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THE INHOMOGENEOUS DIRICHLET PROBLEM FOR
NATURAL OPERATORS ON MANIFOLDS

by F. Reese HARVEY & H. Blaine LAWSON, Jr (*)

Dedicated with great admiration to Marcel Berger

Abstract. — We discuss the inhomogeneous Dirichlet problem written locally
as:

f(x, u,Du,D2u) = ψ(x)
where f is a “natural” differential operator on a manifold X, with a restricted
domain F in the space of 2-jets. “Naturality” refers to operators that arise intrin-
sically from a given geometry on X. Importantly, the equation need not be convex
and can be highly degenerate. Furthermore, ψ can take the values of f on ∂F .

A main new tool is the idea of local jet-equivalence, which gives rise to local
weak comparison, and then to comparison under a natural and necessary global
assumption.

The main theorem covers many geometric equations, for example: orthogonally
invariant operators on a riemannian manifold, G-invariant operators on manifolds
with G-structure, operators on almost complex and symplectic manifolds. It also
applies to all branches of these operators. Complete existence and uniqueness re-
sults are established.

There are also results where ψ is a delta function.
Résumé. — Il s’agit du problème de Dirichlet inhomogène :

f(x, u,Du,D2u) = ψ(x)
sur une variété X où f est un opérateur différentiel « naturel » sur un domaine
F dans l’espace de 2-jets. Des opérateurs naturels viennent intrinsèquement d’une
géometrie donnée sur X. Un point important est que l’équation n’est pas nécessai-
rement convexe et pourrait être très dégénérée. De plus, les valeurs de ψ peuvent
toucher f(∂F ).

Le nouvel outil principal est l’idée de jet-équivalence locale qui donne une com-
paraison faible locale, puis une comparaison sous conditions nécessaires globales.

Le théorème principal s’applique à plusieurs équations géometriques, par
exemple : des opérateurs invariants orthogonalement sur une variété riemannienne,
des opérateurs G-invariants sur une G-variété, des opérateurs sur une variété quasi-
complexe ou symplectique. Il s’applique aussi à toutes les branches de ces équations.
Des résultats d’existence et d’unicité sont établis.

Il y a aussi des résultats lorsque ψ est une fonction delta.

Keywords: Inhomogenous Dirichlet Problem, Geometric Operators on Manifolds.
2020 Mathematics Subject Classification: 35A99, 53C15, 53C38.
(*) Partially supported by the NSF.



3018 F. Reese HARVEY & H. Blaine LAWSONJr

1. Preliminary Discussion

The objective of this paper is to provide a solution to the Dirichlet Prob-
lem with continuous boundary data and inhomogeneous term for a wide
class of geometrically interesting equations on manifolds. The main points
are that the equation need not be either convex or invariant (as in [6]), and
it is allowed to be highly degenerate. Complete existence and uniqueness
results are established. Comparison, and hence uniqueness, is proven under
a mild strengthening of the standard weak ellipticity assumption on the
operator f , which we call tameness. Existence requires the same boundary
assumption as in the homogeneous case [16].
The operators considered here are those which are locally jet-equivalent

to a constant coefficient, or eucildean, case. The notion of jet-equivalence,
introduced in [16], is very general. It is not like transformations of coordi-
nates; it almost never takes the 2-jet of a function to a 2-jet of any function.
However, it is exactly what is necessary for treating interesting geometric
equations on manifolds. The reader may want to look at the examples
below, and in Section 6.
The results here are a direct extension of the work in [16] in the following

sense. Here we assume that the differential operator and its domain (F, f)
are locally jet-equivalent to a constant coefficient pair (F, f). Results in [16]
then establish the Dirichlet problem for f(J2u) = 0 (where J2u is the 2-jet
of u). In fact in [16] there were no operators. We simply replaced the pair
(F, f) with the subequation Ff ≡ {f > 0} and took a potential theory
point-of-view. Here we consider the problem

f(J2u) = ψ

where ψ is an arbitrary continuous function with values in the range of f
(= f(F)). The principle work which reduces this to certain results in [16]
is the establishment of local weak comparison, which is done in Section 4.
Note that the cases where ψ takes values in the interior of the range

of f , are much easier than the general case considered here. Under this
assumption the linearization of the operator is ofter quite nice. In fact
sometimes these cases can be handled by results in [16, Ex. 6.15 and results
in §18].
Let us say again that in our past work we have not considered operators,

but rather we have taken a potential theory approach where the differential
equation is given by the boundary of a subequation. Our main reason for
considering operators here is that with our hypothesis on F and f we can
solve for general inhomogeneous terms ψ.

ANNALES DE L’INSTITUT FOURIER
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An outline of our results is the following (details appear in the next sec-
tion). We begin with a manifold X and a pair (F, f) where f is an operator
and F is its domain. That is, F is a closed subset of the 2-jet bundle of X
and f ∈ C(F ). We require F to have the natural properties of a subequa-
tion as defined in [16]. For the constant coefficient case in Rn subequations
are defined in Definition 2.1. For general equations considered here, there
are local automorphisms of the 2-jet bundle (the jet-equivalences defined
in Definition 2.2) which take (F, f) onto a constant coefficient pair (F, f) in
local coordinates. The properties we need for (F, f) pull-back to the desired
properties for (F, f). In particular, F is a subequation in the sense of [16].
The local operator f is assumed tame (Definition 2.3) and compatible with
F (Definition 2.4). We have tried to write this paper with a minimum of
global geometry, to reach a wider audience. The global viewpoint is care-
fully presented in [16]. The main new part here is the local weak comparison
Theorem 4.2 which is a local result.

Now given such a subequation-operator pair (F, f) and a function ψ :
X → R with values in the range f(F) of the operator, we want to solve the
problem

(1.1) f(J2u) = ψ with J2u ∈ F

at all points of a domain Ω ⊂⊂ X with prescribed continuous boundary
values ϕ ∈ C(∂Ω).
At this level of generality, with no convexity or non-degeneracy assump-

tion, there is only one way available to give meaning to the equation (1.1),
namely, one of the equivalent viscosity definitions. (See [19] for the equiv-
alence of the distributional approach when convexity is assumed.) To do
this we consider the subset

(1.2) Ff (ψ) ≡ {J ∈ F : f(J) > ψ}

From our assumptions on f (i.e., on f) we see that the solutions to our
problem are solutions to the Ff (ψ)-harmonic Dirichlet problem as in [16].
Utilizing Dirichlet duality, such a solution is a continuous function on Ω
such that in Ω

u is Ff (ψ)-subharmonic and −u is F̃f (ψ)-subharmonic.

This means the following. A continuous function u on an open set Ω is
G-subharmonic for a subequation G if for all x ∈ Ω and all C2-functions
ϕ near x with u 6 ϕ and u(x) = ϕ(x), we have J2

xϕ ∈ G. If G is a
subequation, so is its dual

(1.3) G̃ ≡ −(∼ IntG) = ∼(− IntG).

TOME 69 (2019), FASCICULE 7
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Under our assumptions here, Ff (ψ) is a subequation, and one computes
that the dual is

(1.4) F̃f (ψ) = F̃ ∪ {J ;−J ∈ IntF and f(−J) 6 ψ}.

The general pattern of our proof is to show (in Section 4) that Ff (ψ)
satisfies local weak comparison (Definition 4.1). It then satisfies global weak
comparison by [16, Thm. 8.3]. Now of course some global hypothesis is
required. If there is a global approximator, then Ff (ψ) satisfies comparison
by [16, Thm. 9.7]. Theorem 5.2 in [16] then gives the Main Theorem 2.11.
To get a global approximator we assume that Ff (ψ) has a monotonicity

cone M (coming from one for the constant coefficient model). We then
assume that there exists a smooth strictly M -subharmonic function on a
neighborhood of Ω.

In the general manifold case, such a function is certainly necessary. Con-
sider the inhomogeneous complex Monge–Ampère equation on a domain
Ω in a complex manifold, and suppose that it is always solvable as above.
Now blow-up a point x0 ∈ Ω and choose a function ψ which is positive on
D ≡ π−1(x0) where π : Ω̃ → Ω is the blow-up projection. The Dirichlet
problem is not solvable for this ψ. This follows since any pluri-subharmonic
function u will be constant on D, and hence the determinant of its complex
hessian will be 6 0 (actually ≡ 0 if n > 2) along D.
Because there are so many important special cases of our Main Theo-

rem 2.11 which are of historical significance in the literature, many exam-
ples and historical remarks are given in Section 6. However we give a few
examples just below to give an idea of the scope of the Main Theorem.

In Section 7 we consider the case of solving the inhomogeneous equation
with a measure µ on the right hand side. This is sometimes possible with
µ taken to be the Dirac delta function. However, in this case one needs the
operator to be homogeneous and one must properly adjust its homogeneity.
Now may be a good time for the reader to see the kind of examples to

which our Main Theorem applies. These and many more are treated in
detail in Section 6.

Example 1.1 (The Monge–Ampère operator on Almost Complex Man-
ifolds). — On any almost complex manifold (X, J) there is an intrinsic
operator i∂∂ which allows one to define a subequation F ≡ PC ⊂ J2(X)
consisting at x ∈ X of J2

xu with (i∂∂u)x > 0. This allows us to define the
homogeneous complex Monge–Ampère equation by the boundary of PC,
i.e., the PC-harmonics.

ANNALES DE L’INSTITUT FOURIER



NATURAL INHOMOGENEOUS DIRICHLET PROBLEMS 3021

Now given a volume form Ω on X, we can define a Monge–Ampère op-
erator

f(J2u) = (i∂∂u)n

Ω
(dimRX = 2n). This gives an operator pair (PC, f) and for any continuous
function ψ ∈ C(X) with ψ > 0 we have the inhomogeneous equation

(1.5) f(J2u) = ψ.

It follows from our Main Theroem (and it was already shown in [22])
that the Dirichlet problem for (1.5) can be solved for arbitrary continu-
ous boundary data on any compact, smooth domain with a strictly J-psh
defining function.

Example 1.2 (Invariant Operators on Riemannian Manifolds, e.g. Krylov/
Donaldson operators). — On any riemannian manifold X there is a rie-
mannian Hessian operator on C2-functions u given for vector fields V,W by

(1.6) (Hess u)(V,W ) = VWu− (∇VW )u

where ∇ is the Levi-Civita connection on X. This Hessian is a symmetric
tensor in V and W , and gives a projection J2(X)→ Sym2(T ∗X).
Now given an O(n)-invariant subequation F ⊂ Sym2(Rn) and an O(n)-

invariant operator f ∈ C(F), then these give rise to a subequation F and
operator f on X. (This is well explained in [16].) To see that F is a sube-
quation it is only necessary to show that F +P ⊂ F where P ⊂ Sym2(Rn)
is the set of A > 0. The operator f is tame and compatible (Definitions 2.3
and 2.4) if f is.

As an example consider the kth Hessian operator given on A ∈ Sym2(Rn)
by σk(A) = σk(λ1, . . . , λn), the kth elementary symmetric function of the
eigenvalues of A. The natural domain for this operator is

Σk ≡ {A ∈ Sym2(Rn) : σ1(A) > 0, . . . , σk(A) > 0}.

This pair has been studied for domains in Rn by a number of authors (e.g.,
[6, 30, 31, 32, 33, 34, 35]). Note that k = 1 gives the riemannian Laplacian,
and k = n gives the riemannian real Monge–Ampère operator.
Associated to these are the quotients

(1.7) σk,` = σk
σ`

on Σk

for ` < k, which were studied by Krylov in [27] and many others (see
Spruck for example [30]). Our Main Theorem 2.11 solves the inhomogeneous
Dirichlet Problem for this equation on manifolds (see Example 6.5).

TOME 69 (2019), FASCICULE 7
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For (k, `) = (n, n− 1) these equations have received much attention due
to a conjecture of Donaldson (see [12]).

Example 1.3 (Operators on G2-manifolds). — Let X be a riemannian
7-manifold with G2-holonomy (or more generally with a topological G2-
structure [16, Ex. I in §1]). Let F ⊂ Sym2(R7) be the set of A with
tr(A

∣∣
W

) > 0 for all associative 3-planes W . Let f be the operator

f(A) ≡ min
{

tr
(
A
∣∣
W

)
: Wan associative 3-plane

}
Then this gives a tame and compatible pair (F, f) on X to which the Main
Theorem applies.

There is a similar story for the coassociative case.

Example 1.4 (The Lagrangian Monge–Ampère operator on Gromov Man-
ifolds). — Let (X,ω) be a symplectic manifold equipped with a Gromov
metric. Set Lag ≡ {A : tr(A

∣∣
W

) > 0 for all Lagrangian planes W}, and let
Lag ⊂ J2(X) be the subequation determined as in 1.4. The authors showed
in [23] that there is a natural polynomial differential operator MLag on Lag,
called the Lagrangian Monge–Ampère operator. It is tame and compatible
with Lag. Thus this gives a natural operator MLag on Lag to which our
Main Theorem applies. See Example 6.7 and Theorem 6.8 below.

Example 1.5 (Canonical Operators on Sym2(Rn)). — A weakly elliptic
operator f ∈ C(Sym2(Rn)) is said to be a canonical operator if f(A+ tI) =
f(A) + t for all A ∈ Sym2(Rn) and t ∈ R. Every proper subequation
F ⊂ Sym2(Rn) has a unique canonical operator f with F = {f = 0}. For
this and further details see Section 6. Note that every canonical operator
is tame (Definition 2.3).

Our Main Theorem 2.11 has a generalization (Theorem 2.11′) where the
assumption of jet-equivalence is expanded to affine-jet-equivalence.

Example 1.6. — This generalized Theorem 2.11′ gives solutions to the
Dirichlet problem

det {Hessx u+Mx} = ψ(x)

on a riemannian manifold, where M is a section of Sym2(T ∗X).

Finally we recall the basic concept used for uniqueness in the Dirichlet
problem. Let G be a subequation on a manifold X, and consider a domain
Ω ⊂⊂ X. By G(Ω) we mean the set of upper semi-continuous functions on
Ω which are G-subharmonic on Ω.

ANNALES DE L’INSTITUT FOURIER
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Definition 1.7. — We say that comparison holds for G on X if for all
Ω ⊂⊂ X, and for all u ∈ G(Ω), v ∈ G̃(Ω), one has that

u+ v 6 0 on ∂Ω =⇒ u+ v 6 0 on Ω.

Note that if u and w are solutions to the Dirichlet problem on Ω, then
u,w ∈ G(Ω), −u,−w ∈ G̃(Ω) and u = w on ∂Ω. Hence, comparison implies
that u = w.

Note 1.8. — Of course an interesting case of the work here is when
(F, f) = (F, f) is itself constant coefficient in euclidian space. This case
(pure second-order) is contained in the work of Cirant and Payne [7], where
other quite nice theorems are proved.

Final Remark. — There are two basic unanswered questions discussed
in Section 8. First, does comparison hold for all topological tame (Defini-
tion 6.16) f , for the inhomogeneous equation f(D2h) = ψ. More specifically,
for the Special Lagrangian Potential Equation tr{arctan(D2h)} = ψ for all
ψ ∈ C(−nπ2 , n

π
2 ).

The second question requires defining an operator f̄ on certain functions
h associated with a function f ∈ C(Sym2(Rn)). A function h onXopen ⊂ Rn
is defined to be in the domain of f̄ if there exists ψ ∈ C(X) such that h
satisfies the viscosity equation f(D2h) = ψ on X, in which case we say that
ψ is a value of f̄ at h. Of course, f̄ may not be single-valued on its domain.
Thus the second question can be stated succinctly as:

Is the operator f̄ actually single-valued, assuming that f is topo-
logically tame, or even tame?

If f is uniformly elliptic and convex, then it is well known that f̄ is single-
valued. However, we have asked several experts this general question, and
nothing more seems to be known. In Section 8 we have found positive
results for canonical operators f . Every subequation F in Sym2(Rn) has
a canonical operator. From Proposition 8.1 and Theorem 8.3 we have the
following:

Theorem 1.9. — Let f be a canonical operator on Sym2(Rn), and X ⊂
Rn an open subset. Consider the operator f̄ on functions as described above.
In this canonical case the operator f̄ is single-valued.

2. Statement of the Main Result

We begin by considering the constant coefficient (or euclidean) case. Let

(2.1) J2 = R⊕ Rn ⊕ Sym2(Rn)

TOME 69 (2019), FASCICULE 7
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be the space of “2-jets at 0” with classical coordinates (r, p, A).

Definition 2.1. — By a constant coefficient subequation on Rn we
mean a closed subset F ⊂ J2 such that

(P) F + (0, 0, P ) ⊂ F, ∀ P > 0 (Positivity or Weak Ellipticity),
(N) F + (−r, 0, 0) ⊂ F, ∀ r > 0 (Negativity),
(T) F = Int F (The Topological Condition)

Definition 2.2. — Given such an F, we consider a continuous function,
or operator

f ∈ C(F).
We call (F, f) a constant coefficient subequation-operator pair (often short-
ened to “operator pair” when the meaning is obvious). Note that the case
F = J2 is allowed here.

We introduce the following structural condition on the operator f .

Definition 2.3 (Tameness). — The operator f ∈ C(F) is said to be
tame on F if

(2.2) ∀ s, λ > 0, ∃ c(s, λ) > 0 such that
f(J + (−r, 0, P ))− f(J) > c(s, λ) ∀ J ∈ F, r > s and P > λI.

This is a mild(1) strengthening of the required, weakest possible assump-
tion:

(2.3) (Degenerate Elliptic) on F
f(J + (0, 0, P ))− f(J) > 0 ∀ J ∈ F and ∀ P > 0.

Note that if f is degenerate elliptic, then if condition (2.2) holds for
c = c(λ) and P = λI. It also holds for P > λI by (2.3).

There is a second condition we must impose, which is a compatibility
between the operator f and the subequation F (when F is not all of J2).

Definition 2.4 (F/f -Compatibility). — We say that the set F and the
operator f are compatible if

(2.4) ∂F = {f = c0} for some c0 ∈ R.

This condition implies that the level sets {f = c}, for c > c0 are contained
in Int F, i.e., they do not meet the boundary ∂F. For instance, it eliminates
the following “bad” case.

(1)“mild” in the sense that it holds for most natural operators. (See Propositions 6.11
and 6.13.)

ANNALES DE L’INSTITUT FOURIER
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Example 2.5. — Consider the pure second-order subequation on R2: F =
P̃ = {λmax > 0}, and let f = λ1 + λ2. Here f(F) = R, and for all c < 0 the
boundary of Fc ≡ {f > c} contains points of ∂F where f > c. There are
lots of examples like this one, where f is elliptic on F, but

(2.4∗) ∃ c ∈ f(F) and J ∈ ∂F with f(J) > c.

Note that (2.4∗) is the negation of (2.4).

An elementary (and probably classical) sufficient condition for tameness
is given in the following Lemma, which is proved in Appendix B. See Ex-
ample 6.5 for an application.

Lemma B.1. — Suppose F is a pure second-order convex cone sube-
quation with a compatible degenerate elliptic operator f ∈ C(F). If f is
concave and homogeneous of degree > 1, then

(B.1) tf(I) 6 f(A+ tI)− f(A) ∀ t > 0 and ∀ A ∈ F,

and hence f is tame.

The final ingredient is the following.

Definition 2.6. — Let (F, f) be a operator pair. By a monotonicity
cone for (F, f) we mean a constant coefficient convex cone subequation
M ⊂ J2, with vertex at 0, such that

F(c) + M ⊂ F(c) for all values c of f

where F(c) ≡ {f > c}.

The pure second order case of the following result follows from the work
of Cirant and Payne [7]. In fact their work is much more general; they
consider operators of the form f(x,D2u). For the cases considered here
their assumptions are equivalent to our tameness condition.

Theorem 2.7 (Constant Coefficient Operators). — Let (F, f) be a com-
patible operator pair where f is tame on F, and suppose M is a monotonicy
cone for (F, f). Let Ω ⊂⊂ Rn be a domain with smooth boundary which sat-
isfies the strict boundary convexity condition (Definition 3.1, see also The-
orem 3.5). Suppose also that Ω admits a smooth strictly M-subharmonic
function. Then for each ψ ∈ C(Ω) with values in f(F), and each ϕ ∈ C(∂Ω),
there exists a unique function h ∈ C(Ω) satisfying:

(1) h is a (viscosity) solution to f(J2u) = ψ, J2u ∈ F on Ω, and
(2) h

∣∣
∂Ω = ϕ.

Furthermore, comparison holds, and h is the associated Perron function.

TOME 69 (2019), FASCICULE 7
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Note that if ψ ∈ C(Ω) does not take its values in f(F), then problem (1.1)
makes no sense for smooth functions. The functions ψ ∈ C(Ω) which satisfy
this necessary condition: ψ(Ω) ⊂ f(F) will be called admissible (inhomoge-
neous terms).

Remark 2.8. — The notion of strict F convexity for ∂Ω goes back to
Caffarelli, Nirenberg and Spruck [6], and appears in many works of the
authors. The concept is discussed in Section 3.

Suppose now that an operator f ∈ C(F) has the property that for some
strictly increasing continuous function χ defined on the set f(F) ⊂ R, the
operator f ≡ χ ◦ f is tame on F. Then f is said to be tamable (by χ).

Theorem 2.7′. — The conclusions of Theorem 2.7 remain true for any
operator f ∈ C(F) which can be tamed.

Proof. — Set ψ = χ◦ψ and note that ψ is an admissible inhomogeneous
term for f ≡ χ ◦ f if and only if ψ is an admissible inhomogeneous term
for f . �

Second order equations on a manifold

We now take up the discussion of subequation-operator pairs (F, f) on an
n-manifold X. We recall that the natural setting for second-order equations
is the 2-jet bundle J2X → X defined intrinsically at a point x ∈ X as the
quotient

J2
x(X) ≡ C∞x /C∞x,3

where C∞x denotes the germs of smooth functions at x, and C∞x,3 the sub-
space of germs which vanish to order three at x. Given a smooth function
u on X, let J2

xu ∈ J2
x(X) denote its 2-jet at x, and note that J2u is a

smooth section of the bundle J2(X). This bundle is discussed in general
in [16]. However, we will only need the following. Given a system of local
coordinates U ⊂ Rn for X, there is a natural trivialization

(2.5) J2(U) = U × (R⊕ Rn ⊕ Sym2(Rn))

and J2
xu = (x, u(x), Dxu,D

2
xu).

The notion of jet-equivalence is crucial for this paper. This concept is
defined and broadly discussed on manifolds in [16]. However, here we will
only need to understand it in the local trivialization (2.5).

ANNALES DE L’INSTITUT FOURIER
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Definition 2.9. — A (linear) jet-equivalence of J2(U) is a bundle au-
tomorphism

Φ : J2(U) −→ J2(U)
given by

Φ(x, r, p, A) = (x, r, g(x)p, h(x)Aht(x) + Lx(p))
where g, h : U → GLn(R) and L : U → Hom(Rn,Sym2(Rn)) are smooth
(or at least Lipschitz continuous) functions.

We point out that jet-equivalences vastly change subequations. For a
smooth function u, Φ(J2u) is essentially never the 2-jet of a function.

Definition 2.10. — Let F ⊂ J2(X) be a closed set and f ∈ C(F ) an
operator. The pair (F, f) is locally jet-equivalent to a constant coefficient
operator pair (F, f) if each point x ∈ X has a local coordinate neighborhood
U ⊂ Rn and a jet-equivalence Φ : J2(U) → J2(U) which takes the pair
(F, f) to (F, f), that is,

Φ
(
F
∣∣
U

)
= U × F and f = f ◦ Φ.

If, in addition, M is a monotonicity cone for (F, f), and M ⊂ J2(X) is a
closed set such that for each local jet-equivalence above

Φ
(
M
∣∣
U

)
= U ×M,

we say that (F, f),M is locally jet-equivalent to (F, f),M.

Theorem 2.11 (The Main Result). — Suppose that (F, f) is a sube-
quation operator pair with monotonicity coneM on a manifold X. Suppose
further that (F, f),M is locally jet-equivalent to a compatible constant co-
efficient operator pair (F, f) with monotonicity cone M, and that f is tame
on F. Let Ω ⊂⊂ X be a domain with smooth boundary, and assume the
following given data:

(1) (Inhomogeneous Term) ψ ∈ C(Ω) with values in f(F), and
(2) (Boundary Values) ϕ ∈ C(∂Ω).
If X supports a smooth strictly M -subharmonic function, then compar-

ison holds (Definition 1.7) for arbitrary domains Ω ⊂⊂ X.
If in addition ∂Ω is smooth and satisfies the strict boundary convexity

condition (Definition 3.1), there exists a unique h ∈ C(Ω) which
(3) satisfies the equation f(J2h) = ψ on Ω (in the viscosity sense), and
(4) h

∣∣
∂Ω = ϕ.

Furthermore, h is the associated Perron function.

TOME 69 (2019), FASCICULE 7
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Note 2.12.
(a) For reduced subequations one can simply invoke strictM -convexity

of ∂Ω instead of using Definition 3.1 (see Theorem 3.5 below).
(b) When the euclidean model (F, f) is pure second-order, the convexity

cone subequation P , with euclidean model P = R⊕Rn ⊕{A > 0},
is always a monotonicity cone for (F, f) on X. However for many
such examples the optimal monotonicity cone is much larger.

Theorem 2.11 has a stronger version.

Theorem 2.11′. — Theorem 2.11 remains true if one replaces jet-equiv-
alence with the more general concept of affine jet equivalence (see Defini-
tion 4.4).

3. Boundary Convexity

The notion of boundary convexity of a domain is used classically to
construct barriers, which are crucial in proving existence for the Dirichlet
problem. Caffarelli, Nirenberg and Spruck [6] presented a definition which
worked for constant coefficient subequations in Rn, which are orthogonally
invariant and pure second-order. Their ideas were adapted, first in [14, §5],
without any invariance, and then in [16, §11], to the completely general
case of an arbitrary subequation on a manifold.
The reader is referred to [20, §7] for nice presentation of these ideas with

many examples.

Definition 3.1. — Let Ω ⊂⊂ X be a domain with smooth boundary in
a manifold X. Let (F, f) be an operator pair and ψ ∈ C(Ω) an admissible
inhomogeneous term as in Theorem 2.11. Then we have the subequation
Ff (ψ) and its dual given in (1.2) and (1.4). We say that ∂Ω satisfies the
strict boundary convexity condition if each point x ∈ ∂Ω is strictly Ff (ψ)-
and F̃f (ψ)-convex, as defined in [20, §7].

Now in the case where (F, f) is reduced (i.e., independent of the depen-
dent variable), this condition is implied by a simple condition that depends
only on the monotonicity cone M . To state this we recall some basic defi-
nitions and prove a Lemma which has some independent interest.
We recall that there is a canonical splitting J2(X) = R⊕J2

red(X) (where
R corresponds to the value of the function). By a reduced subequation we
mean one of the form R⊕G ⊂ R⊕ J2

red(X). For the rest of this section all
subequations will be reduced.
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Given a reduced subequation G ⊂ J2
red(X) on a manifold X there is

an associated asymptotic interior −→G where J ∈ −→G if there is an open set
J ∈ N (J) ⊂ J2

red(X) and t0 > 0 with

(3.1) tN (J) ⊂ G for all t > t0.

This defines an open set −→G ⊂ J2
red(X) which is a bundle of cones with

vertices at the origin in each fibre.
It is immediate from this definition that for any two subequations

(3.2) G ⊂ H =⇒ −→
G ⊂

−→
H.

Moreover, one see easily that (with vertices at the origin)

(3.3) If G is a cone subequation, then −→G = IntG.

The assertion can be carried over to translates as follows.

Lemma 3.2. — Suppose that G is a cone subequation with vertices at
the origin, and J0 is a continuous section of J2

red(X). Then the translated
subequation has the same asymptotic interior:

(3.4) −−−−→
G+ J0 = IntG.

Proof. — Suppose J ∈ −−−−→G+ J0, i.e., there exists a neighborhood N (J)
and t0 > 0 such that tN (J) ⊂ J0 +G for all t > t0. Then tsN (J) ⊂ J0 +G

for all t > t0 and s > 1. Since G is a cone bundle, we have tN (J)− 1
sJ0 ⊂ G.

Sending s → ∞ proves that tN (J) ⊂ G for all t > t0. That is, J ∈ −→G ,
which by (3.3) equals IntG.

Conversely, if J ∈ IntG, then there exists N (J) ⊂ IntG. Since IntG is
a bundle of cones, tN (J) ⊂ IntG for all t > 0. Pick a small neighborhood
N ′(J) and t0 > 0 so that N ′(J) − 1

t J0 ∈ N (J) for all t > t0. Then
tN ′(J) ⊂ J0 + tN (J) ⊂ J0 +G for all t > t0 proving that J ∈ −−−−→J0 +G. �

The interior of a monotonicity subequation for G is smaller than the
asymptotic interior of G.

Corollary 3.3. — Suppose M ⊂ J2
red(X) is any bundle of cones with

vertices at 0. If G ⊂ J2
red(X) is a subequation which is M monotone, then

(3.5) IntM ⊂ −→G.

Proof. — Fix x ∈ X and choose a local section J0 of J2
red(X) defined near

x and taking values in G. Since G is M -monotone, J0 +M ⊂ G. Hence, by
(3.2), −−−−−→J0 +M ⊂

−→
G . Finally, by Lemma 3.2, IntM = −−−−−→J0 +M ⊂

−→
G . �
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This extends as follows.

Corollary 3.4. — Suppose (F, f) is a reduced subequation pair and
M ⊂ J2

red(X) is any bundle of cones with vertices at 0. If F isM -monotone
and the operator f is M -monotone, then for each admissible ψ the inho-
mogeneous subequation Ff (ψ) is M -monotone, and hence

(3.6) IntM ⊂
−−−→
Ff (ψ).

Suppose now that (F, f) andM is a reduced triple, as above. In this case
the strict Ff (ψ) convexity at x ∈ ∂Ω, given in Definition 3.1, is simply that
in a neighborhood of x:

There exists a local smooth defining function for ∂Ω which is
strictly

−−−→
Ff (ψ)-subharmonic.

Now if the subequation Ff (ψ) is M -monotone, so is its dual. As a conse-
quence we have the following theorem. We say that a boundary is strictly
M -convex if each point has a smooth local defining function which is strictly
M -subharmonic, i.e., such that J2

redρ ∈ IntM .

Theorem 3.5. — Let (F, f) be a operator pair with monotonicity cone
M as in Theorem 2.11. If the triple (F, f),M is reduced, then any boundary
which is strictly M -convex, satisfies the strict boundary convexity condi-
tion (3.1).

4. Local Weak Comparison

Suppose that G ⊂ J2(X) is a subequation on a manifold X. Fix a metric
on the 2-jet bundle J2(X). For c > 0 we define Gc by its fibres

Gcx ≡ {J ∈ Gx : dist(J,∼Gx) > c} = {J ∈ Gx : J + η ∈ Gx ∀ ‖η‖ 6 c}.

Definition 4.1. — We say that weak comparison holds for G on an
open set Y ⊂ X if there is a c > 0 such that for all u ∈ Gc(Y ), v ∈ G̃(Y )
and for all Ω ⊂⊂ Y

u+ v 6 0 on ∂Ω =⇒ u+ v 6 0 on Ω

i.e., the Zero Maximum Principal holds for u+ v. We say that Local weak
comparison holds for G on X if every point has a neighborhood Y on which
weak comparison holds.

Theorem 4.2 (Local Weak Comparison). — Let (F, f) be a constant
coefficient subequation with operator on Rn which is both compatible and
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tame. Suppose that (F, f) is a subequation with operator which is jet equiv-
alent to (F, f) on a open set X ⊂ Rn. Then for any admissible continuous
inhomogeneous term ψ, weak comparison hold for the associated inhomo-
geneous subequation Ff (ψ) ≡ {J ∈ F : f(J) > ψ} on X

Proof. — Let Φ : J2(X)→ J2(X) be the jet bundle isomorphism taking
(F, f) to (F, f), that is

Φ(F ) = F and f = f ◦ Φ.

In terms of the canonical trivialization of J2(X) we have for x ∈ X that

(4.1) (r′, p′, A′) ≡ Φx(r, p, A) ≡ (r, g(x)p, h(x)Ah(x)t + Lx(p))

The associated inhomogeneous subequation Ff (ψ) ⊂ J2(X) has fibre over
x ∈ X

(4.2)
Ff (ψ)x ≡ {J ∈ Fx : f(x, J) > ψ(x)}

= {J : J ′ ≡ Φx(J) ∈ F and f(J ′) > ψ(x)}

The dual subequation F̃f (ψ) has fibre at y ∈ X given by:

(4.3a) F̃f (ψ)y = F̃ ∪ {J : −J ∈ IntF and f(y,−J) 6 ψ(y)}.

Moreover,

(4.3b) J ∈ F̃f (ψ)y ⇐⇒ J ′ ≡ Φy(J) ∈ F̃f (ψ)y

and

(4.3c) F̃f (ψ)y = F̃ ∪ {J ′ : −J ′ ∈ Int F and f(−J ′) 6 ψ(y)}

Failure of weak comparison for Ff (ψ) on X means there exists Ω ⊂⊂ X,
c > 0, u ∈ Ff (ψ)c(Ω) and v ∈ F̃f (ψ)(Ω) such that:

u+ v 6 0 on ∂Ω, but sup
Ω

(u+ v) > 0.

(i.e., the Zero Maximum Principle fails for u+v on Ω). We use the Theorem
on Sums of [10], in the form [16, Thm. C.1]. It says that there exist a point
x0 ∈ Ω, a sequence of numbers ε↘ 0 with associated points zε = (xε, yε)→
(x0, x0), and 2-jets:

αε ≡ (rε, pε, Aε) ∈ F (ψ)cxε(4.4a)

and βε ≡ (sε, qε, Bε) ∈ F̃ (ψ)yε(4.4b)
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(for simplicity, here and below, we denote Ff (ψ)c by F (ψ)c, Ff (ψ) by F (ψ),
etc.) with the following properties.

rε = u(xε), sε = v(yε), and rε + sε = Mε ↘M0 > 0(4.5)

pε = xε − yε
ε

= −qε and |xε − yε|2

ε
−→ 0(4.6) (

Aε 0
0 Bε

)
6

3
ε

(
I −I
−I I

)
.(4.7)

We employ the notations

(4.8) α′ε ≡ (r′ε, p′ε, A′ε) ≡ Φxε(αε) and β′ε ≡ (s′ε, q′ε, B′ε) ≡ Φyε(βε).

By (4.1) this can be rewritten as

r′ε = rε, p′ε = g(xε)pε, A′ε = h(xε)Aεh(xε)t + Lxε(pε)(4.9)
s′ε = sε, q′ε = g(yε)qε, B′ε = h(yε)Bεh(yε)t + Lyε(qε).(4.10)

Lemma 4.3. — There exist Pε > 0 for ε > 0 small, such that:

lim
ε→0
{α′ε + β′ε + (−Mε, 0, Pε)} = 0.

Proof. — The first component is r′ε−Mε+s′ε = rε−Mε+sε which equals
zero by (4.5). The second component is

p′ε + q′ε = g(xε)
(xε − yε)

ε
− g(yε)

(xε − yε)
ε

=
(
g(xε)− g(yε)

)
(xε − yε)

ε

which converges to zero as ε→ 0 by (4.6). It remains to find Pε > 0 so that
the third component A′ε +B′ε + Pε, converges to zero.
Multiplying both sides in (4.7) by

(
h(xε) 0

0 h(yε)

)
on the left and

(
h(xε)t 0

0 h(yε)t
)

on the right

gives(
h(xε)Aεh(xε)t 0

0 h(yε)Bεh(yε)t
)
6

3
ε

(
h(xε)h(xε)t −h(xε)h(yε)t
−h(yε)h(xε)t h(yε)h(yε)t

)
.
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Restricting these two quadratic forms to diagonal elements (x, x) then
yields

h(xε)Aεh(xε)t + h(yε)Bεh(yε)t

6
3
ε

[
h(xε)(h(xε)t − h(yε)t)− h(yε)(h(xε)t − h(yε)t)

]
= 3
ε

(h(xε)− h(yε))(h(xε)t − h(yε)t)

6
λ

ε
|xε − yε|2 · I for some λ > 0.

Thus we can define Pε > 0 by:

(4.11) h(xε)Aεh(xε)t + h(yε)Bεh(yε)t + Pε = λ

ε
|xε − yε|2 · I.

It now follows from the definitions in (4.9) and (4.10) that

(4.12) A′ε +B′ε + Pε = λ

ε
|xε − yε|2 · I + Lxε(pε) + Lyε(qε).

However,

|Lxε(pε) + Lyε(qε)| =
∣∣∣∣(Lxε − Lyε)(xε − yεε

)∣∣∣∣
6 ‖Lxε − Lyε‖

|xε − yε|
ε

= O

(
|xε − yε|2

ε

)
.

Using (4.6) this shows that

�(4.13) A′ε +B′ε + Pε ∼=
|xε − yε|2

ε
→ 0 as ε↘ 0.

We now examine the notion of c-strictness. Note that the definition of
weak local equivalence is independent of the choice of metric on J2(X).
We set some notation. If α ≡ (r, p, A) and η are 2-jets at x, let α′ ≡

(r′, p′, A′) ≡ Φx(α) and η′ ≡ Φx(η). Since Φx : J2
x(X)→ J2

x(X) is a linear
isomorphism, we can define a norm ‖α‖ on J2

x(X) to be the euclidean norm
|α′| of α′ = Φx(α).
By the definition of c-strictness, we have

(4.14) α ∈ F (ψ)cx ⇐⇒ α+ η ∈ F (ψ)x ∀ ‖η‖ 6 c.

By (4.2) we then have (with notation as above) that (4.4a) can be rewritten
as

(4.4a′) αε ∈ F (ψ)cxε ⇐⇒ α′ε + η′ ∈ F and f(α′ε + η′) > ψ(xε) ∀ |η′| 6 c.
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Using (4.3), (4.4b) can be rewritten as

(4.4b′) (i) β′ε ∈ F̃, or (ii) −β′ε ∈ Int F and f(−β′ε) 6 ψ(yε).

We are now ready to complete the proof. For ε > 0 small enough, con-
dition (i): β′ε ∈ F̃ is ruled out as follows. If (i) holds, then by definition of
the dual,

−β′ε /∈ Int F.

Define

(4.15) α′′ε ≡ α′ε + (−Mε, 0, Pε).

By positivity (P) and negativity (N), for the subequation F(ψ)cxε and the
fact that α′ε ∈ F(ψ)cxε , it follows that:

(4.4a′′) α′′ε ∈ F(ψ)cxε .

Now since −β′ε /∈ Int F, we have that

0 < c 6 dist(α′′ε ,−β′ε) = |α′′ε ,+β′ε|

which, by Lemma 4.3, has limit 0 as ε ↘ 0. This shows that condition (i)
is not possible, and we are left with condition (ii).
Again, by the definition of c-strict, we can rewrite (4.4a′′) as

(4.4a′′′) α′′ε + η′ ∈ F and f(α′′ε + η′) > ψ(xε) ∀ |η′| 6 c.

Combining this with condition (ii) of (4.4b′) yields

(4.16) f(−β′ε)− f(α′′ε + η′) 6 ψ(yε)− ψ(xε) ∀ |η′| 6 c.

We shall now show that (4.16) violates tameness, thereby completing the
proof of Theorem 4.2. With k, λ > 0 small and fixed, define

η′ε ≡ −(β′ε + α′′ε )− (−k, 0, λI).

Then |η′ε| 6 c for ε > 0 sufficiently small by Lemma 4.2, and so (4.16)
holds. However

α′′ε + η′ε + (−k, 0, λI) = −β′ε,

so by the tameness of F the left hand side of (4.16) is bounded below by
the constant c(k, λ) > 0, independent of ε → 0. Thus for ε > 0 small, we
have

0 < c(k, λ) 6 ψ(yε)− ψ(xε),

which is a contradiction since yε − xε → x0 − x0 = 0 as ε→ 0. �

Theorem 4.2 can be generalized by expanding the notion of equivalence.
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Definition 4.4. — By an affine jet equivalence we mean an automor-
phism Φ̃ : J2(X)→ J2(X) of the form

Φ̃ = Φ + J

where Φ is a (linear) jet equivalence and J is a section of the bundle J2(X).

Suppose now that we have a subequation F which is affinely jet-equiv-
alent to a constant coefficient equation F on a coordinate chart U . Then it
is shown in Lemma 6.14 in [16] that if

J ∈ Fx ⇐⇒ Φx(J) + Jx ∈ F,

then
J ∈ F̃x ⇐⇒ Φx(J)− Jx ∈ F̃

We now go to the proof above where the hypothesis of jet equivalence is
replaced by affine jet equivalence. Then the display (4.8) must be replaced
by

(4.8′) α′ε = Φxε + Jxe and β′ε = Φyε − Jye .

Since Jxe − Jye → 0 as ε → 0, the proof goes through in this case. This
give the following.

Theorem 4.5. — Theorem 4.2 remains true if one assumes, more gen-
erally, that (F, f) is affinely jet equivalent to (F, f) (rather than just jet-
equivalent to (F, f)).

5. Proof of the Main Theorem

We shall use the following.

Theorem 5.1 ([16, Thm. 9.7]). — Suppose F is a subequation on a
manifold for which local weak comparison holds. Suppose there exists a C2

strictly M -subharmonic function on X where M is a monotonicity cone
for F . Then comparison holds for F on X.

Now on X we are considering the subequation Ff (ψ). By Theorem 4.2
local weak comparison holds for this equation. We have hypothesized that
there is a strictly M subharmonic function where M is a monotonicity
cone subequation for Ff (ψ). (See Definition 2.6.) Hence comparison holds
for Ff (ψ) on X by Theorem 5.1 above.
The Main Theorem 2.11 is now a consequence of the following.

TOME 69 (2019), FASCICULE 7



3036 F. Reese HARVEY & H. Blaine LAWSONJr

Theorem 5.2 ([16, Thm. 13.3]). — Suppose comparison holds for a
subequation F on X. Then for every domain Ω ⊂⊂ X with smooth bound-
ary which is strictly F - and F̃ -convex, both existence and uniqueness hold
for the Dirichlet problem.

Proof of Theorem 2.11. — Use Theorem 5.1 for uniqueness. Use Theo-
rem 5.2 and Theorem 3.5 for existence. �

Proof of Theorem 2.11′. — This is the same, but one uses Theorem 4.5
to get local weak comparison. �

6. Applications and Historical Remarks

The main result, Theorem 2.11, applies to many equations of classical
interest. We note, however, that in these cases the operators f are almost
always concave (so that the constraint sets are convex). By contrast, here
F is an arbitrary subequation. Furthermore, in the literature the inhomo-
geneous term ψ is often required to satisfy a strict inequality ψ > c where
here Theorem 2.11 applies to any ψ > c where c is the minimum admissible
value.
Now Theorem 2.11 concerns subequation-operator pairs on manifolds

with the property that they are locally jet-equivalent to constant coefficient
pairs (F, f). As noted in Section 1 such equations arise in a very natural
way. For example, on almost complex manfiolds, on riemannian manifolds,
on manifolds with a topological reduction of structure group to G ⊂ O(n),
etc. (see [16, 20, 22]). This certainly applies to manifolds with integrable
reductions (i.e., special holonomy) such as Kähler manifolds, hyperKähler
manifolds, G2 and Spin7 manifolds, etc.
Of course, Theorem 2.11 does not address regularity, and in fact, without

further assumptions no regularity beyond continuity is possible.(2)

Quite a few of the classical elliptic operators fall under a much more
general rubric: homogeneous polynomials f : Sym2(Rn) → R which are
Gårding hyperbolic with respect to the identity I (meaning f(tI + A) has
all real roots for each A ∈ Sym2(Rn)). Here one takes F = Γ where Γ is
the Gårding cone, defined as the connected component of {f > 0} which
contains I, and one requires f to be weakly elliptic on F ≡ Γ. In all such
cases there are many other branches of the equation (see [15]). Each branch
has a natural operator which is covered by Theorem 2.11.

(2)For an arbitrary continuous function w ∈ C(R), the function u(x1, x2, x3) = w(x1)
is Λ2-harmonic on R3 (see (6.2)).
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We point out that for such Gårding hyperbolic operators f , the Gårding
cone F = Γ is a monotonicity cone for the pair (F, f) and also for all the
other branches of the equation.
The operators given in Examples 6.1–6.10 below are all Gårding hy-

perbolic with respect to the identity and tame. We point out that if f is
Gårding hyperbolic w.r.t. I, so are the derivatives dk

dtk f(tI+A)
∣∣
t=0 (See [15,

Cor. 2.23]). In Proposition 6.11 we prove tameness is equivalent to being
elliptic on F ≡ Γ, for all Gårding polymonial operators, and this, in turn,
is equivalent to P ⊂ F = Γ.
A second different approach associates to any subequation F ⊂ Sym2(Rn)

a canonical operator f ∈ C(Sym2(Rn)), which is defined and tame on all
of Sym2(Rn), with F = {f > 0}. This completely general procedure is de-
scribed below. As an example, for F = P = {A > 0} (real Monge–Ampère
subequation) the canonical operator is λ1(A).
We then exhibit operators which are topologically tame but not tamable,

also ones which are tamable but not tame.
At the end we discuss the asymptotic interiors for these many examples.
All the subequation-operator pairs (F, f) discussed in this section are

compatible (Definition 2.4).

Example 6.1 (Real Monge–Ampère). — The principal branch of this
equation is:

(6.1) det(D2u) = ψ with u convex and ψ ∈ C(Ω), ψ > 0.

There is a long history of work on the principal branch beginning with
the extensive work of Alexandrov and Pogorelov. The reader is referred to
Rauch–Taylor [29] for a further discussion as well as a precise statement
with two proofs.

Our main Theorem 2.11 applies to the extension of this equation to any
riemannian manifold X, namely

(6.1′) det (Hess u) = ψ with u convex and ψ ∈ C(Ω), ψ > 0.

It asserts the existence and uniqueness of solutions to the Dirichlet Problem
on any domain Ω ⊂⊂ X which supports a strictly riemannian convex func-
tion and has a smooth strictly convex boundary (the second fundamental
form of ∂Ω with respect to the interior normal is > 0).
On the other hand, Theorem 2.11 does not deal with the case where ψ is

a measure, which is done in [29] when X = Rn. Of course there are many
results on this and related equations in Rn. See [26] for a discussion and
references.
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The higher branches of this subequation are given in terms of the ordered
eigenvalues λ1(A) 6 · · · 6 λn(A) by

(6.2) Λk ≡ {A : λk(A) > 0}.

A tame operator for Λk, somewhat parallel to the determinant, is given by

(6.3) det
k

(A) ≡ λk(A) · · ·λn(A).

(However, for k > 1 this is not a Gårding polynomial.) The inhomogenous
problem then becomes

(6.4) det
k

(D2u) = ψ with u ∈ Λk(Ω) and ψ ∈ C(Ω), ψ > 0.

On the other hand the canonical operator associated to the kth branch
Λk is just the kth ordered eigenvalue function λk. Since λk is tame on all of
Sym2(Rn), there is no restriction on the values of the inhomogeneous term
ψ. Thus the inhomogeneous equation is given by

(6.5) λk(D2u) = ψ with ψ ∈ C(Ω).

The Dirichlet problem for this equation was previously solved in [16] using
the methods of local affine jet equivalence.

Example 6.2 (Complex Monge–Ampère). — The principal branch of this
equation in Cn is:

(6.6) det
C

(
∂2u

∂zi∂z̄j

)
= ψ where u is psh and ψ ∈ C(Ω), ψ > 0.

There is also a long history of work on this equation (usually under the as-
sumption that either ψ = 0 or ψ > 0). The homogeneous case was initiated
by Bremermann [5] and then completed by Walsh in a short note [36]. The
solution in the inhomogeneous case was provided by the landmark paper
of Bedford and Taylor [3]. Since then many papers and books have added
to this subject.
This Dirichlet problem was also solved on almost complex manifolds

in [22] and [28]. This is discussed in Example 1.1.
The higher branches are treated exactly as in (6.2)–(6.4) except that one

uses the ordered eigenvalues of the hermitian symmetric matrix
(

∂2u
∂zi∂z̄j

)
.

Again one has the operator detk as in (6.3). There is also the canonical
operator λk, degenerately elliptic on all of Sym2

R(Cn) as in (6.5).

Example 6.3 (Quaternionic Monge–Ampère). — The principal branch of
this equation in Hn is:

(6.7) det
H

(D2u)H = ψ where u is H-psh and ψ ∈ C(Ω), ψ > 0.
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By AH we mean the quaternionic hermitian symmetric matrix 1
4 (A−IAI−

JAJ−KAK) whose eigenspaces are quaternion lines with eigenvalues λ1 6
· · · 6 λn, and detHAH ≡ λ1 · · ·λn. Results on the Dirichlet problem for this
equation are due to Alesker [1] and Alesker–Verbitsky [2]. However, there
are higher branches of this equation, defined in analogy with (6.2)–(6.4),
to which our methods give new results. Note that one has two quaternionic
operators, which are analogues of (6.3) and (6.5).

Example 6.4 (The kth Hessian Equation).
(a) (The Real Case). — Consider the subquation Σk = {A : σ1(A) >

0, . . . , σk(A) > 0} where σ` denotes the `th elementary symmetric function.
Now Σk is the closure of the connected component of {σk 6= 0} containing
the identity I. As with the previous examples there are k (generalized)
ordered eigenvalues, and therefore k branches. The principal branch of this
kth hessian equation is

(6.8) σk(D2u) = ψ where u is Σk-subharm. and ψ ∈ C(Ω), ψ > 0.

This branch has been studied extensively by Trudinger [31, 32] and
Trudinger–Wang [33, 34, 35].
Of course using the riemannian hessian and our Main Theorem 2.11, we

have results on the Dirichlet problem for this equation on manifolds.
(b) (The Complex and Quaternionic Cases). — Consider the analogous

subquation ΣC
k = {A : σ1(AC) > 0, . . . , σk(AC) > 0} in Cn where AC =

1
2 (A − JAJ) is the hermitian symmetric part of A. In analogy with (6.8)
we obtain the principal branch of the kth complex hessian equation:

σk

(
∂2u

∂zi∂z̄j

)
= ψ where u is ΣC

k -subharm. and ψ ∈ C(Ω), ψ > 0.

Work on this equation goes back to Blocki [4]. As in all other cases there
are branches and additional operators.
The quaternionic Hessian equation is the complete analogue of the ex-

ample above with AC replaced by AH.
Theorem 2.11 applies to solve the inhomogeneous Dirichlet problem for

these equations and their branches on manifolds.

Example 6.5 (The Quotient Hessian Equations). — These are the oper-
ators σk,` = σk/σ` on Σk mentioned in (1.7) at the end of Example 1.2.
Theorem 2.11 applies to these are their complex and quaternionic analogues
as follows. Lemma B.1 can be applied to establish that σk,` is tame. (It is
proved in [30] that σk,` is concave on Σk.) The appropriate monotonicity
convex cone subequation M for σk,` is Σk, the kth Hessian subequation.
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We finish the list of Gårding operators with several cases, which are
non-classical operators even for the principal branch.

Example 6.6 (The pth Plurisubharmonic Equations).
(a) (The Real Case in Rn). — Consider the subequation Pp ≡ {A :

λ1(A) + · · · + λp(A) > 0} where λ1(A) 6 · · · 6 λn(A) are the ordered
eigenvalues of A. Here there is a natural polynomial operator

det(ΛpA) ≡
∏

i1<···<λp

(
λi1 + · · ·+ λip

)
and an associated inhomogeneous equation for the principal branch:

(6.9) det(ΛpD2u) = ψ where u is Pp-subharm. and ψ ∈ C(Ω), ψ > 0.

This homogeneous Dirichlet problem for this equation was solved in [17,
Thm. 7.6]. There are also

(
n
p

)
branches with operators defined in exact

analogy with the construction in Example 6.1. This is obtained by using
the (generalized) eigenvalues λI ≡ λi1 + · · ·+ λip .

Theorem 2.11 applies to the inhomogeneous Dirichlet problem for this
equation and its branches on manifolds, where the operator for the kth

branch is the kth ordered eigenvalue λI .
(b) (The Complex Case in Cn). — This is left to the reader. It parallels

the real case using the eigenvalues λ1, . . . , λn of AC = 1
2 (A − JAJ) ∼=(

∂2u
∂zi∂z̄j

)
.

(c) (The Quaternionic Case in Hn). — This also parallels the real case,
but starting with the eigenvalues λ1, . . . , λn of AH.

Example 6.7 (The Lagrangian Plurisubharmonic Equation). — Consider
the subequation Lag in Cn defined by requiring that tr

(
A
∣∣
W

)
> 0 for

all Lagrangian n-planes W . There is a U(n)-invariant polynomial operator
MLag defined on Lag. It depends only on the trace and the skew-hermitian
part of the hessian, and it is a Lagrangian counterpart of the complex
Monge–Ampère operator. This subequation and operator carry over to any
symplectic manifold equipped with a Gromov metric. All this is discussed
in detail in [23]. From Theorem 2.11 we obtain the following.

Theorem 6.8. — Let X be a symplectic manifold with a Gromov com-
patible metric. Suppose Ω ⊂⊂ X is a domain with strictly Lag-convex
boundary, which supports a strictly Lag-plurisubharmonic function. Then
for every continuous ψ > 0 on Ω and every ϕ ∈ C(∂Ω), there is a unique
Lag-plurisubharmonic function u, continuous on Ω, with

(1) MLag(u) = ψ in the viscosity sense, and
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(2) u
∣∣
∂Ω = ϕ.

There are also results for the branches of MLag.
In all the following examples we discuss the euclidean models. However,

the subequations and operators transfer to manifolds as discussed in Ex-
ample 1.2, and Theorem 2.11 applies.

Example 6.9 (The δ-Uniformly Elliptic Equation). — The Gårding op-
erator

fδ(A) ≡
n∏
j=1

(λj(A) + δ trA)

on the principal branch (the Gårding cone) F ≡ P(δ) ≡ {λmin(A)+δ trA >
0} determines a uniformly elliptic inhomogeneous equation

(6.10) fδ(D2u) = ψ where u ∈ F(Ω) and ψ ∈ C(Ω), ψ > 0,

to which Theorem 2.11 applies. All of the corresponding branches are also
uniformly elliptic, and Theorem 2.11 applies similarly to them. Of course
Theorem 2.11 also applies to their transfer to riemannian manifolds.
See [15, Thm. 5.16] for a generalization with the eigenvalues λj(A) re-

placed by the Gårding eigenvalues λf
l (A) of an elliptic Gårding operator as

defined below.

Example 6.10 (The Pucci/Gårding Equation). — This is another Gård-
ing operator related to the standard Pucci extremal operator P−λ,Λ, which
is defined for fixed constants 0 < λ < Λ by

P−λ,Λ ≡ λ tr(A+) + Λ tr(A−)

where A = A+ + A− is the composition of A into A+ > 0 and A− < 0.
Associated to this is the subequation

Pλ,Λ ≡ {P−λ,Λ > 0},

for which P−λ,Λ is the canonical operator (see Proposition 6.13). The mono-
tonicity condition F+Pλ,Λ ⊂ F is one of the many equivalent conditions of
uniform ellipticity for a subequation F. Another is F +P(δ) ⊂ F. (See [20,
§4.5], for a detailed discussion.)

Now we can define the Pucci/Gårding polynomial fλ,Λ : Sym2(Rn)→ R
for which Pλ,Λ is the closed Gårding cone. It is constructed using the
polar cone to Pλ,Λ, which is the cone on Bλ.Λ ≡ {λI 6 A 6 ΛI}. The
polynomial fλ,Λ is then the product of the linear functions corresponding
to the vertices of the “cube” Bλ,Λ. This Gårding polynomial, which is of
degree 2n, can be explicitly computed. The minimum Gårding eigenvalue of
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A ∈ Sym2(Rn) is P−λ,Λ(A) ≡ λ trA+ +Λ trA−. Now P−λ,Λ(A) is customarily
referred to as one of the two Pucci extremal operators, the other being
P+
λ,Λ(A) = λ trA− + Λ trA+ which yields the largest Gårding eigenvalue

λ trA−+Λ trA+. Note that the degree of fλ,Λ is high compared to that of fδ,
which is n. We refer to the polynomial operator fλ,Λ as the Gårding–Pucci
operator and the equation

(6.11) fλ,Λ(D2u) = ψ where u ∈ Pλ,Λ(Ω) and ψ ∈ C(Ω), ψ > 0.

as the inhomogeneous Gårding Pucci-equation. This equation and its
branches make sense on any riemannian manifold, and Theorem 2.11 ap-
plies.
We now make some general remarks.

Elliptic Gårding Operators

Suppose f is a Gårding polynomial on Sym2(Rn) of degree m, which is
I-hyperbolic. The closed Gårding cone F ≡ Γ is a convex cone and as such
is a subequation if and only if P ⊂ F. In this case the operator f is elliptic
on F. This follows from the general fact that the Gårding eigenvalues λj(A)
are monotone precisely in F ≡ Γ directions. Thus Γ is a monotonicity cone
for each branch Λk = {λk(A) > 0} where λ1(A) 6 λ2(A) 6 · · · are the
ordered eigenvalues. (The reader is referred to [15] for a detailed discussion.)

Proposition 6.11. — Each Gårding polynomial f with (closed) Gård-
ing cone F = Γ ⊃ P is a tame operator on F = Γ (its principal branch).
This pair (F, f) determines a pair (F, f) on any riemannian manifold, and
Theorem 2.11 applies to the inhomogeneous equation

(6.12) f(D2u) = ψ where u ∈ F (Ω) and ψ ∈ C(Ω), ψ > 0.

More generally, the operator fk(A) ≡ λk(A) · · ·λm(A) on the kth branch
Λk is also tame, and has monotonicity cone F = Γ. Therefore Theorem 2.11
applies to the extension of (Fk, fk) to riemannian manifolds.

Proof. — We must verify (2.2). Note that the ordered f -eigenvalues sat-
isfy

λk(A+ λI) = λk(A) + λ if A ∈ Sym2(Rn) and λk(A) > 0 if A ∈ Fk.

Hence, fk(A+ λI)− fk(A) =
∏m
j=k(λj(A) + λ)−

∏m
j=k λj(A) > λm−k. �
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Remark 6.12. — It is easy to see that in all of the previous examples one
has P ⊂ F = Γ (or equivalently A > 0 ⇒ λk(A) > 0) so that the Gård-
ing polynomial f is degenerately elliptic on F. Consequently, by Proposi-
tion 6.11 our main result Theorem 2.11 covers all of the operators in the
first ten examples above.

Canonical Operators

There is a canonical procedure for constructing an operator f for an
arbitrary subequation F.

Proposition 6.13. — For each subequation F⊂Sym2(Rn) with F 6=∅,
Sym2(Rn), and each normalizing constant k > 0, there exists a unique
operator f ∈ C(Sym2(Rn)) satisfying

(6.13) f(A+ λI) = f(A) + kλ ∀ A ∈ Sym2(Rn) and ∀ λ ∈ R

and such that

(6.14) F = {f(A) > 0} and ∂F = {f(A) = 0}.

Moreover, f is tame so that Theorem 2.11 applies to the inhomogeneous
Dirichlet problem

(6.15) f(D2u) = ψ ψ ∈ C(Ω).

Proof. — The operator is constructed as follows. Consider the orthogonal
splitting Sym2(Rn) = {trA = 0} ⊕ R · I and choose coordinates (x, y)
(x = A − 1

n (trA)I, y = 1
n trA) with respect to this splitting. Then there

is a unique function g(x) with the property that F = {(x, y) : y > g(x)}
and ∂F is the graph of g over {trA = 0}. The canonical operator f is then
defined by

f(A) = ky − g(x) = k
n trA− g

(
A− 1

n (trA)I
)

This function g is 1-Lipschitz with respect to norms ‖ · ‖± on {trA = 0}
where ‖A‖+ = −λmin(A) and ‖A‖− = λmax(A). See [15, §3, in particular
Exs. 3.4 and 3.5] for details. The proof that f is tame is straightforward,
with c(λ) = kλ. �

Example 6.14 (The Weighted-Truncated Laplacian, i.e., Linear Combi-
nitions of Eigenvalues). — Let λ1(A) 6 · · · 6 λn(A) denote the ordered
eigenvalues of A ∈ Sym2(Rn). Given a ∈ Rn, a 6= 0, consider the operator
f ∈ C(Sym2(Rn)) defined by

f(A) ≡ a1λ1(A) + · · ·+ anλn(A).
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Recall that the ordered eigenvalues of A satisfy:
• λk(A+ P ) > λk(A) for all p > 0,
• λk(A+ tI) = λk(A) + t for all t ∈ R, and
• λk(tA) = tλk(A) for all t > 0.

These imply the following properties:
(1) f is weakly elliptic on Sym2(Rn), i.e., f(A+P ) > f(A) for all P > 0.

This is equivalent to
(1′) ak > 0 for all k.

We shall assume this property in the following discussion.
(2) f is tame on Sym2(Rn) since f(A+ tI) = f(A) + (

∑
k ak)t.

(3) f is positive homogeneous of degree 1, i.e., f(tA) = tf(A) for all
t > 0.

(4) F ≡ {A : f(A) > 0} is a cone subequation.
(5) f is the canonical operator for F.
(6) f is concave ⇐⇒ a1 > a2 > · · · > an > 0. (See [21, §8].) If f is

concave, then F is a convex cone subequation.
(7) F is the asymptotic interior of each inhomogeneous subequation

Ff (ψ).
The main result, Theorem 2.11, applies to these equations by the properties
above and Proposition 6.13.

All of the above remains valid for the general case of ordered Gårding
eigenvalues for any Gårding/Dirichlet operator g on Sym2(Rn).
A specific case of interest is the k-fold subequation or truncated Laplacian

fk(A) = λ1(A) + · · ·+ λk(A),

which was introduced in [15].

Remark 6.15. — The two distinct methods of obtaining operators:
(1) using a Gårding polynomial, and
(2) constructing the canonical operator for a subequation can be com-

bined.
More precisely, given a subset E ⊂ Rm which is invariant under permu-
tation of coordinates and satisfies E + Rm+ ⊂ E (a “universal eigenvalue
subequation”) each degenerately elliptic Gårding operator g of degree m
on Sym2(Rn) determines a new subequation Fg

E on Rn by requiring that
the Gårding eigenvalues of A ∈ Sym2(Rn) lie in E. See [15, Thm. 5.19]
for details. If in addition an operator f is tame on E, adopting a straight-
forward definition, then f(λg(A)) is tame on Rn, and hence Theorem 2.11
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applies to the inhomogeneous equation

f
(
λg(D2u)

)
= ψ where u ∈ Fg

E(Ω) and ψ ∈ C(Ω), ψ > c

where c = infE f , and to the extension of this equation to riemannian
manifolds.

Topological Tameness

Definition 6.16. — A function f ∈ C(F) is said to be topologically
tame on F if

f(A+ P )− f(A) > 0 ∀ A ∈ F and ∀ P > 0,

or equivalently, if f satisfies ellipticity f(A+ P )− f(A) > 0 and the above
holds with P ≡ λI, ∀ λ > 0. The equivalence follows since P > λI implies
f(A+ P ) > f(A+ λI).

Lemma 6.17. — Suppose that f is an elliptic operator on F. Then the
following are equivalent:

(1) The level sets {f = c} have no interior.
(2) f is topologically tame on F.

In particular, all real analytic elliptic operators are topologically tame.

Proof. — If (2) is false, then for some A ∈ F and P > 0 we have
f(A + P ) = f(A) (using ellipticity). Then for all 0 < B < P , we have
A+B ∈ F and f(A+B) = f(A) (by ellipticity). This proves that {f = c}
has interior where c = f(A), so (1) is false.

If (1) is false, pick A ∈ Int{f = c}. Then A+ P ∈ {f = c} for all P > 0
sufficiently small proving (2) is false. �

Corollary 6.18. — Suppose f is an elliptic operator on F and com-
parison holds for the inhomogeneous equation when ψ ≡ c is an admissible
constant. Then f must be topologically tame.

Proof. — Suppose that the level set {f = c} ≡ {A ∈ F : f(A) = c} has
non-empty interior. Take u(x) = 1

2 〈Ax, x〉 so that D2u = A ∈ Int{f = c}.
For all C2 functions v with compact support in a domain Ω, and all ε > 0
sufficiently small,

f(D2(u+ εv)) = c in Ω
and u and u+ εv agree near ∂Ω. These counterexamples are all eliminated
if the level set {f = c} has no interior. �
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Non-Tame Operators

Example 6.19 (The Special Lagrangian Potential Equation / Topolog-
ically Tame but not Tamable for Certain Phases)). — The operator f ∈
C(Sym2(Rn)) is defined by

(6.16) f(A) ≡ tr{arctan(A)}.

Note that f(Sym2(Rn)) = (−nπ2 ,
nπ
2 ). This equation was introduced in [13]

where it was shown that classical solutions to f(D2u) = θ have the property
that the graph of Du in R2n is special Lagrangian with phase θ. The impor-
tant first work on this equation is due to Caffarelli, Nirenberg and Spruck [6]
who established smooth solutions for θ in the outer-most branch where the
subequation is convex. In [14] existence and uniqueness were established for
the continuous (DP) for f(D2u) = θ for all phases θ ∈ (−nπ2 ,

nπ
2 ). There is

now a copious literature. Our purpose here is to discuss the inhomogeneous
equation with ψ(x) non-constant. For more historical comments the reader
is referred to [25].

Proposition 6.20. — The degenerate elliptic operator

f(A) ≡ tr{arctan(A)}

is topologically tame, but
(1) f is not tamable on FΘ ≡ {A : f(A) > Θ} for Θ 6 (n− 2)π2 .

However, for any
(2) Θ > (n− 2)π/2, the operator f is tamable on the subequation FΘ.

Proof. — Since f is real analytic, it is topologically tame. Now consider
A with λ1(A) � 0 and λk(A) � 0 for k > 1. We can always choose these
values so that f(A) = (n − 2)π2 . As the absolute value of the eigenvalues
becomes very large the derivative of f(A) goes to zero. Hence, no mat-
ter which smooth function χ one chooses, the composition χ ◦ f will have
derivatives going to zero at these points, since χ′(f(A)) will not go to ∞
unless f(A) goes to nπ

2 .
The proof of (2) is given in [25]. It was inspired by the result of Collins,

Picard and Wu [8] that the subequation FΘ is convex for Θ > (n− 2)π/2,
even though f is not concave unless Θ > (n− 1)π2 . �

A corollary of Proposition 6.20(2) is that comparison holds for the in-
homogenous Dirichlet Problem f

(
D2
xu
)

= ψ(x) on a domain Ω ⊂⊂ Rn

provided that ψ ∈ C(Ω) has values ψ(Ω) ⊂
(
(n− 2)π2 , n

π
2
)
since our

main Theorem 2.11’ applies. This comparison result was recently proved
by S. Dinew, H.-S. Do and T. D. Tô in [11].
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Existence for this Dirichlet problem requires computing the asymptotic
cone for the subequation FΘ. For Θ > (n − 1)π2 this was done in [6]. The
main point of the article [25] is to compute this asymptotic cone for all Θ,
thereby providing the widest class of domains Ω where existence holds.
Comparison for a general admissible ψ, remains a difficult open question.

(See Question A in Section 8.)

Example 6.21 (Tamable but not Tame). — Perhaps the simplest example
is to start with the Laplace subequation F = ∆ ≡ {trA > 0}. Then the
operator f(D2u) ≡ log(1 + trD2u) is not tame, since

f(A+ λI)− f(A) = log
(

1 + nλ

1 + trA

)
has infimum zero over trA > c. However, χ(t) ≡ et − 1 tames f since
χ ◦ f(A) = trA.

Example 6.22 (Another Topologically Tame but Non-Tamable Operator).
Define a topologically tame operator f as follows. First make the change of
coordinates

y = trA and x = A− 1
n

(trA)I.

Then set F ≡ {y > 0} = {trA > 0} = ∆ and define a function f ∈ C(∆) by

f(x, y) =
{

y
1+‖x‖ if y 6 1 + ‖x‖
y − ‖x‖ if y − ‖x‖ > 1.

Claim. — This operator f cannot be tamed.

Proof. — Suppose f̄ = χ◦f satisfies the tameness condition (2.2). Choose
y > 0 and λ > 0 small. Then since f̄ is constant on the level sets of f

(6.17) f̄(0, y+λ) = f̄(x, (1+‖x‖)(y+λ)) and f̄(0, y) = f̄(x, (1+‖x‖)y)

for all x. Let ‖x‖ = k ∈ Z+. Applying condition (2.2) repeatedly shows
that

f̄(x, (1+‖x‖)(y+λ))− f̄(x, (1+‖x‖)y) > (1+‖x‖)c(λ) = (1+k)c(λ)→∞

as k →∞. However, by (6.17) we have

f̄(x, (1 + ‖x‖)(y + λ))− f̄(x, (1 + ‖x‖)y) = f̄(0, y + λ)− f̄(0, y). �

Example 6.23 (Another Non-tamable Operator). — A similar, even
wilder operator f can be constructed on Sym2(Rn) as follows. We define f
in terms of the eigenvalues of A with the property that

f(A) =
{
λmin(A) if λmin(A) > 1
λmax(A) if λmax(A) 6 −1.
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In between these two sets the level lines of f in (λmin, λmax)-space are rays
which swing from horizontal to vertical.
An explicit form of this operator can be given as f(A) = ϕ(λ,Λ) where

λ = λmin(A) and Λ = Λmax(A), with

ϕ((λ,Λ) = λ if λ > 1 and ϕ((λ,Λ) = Λ if Λ 6 −1

(as above), and in the region λ 6 1,Λ > −1 (with λ 6 Λ) one has

ϕ(λ,Λ) = λ cos θ + Λ sin θ with cos θ = Λ + 1√
(λ− 1)2 + (Λ + 1)2

r1I

Note that this operator forces a solution u to oscillate between being
convex and concave as ψ oscillates between being > 1 and 6 −1.

Asymptotic Interiors

Let f : Sym2(Rn)→ R be a degenerately elliptic Gårding polynomial of
degree k with Gårding cone Γ. Then for all c > 0,

Int−→F c = Γ and Γ ⊂ Γ̃

so that a boundary ∂Ω satisfies the Fc (in fact, the F) strict boundary
hypothesis (Definition 3.1) if and only if it is strictly F = F0 = Γ-convex.
Let Γ = Γ1 ⊂ Γ2 ⊂ · · · ⊂ Γk be the(interior) branches of f . Then for

f ≡ λ` · · ·λk (Gårding eigenvalues), we have
−→F c = Γ` and its dual equals Γk−`+1.
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Hence, ∂Ω satisfies the strict boundary hypothesis if it is strictly Γm-convex
for m = min{`, k − `+ 1}.

Let f : Sym2(Rn) → R be the canonical operator for a subequation F.
Then

Int−→F c = Int−→F for all c ∈ R.

so strict −→F -convexity and strict
−→
F̃ -convexity of ∂Ω give the strict boundary

hypothesis for any inhomogeneous term ψ.
It is worthwhile to look at computing Int−→F c from f . We have a function

τ : {Sym2(Rn) − P} → [−∞,∞] of degree 0 (i.e., a function on the unit
sphere in Sym2(Rn)), given by

(6.18) τ(A) ≡ lim inf
t→∞

f(tA) if tA ∈ F for all t > some t0

and

(6.18′) τ(A) ≡ −∞ otherwise.

Lemma 6.24. — We have

(6.19) Int−→F c ⊂ cone{τ > c}

Furthermore, if τ is lower semi-continuous, equality holds in (6.19).

Proof. — Suppose A ∈ Int−→F c. Then by Corollary 5.10 of [14] we have
that there exists ε > 0 and R > 1 such that

(6.20) t(A− εI) ∈ Fc for all t > R.

Now (6.20) means that

(6.20′) f(t(A− εI)) > c for all t > R.

Hence, by the tameness of f ,

f(tA) > f(tA− tεI) + c(ε) > c+ c(ε) for all t > R(> 1).

From (6.18) we see that τ(A) > c, and we have established (6.19).
Now suppose that τ is lower semi-continuous. Then {τ > c} is open.

Hence if τ(A) > c, then τ(A− εI) > c for all ε > 0 sufficiently small. This
means by (6.18) that

lim inf
t→∞

f(t(A− εI)) > c,

which by (6.20′) ([14, Cor. 5.10]) means that A ∈ Int Fc. �

Note 6.25. — One can rephrase (6.19) as

Int−→F c ⊂
⋃
ε>0

−→F cε .
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Moreover, one can show that

{τ > c} =
⋃
ε>0

−→F cε .

From this one can prove that τ is not always l.s.c. (let F = P − I and
f(A) = det(A − I)). However, it one replaces tA in (6.18) by tA − λI for
λ > 0 large, lower semi-continuity might be true.

Further Examples

Example 6.26. — Consider the operator f on F = ∆ = {trA > 0} given
as follows. For c > 1 the set

f−1(c) = cI + ∂P

For 0 < c < 1 the set f−1(c) has two pieces. We shall use coordinates
(x, t) ∈ {tr = 0} ⊕ tr. The first piece is

{|x| 6 r(t)} × {t}

where r(t)→∞ as t→ 0. The second piece is the part above trace = t of
the downward translate

−ρI + ∂P
with ρ chosen so that this set contains the boundary of the ball above.

Now we have the sets Fc ≡ {f > c}, and one computes that

Int−→F 0 = Int ∆ and Int−→F c = IntP for c > 0.

Example 6.27. — One could expand this by adding the hyperplanes
{tr = t} for −1 6 t 6 0. Then

Int−→F c = Int ∆ for −1 6 c 6 0
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One could continue for t 6 −1 by inverting what was done for t > 1, and

Int−→F c = Int P̃ for c 6 −1.

This can, in fact, be done for any finite number of jumps.

Example 6.28. — For a continuous example on ∆, let the part for c > 1
be as above. Then between 1 and 0 let the cone open up from P to all of
∆ as c ↓ 0. Let P(c) be the cone with vertex (0, c). Then

Int−→F 0 = Int ∆, Int−→F c = IntP(c), 0 < c 6 1

and Int−→F c = IntP, c > 1.

7. Fundamental Solutions

It is natural to ask whether it is possible to solve the inhomogeneous
Dirichlet problem f(D2u) = ψ where ψ is more general than continuous,
for example, a measure. In this section we shall address the basic case where
ψ is any (positive) multiple of the delta function,
We begin with a clear formulation of this problem. Let F ⊂ Sym2(Rn) be

a cone subequation (with the origin as vertex) which is ST-invariant, i.e.,
invariant under a subgroup G ⊂ O(n) which acts transitively on the sphere
Sn−1 ⊂ Rn. Then we fix a degenerate elliptic operator f ∈ C∞(F) which
is G-invariant, homogeneous of some degree m > 0 and ∂F = {f = 0}. We
want to, in some sense, solve the equation

(7.1) f(D2
xK) = cδ0 (c > 0) on Rn.

Now in the situation we are in (where F is a ST-invariant cone subequa-
tion) there is a natural candidate for a solution to this problem. Each such
F has attached an invariant Riesz characteristic p = pF ∈ [1,∞] which is
typically easy to compute, and for most interesting subequations it is finite
(see [24, §3] for discussion and [24, §4] for examples). In fact if F ≡ Γ is the
closure of the Gårding cone Γ for a Gårding/Dirichlet polynomial f , then
p ∈ [1, n] since F ⊂ ∆ (see [24, (6.3) and (6.4)]).
Now with p finite, the Riesz kernel

(7.2) K(x) ≡


1

2−p |x|
2−p for 1 6 p < 2

log |x| for p = 2
− 1
p−2

1
|x|p−2 for p > 2

is F-harmonic in Rn−{0} in the viscosity sense (and F-subarmonic across
{0} since K has no test functions at 0).
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Notice that we have not yet mentioned the operator f . For the ordinary
inhomogeneous Dirichlet problem, with continuous right hand side ψ > 0,
we can replace the operator f by any power fα, α > 0. That is, we can
replace f(D2u) = ψ with f(D2u)α = ψα, and solutions of one are solutions
of the other. However, for the problem we are now addressing there is one,
and only one, exponent α that solves the problem.

There is a natural way to smooth the Riesz kernel K with a pointwise
decreasing family Kε of F-subharmonics. Define k(t) so that k(|x|) = K(x)
in (7.2). Set

(7.3) Kε(x) ≡ k
(√
|x|2 + ε2

)
Note that k(t) is increasing for all p. In fact,

(7.4) k′(t) = 1
tp−1 for all 1 6 p <∞.

Hence,

(7.5) Kε ∈ C∞(Rn) decreases pointwise in Rn to K.

Lemma 7.1.

D2
xKε = 1

(
√
|x|2 + ε2)p

[
Px⊥ − (p− 1)Px + ε2p

|x|2 + ε2
Px

]
= 1
εp
D2

( xε )K1.

and
DxKε = x

(
√
|x|2 + ε2)p

= 1
εp−1D( xε )K1.

Corollary 7.2. — The function Kε is F-subharmonic on Rn.

Proof of Corollary 7.2. — By definition of finite Riesz charateristic p we
have Px⊥ − (p − 1)Px ∈ ∂F for all x 6= 0. Hence, by degenerate ellipticity
(positivity) of F, adding a positive multiple of Px keeps you in F. Thus
D2
xKε ∈ F for x 6= 0, and since Kε is smooth this also holds at 0. �

Proof of Lemma 7.1. — We use the following formula for the second
derivative of a radial function G(x) = g(|x|),

(7.6) D2
xG = g′(|x|)

|x|
Px⊥ + g′′(|x|)Px,

applied to gε(t) ≡ k(
√
t2 + ε2). By (7.4) we see that

(7.7) g′ε(t) = t

(
√
t2 + ε2)p

.

Hence, we have

(7.8) g′′ε (t) = 1
(
√
t2 + ε2)p

(
1− pt2

t2 + ε2

)
.
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The formulas for D2
xKε follow easily from (7.6), (7.7) and (7.8), and noting

that
1√

|x|2 + ε2
= 1
ε

1√
|x|2
ε2 + 1

and ε2

|x|2 + ε2
= 1
|x|2
ε2 + 1

. �

Theorem 7.3. — Suppose F is a conical ST-invariant subequation of
finite Riesz characteristic p, 1 6 p < ∞ in Rn, and let f ∈ C∞(F) be
homogeneous of degree m > 0 and compatible with F. Recall that (7.5)
holds. If we set

α ≡ n

mp
and ϕ(|x|) ≡ fα(D2

xK1)

i.e., p deg(fα) = n, then (and only then, see (7.11))

(7.9) fα
(
D2
xKε

)
= 1
εn
ϕ

(
|x|
ε

)
≡ ϕε(x)

is integrable on Rn and defines a (positive) radial approximate delta func-
tion with coefficient c =

∫
Rn ϕ(|x|). In other words

“ fα(D2K) = cδ0”.

Proof. — By Lemma 7.1

(7.10) fα
(
D2
xKε

)
= 1
εαpm

fα
(
D2

( xε )K1

)
which by the definition of ϕ(|x|) equals 1

εαpmϕ( |x|ε ). Since K1(x) ∈ C∞(Rn)
is F-subharmonic on Rn by Corollary 7.2, and f > 0 on F, we have
ϕ(|x|) > 0.
Lemma 7.4 below states that ϕ(|x|) is integrable on Rn, thus completing

the proof that “fα(D2K) = cδ0”. Notice that for any value of α other than
α = n/mp we have

(7.11) fα
(
D2
xKε

)
= εδ

εn
ϕ

(
|x|
ε

)
with δ = n− αmp,

and the limit of the integral as ε→ 0 will be either 0 or ∞. Together with
Lemma 7.4, this completes the proof of Theorem 7.3. �

Lemma 7.4. — For α ≡ n/mp one has that

ϕ(|x|) ∈ C∞(Rn) ∩ L1(Rn) and ϕ(|x|) > 0.

Proof. — By Lemma 7.1 with r ≡ |x| and ε = 1,

(7.12) ϕ(r) ≡ fα(D2
xK1) = 1

(
√
r2+1)n

fα
(
Px⊥ − (p− 1)Px + p

r2+1Px
)
.
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By definition of the Riesz characteristic of F, A ≡ Px⊥−(p−1)Px ∈ ∂F and
A + p

r2+1Px ∈ Int F for all 0 6 r < ∞. Now invoking (F, f) compatibility,
we see that ϕ(|x|) > 0. Since f is C∞ on F, it follows that ϕ(|x|) ∈ C∞(Rn).
Set t ≡ 1

r . Then f(A + p
r2+1Px) = f(A + pt2

1+t2Px) is smooth at t = 0 and
equals f(A) = 0. Hence, f(A+ p

r2+1Px) 6 C 1
r for some C > 0, which proves

that

ϕ(r) 6 Cα

rα
(√
r2 + 1

)n
so that ϕ(|x|) ∈ L1(Rn). �

Now we examine a list of operators f , with the powers α so that
fα(D2K) = cδ0, taken from Section 6.

Example 7.5. — In Examples 6.1–6.5 where f is the determinant or the
kth Hessian operator (over R, C or H) the power α = 1. From this point of
view these are very natural operators.

Example 7.6. — In Examples 6.6(a), (b) and (c) the operator f , equal to
the product of the p-fold sums λI , is of degree

(
n0
p

)
for the cases Rn0 ,Cn0

and Hn0 . One calculates that

α = 1(
n0−1
p−1

)
is the correct power for f .

Example 7.7. — In Example 6.7 the Lagrangian operator f on Cn0 has
degree m = 2n0 and Riesz characteristic p = n0 and it should be raised to
the power

α = 1
2n0−1 .

Example 7.8. — In Example 6.9 fδ should be raised to the power

α = n+ δ

n(1 + δ) .

Example 7.9. — In Example 6.10 with P−λ,Λ the Pucci extremal operator,
this operator should be raised to the power

α = λ

Λ(n− 1)− 1.

For the Gårding–Pucci operator fλ,Λ one has pF = λ
Λ (n − 1) + 1, m =

deg fλ,Λ = 1, and so α = n( λΛ (n− 1) + 1)−1
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8. Two Important Questions

We pose two questions concerning topologically tame operators f ∈ C(F)
with constant coefficients in Rn.

Comparison

Question A. — Does comparison hold for Ff (ψ)?

We note that comparison holds for Ff (ψ) if and only if the following
subaffine property holds:{

u is Ff (ψ)-subharmonic and

v is F̃f (ψ)-subharmonic

}
=⇒ u+ v is subaffine.

More specifically, does comparison hold for tr{arctanD2u} = ψ (Exam-
ple 6.19)? Any counterexample cannot be tamable, so Examples 6.21
and 6.22 also provide candidates. Also the functions u and v cannot be
quasi-convex since if they are, then the subaffine property holds. (Note
that Lemma A.2 on quasi-convex approximation requires tameness.)

Operator Single-Valuedness

The second question can be stated succinctly as follows:
Is what we are calling an operator f actually single-valued if it is
topologically tame, or even if it is tame?

Fix an open set X ⊂ Rn and an operator f . Consider the set DX(f)
of all solutions to the inhomogeneous equations f(D2

xh) = ψ(x) on X for
ψ ∈ C(X). More precisely, set

DX(f) = {h : h is Ff (ψ)-harmonic on X for some ψ ∈ C(X)}

and then define f(D2h), for h ∈ DX(f) as the set of ψ ∈ C(X) such that h
is Ff (ψ)-harmonic.

Question B. — Is this operator on DX(f) single-valued?

If f is uniformly elliptic and convex, then it is well known that f is single-
valued. Nothing more seems to be known. We have asked several experts
this question. Here are some positive results.
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Proposition 8.1. — The general case, with ψ ∈ C(X) arbitrary, is
equivalent to the case where ψ is constant.

Proof. — Suppose that ψ1, ψ2 ∈ C(X) and that h is a solution to both

(a) f(D2
xh) = ψ1(x), and (b) f(D2

xh) = ψ2(x) on X.

If ψ1(x0) 6= ψ2(x0) (say ψ1(x0) < ψ2(x0)), then it suffices to show that :

(8.1) ∀ δ > 0 sufficiently small, ∃ a neighborhood N(x0) s.t.
∀ k ∈ [ψ1(x0) + δ, ψ2(x0)− δ],

h is a solution to f(D2
xh) = k on N(x0).

Now (b) implies, in particular, that h is Ff (ψ2)-subharmonic on X.
Choose a neighborhood N(x0) of x0 so that ψ2(x0) − δ < ψ2(x) for x ∈
N(x0). Then on N(x0) we have {f > k} ⊃ {f > ψ2(x0) − δ} ⊃ {f > ψ2}.
Thus

h is {f > k}-subharmonic on N(x0).

It remains to show that for a (possibly smaller) neighborhood N(x0)

(8.2) −h is ˜{f > k}-subharmonic on N(x0).

Pick N(x0) so that ψ1(x) < ψ1(x0) + δ for x ∈ N(x0). Then on N(x0)

(8.3) {f > ψ1} ⊃ {f > ψ1(x0) + δ} ⊃ {f > k},

and hence on N(x0) we have the reverse inclusions for the duals, in partic-
ular

(8.4) ˜{f > ψ1} ⊂ ˜{f > k}.

Now (a) implies that

(8.5) −h is ˜{f > ψ1}-subharmonic on N(x0).

Hence by (8.4) −h is ˜{f > k}-subharmonic on N(x0). �

In light on Proposition 8.1, Question B can be restated as

Question B′. — Can a pair of subequations H,F ⊂ Sym2(Rn) with
H ⊂ Int F have a simultaneous harmonic h?

Corollary 8.2. — Since ∂H and ∂F are disjoint, a counterexample
must fail to be quasi-convex in all neighborhoods of all points by quasi-
convex addition.
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Theorem 8.3. — Each canonical operator f (as defined in Proposi-
tion 6.13) is single-valued. That is, if H ≡ {f > k} and F ≡ {f > k − λ}
with λ > 0, and if the associated equations ∂H and ∂F have a common
solution h, then λ = 0.

Proof. — First we show that

(8.6) If h is a solution to f(D2h) = k − λ,

then h′(x) ≡ h(x) + λ

2 |x|
2 is a solution to f(D2h′) = k.

For this we shall use the obvious fact that for all t ∈ R

(8.7) φ is an upper test function for h at x0

⇐⇒ φ+ t

2 |x|
2is an upper test function for h(x) + t

2 |x|
2 at x0.

Assume h is a solution to f(D2h) = k−λ, and let φ be an upper test function
for h at x0. By (8.7) φ− λ

2 |x|
2 is an upper test function for h(x)− λ

2 |x|
2 at x0.

Hence, f(D2
x0
φ−λ) > k−λ. Since f is canonical, f(D2

x0
φ−λ) = f(D2

x0
φ)−λ

and so f(D2
x0
φ) > k as desired.

Now −h is subharmonic for the dual subequation to {A : f(A) > k−λ},
which one computes to be {A : f(−A) 6 k − λ}. Let φ be an upper test
function for −h at x0. Then by (8.7) φ+ λ

2 |x|
2 is an upper test function for

−h+ λ
2 |x|

2 at x0. Hence, f(−D2
x0
φ−λ) 6 k−λ. However, f(−D2

x0
φ−λ) =

f(−D2
x0
φ)− λ and so f(−D2

x0
φ) 6 k as desired. This establishes (8.6).

Finally (8.6) provides us with a second solution

h′′(x) ≡ h(x) + λ

2 |x|
2 − λ

2
on the unit ball Ω ≡ {|x| < 1} (we can assume Ω ⊂ X) with the
same boundary values ϕ ≡ h

∣∣
∂Ω. By uniqueness, h(x0) = h′′(x0), that

is λ = 0. �

Appendix A. Comparison for Constant Coefficient
Operators

The uniqueness part of Theorem 2.7 holds for any domain Ω ⊂⊂ Rn
without the assumption of boundary convexity. The argument for this com-
parison result is easier than the one given for the Main Theorem 2.11, and
so we are including it here.
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Theorem A.1. — Let (F, f) be a reduced subequation-operator pair.
Suppose that the operator f ∈ C(F) can be tamed and that ψ ∈ C(Ω)
takes values in f(F) (i.e., is admissible). Suppose u, v ∈ USC(Ω) with u

Ff (ψ)-subharmonic and v F̃f (ψ)-subharmonic on Ω. Then

(A.1) if u+ v 6 0 on ∂Ω, then u+ v 6 0 on Ω.

We shall give two proofs. The first is based on the Theorem on Sums
of Crandall, Iishi and Lions [10], which in turn is based on the Slod-
kowski/Jensen Lemma. The second is based on an Almost Everywhere
Theorem and the notion of a subaffine function. This A.E. Theorem also
rests on the same Slodkowski/Jensen Lemma (see [18]). These proofs pro-
vided the original motivation for the concept of tameness. Without the
tameness of the operator, the old arguments did not apply.

Proof I.
Step 1 (Strict Approximation). — For this first proof we simplify the

notation for Ff (ψ) to F, suppressing the dependence on both f and ψ.
Consider

(A.2) uλ(x) ≡ u(x) + λ

2 |x|
2

for λ > 0. Note that ϕ is a test function for u at x0 ⇐⇒ ϕλ(x) ≡
ϕ(x) + λ

2 |x|
2 is a test function for uλ at x0, and

(A.3) D2
x0
ϕλ = D2

x0
ϕ+ λI.

Define Fλ by its fibres

(A.4) Fλx ≡ Fx + λI.

This Fλ is a subequation, and we can restate (A.3) by saying

(A.3′) u is F-subharm ⇐⇒ uλ = u+ λ

2 |x|
2 is Fλ-subharm.

Note that a function u is F-subharmonic if and only if u + c is F-
subharmonic for all c ∈ R since F is reduced. Thus we may assume that
“0” in (A.1) can be replaces by any constant c. Now, since uλ decreases to
u as λ ↓ 0, it suffices to prove the theorem with u replaced by uλ. That is,
we assume that u is Fλ-subharmonic for some λ > 0.
Step 2 (Calculating the Dual). — From (2.3) we see that the fibres of

the dual subequation are given by

(A.5) F̃y = F̃ ∪ {B : −B ∈ Int F and f(−B) 6 ψ(y)}.

The final step is the main step.
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Step 3. (Apply the Theorem on Sums [10]). — The statement we draw
on is the following, given in Theorem C.1 in [16]. If u + v has an interior
maximum at x0 ∈ Ω which is strictly larger than the maximum on ∂Ω,
then there exist:

(1) numbers ε ↓ 0 and points (xε, yε) ∈ Ω× Ω such that

(xε, yε)→ (x0, x0) as ε ↓ 0,

(2) Aε ∈ Fλxε , and
(3) Bε ∈ F̃yε ,

such that
(4) Aε +Bε 6 0.
Set Pε ≡ −(Aε +Bε) so that we can replace (4) by
(4′) −Bε ≡ Aε + Pε with Pε > 0.
Now by the definition of Fλ and positivity, condition (2) states that
(2′) Aε + Pε − λI ∈ F and f(Aε + Pε − λI) > ψ(xε).
By (A.5) condition (3) states that
(3′) either

(a) Aε + Pε = −Bε /∈ Int F, or
(b) Aε + Pε = −Bε ∈ Int F and f(Aε + Pε) 6 ψ(ye).

Now F + λI ⊂ Int F so that (3′a) is ruled out by (2′). Thus, the inequality
in (3′b) must hold. With

A′ε ≡ Aε + Pε − λI

we now see that the combination of conditions (2), (3) and (4) (or equiva-
lently (2′), (3′) and (4′)) are equivalent to the single condition:

(5) A′ε ∈ F and ψ(xε) 6 f(A′ε) 6 f(A′ε + λI) 6 ψ(yε).
Taking the limit as ε ↓ 0, we see that the tameness assumption on the

operator f yields the contradiction. �

Proof II. (An Outline). — Some readers may find this proof to have
clearer motivation and more intuitive appeal. In addition, this proof estab-
lishes quasi-convex approximation for the subequations Ff (ψ) and F̃f (ψ)
even though they do not have constant coefficients.
Step I. — Show that if u and v are C2, then D2u + D2v ∈ P̃. That

is, w ≡ u + v is P̃-subharmonic where P̃ ≡ {A : λmax(A) > 0} is the
dual of the subequation P ≡ {A : λmin(A) > 0}. This is an algebraic step
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which is valid in much greater generality. Namely, for any closed subset
G ⊂ Sym2(Rn),

(A.6) if G + P ⊂ G, then G + G̃ ⊂ P̃.

Step II. — Recall from [14] that for an upper semi-continuous function
w

(A.7) w is subaffine ⇐⇒ w is P̃-subharmonic.

Thus the concept of being “sub” the affine functions has an advantage over
satisfying the maximum principle (i.e., being “sub” the constants). It is a
local concept.
Step III. — Suppose u and v are quasi-convex. Then by Alexandrov’s

Theorem both are twice differentiable almost everywhere, and we have
D2
xu ∈ Ff (ψ)x and D2

xv ∈ F̃f (ψ)x for almost all x. Therefore by (A.5)

(A.8) D2
x(u+ v) = D2

xu+D2
xv ∈ P̃ for a.a. x.

Step IV. (Apply the AE Theorem). — This result (see [18]) states that
for any subequation G and any locally quasi-convex function w:

If the 2-jet J2
xw ∈ Gx for a.a. x, then w is G-subharmonic.

Step V. — At this point we have proved the theorem for u and v quasi-
convex, so that it suffices to establish quasi-convex approximation for Ff (ψ)
and F̃f (ψ).

Lemma A.2 (Quasi-Convex Approximation). — If the operator f is
tame, and if there exist an Ff (ψ)-subharmonic function and an F̃f (ψ)-
subharmonic function which are bounded below, then

(1) Each Ff (ψ)-subharmonic function u can be approximated by a
decreasing sequence of quasi-convex Ff (ψ)-subharmonic functions
{uj} converging pointwise to u.

(2) Each F̃f (ψ)-subharmonic function v can be approximated by a
decreasing sequence of quasi-convex F̃f (ψ)-subharmonic functions
{vj} converging pointwise to v.

Proof of (1). — By replacing u by max{u, α−N}, where α is an Ff (ψ)-
subharmonic function which is bounded below, we can assume that u is
bounded by M . Let (uλ)ε be the strict approximation uλ in (A.2) followed
by the standard ε-sup-convolution. It suffices to show that:

(A.9) (uλ)ε is Ff (ψ)-subharmonic if ε is small relative to λ.
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The function (uλ)ε is the supremum taken over |z| 6 δ ≡
√

2εM of the
functions

v(x) ≡ u(x− z) + λ

2 |x− z|
2 − 1

ε
|z|2.

First we show that each v(x) is Ff (ψ)-subharmonic. Suppose that ϕ is a
test function for v at a point x0. We must show that B ≡ D2

x0
ϕ ∈ Ff (ψ)x0

,
i.e., B ∈ F and f(B) > ψ(x0). Since

(A.10) v(x) 6 ϕ(x)near x0 with equality at x0,

if we set y ≡ x − z and y0 = x0 − z, it follows that ϕ(y) ≡ ϕ(y + z) −
λ
2 |y|

2 + 1
ε |z|

2 is a test function for u(y) at y0. That is,

(A.10′) u(x) 6 ϕ(x)near y0 with equality at y0.

Hence, A ≡ D2
y0
ϕ ∈ F and f(A) > ψ(y0). Therefore, B = A+ λI ∈ F. Let

ω(δ) denote the modulus of continuity of ψ. Since f is degenerate elliptic
on F, we have

f(B)− ψ(x0) = f(A+ λI)− ψ(x0) > c(λ) + ψ(y0)− ψ(x0) > c(λ)− ω(δ)

since |y0 − x0| = |z| 6 δ ≡
√

2εM . With ε small, c(λ) − ω(
√

2εM) > 0
which proves that each v is Ff (ψ)-subharmonic.
The rest of the proof is standard and goes as in the constant coefficient

case (see [9, 10, 14]). The proof of (2) is similar. �

Appendix B. Certain Concave Operators are Tame

Lemma B.1. — Suppose F is a pure second-order convex cone subequa-
tion with a compatible operator f ∈ C(F). If f is concave and homogeneous
of degree > 1, then

(B.1) tf(I) 6 f(A+ tI)− f(A) ∀ t > 0, and ∀ A ∈ F,

and hence f is tame.

Proof. — The directional derivative 〈DA+tIf, I〉 ≡ d
dtf(A + tI) in the

direction I satisfies

(B.2) 〈DA+tIf, I〉 6
1
t
{f(A+ tI)− f(A)}.

The right hand side is the slope of the secant line from (0, f(A)) to
(t, f(A + tI)) of the concave function g(t) ≡ f(A + tI), which is > g′(t),
the slope of the tangent line at t, which is the left hand side of (B.2).
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By concavity the graph of f lies below its tangent plane through the
point (A+ tI, f(A+ tI)) on the graph. That is, by the concavity of f(B),

f(B) 6 f(A+ tI) + 〈DA+tIf,B − (A+ tI)〉 ∀ B ∈ F.

Taking B = I yields

(B.3) f(I) 6 〈DA+tIf, I〉+ f(A+ tI)− 〈DA+tIf,A+ tI〉.

Finally the homogeneity of degree m > 1 implies that

(B.4) mf(B) = 〈DBf,B〉 for any B ∈ F.

Therefore the last two terms in (B.3) add up to (1−m)f(A+ tI). Now f

and F are compatible, and f(0) = 0. Hence, f = 0 on ∂F, and so f > 0 on
F by positivity. Thus we have that

f(I) 6 〈DA+tIf, I〉.

Combining this with (B.2) gives the result. �
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