r(x) = \frac{1}{r^{2-p}} [u(rx) - u(0)]$ if $1 \le p < 2$,

Note: One has $u_r \in F(B_{R/r})$ and $B_{R/r}$ expands to \mathbb{R}^n as $r \downarrow 0$.

-

(日)

Definition. A function $U \in F(\mathbb{R}^n)$ is a **tangent** to *u* at 0 if there exists a sequence $r_i \downarrow 0$ such that

$$u_{r_i} \rightarrow U$$
 in $L^1_{\text{loc}}(\mathbb{R}^n)$

(日)

Definition. A function $U \in F(\mathbb{R}^n)$ is a **tangent** to *u* at 0 if there exists a sequence $r_i \downarrow 0$ such that

$$u_{r_i} \rightarrow U$$
 in $L^1_{\text{loc}}(\mathbb{R}^n)$

THEOREM. When *F* is convex, or when $1 \le p < 2$,

tangents always exist.

(日)

Definition. A function $U \in F(\mathbb{R}^n)$ is a **tangent** to *u* at 0 if there exists a sequence $r_j \downarrow 0$ such that

$$u_{r_i} \rightarrow U$$
 in $L^1_{\text{loc}}(\mathbb{R}^n)$

THEOREM. When *F* is convex, or when $1 \le p < 2$,

tangents always exist.

Let $T_0 u$ = the set of tangents to u at 0.

• • • • • • • • • • • • • •

Definition. A function $U \in F(\mathbb{R}^n)$ is **maximal** if on any compact subset $K \subset \mathbb{R}^n$, U is the Perron function for its boundary values $U|_{\partial K}$.

Definition. A function $U \in F(\mathbb{R}^n)$ is **maximal** if on any compact subset $K \subset \mathbb{R}^n$, U is the Perron function for its boundary values $U|_{\partial K}$.

Prop.

U is F-maximal and continuous $\iff U$ is F-harmonic

Definition. A function $U \in F(\mathbb{R}^n)$ is **maximal** if on any compact subset $K \subset \mathbb{R}^n$, U is the Perron function for its boundary values $U|_{\partial K}$.

Prop.

U is *F*-maximal and continuous $\iff U$ is *F*-harmonic

THEOREM. If F is convex, then tangents are always maximal.

Definition. A function $U \in F(\mathbb{R}^n)$ is **maximal** if on any compact subset $K \subset \mathbb{R}^n$, U is the Perron function for its boundary values $U|_{\partial K}$.

Prop.

U is *F*-maximal and continuous \iff U is *F*-harmonic

THEOREM. If F is convex, then tangents are always maximal. For any F, if $p_F < 2$, then tangents are F-harmonic.

-

• • • • • • • • • • • • • •

Definition. If $T_0 u = \{U\}$ is always a singleton for *F*-subharmonic functions *u*, we say that **uniqueness of tangents holds for** *F*

Definition. If $T_0 u = \{U\}$ is always a singleton for *F*-subharmonic functions *u*, we say that **uniqueness of tangents holds for** *F*

Definition. If $T_0 u = \{\Theta K_p(|x|)\}$ ($\Theta \ge 0$) for all *F*-subharmonic functions *u*, we say that strong uniqueness of tangents holds for *F*

Blaine Lawson

Image: A math a math

THEOREM (Strong Uniqueness I). Suppose F is a convex O(n)-invariant subequation,

.

THEOREM (Strong Uniqueness I). Suppose F is a convex O(n)-invariant subequation, or the complex or quaternionic counterpart of such an equation.

THEOREM (Strong Uniqueness I). Suppose F is a convex O(n)-invariant subequation, or the complex or quaternionic counterpart of such an equation.

Then, except for the three basic cases $\mathcal{P}, \mathcal{P}^{\mathbb{C}}, \mathcal{P}^{\mathbb{H}}$,

strong uniqueness of tangents holds for *F*.

THEOREM (Strong Uniqueness I). Suppose F is a convex O(n)-invariant subequation, or the complex or quaternionic counterpart of such an equation.

Then, except for the three basic cases $\mathcal{P}, \mathcal{P}^{\mathbb{C}}, \mathcal{P}^{\mathbb{H}}$,

strong uniqueness of tangents holds for *F*.

Note.

1. Uniqueness holds for \mathcal{P} , but strong uniqueness fails.

THEOREM (Strong Uniqueness I). Suppose F is a convex O(n)-invariant subequation, or the complex or quaternionic counterpart of such an equation.

Then, except for the three basic cases $\mathcal{P}, \mathcal{P}^{\mathbb{C}}, \mathcal{P}^{\mathbb{H}}$,

strong uniqueness of tangents holds for *F*.

Note.

- 1. Uniqueness holds for \mathcal{P} , but strong uniqueness fails.
- 2. Uniqueness fails utterly for $\mathcal{P}^{\mathbb{C}}$ and $\mathcal{P}^{\mathbb{H}}$.

THEOREM (Strong Uniqueness II). Fix $p \ge 2$ and $n \ge 3$. Then strong uniqueness of tangents to $F(\mathbf{G})$ -subharmonic functions holds for:

THEOREM (Strong Uniqueness II). Fix $p \ge 2$ and $n \ge 3$. Then strong uniqueness of tangents to $F(\mathbf{G})$ -subharmonic functions holds for:

(a) Every compact SU(n)-invariant subset $\mathbf{G} \subset G^{\mathbb{R}}(p, \mathbb{C}^n)$ with the one exception $\mathbf{G} = G^{\mathbb{C}}(1, \mathbb{C}^n)$,

THEOREM (Strong Uniqueness II). Fix $p \ge 2$ and $n \ge 3$. Then strong uniqueness of tangents to $F(\mathbf{G})$ -subharmonic functions holds for:

(a) Every compact SU(n)-invariant subset $\mathbf{G} \subset G^{\mathbb{R}}(p, \mathbb{C}^n)$ with the one exception $\mathbf{G} = G^{\mathbb{C}}(1, \mathbb{C}^n)$,

(b) Every compact $Sp(n) \cdot Sp(1)$ -invariant subset $\mathbf{G} \subset G^{\mathbb{R}}(p, \mathbb{H}^n)$ with three exceptions, namely the sets of real p-planes which lie in a quaternion line for p = 2, 3, 4 (when p = 4 this is $G^{\mathbb{H}}(1, \mathbb{H}^n)$),

THEOREM (Strong Uniqueness II). Fix $p \ge 2$ and $n \ge 3$. Then strong uniqueness of tangents to $F(\mathbf{G})$ -subharmonic functions holds for:

(a) Every compact SU(n)-invariant subset $\mathbf{G} \subset G^{\mathbb{R}}(p, \mathbb{C}^n)$ with the one exception $\mathbf{G} = G^{\mathbb{C}}(1, \mathbb{C}^n)$,

(b) Every compact $Sp(n) \cdot Sp(1)$ -invariant subset $\mathbf{G} \subset G^{\mathbb{R}}(p, \mathbb{H}^n)$ with three exceptions, namely the sets of real p-planes which lie in a quaternion line for p = 2, 3, 4 (when p = 4 this is $G^{\mathbb{H}}(1, \mathbb{H}^n)$),

(c) For $p \ge 5$, every compact Sp(n)-invariant subset $\mathbf{G} \subset G^{\mathbb{R}}(p, \mathbb{H}^n)$.

Let $F = F(\mathbf{G})$ be defined by a subset $\mathbf{G} \subset G(p, \mathbb{R}^n)$

・ロト ・同ト ・ヨト ・ヨ

Let $F = F(\mathbf{G})$ be defined by a subset $\mathbf{G} \subset G(p, \mathbb{R}^n)$

We say $\mathbf{G} \subset G(p, \mathbb{R}^n)$ has the **transitivity property** if for all $x, y \in \mathbb{R}^n$ there exist $W_1, ..., W_k \in \mathbf{G}$ with $x \in W_1, y \in W_k$ and dim $(W_i \cap W_{i+1}) > 0$ for all i = 1, ..., k - 1.

Let $F = F(\mathbf{G})$ be defined by a subset $\mathbf{G} \subset G(p, \mathbb{R}^n)$

We say $\mathbf{G} \subset G(p, \mathbb{R}^n)$ has the **transitivity property** if for all $x, y \in \mathbb{R}^n$ there exist $W_1, ..., W_k \in \mathbf{G}$ with $x \in W_1, y \in W_k$ and dim $(W_i \cap W_{i+1}) > 0$ for all i = 1, ..., k - 1.

THEOREM (Strong Uniqueness III). If **G** has the transitivity property, then strong uniqueness holds for $F(\mathbf{G})$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

This proves the strong uniqueness of tangent cones when:

- (a) $\mathbf{G} = \text{ASSOC}$ (Associative subharmonic functions in \mathbb{R}^7) (p = 3).
- (b) $\mathbf{G} = \text{COASSOC}$ (Coassociative subharmonic functions in \mathbb{R}^7) (p = 4).
- (c) $\mathbf{G} = CAYLEY$ (Cayley subharmonic functions in \mathbb{R}^8) (p = 4).
- (d) **G** = LAG (Lagrangian subharmonic functions in \mathbb{C}^n) (p = n).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Strong Uniqueness Fails

Recall that in the three cases:

 $\begin{aligned} G(1,\mathbb{R}^n) & (\text{i.e., } F = \mathcal{P}) \\ G(1,\mathbb{C}^n) & (\text{i.e., } F = \mathcal{P}^{\mathbb{C}}) \\ G(1,\mathbb{H}^n) & (\text{i.e., } F = \mathcal{P}^{\mathbb{H}}) \end{aligned}$

strong uniqueness fails.

Strong Uniqueness Fails

Recall that in the three cases:

$$\begin{aligned} G(1,\mathbb{R}^n) & (\text{i.e., } F = \mathcal{P}) \\ G(1,\mathbb{C}^n) & (\text{i.e., } F = \mathcal{P}^{\mathbb{C}}) \\ G(1,\mathbb{H}^n) & (\text{i.e., } F = \mathcal{P}^{\mathbb{H}}) \\ \end{aligned}$$
 strong uniqueness fails.

The possible tangents in these cases are completely characterized.

Strong Uniqueness Fails

Recall that in the three cases:

 $\begin{aligned} G(1,\mathbb{R}^n) & (\text{i.e., } F = \mathcal{P}) \\ G(1,\mathbb{C}^n) & (\text{i.e., } F = \mathcal{P}^{\mathbb{C}}) \\ G(1,\mathbb{H}^n) & (\text{i.e., } F = \mathcal{P}^{\mathbb{H}}) \end{aligned}$

strong uniqueness fails.

The possible tangents in these cases are completely characterized. In the real case uniqueness of tangents holds, which is classical.
Strong Uniqueness Fails

Recall that in the three cases:

 $\begin{aligned} G(1,\mathbb{R}^n) & (\text{i.e., } F = \mathcal{P}) \\ G(1,\mathbb{C}^n) & (\text{i.e., } F = \mathcal{P}^{\mathbb{C}}) \\ G(1,\mathbb{H}^n) & (\text{i.e., } F = \mathcal{P}^{\mathbb{H}}) \end{aligned}$

strong uniqueness fails.

The possible tangents in these cases are completely characterized. In the real case uniqueness of tangents holds, which is classical. In the complex case, uniqueness fails.

Strong Uniqueness Fails

Recall that in the three cases:

 $\begin{aligned} G(1,\mathbb{R}^n) & (\text{i.e., } F = \mathcal{P}) \\ G(1,\mathbb{C}^n) & (\text{i.e., } F = \mathcal{P}^{\mathbb{C}}) \\ G(1,\mathbb{H}^n) & (\text{i.e., } F = \mathcal{P}^{\mathbb{H}}) \end{aligned}$

strong uniqueness fails.

The possible tangents in these cases are completely characterized.

In the real case uniqueness of tangents holds, which is classical.

In the complex case, uniqueness fails. A complete characterization of the possible $T_0 u$ is due to **KISELMAN**.

Increasing Radial Subharmonics

Blaine Lawson

(日)

Increasing Radial Subharmonics

Suppose $p_F = p$. The function

$$u(x) = \psi(|x|)$$

(4) (3) (4) (4) (4)

Image: A matrix

Increasing Radial Subharmonics

Suppose $p_F = p$. The function

$$u(\mathbf{x}) = \psi(|\mathbf{x}|)$$

is an increasing radial *F*-subharmonic function iff $\psi(t)$ satisfies the one-variable subequation

$$\psi''(t) + \frac{(p-1)}{t}\psi'(t) \ge 0$$
 and $\psi'(t) \ge 0$.

Increasing Radial Harmonics

Suppose $p_F = p$. The increasing radial **harmonics** for *F* are:

 $CK_{\rho}(|x|) + k$

.

Image: A matrix

Increasing Radial Harmonics

Suppose $p_F = p$. The increasing radial harmonics for *F* are:

 $CK_p(|x|) + k$

where $C \ge 0$, $k \in \mathbb{R}$, and $K_p(t)$ is the p^{th} Riesz function defined on $0 < t < \infty$ by

$$K_{p}(t) = \begin{cases} t^{2-p} & \text{if } 1 \le p < 2\\ \log t & \text{if } p = 2\\ -\frac{1}{t^{p-2}} & \text{if } 2 < p < \infty. \end{cases}$$

Suppose *u* is *F*-subharmonic on a neighborhood of $0 \in \mathbb{R}^n$.

(4) 医子子 医

Image: A matrix

Suppose u is F-subharmonic on a neighborhood of $0 \in \mathbb{R}^n$. Let $B_r = \{|x| \le r\}$.

Suppose *u* is *F*-subharmonic on a neighborhood of $0 \in \mathbb{R}^n$. Let $B_r = \{|x| \le r\}$. Then

$$M(r) = M(u,r) \equiv \sup_{B_r} u.$$

is an increasing radial *F*-subharmonic.

Suppose *u* is *F*-subharmonic on a neighborhood of $0 \in \mathbb{R}^n$. Let $B_r = \{|x| \le r\}$. Then

$$M(r) = M(u,r) \equiv \sup_{B_r} u.$$

is an increasing radial *F*-subharmonic.

When F is convex, so also are the functions

$$V(r) \equiv \frac{1}{|B_r|} \int_{B_r} u$$

.

Suppose *u* is *F*-subharmonic on a neighborhood of $0 \in \mathbb{R}^n$. Let $B_r = \{|x| \le r\}$. Then

$$M(r) = M(u,r) \equiv \sup_{B_r} u.$$

is an increasing radial *F*-subharmonic.

When F is convex, so also are the functions

$$V(r) \equiv \frac{1}{|B_r|} \int_{B_r} u$$
$$S(r) \equiv \frac{1}{|\partial B_r|} \int_{\partial B_r} u$$

Blaine Lawson

・ロト ・回ト ・ヨト ・ヨト

Let $p = p_F$ with $1 \le p < \infty$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Let $p = p_F$ with $1 \le p < \infty$.

THEOREM (The Fundamental Monotonicity Property). Let $\Psi(r) = M(r), S(r)$ or V(r)

(I) < ((i) <

Let $p = p_F$ with $1 \le p < \infty$.

THEOREM (The Fundamental Monotonicity Property).

Let $\Psi(r) = M(r), S(r) \text{ or } V(r)$

Then, for 0 < r < t < R, the non-negative quantity

$$\frac{\Psi(t) - \Psi(r)}{K(t) - K(r)}$$
 is increasing in *r* and *t*,

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let $p = p_F$ with $1 \le p < \infty$.

THEOREM (The Fundamental Monotonicity Property).

Let $\Psi(r) = M(r), S(r) \text{ or } V(r)$

Then, for 0 < r < t < R, the non-negative quantity

$$\frac{\Psi(t) - \Psi(r)}{K(t) - K(r)}$$
 is increasing in *r* and *t*,

where $K = K_p$ is the p^{th} Riesz function.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Existence of Densities

Blaine Lawson

・ロト ・回 ト ・ ヨト ・ ヨ

Existence of Densities

COROLLARY of the Basic Monotonicity Property

The decreasing limit

$$\Theta^{\Psi}(u,0) = \lim_{\substack{r, t \to 0 \\ t > r > 0}} \frac{\Psi(t) - \Psi(r)}{K(t) - K(r)}$$

exists

Existence of Densities

COROLLARY of the Basic Monotonicity Property

The decreasing limit

$$\Theta^{\Psi}(u,0) = \lim_{\substack{r, t \to 0 \\ t > r > 0}} \frac{\Psi(t) - \Psi(r)}{K(t) - K(r)}$$

exists and defines the Ψ -density, $0 \le \Theta^{\Psi} < \infty$, of u at 0.

 $\Psi = M, S \text{ or } V$

イロト イポト イヨト イヨト

In fact,

$$\Theta^{\Psi}(u,0) = \lim_{r\downarrow 0} \frac{\Psi(r)}{K(r)}.$$

(When $1 \le p < 2$, we must normalize so that $\Psi(0) = 0$.)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 $\Theta^{\Psi}(u, x)$ is defined at each x in domain of u.

イロト イヨト イヨト イヨト

 $\Theta^{\Psi}(u, x)$ is defined at each x in domain of u.

THEOREM. The function $x \mapsto \Theta^{\Psi}(u, x)$ is upper semi-continuous.

 $\Theta^{\Psi}(u, x)$ is defined at each x in domain of u.

THEOREM. The function $x \mapsto \Theta^{\Psi}(u, x)$ is upper semi-continuous.

For each c > 0 the set

$$E_c \equiv \{x : \Theta^{\Psi}(u, x) \ge c\}$$
 is closed.

In the classical plurisubharmonic case $F = \mathcal{P}^{\mathbb{C}}$.

In the classical plurisubharmonic case $F = \mathcal{P}^{\mathbb{C}}$.

In this case all densities agree up to universal constants.

In the classical plurisubharmonic case $F = \mathcal{P}^{\mathbb{C}}$.

In this case all densities agree up to universal constants.

There is the following deep result due to Hörmander, Bombieri, and in its final form Siu

THEOREM.

E_c is a complex analytic subvariety.

In the classical plurisubharmonic case $F = \mathcal{P}^{\mathbb{C}}$.

In this case all densities agree up to universal constants.

There is the following deep result due to Hörmander, Bombieri, and in its final form Siu

THEOREM.

E_c is a complex analytic subvariety.

Question: Are there analogous results for other subequations?

Blaine Lawson

・ロト ・回 ト ・ ヨト ・ ヨ

THEOREM. Suppose strong uniqueness of tangents holds for *F*.

Image: A matrix

THEOREM. Suppose strong uniqueness of tangents holds for *F*. Then for any *F*-subharmonic function *u* and any c > 0, the set $E_c(u)$ is **discrete**.

THEOREM. Suppose strong uniqueness of tangents holds for *F*. Then for any *F*-subharmonic function *u* and any c > 0, the set $E_c(u)$ is **discrete**.

This result is essentially sharp.

THEOREM. Suppose $\Omega \subset \mathbb{R}^n$ is a domain with strictly *F*-convex boundary.

THEOREM. Suppose $\Omega \subset \mathbb{R}^n$ is a domain with strictly *F*-convex boundary. Suppose given:

 $(x_j, \Theta_j) \in \Omega \times \mathbb{R}^+$ j = 1, ..., N

イロト イポト イヨト イヨト

THEOREM. Suppose $\Omega \subset \mathbb{R}^n$ is a domain with strictly *F*-convex boundary. Suppose given:

 $(x_j, \Theta_j) \in \Omega \times \mathbb{R}^+$ j = 1, ..., N

 $\varphi \in \mathcal{C}(\partial \overline{\Omega})$

イロト イポト イヨト イヨト
THEOREM. Suppose $\Omega \subset \mathbb{R}^n$ is a domain with strictly *F*-convex boundary. Suppose given:

$$(x_j, \Theta_j) \in \Omega imes \mathbb{R}^+$$
 $j = 1, ..., N$

 $\varphi \in C(\partial \overline{\Omega})$ Then there exists a unique $H \in C\left(\overline{\Omega} - \bigcup_{j} \{x_{j}\}\right)$ such that:

THEOREM. Suppose $\Omega \subset \mathbb{R}^n$ is a domain with strictly *F*-convex boundary. Suppose given:

$$(x_j, \Theta_j) \in \Omega imes \mathbb{R}^+$$
 $j = 1, ..., N$

 $\varphi \in C(\partial \overline{\Omega})$ Then there exists a unique $H \in C(\overline{\Omega} - \bigcup_j \{x_j\})$ such that:

(1) *H* is *F*-harmonic on $\Omega - \bigcup_{j} \{x_j\}$,

THEOREM. Suppose $\Omega \subset \mathbb{R}^n$ is a domain with strictly *F*-convex boundary. Suppose given:

$$(x_j, \Theta_j) \in \Omega imes \mathbb{R}^+$$
 $j = 1, ..., N$

 $\varphi \in C(\partial \overline{\Omega})$ Then there exists a unique $H \in C\left(\overline{\Omega} - \bigcup_{j} \{x_{j}\}\right)$ such that:

- (1) *H* is *F*-harmonic on $\Omega \bigcup_{j} \{x_j\}$,
- (2) $H|_{\partial B} = \varphi$,

THEOREM. Suppose $\Omega \subset \mathbb{R}^n$ is a domain with strictly *F*-convex boundary. Suppose given:

$$(x_j, \Theta_j) \in \Omega imes \mathbb{R}^+ \qquad j = 1, ..., N$$

 $\varphi \in \mathcal{C}(\partial\overline{\Omega})$

Then there exists a unique $H \in C\left(\overline{\Omega} - \bigcup_{j} \{x_j\}\right)$ such that:

(1) *H* is *F*-harmonic on
$$\Omega - \bigcup_{j} \{x_j\}$$
,

$$(2) \quad H\big|_{\partial B} = \varphi,$$

(3) There exists constants c, C. so that for each j,

$$\Theta_j \mathcal{K}_p(|x-x_j|) + c \leq H(x) \leq \Theta_j \mathcal{K}_p(|x-x_j|) + C$$

HAPPY BIRTHDAY OUSSAMA !!

・ロト ・同ト ・ヨト ・ヨ

HAPPY BIRTHDAY OUSSAMA !!

We look forward to many more years of your Wisdom, Leadership and Guidance.

OUR GREAT APPRECIATION TO THE ORGANIZERS:

Nicolas GINOUX Emmanuel HUMBERT Marie-Amélie LAWN Andrei MOROIANU