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GENERALIZED POTENTIAL THEORY
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The Idea

To every differential equation on Rn of the form:

f (D2u) = 0

there is an associated “Potential Theory”

based on the functions which satisfy the condition:

f (D2u) ≥ 0

in a generalized sense.
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Classical Examples

1. The Laplace Equation:

∆u = tr(D2u) = 0

The Associated Potential Theory:

The Theory of Subharmonic Functions

“∆u ≥ 0”.

The upper semi-continuous functions which are
“sub the harmonics”:

u ≤ h on ∂K ⇒ u ≤ h on K
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Classical Examples

2. The Real Monge-Ampère Equation:

det(D2u) = 0 and D2u ≥ 0.

The Associated Potential Theory:

The Theory of Convex Functions

“D2u ≥ 0”.
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Classical Examples

3. The Complex Monge-Ampère Equation:

detC
{

(D2u)C
}

= 0 and (D2u)C ≥ 0.

The Associated Potential Theory:

The Theory of Plurisubharmonic Functions

“(D2u)C ≥ 0”.

The upper semi-continuous functions on Cn whose
restriction to every affine complex line is subharmonic

Poincaré, Oka, Grauert, Lelong, Hörmander, etc.
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Many of the Classical Constructions and Results
Carry Over to General Equations

Some Interesting Cases:

σk
(
D2u

)
= 0 k th Hessian Equation

σk
(
D2u

)
C = 0 k th Complex Hessian Equation

arctan
(
D2u

)
= c Special Lagrangian Potential Equation

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 8 / 63



Many of the Classical Constructions and Results
Carry Over to General Equations

Some Interesting Cases:

σk
(
D2u

)
= 0 k th Hessian Equation

σk
(
D2u

)
C = 0 k th Complex Hessian Equation

arctan
(
D2u

)
= c Special Lagrangian Potential Equation

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 8 / 63



Many of the Classical Constructions and Results
Carry Over to General Equations

Some Interesting Cases:

σk
(
D2u

)
= 0 k th Hessian Equation

σk
(
D2u

)
C = 0 k th Complex Hessian Equation

arctan
(
D2u

)
= c Special Lagrangian Potential Equation

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 8 / 63



Many of the Classical Constructions and Results
Carry Over to General Equations

Some Interesting Cases:

σk
(
D2u

)
= 0 k th Hessian Equation

σk
(
D2u

)
C = 0 k th Complex Hessian Equation

arctan
(
D2u

)
= c Special Lagrangian Potential Equation

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 8 / 63



The Usual Set-up

One fixes a continuous function

f : Sym2(Rn)→ R,

and associates to it the nonlinear differential equation

f (D2u) = 0

and differential subequation

f (D2u) ≥ 0.
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A Geometric Approach – N. V. Krylov and Harvey-L.

Consider instead the closed set

F ≡ {A ∈ Sym2(Rn) : f (A) ≥ 0}.

Then for u ∈ C2

f (D2u) ≥ 0 ⇐⇒ D2u ∈ F (the subequation)

and
f (D2u) = 0 ⇐⇒ D2u ∈ ∂F (the equation)
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Examples

1. The Laplace Equation:

F ≡ {A ∈ Sym2(Rn) : tr(A) ≥ 0}.

2. The Real Monge-Ampère Equation: det(D2u) = 0 and D2u ≥ 0.

F ≡ P ≡ {A ∈ Sym2(Rn) : A ≥ 0}.

Note: The additional condition is natural here.

3. The Complex Monge-Ampère Equation:

F ≡ PC ≡ {A ∈ Sym2
R(Cn) : AC ≥ 0}.

AC = 1
2 (A− JAJ)

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 11 / 63



Examples
1. The Laplace Equation:

F ≡ {A ∈ Sym2(Rn) : tr(A) ≥ 0}.

2. The Real Monge-Ampère Equation: det(D2u) = 0 and D2u ≥ 0.

F ≡ P ≡ {A ∈ Sym2(Rn) : A ≥ 0}.

Note: The additional condition is natural here.

3. The Complex Monge-Ampère Equation:

F ≡ PC ≡ {A ∈ Sym2
R(Cn) : AC ≥ 0}.

AC = 1
2 (A− JAJ)

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 11 / 63



Examples
1. The Laplace Equation:

F ≡ {A ∈ Sym2(Rn) : tr(A) ≥ 0}.

2. The Real Monge-Ampère Equation: det(D2u) = 0 and D2u ≥ 0.

F ≡ P ≡ {A ∈ Sym2(Rn) : A ≥ 0}.

Note: The additional condition is natural here.

3. The Complex Monge-Ampère Equation:

F ≡ PC ≡ {A ∈ Sym2
R(Cn) : AC ≥ 0}.

AC = 1
2 (A− JAJ)

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 11 / 63



Examples
1. The Laplace Equation:

F ≡ {A ∈ Sym2(Rn) : tr(A) ≥ 0}.

2. The Real Monge-Ampère Equation: det(D2u) = 0 and D2u ≥ 0.

F ≡ P ≡ {A ∈ Sym2(Rn) : A ≥ 0}.

Note: The additional condition is natural here.

3. The Complex Monge-Ampère Equation:

F ≡ PC ≡ {A ∈ Sym2
R(Cn) : AC ≥ 0}.

AC = 1
2 (A− JAJ)

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 11 / 63



Examples
1. The Laplace Equation:

F ≡ {A ∈ Sym2(Rn) : tr(A) ≥ 0}.

2. The Real Monge-Ampère Equation: det(D2u) = 0 and D2u ≥ 0.

F ≡ P ≡ {A ∈ Sym2(Rn) : A ≥ 0}.

Note: The additional condition is natural here.

3. The Complex Monge-Ampère Equation:

F ≡ PC ≡ {A ∈ Sym2
R(Cn) : AC ≥ 0}.

AC = 1
2 (A− JAJ)

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 11 / 63



Examples
1. The Laplace Equation:

F ≡ {A ∈ Sym2(Rn) : tr(A) ≥ 0}.

2. The Real Monge-Ampère Equation: det(D2u) = 0 and D2u ≥ 0.

F ≡ P ≡ {A ∈ Sym2(Rn) : A ≥ 0}.

Note: The additional condition is natural here.

3. The Complex Monge-Ampère Equation:

F ≡ PC ≡ {A ∈ Sym2
R(Cn) : AC ≥ 0}.

AC = 1
2 (A− JAJ)

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 11 / 63



A General Geometric Approach

Start with a general closed constraint set

F ⊂ Sym2(Rn)

on second derivatives:

D2
x u ∈ F for all x ∈ X open ⊂ Rn.

for u ∈ C2(X ).

Obective: To extend this to a larger class of functions u,

called the F -subharmonic functions F (X ),

and to develop an accompanying potential theory for this class.
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Let’s Try the Viscosity Approach

Set

USC(X ) ≡ {u : X → [−∞,∞) : u is upper semicontinuous}

Take u ∈ USC(X ) and require that for any ϕ ∈ C2(X ),

the condition

u ≤ ϕ and u(x0) = ϕ(x0)

must imply

D2
x0
ϕ ∈ F .
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Is This a Workable Concept?

As it stands. NO.

Note:
If ϕ satisfies the conditions above for u at a point x0,

then so does

ϕ̃(x) = ϕ(x) + 1
2 〈A(x − x0), x − x0〉

where A ≥ 0.

Conclusion: We must require F ⊂ Sym2(Rn) to satisfy the condition

F + P ⊂ F

where P ≡ {A : A ≥ 0}.
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Definitions

A closed subset F ⊂ Sym2(Rn) is called a subequation

if it satisfies the positivity condition

F + P ⊂ F

where P ≡ {A ≥ 0}.

A C2-function on a domain X ⊂ Rn is F -subharmonic if

D2
x u ∈ F ∀ x ∈ X ,

and it is F -harmonic if

D2
x u ∈ ∂F ∀ x ∈ X ,

We want to extend these notions to upper semi-continuous functions.
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Viscosity Theory (Crandall, Ishii, Lions, Evans, et al.)

USC(X ) ≡ {u : X → [−∞,∞) : u is upper semicontinuous}

Definition. Fix u ∈ USC(X ). A test function for u at a point x ∈ X is a
function ϕ, C2 near x , such that

u ≤ ϕ near x

u = ϕ at x

Definition. A function u ∈ USC(X ) is F -subharmonic if for every x ∈ X and
every test function ϕ for u at x

D2
xϕ ∈ F .

F(X) ≡ the set of these.
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Remarkable Properties

• u, v ∈ F (X ) ⇒ max{u, v} ∈ F (X )

• F (X ) is closed under decreasing limits.

• F (X ) is closed under uniform limits.

• If F ⊂ F (X ) is locally uniformly bounded above, then u∗ ∈ F (X ) where

u(x) ≡ sup
v∈F

v(x)

• If u ∈ C2(X ), then

u ∈ F (X ) ⇐⇒ D2
x u ∈ F ∀ x ∈ X .
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Duality and F -Harmonics (Harvey-L.)

Define the dual of F ⊂ Sym2(Rn) by

F̃ ≡ ∼ (−IntF ) = −(∼ IntF )

• F is a subequation ⇐⇒ F̃ is a subequation.

• For each subequation ˜̃F = F

• In our analysis

The roles of F and F̃ are often interchangeable.

• Note that
F ∩ −F̃ = ∂F
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Let F ⊂ Sym2(Rn) be a subequation.

Definition. A function u on X is F -harmonic if

u ∈ F (X ) and − u ∈ F̃ (X )

These are our solutions to the equation.

u ∈ C2(X ) is F -harmonic ⇐⇒ D2
x u ∈ ∂F ∀ x ∈ X .
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Examples P and P̃

P ≡ {A : A ≥ 0}

P̃ = {A : A has at least one eigenvalue ≥ 0}.

Proposition. For an open set X ⊂ Rn

P(X ) = the convex functions on X .

P̃(X ) = the subaffine functions on X .

The homogeneous real Monge-Ampère Equation

D2u ≥ 0 and det(D2u) = 0.
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The Dirichlet Problem

THEOREM. (2009)

Let Ω ⊂⊂ Rn be a domain whose boundary ∂Ω is strictly F and F̃ -convex.

Then for each ϕ ∈ C(∂Ω), there exists a unique u ∈ C(Ω) such that

(1) u
∣∣
Ω

is F -harmonic, and

(2) u
∣∣
∂Ω

= ϕ.
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EXAMPLES
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Standing Assumption from now on:

The subequation F ⊂ Sym2(Rn) is a cone which is invariant under a subgroup

G ⊂ O(n)

which acts transitively on the sphere

Sn−1 ⊂ Rn.
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Eigenvalue Equations

If F ⊂ Sym2(Rn) is O(n)-invariant,

then it is completely determined by a condition

on the eigenvalues of A ∈ Sym2(Rn).

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 24 / 63



Eigenvalue Equations

If F ⊂ Sym2(Rn) is O(n)-invariant,

then it is completely determined by a condition

on the eigenvalues of A ∈ Sym2(Rn).

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 24 / 63



Complex and Quaternionic Counterparts

Any such F has a complex and quaternionic counterpart

denoted FC and FH

by applying the same conditions to the hermitian symmetric parts

AC and AH

These subequations are U(n) and Sp(n) invariant.
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Cn = (R2n, J)

The complex hermitian symmetric part of A ∈ Sym2(R2n) is

AC = 1
2 (A− JAJ).

The eigenspaces of AC are complex lines with eigenvalues λ1, ..., λn.

Hn = (R4n, I, J,K )

The quaternionic hermitian symmetric part of A ∈ Sym2(R4n) is

AH = 1
2 (A− IAI − JAJ − KAK ).

The eigenspaces of AH are quaternionic lines with eigenvalues λ1, ..., λn.
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Example: Monge-Ampère Equations

P ⇒ PC, PH

The complex and quaternionic

Monge-Ampère Equations
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Examples: Other Elementary Symmetric Functions
Hessian Equations – Trudinger-Wang-Labutin

Σk ≡ {A : σ1(A) ≥ 0, ..., σk (A) ≥ 0}

σk (A) ≡ σk (λ1(A), ..., λn(A))

This is the principal branch of the equation

σk (D2u) = 0.

The equation has (k − 1) other branches.

It also has complex and quaternionic counterparts.
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An Important Family: Geometric Subequations

Fix a compact set
Gl ⊂ G(p,Rn)

and define
F (Gl ) =

{
A : tr

(
A
∣∣
W

)
≥ 0 ∀W ∈ Gl

}
.

This is always a subequation.
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Geometric Subequations – Examples

If Gl = G(1,Rn), then F (Gl ) = P

If Gl = GC(1,Cn), then F (Gl ) = PC

If Gl = GH(1,Hn), then F (Gl ) = PH

If Gl = G(p,Rn), then F (Gl ) = Pp

Gl = LAG ⊂ GR(n,Cn)

Gl = SLAG ⊂ GR(n,Cn)

Gl = G(φ) where φ is a calibration.
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A Fundamental Example: p-Convexity

For each real number p ∈ [1,n], define

Pp ≡
{

A : λ1(A) + · · ·+ λ[p](A) + (p − [p])λ[p]+1(A) ≥ 0
}

where λ1(A) ≤ · · · ≤ λn(A) are the ordered eigenvalues of A.

The Pp-subharmonics are p-plurisubharmonic functions.

THEOREM. (2012) For p an integer:

The restriction of a Pp-subharmonic to any minimal p-dimensional
submanifold Y is subharmonic in the induced metric on Y .

Pp-harmonics are solutions of the polynomial equation

MAp(A) =
∏

i1<···<ip

(
λi1 (A) + · · ·+ λip (A)

)
= 0.
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THE RIESZ CHARACTERISTIC
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The Riesz Kernel

The Riesz kernel

Kp(x) ≡


|x |2−p if 1 ≤ p < 2

log|x | if p = 2
− 1
|x|p−2 if p > 2

is Pp-harmonic in Rn − {0}

and Pp-subharmonic across 0.
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Homogeneity of the Riesz Kernel

The Riesz kernel

Kp(x) ≡


|x |2−p if 1 ≤ p < 2

log|x | if p = 2
− 1
|x|p−2 if p > 2

satisfies

Kp(x) = rp−2K (rx) for all r > 0 when p 6= 2

Kp(x) = Kp(rx)− sup
Br

Kp for all r > 0 when p = 2.

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 34 / 63



Homogeneity of the Riesz Kernel

The Riesz kernel

Kp(x) ≡


|x |2−p if 1 ≤ p < 2

log|x | if p = 2
− 1
|x|p−2 if p > 2

satisfies

Kp(x) = rp−2K (rx) for all r > 0 when p 6= 2

Kp(x) = Kp(rx)− sup
Br

Kp for all r > 0 when p = 2.

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 34 / 63



The Hessian of Kp.

Up to a positive constant (for x 6= 0)

(D2Kp)(x) =
1
|x |p

{
Px⊥ − (p − 1)Px

}

where Px = orthogonal projection onto Rx

and Px⊥ = orthogonal projection onto the complement.
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The Riesz Characteristic

Fix an invariant cone subequation

F ⊂ Sym2(Rn).

Definition. The Riesz characteristic of F is the number

pF = sup {p : Pe⊥ − (p − 1)Pe ∈ F}

for some (hence, any) e 6= 0 in Rn.

Pe⊥ − (p − 1)Pe =


1

1
−(p − 1)
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Examples

Basic Example: Riesz Charactersitic of Pp = p.

F = P pF = 1

F = PC pF = 2

F = PH pF = 4

pF = p ⇒ pFC = 2p and pFH = 4p

F = Σk p = n
k

Gl ⊂ G(p,Rn) pF (Gl ) = p
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Examples

The δ-uniformly elliptic equation:

P (δ) ≡
{

A : A + δ
n tr(A)I ≥ 0

}
p =

n(1 + δ)

n + δ

The trace power equation:

F ≡ {A : tr(Aq) ≥ 0} p = 1 + (n − 1)
1
q

The Pucci equation: For 0 < λ < Λ

Pλ,Λ ≡ {A ∈ Sym2(Rn) : λtrA+ + ΛtrA− ≥ 0}, p =
λ

Λ
(n − 1) + 1.
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SOME INITIAL RESULTS
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Removable Singularities

THEOREM Let M be a convex cone subequation with Riesz characteristic p,
and suppose F is any subequation satisfying

F + M ⊂ F .

Then any closed set E of locally finite Hausdorff p-measure is removable
for F -subharmonics and F -harmonics.

That is, for Ωopen ⊂ Rn and u ∈ F (Ω− E):

If u is locally bounded above at points of E,

then u extends to u ∈ F (Ω)

If u is continuous on Ω and F-harmonic on Ω− E,

then u is F-harmonic on Ω
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Regularity 1 ≤ p < 2.

THEOREM. Suppose 1 ≤ p < 2. Then every F-subharmonic function is
α-Hölder continuous, where α = 2− p.

False for all p ≥ 2.

Kp(|x |) =

{
log |x | if p = 2
− 1
|x|p−2 if 2 < p <∞.

is F -subhamonic.

When F = PC

u(z) = log|f (z)| with f holomorphic

is plurisubharmonic.
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TANGENTS AND DENSITIES

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 42 / 63



Tangents to Subsolutions

Let F be a subequaton with Riesz characteristic p <∞.

The homogeneity of the Riesz functions leads one to following.

Definition.

Suppose u ∈ F (BR) and consider the family of functions {ur}r>0 defined by

(a) ur (x) = rp−2u(rx) if p > 2,

(b) ur (x) = u(rx)− supBr
u if p = 2, and

(c) ur (x) = 1
r2−p [u(rx)− u(0)] if 1 ≤ p < 2,

Note: One has ur ∈ F (BR/r ) and BR/r expands to Rn as r ↓ 0.
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Tangents to Subsolutions – Existence

Definition. A function U ∈ F (Rn) is a tangent to u at 0 if there exists a
sequence rj ↓ 0 such that

urj → U in L1
loc(Rn)

THEOREM. When F is convex, or when 1 ≤ p < 2,

tangents always exist.

Let T0u = the set of tangents to u at 0.
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Tangents to Subsolutions – F-Harmonicity

Definition. A function U ∈ F (Rn) is maximal
if on any compact subset K ⊂ Rn,

U is the Perron function for its boundary values U
∣∣
∂K .

Prop.
U is F -maximal and continuous ⇐⇒ U is F -harmonic

THEOREM. If F is convex, then tangents are always maximal.

For any F, if pF < 2, then tangents are F-harmonic.
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Tangents to Subsolutions – Uniqueness

Definition. If T0u = {U} is always a singleton for F -subharmonic functions u,
we say that uniqueness of tangents holds for F

Definition. If T0u = {ΘKp(|x |)} (Θ ≥ 0) for all F -subharmonic functions u, we
say that strong uniqueness of tangents holds for F
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Tangents to Subsolutions – Strong Uniqueness

THEOREM (Strong Uniqueness I). Suppose F is a convex O(n)-invariant
subequation, or the complex or quaternionic counterpart of such an equation.

Then, except for the three basic cases P,PC,PH,

strong uniqueness of tangents holds for F .

Note.

1. Uniqueness holds for P, but strong uniqueness fails.

2. Uniqueness fails utterly for PC and PH.
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Tangents to Subsolutions – Strong Uniqueness

THEOREM (Strong Uniqueness II). Fix p ≥ 2 and n ≥ 3. Then strong
uniqueness of tangents to F (Gl )-subharmonic functions holds for:

(a) Every compact SU(n)-invariant subset Gl ⊂ GR(p,Cn) with the one
exception Gl = GC(1,Cn),

(b) Every compact Sp(n) · Sp(1)-invariant subset Gl ⊂ GR(p,Hn) with three
exceptions, namely the sets of real p-planes which lie in a quaternion line for
p = 2,3,4 (when p = 4 this is GH(1,Hn)),

(c) For p ≥ 5, every compact Sp(n)-invariant subset Gl ⊂ GR(p,Hn).
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Tangents to Subsolutions – Strong Uniqueness

Let F = F (Gl ) be defined by a subset Gl ⊂ G(p,Rn)

We say Gl ⊂ G(p,Rn) has the transitivity property if for all x , y ∈ Rn there
exist W1, ...,Wk ∈ Gl with x ∈W1, y ∈Wk and dim(Wi ∩Wi+1) > 0 for all
i = 1, ..., k − 1.

THEOREM (Strong Uniqueness III).If Gl has the transitivity property, then

strong uniqueness holds for F (Gl ).
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Special Cases

This proves the strong uniqueness of tangent cones when:

(a) Gl = ASSOC (Associative subharmonic functions in R7) (p = 3).

(b) Gl = COASSOC (Coassociative subharmonic functions in R7) (p = 4).

(c) Gl = CAYLEY (Cayley subharmonic functions in R8) (p = 4).

(d) Gl = LAG (Lagrangian subharmonic functions in Cn) (p = n).
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Strong Uniqueness Fails

Recall that in the three cases:
G(1,Rn) (i.e., F = P)

G(1,Cn) (i.e., F = PC)

G(1,Hn) (i.e., F = PH)

strong uniqueness fails.

The possible tangents in these cases are completely characterized.

In the real case uniqueness of tangents holds, which is classical.

In the complex case, uniqueness fails. A complete characterization of the
possible T0u is due to KISELMAN.
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Increasing Radial Subharmonics

Suppose pF = p. The function

u(x) = ψ(|x |)

is an increasing radial F -subharmonic function iff ψ(t) satisfies the
one-variable subequation

ψ′′(t) +
(p − 1)

t
ψ′(t) ≥ 0 and ψ′(t) ≥ 0.
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Increasing Radial Harmonics

Suppose pF = p. The increasing radial harmonics for F are:

CKp(|x |) + k

where C ≥ 0, k ∈ R, and Kp(t) is the pth Riesz function defined on 0 < t <∞
by

Kp(t) =


t2−p if 1 ≤ p < 2
log t if p = 2
− 1

tp−2 if 2 < p <∞.
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Basic Functions

Suppose u is F -subharmonic on a neighborhood of 0 ∈ Rn.

Let Br = {|x | ≤ r}. Then

M(r) = M(u, r) ≡ sup
Br

u.

is an increasing radial F -subharmonic.

When F is convex, so also are the functions

V (r) ≡ 1
|Br |

∫
Br

u

S(r) ≡ 1
|∂Br |

∫
∂Br

u
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Monotonicity

Let p = pF with 1 ≤ p <∞.

THEOREM (The Fundamental Monotonicity Property).

Let Ψ(r) = M(r),S(r) or V (r)

Then, for 0 < r < t < R, the non-negative quantity

Ψ(t)−Ψ(r)

K (t)− K (r)
is increasing in r and t ,

where K = Kp is the pth Riesz function.
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Existence of Densities

COROLLARY of the Basic Monotonicity Property

The decreasing limit

ΘΨ(u,0) = lim
r , t → 0
t > r > 0

Ψ(t)−Ψ(r)

K (t)− K (r)

exists and defines the Ψ-density, 0 ≤ ΘΨ <∞, of u at 0.

Ψ = M,S or V
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Densities

In fact,

ΘΨ(u,0) = lim
r↓0

Ψ(r)

K (r)
.

(When 1 ≤ p < 2, we must normalize so that Ψ(0) = 0.)
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Densities

ΘΨ(u, x) is defined at each x in domain of u.

THEOREM. The function x 7→ ΘΨ(u, x) is upper semi-continuous.

For each c > 0 the set

Ec ≡ {x : ΘΨ(u, x) ≥ c} is closed.
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The Hörmander- Bombieri-Siu Theorem

In the classical plurisubharmonic case F = PC.

In this case all densities agree up to universal constants.

There is the following deep result due to Hörmander, Bombieri, and in its final
form Siu

THEOREM.
Ec is a complex analytic subvariety.

Question: Are there analogous results for other subequations?
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The Hörmander- Bombieri-Siu Theorem

In the classical plurisubharmonic case F = PC.

In this case all densities agree up to universal constants.

There is the following deep result due to Hörmander, Bombieri, and in its final
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form Siu

THEOREM.
Ec is a complex analytic subvariety.

Question: Are there analogous results for other subequations?

Blaine Lawson Potential Theory for Nonlinear PDE’s October 10, 2014 59 / 63



Structure Theorem

THEOREM. Suppose strong uniqueness of tangents holds for F .

Then for any F-subharmonic function u and any c > 0,

the set Ec(u) is discrete.

This result is essentially sharp.
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The Dirichlet Problem with Prescribed Asymptotics

THEOREM. Suppose Ω ⊂⊂ Rn is a domain with strictly F -convex boundary.

Suppose given:
(xj ,Θj ) ∈ Ω× R+ j = 1, ...,N

ϕ ∈ C(∂Ω)

Then there exists a unique H ∈ C
(

Ω−
⋃

j{xj}
)

such that:

(1) H is F-harmonic on Ω−
⋃

j{xj},

(2) H
∣∣
∂B = ϕ,

(3) There exists constants c,C. so that for each j,

ΘjKp(|x − xj |) + c ≤ H(x) ≤ ΘjKp(|x − xj |) + C
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HAPPY BIRTHDAY

OUSSAMA !!

We look forward to many more years

of your

Wisdom, Leadership and Guidance.
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OUR GREAT APPRECIATION TO THE
ORGANIZERS:

Nicolas GINOUX

Emmanuel HUMBERT
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Andrei MOROIANU
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