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ABSTRACT. A canonically defined mod 2 linear dependency current is associated to each collection v of  

sections, Vl, . . . ,  Vm, of  a real rank n vector bundle. This current is supported on the linear dependency set 

of v. It is defined whenever the collection v satisfies a weak measure theoretic condition called "atomicity." 

Essentially any reasonable collection of  sections satisfies this condition, vastly extending the usual general 

position hypothesis. This current is a mod 2 d-closed locally integrally flat current of  degree q = n - m + 1 

and hence determines a Z2-cohomology class. This class is shown to be well defined independent of  the 

collection of  sections. Moreover, it is the qth Stiefel-Whitney class of  the vector bundle. 

More is true if  q is odd or q = n. In this case a linear dependency current which is twisted by the 

orientation of  the bundle can be associated to the collection v. The mod 2 reduction of  this current is the 

rood 2 linear dependency current. The cohomology class o f  the linear dependency current is 2-torsion and is 

the qth twisted integral Stiefel-Whitney class of  the bundle. 

In addition, higher dependency and general degeneracy currents of  bundle maps are studied, together 

with applications to singularities of  projections and maps. 

These results rely on a theorem of  Federer which states that the complex of  integrally flat currents rood 

p computes cohomology rood p. An alternate approach to Federer's theorem is offered in an appendix. This 

approach is simpler and is via sheaf theory. 

1. Introduct ion  

It is well known [3, 17, 18, 22, 24] that the linear dependency set of a collection of sections of a 
vector bundleis related to the characteristic classes of the bundle. In particular, the zero set of a regular 
section defines a cohomology class which is the Chem-Euler class of the bundle. In [12] canonically 
defined current representatives of the Chern classes of a complex vector bundle were associated to 
collections of smooth sections of the bundle. These currents are called linear dependency currents 
since they are supported on the linear dependency set of the collection of sections. 

The main aim of this paper is to study the linear dependency currents of a collection of sections 
of a real vector bundle. These are either mod 2 or bundle-twisted currents which represent either 
the mod 2 or twisted-integer Stiefel-Whitney classes of the bundle. Since they are either mod 2 
or 2-torsion, these currents were overlooked in [12]. 

The linear dependency current associated with an ordered collection v of sections of a real 
vector bundle is defined in Section 3 paralleling a standard construction in enumerative geometry 
(see, for example, [19, 7]). In general, the most one can say is that this linear dependency current, 
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LDm~ is a rood 2 current and that it determines a Z2-cohomology class which is well defined 
independent of the particular collection of sections of the bundle (Theorem 3.14). 

However, if the degree of LI) m~ (v) is odd or equal to the rank of the bundle it is also possible to 
define a (bundle-twisted) linear dependency current, LD(v), which encodes certain (twisted) integer 
multiplicities of dependency among the sections (Proposition 3.16). The mod 2 reduction of this 
current LD(v) is the rood 2 current LDm~ The current LD(v) determines a (twisted) integer 
cohomology class well defined independent of the choice of collection v (Theorem 3.6). If the degree 
of LD(v) is less than the rank of the bundle (which occurs when the collection consists of more than 
one section), this cohomology class is a torsion class of order 2 (Corollary 3.8). 

A major advantage of the approach taken here is that the lincar dependency current is defined 
whenever the collection v satisfies a weak measure theoretic condition called "atomicity", which 
is vastly more general than the usual general position hypothesis. For example, a real analytic 
collection of m sections of a rank n bundle is atomic provided that, for all j c {0, 1 . . . . .  m - 1}, 
the codimension of the set of points over which exactly j of the sections are linear independent is at 
least the expected codimension n - j (see [12], Proposition 2.14). 

Another important property of the (mod 2) linear dependency current is that it is a (rood 2) 
locally integrally flat current. Recall that the integrally flat currents are those of the form R + dS, 
where R and S are rectifiable. Federer [5] proved that the complex of locally integrally flat currents 
(or such currents rood p) can be used to compute integer (or mod p) cohomology. In the Appendix we 
offer an alternate approach to the theory of (mod p) integrally flat currents and their cohomological 
properties. This simple approach is via sheaf theory and is distinct from the form of the theory given 
in the geometric measure theory literature. 

The theory of dependency currents relies heavily on the theory of zero divisor currents, which 
was originally developed in [14] for "atomic" sections of an oriented vector bundle over an oriented 
manifold. The notion of an atomic section provides a generalization of the notion of a section being 
transverse to zero, one that is both useful and vastly more general. The zero divisor is a d--closed 
locally integrally flat current which determines a unique integer cohomology class, the Euler class. 
In this paper it is crucial that the notion of a zero current be understood in the non-orientable case. 
This is done in Section 2 where the zero divisor is defined as a bundle twisted current. This current 
determines a cohomology class (Theorem 2.5), which is the twisted Euler class, 7 E H n (X, ~), of 
the vector bundle. The reduction mod 2 of the zero divisor eliminates the twisting, yielding a rood 2 
current which represents the top Stiefel-Whitney class, wn ~ Hn(X, Z2). 

In Section 4 we identify the Z2-cohomology class of the degree q rood 2 current LD m~ 2(v) 
as Wq, the qth Stiefel-Whitney class of the bundle (Theorem 4.1). Moreover, if q is odd, the Z -  
class of the twisted current LD(v) is identified as the qth twisted integral Stiefel-Whitney class 
Wq E Hq(x ,  ~) (Theorem 4.10). This result is a corollary of the fact that the Bockstein of the 
mod 2 dependency current LDm~ of degree q - 1 is the degree q twisted dependency current 
associated with a subcotlection of the collection v (c.f. [24, 21]). 

The Stiefel-Whitney classes were originally defined [22, 24, 21] as the primary obstruction to 
the existence of certain collections of linearly independent sections of a bundle F --+ X. In Section 5 
we examine the relationship between linear dependency currents and obstruction cocycles. Given 
a triangulation of X it is possible to choose a particular atomic collection of sections of F so that 
the Steem'od obstruction cocycle of the collection is defined. The Poincar6 dual of such a cocycle is 
a cycle which defines a current on X by integration. We then show that this obstruction current is 
equal to the linear dependency current of the particular collection of sections. Among other things, 
this provides an alternate proof of the results of Section 4. 
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In Section 6 higher dependency currents and general degeneracy currents of vector bundle 
maps are discussed, further expanding the results of [12]. Some of the degeneracy currents studied 
in Section 6 were not included in [12] since they are either not defined as twisted currents or their real 
cohomology class is zero. In these cases we can define mod 2 and/or twisted degeneracy currents. 
The integer cohomology classes of the twisted degereracy currents were first studied by Ronga [20] 
who proved that they are uniquely determined by their torsion-free part and rood 2 reduction. We 
expand upon Ronga's result by explicitly identifying the integer cohomology classes of the higher 
dependency currents as certain polynomials in the integer Pontrjagin and Stiefel-Whitney classes 
(Theorem 6.15). 

In Section 7 applications of the theory to singularities of projections and maps are given. In 
particular we recover the well-known fact that the Steifel-Whitney classes of the tangent bundle 
TX and normal bundle NX of a submanifold X C R N can be defined in terms of singularities of 
projections. The original version of this result is due to [17, 18], [23] (see also [1]). Note, however, 
that they only consider generic projections whose critical sets are non-degenerate, with multiplicity 
• The atomic theory enables us to consider degenerate critical sets of arbitrary integer multiplicity 
(Proposition 3.16). In particular, if X is a real analytic submanifold, the tangent and normal Stiefel- 
Whitney classes can be defined in terms of the singularities of any projection whose degeneracy 
subvarieties have at least the expected codimension. Integer and mod 2 cohomological obstructions 
to the existence of smooth immersions and surjections between manifolds are also given, c.f. [20]. 

Two further applications are worth noting. Following [12] we can define mod 2 and twisted 
integer degeneracy currents associated with higher self-intersections of plane fields and invariants 
of pairs of foliations. Mod 2 and integer umbilic currents of hypersurfaces can also be studied using 
these ideas. Details of these two applications are left to the reader. 

Secondary (Cheeger-Chern-Simons) Stiefel-Whitney classes will be introduced in a later paper. 
1 Canonical Llo c representatives of these classes will be associated to each atomic collection of sections 

of a bundle with Riemannian connection. In the case of a single section o~, the secondary Euler class 
is represented by the Chern-Euler potential cr(~). As is discussed in [10] this potential satisfies 
the important equation dcr(ot) = X - Div(ot), where X is the Euler form and Div(~) the divisor 
of the section. If the collection v consists of more than one section, then there is a canonical L~o c 
current T(v) satisfying the current equation dr(v)  = - LD(v), which represents the appropriate 
secondary Stiefel-Whitney class. This current equation is related to a formula of Eells [4]. 

Finally, we would like to draw the attention of the reader to recent work of Fu and McCrory [6] 
who, in the spirit of [15], have constructed current representatives for the tangential Stiefel-Whitney 
homology classes of a singular variety. 

2. Divisors and atomicity 

Harvey and Semmes defined the zero divisor current of an atomic section of an oriented real 
rank n vector bundle over an oriented manifold. The divisor is a codimension n current which is 
supported on the zero set of the section and which encodes the integer multiplicity of vanishing of 
the section. Furthermore, it is a d-closed locally integrally flat current whose cohomology class in 
H n (X, Z) is well defined independent of the choice of section. This class is the Euler class of the 
bundle. 

The aim of this section is to define and study the zero divisor current in the case in which neither 
the vector bundle nor the base manifold are assumed to be orientable. In this case, the zero divisor is 
defined to be a current that is twisted by the orientation bundle of the vector bundle. It is also useful 
to define the rood 2 divisor to be the mod 2 reduction of the divisor. Both of these notions of divisor 
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will be important in the study of  linear dependency currents in Section 3. 

We begin by recalling some definitions. Let V --+ X be a real rank n vector bundle over an N- 
dimensional manifold. No orientation assumptions will be made on V or X. Let Ox and Ov denote 
the principal g2-bundles of  orientations of  TX and V over X. An O-twisted k-form is a section of  
(,9 @~2 AleT*X --+ X. (Often the subscript •2 will be dropped when tensoring with (.9.) A density 
is a top degree smooth Ox-twisted form on X. Note that densities can be integrated over X. A 
generalized function is a continuous linear functional on the space of compactly supported smooth 
densities on X. A current of degree p is a differential p - fo rm on X whose coefficients (with respect 
to each coordinate system) are generalized functions. Equivalently, a degree p current is a continuous 
linear functional on the space of  compactly supported Ox-twisted (N - p)-forms.  Similarly, an 
Or-twisted current is an Or-twisted form whose coefficients are generalized functions, i.e., it acts 
on Ov | Ox-twisted forms. An L~o c form is a form whose coefficients are L~o c functions. Therefore, 

L~o c forms are currents that are not twisted. On the other hand, an oriented compact submanifold 
of  X defines an OK-twisted current by integrating (untwisted) forms over it. Note that exterior 
differentiation is a well defined operation on (twisted) currents. 

On a contractable open subset U of  X, each Or- twis ted  current T can be written in the form 
= [e] | r where [e] 6 Ov is the orientation class of a local frame e for V over U and where 

T is a current on U. If  V is orientable, each choice of  orientation defines an isomorphism between 
Or- twisted currents and currents. These two isomorphisms differ by a minus sign. Note that the 
definition of  a current on a non-orientable manifold agrees with that given in [13] but disagrees with 
that in [25, 26]. 

A. Divisors in the nonorientable case 

In this subsection we define and study the divisor of a section of V --> X. The divisor is defined 
to be an Ov-twisted current. Note that if V and X are oriented, the definition of  divisor given below 
agrees with that of  [14]. 

The solid angle kernel, 0, is the L~o c form on R n obtained by pulling back the normalized 
volume form on the unit sphere to R '~ ~ {0} by the radial projection map. The current equation 
d 0 = [0] on R n, where [0] denotes the point mass at the origin, motivates the definition of  divisor. 

Definition 2.1. Let X be a smooth manifold and let y = (yl . . . . .  yn) denote coordinates on R n. 
dy 1 ~n  

In the case n > 1 a smooth function u : X -+ R n is called atomic if, for each form i7[5 on with 
d 1 

P = I I ]  < n - 1, the pullback u*(~@lp) to X has an L~oc(X) extension across the zero set Z of  u. - -  y 

Also assume that u does not vanish identically in any connected component of  its domain X. In the 
case n = 1, it is convenient to define a smooth function u : X ---> R to be atomic if log l ul 6 L]o c (X), 
(c.f. [14]). 

If  u is atomic, then the zero set Z has measure zero in X (see [14]) so that the L]o c (X) extensions 

are unique. In particular, the smooth form u*(O) on X ~ Z has a unique L]oc(X) extension across 
Z, and therefore defines a current on X. 

Def in i t ion  2.2. Let u : X --> R n be an atomic function. The divisor of u is the degree n current 

Div(u) on X defined by 
Div(u) :=  d (u*O) . 

Atomicity is a weak condition which ensures the existence of  a zero divisor. Harvey and Semmes 
proved that a large class of smooth functions are atomic. More specifically those functions which 
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vanish algebraically and whose zero sets are not too big in thesense of  Minkowski content are atomic. 
In particular, real analytic functions whose zero sets have codimension n are atomic. 

L e m m a  2.3. Let  g be a smooth GL(n ,  R)-valued function on an oriented manifold X and let 
u : X --+ R ~ be atomic. Then v :=  ug is atomic and 

Div(v) = -4-1 Div(u) ,  

where -t-1 :=  sgn det(g) is constant on connected components o f  X.  

This result of [14] allows one to extend the notion of  divisor to sections of  vector bundles. First, 
a section v of a smooth vector bundle V --+ X is called atomic if for each choice of local frame e 
for V the function v, defined by v = re, is atomic. 

Def in i t ion  2.4. Let v be an atomic section of  a rank n bundle V --+ X. The divisor, Div(v), of  v 
is the Or - twis ted  current on X defined locally on an open subset U of  X as follows. Choose a local 
frame e for V over U and let v : U --+ ~n be the coordinate expression for v determined by e. Then 

Div(v) :=  [e] | Div(v) on U .  

In particular, if V is oriented, then Div(v) is a current on X. 

As described in the Appendix, the locally integrally flat currents are those currents that can be 
expressed as R + dS  where R and S are locally rectifiable. Furthermore, the complex 5~/*oc(X) of  
Or- twis ted  currents on X which are locally integrally flat may be used to compute the cohomology, 
H*(X,  Zv ) ,  of X with integer coefficients twisted by (_gv, i.e., Zv  :----- (gv | Z. 

T h e o r e m 2 . 5 .  Le tv  beanatomicsec t ionofarealrankn  vectorbundle V --~ X.  Thezerodivisor, 
Div(v) c 5~oc(X), o f  v is an Or - tw i s t ed  d-closed locally integrally fiat current o f  degree n on X,  
whose support is contained in the zero set o f  the section v. Furthermore, i f  # is another atomic 
section o f  V, then there is an Or - tw i s t ed  locally rectifiable current R so that 

Div(v) - Div(/~) ---- d R .  (2.5.1) 

That is, the cohomology class o f  Div(v) in H n ( X, Z v  ) is well defined independent o f  the choice o f  
section v. This class is the twisted Euler class "Y o f  V. In particular, i f  V is oriented, the Euler class 
e ~ H n ( x ,  Z) o f  V is the cohomologyclass o f  Div(v). 

C o r o l l a r y  2.6. Suppose that v is an atomic section o f  an odd rank bundle V --~ X.  Then there 
is an Or - tw i s t ed  locally rectifiable current R on X so that 

2Div(v )  = d R .  

Consequently, the cohomology class ~ ~ Hn(X ,  Z v )  o f  Div(v) is a torsion class o f  order 2, 
(c.s [16]). 

P r o o f  o f  C o r o l l a r y  2.6. Since the antipodal map on the even dimensional sphere S n-I  is ori- 
entation reversing, D i v ( - v )  - - Div(v). The result now follows by applying Equation (2.5.1). 
[] 

The proof of Theorem 2.5 relies on the following general remark. 
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R e m a r k  2.7. Let p : X -+ X denote the double cover Ov -+ X. Note that the pullback bundle 
= p*V on ~" is oriented by choosing the orientation on V~ to be the one determined by the point 
c X. A current T on X is odd i f a ,  T = - T ,  where a �9 X -+ X is the natural involution. Then 

odd currents on X are in 1-1 correspondence with Or-twisted currents on X. 

Proof of Theorem 2,5, The proof in the case that V is oriented, is given in [14], Theorem 5.1. 
In the case that V is nonorientable let p~ X ~ X be the double cover of Remark 2.7 and let 
denote the pullback of the section v to V --+ ~'. Since V is oriented the theorem holds for the 
section 7. Furthermore, by Lemma 2.3, Div(~) is an odd current on ik" which corresponds to the 
Or-twisted current Div(v) on X. Incorporating the double covers : ~" -+ X into the proof of [14], 
Theorem 5.1, we observe that the locally rectifiable current R on X can be chosen to be odd. Finally, 
we let R be the corresponding Ov-twisted current on X. [ ]  

The following structure theorem for divisors, which is a corollary of [14], Proposition 4,3, is 
proved in [25]. Set Z := Zero(v) and let 

RegZ = {x 6 X : Z is acodimension-n C 1 submanifoldnearx} 

denote the set of regular points of Z and let Sing Z := Z ~ Reg Z denote the set of singular points. 
Let {Zj } denote the family of connected components of Reg Z. 

Theorem 2.8. Letv  be an atomic section of  V -+ X. I~'Zj C spt(Div(v)), then 

OTZj ~ Ov | Ox ]zj ' 

and, given such an isomorphism, the submanifold Z j defines an (gv-twisted current [Z j] by inte- 
gration. Furthermore, there are integers n j ~ Z such that 

Div(v) = E n j  [Zj] (2.8.1) 

as Ov-twisted currents on X ~ Sing Z. 

R e m a r k  2.9. By [14], Proposition 4.3, the integers nj in Equation (2.8.1) can be calculated as 
follows. Let x ~ Zj and let L/be an open neighborhood of x in X. Choose orientations for V and 
T X  over L/. These orientations induce orientations on T Z j  and on the normal bundle N Z j  over b/. 
Let p : S(V) -+ S(R ~) be an orientation preserving trivialization of the sphere bundle S(V) over 
L/. Then, for almost all x E Z j, 

nj = D e g ( p o v : S ( N x Z j ) - +  S(Rn))  

is the degree of the induced map between oriented (n - 1)-spheres. 

B. Mod 2 divisors 

In this subsection, the rood 2 divisor of an atomic section is defined to be the mod 2 reduction 
of the divisor of the section. The mod 2 reduction of an Or-twisted locally integrally fiat current 
is a mod 2 locally integr~ly flat current. At the cohomology level, rood 2 reduction is simply the 
natural mapping H*(X, Zv) ~ H*(X, Z2). The idea behind the definition of a mod 2 current 
is to completely ignore orientation issues by declaring a current 7" and its negative - T  to be the 
same. Although they encode less information than their twisted counterparts, rood 2 currents have 
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the advantage that they push forward under proper smooth maps. This fact will be particularly useful 
in Section 3. 

Definition 2.10. Let ~Poc(X) denote the space of locally integrally flat currents of degree p on 

X. Then the space Ylo rood 2(X) o fmod  2 locally integrally flat currents of degree p on X is defined 
P 2 p to be the quotient .~ioc(X)/ .~loc(X). The natural mapping 5~oc(X) --+ 5C~oloc~ 2 (X) is called mod 2 

reduction. 

The spaces 5Cioc(X) and  ~loc~ are studied in the Appendix. In particular, we show there 

that the complex ~mc~ may be used to compute the cohomology, H*(X,  Z2), of X with Z2 

coefficients. In Subsection A we saw that Div(v) ~ 5~lZoc(X) is an Or-twisted locally integrally flat 
current. Now, by Lemma A.26, there is a canonical isomorphism 

~loc(X) / 25~1oc(X) = ~lom~ �9 (2.11) 

The induced mapping ~oc(X) -+ 5Clmoc~ 2(X) is also called rood 2 reduction. 

Definition 2.12. The mod 2 divisor, Divm~ ~ J~loc~ of an atomic section v of V --+ X 

is defined to be the mod 2 reduction of the Or-twisted current Div(v) ~ 5~loc(X). 

Now the mod 2 version of Theorem 2.5 is immediate. 

Theorem 2.13. Let  v be an atomic section o f  a real rank n vector bundle V -+ X.  The rood 2 
divisor, Divm~ is a d-c losed rood 2 locally integrM1y flat current o f  degree n on X,  whose 
support is contained in the zero set o f  the section v. Furthermore, i f  tz is another atomic section o f  
V, then there is a rood 2 IocMIy rectifiabIe current R so that 

Divm~ -- Divm~ = d R .  

That is, the cohomology class o f  Div re~ ( v ) in H n ( X, Z2 ) is well defined independent o f  the choice 
o f  section v. This class is the rood 2 Euler (or top Stiefel-Whitney) class, wn, o f  V, 

R e m a r k  2.14. By definition, the divisor Div(v) E ~oc(X) is determined by a collection of local 
divisors Div(v,) defined on open subsets U, of X. These local divisors satisfy Div(v,) --- + Div(v~) 
on U, fq U/~. The rood 2 divisor Divm~ is the mod 2 current which is naturally associated to 
this collection of local divisors. 

E x a m p l e  2.15. In general, a current representative for a mod 2 divisor is not d-closed. In fact, it 
is easy to construct sections v for which there are no d-closed currentrepresentatives T ~ 5Cloc (X) of 
Divmod 2 (v) (though of course Div (v) is a d-closed Or-twis ted current representative of Div m~ 2 (v)). 
This can be done as follows. 

Let v be an atomic section of a nontrivial real line bundle L --+ X. Choose a metric on L. 
Then the divisor of v is the d-closed OL-twisted current Div(v) = d(�89 ~ )  ~ ~ lc(X) .  The mod 2 

reduction of Div(v) is the mod 2 divisor Div m~ 2 (v) which represents the first Stiefel-Whitney class 
wl (L) c H t (X, Z2). A current representative T E 5Cloc (X) of Div m~ 2 (v) can be constructed as 
follows. For simplicity we assume that 0 is a regular value of v. Let Z = Zero(v). Choose an 
auxiliary section/z of L --+ X so that W -- Zero(/z) is a submanifold which is transverse to Z. Let 
p : X ~ X be the double cover orienting L and let ~, ~ : X -+ R be the pullbacks of the sections 

1 ?loc(X ) v, #. Set X := i~-~l - Now X Div(~) ~ )rlloc(X" ) is well defined and T := ~p,(;(Div(7)) 

is a current on X whose mod 2 reduction is Divm~ Finally d T  = 2[Z N W] # 0 on X. 
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Next suppose that S = T - 2R is a current representative of Divm~ for which dS  = O. 

This forces [Z n W] = d R  to be zero in H2(X ,  Z). But this is not always possible, since if  
L --+ RI? 3 is the tautological line bundle, then [Z n W] can be chosen to be the generator RI? 1 of  

H2(X ,  Z) ~- H i ( X ,  Z) = 7,2. 

3. Lioear dependency currents 

In this section we associate to each atomic collection v of  n - q + 1 sections of a real rank 
n bundle F -+ X a degree q current on X which is supported on the linear dependency set of  the 

collection of  sections. This current will be called the l inear  dependency current of the collection 
v. In all cases the linear dependency current exists as a mod 2 current. However, in the case where 
q is odd or where q = n, it can also be defined to be an OF- twis t ed  current. Note that if  q = n, 

the linear dependency current is simply the divisor of  the section v (sce Section 2). Henceforth we 

assume that q < n. 

The linear dependency currents are defined using the construction of  such currents in [12] which 
we now briefly recall. Let F -+  X be a real rank n vector bundle. Fix q c {1, 2 . . . . .  n - 1} and let 
v = (vl . . . . .  Vm) be a collection o f m  : n - q + 1 > 1 sections of  F -+ X. (Such collections will 

m 

always be ordered.) These sections define a bundle map v : ~m __+ F by v (q  . . . . .  tin) : :  ~ tiVi 
i=1  

which drops rank on the set where vl . . . . .  Vm are linearly dependent. Lct Jr : IP(R m) ~ X denote the 
trivial bundle of  (m - 1)~l imensional  real projective spaces and let U C E m be the tautological line 
bundle over P G m ) .  Using 7r to pull back the bundle map v : Nm ~ F to p(Rm) and then restricting 

to the subbundle U C Rm we obtain an induced section ~ of  the bundle H : =  Horn(U, 7r*F) over 
p(Rm) = p(Rm) • X. By construction the projection by 7r to X of  the zero set o f t  is the linear 

dependency set of  vl . . . . .  Vm. 

Definition 3.1. The collection v of sections vl . . . . .  Pm is called a tomic  if  the induced section 
of H -+  P G  m) is atomic. 

If  the collection v is atomic, then the O n - t w i s t e d  divisor current, Div(~), and its mod 2 
reduction, Div m~176 2 (~), are well defined. The linear dependency current is defined to be the current 
push forward of  Div m~ 2 ('~), or whenever possible the push forward of Div(7). 

Generally speaking, it is not possible to push forward twisted currents on I?(IR m) x X to X 
by the projection 7r. However, the push forward by zr of an O~t~,,,) | ~r*OF-twisted current on 
I?(R m) x X is well defined and is an OF- twi s t ed  current on X. This observation together with 
the following elementary lemrna, will be used to determine when it is possible to push forward the 

OH-twis ted  current Div(~). 

Lemma 3.2. I f  n - m rood 2, then there is a canonical isomorphism 

O n  -~ Op(Rm) | 7r*OF . 

P r o o f .  First recall that if  V and W are oriented finite dimensional vector spaces, then there is a 

canonical choice of  orientation on V | W. Furthermore, if  the dimension of  W is even this choice 

is independent of the orientation on V and so there is a canonical isomorphism O w  -~ Ov |  The 
canonical choice of  orientation on V @ W is defined as follows. Choosc ordered bases v = ( v 1 . . . .  Vp) 
and w = (wl . . . . .  Wq) for V and W. Then the canonical orientation on V @ W is given by the 
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ordered basis 

V | W = (Vl | Wl,  V2 | Wl . . . . .  Vp | Wl ,  Vl | W2 . . . .  Vp | W2 . . . . .  Up | Wq) . (3.3)  

Second, recall [16] that there is a canonical vector bundle isomorphism U* | U • ~ TP(Rm), where 
U H denotes the orthogonal complement of  U in R m. 

So if n and m are both even, then the result is true since there are canonical isomorphisms 
OH ~- O~*F (as n is even) and O~(Rm ) = OU*@U• ~ ]~. Here the last isomorphism is well defined 
by sending [u* | u • to 1, where u • is chosen so that (u, u • is a positively oriented frame for 
U @ U • = R_ m. Similarly, if n and m are both odd, then OH ~ Ou* | O~r*F and since m - 1 is 
even Ou* ~- Ou,|177 = Op(R,,), as required. [ ]  

A. Linear dependency currents (q odd) 

Throughout this subsection we assume that q < n is odd, and hence, m - n (mod 2). Then, by 
Lemma 3.2, the push forward by :r of  the O~(~,,~) | 7r 'OF-twisted current Div(~) on P(R m) x X 
exists and is an OF-twisted current on X. 

Definition 3.4. Let q be odd. The linear dependency current, LD(v), of an atomic collection 
v of n - q + 1 sections of  F -+ X is the OF-twisted current on X defined by 

LD(v) :=  7r, (Div (~)) . 

R e m a r k  3.5. The following equivalent definition of  the linear dependency current is often useful, 
especially when n and m are both odd as in this case the fibers Hom(U, Fx) and P(R_m)x are 
nonorientable. Let p : S(N m) ~ P(R m) be the double cover by the unit sphere and let p :=  
rc o p : S(R m) --+ X. Let NS(R m) denote the normal bundle to S(1R m) in IR m, with its canonical 
orientation. Then, as above, there is associated to the collection v a section ~ of  the bundle H :=  
Hom(NS(Rm), p 'F) over s(Rm). Note that the sections ~" and ~ are simultaneously atomic. As 
above there is a canonical isomorphism Off ~ p'OF. Consequently Div(~') is a well-defined 
p'OF-twisted current on s@_m). Then, if q is odd, we have that 

1 
LD(v) = ~ p ,  (Div (7)) . (3.5.1) 

A 
We verify (3.5.1) as follows. First note that H = p* H and that'b" = p*~'. Since n --= m (mod 2), 

the p'OF-twisted current Div(p*~) is even in that 

a ,  Div(p*V) = Div(p*V) o n  S(~ m) , 

where a : S@_ m) ~ S(R__ m) is the antipodal map. Now even currents on S(R m) are in 1-1 corre- 
spondence with O~,(xm)-twisted currents on P(Rm). In particular, if q is odd, 

1 
Div(V) = ~ p , ( D i v ( p * V ) )  o n P ( R m )  . 

This fact immediately implies (3.5.1). Note that if q is even, then Div (p ~') is an odd twisted current 
on S(R m) and so its current push forward is zero. In general, odd currents on S(R m) are in 1-1 
correspondence with Ou | O~,(~-,)-twisted currents on ~(Rm), see [26]. 

The following result generalizes Theorem 2.5. 
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T h e o r e m  3.6. Let  F ~ X be a real rank n bundle and let q be odd. For each atomic collection 
v o fn  - q + 1 sections o f F  -+ X the linear dependency currentLD(v) is an OF-twis ted  d-closed 
locally integrally fiat current o f  degree q on X whose support is contained in the linear dependency 
set o f  the collection o f  sections. Furthermore, i f  lz is another atomic collection o f  sections o f F  --~ X,  
then there is an OF-twis ted  locally rectiliable current R so that 

LD(v) - L D ( / z )  = d R .  

That is, the cohomology class of  LD(v) in H q ( X, ~ F ) is well delined independent of  the choice o f  
sections. 

Proof. Since the push forward of a locally rectifiable current is locally rectifiable, the current 
LD(v) inherits its properties from those of the divisor of the induced section g (see Theorem 2.5). 
[] 

Note.  In the next section the cohomology class of LD(v) is shown to be ffiq c H q (X, ~F), the 
(twisted) integer Stiefel-Whitney class of F, whose rood 2 reduction is the standard Stiefel-Whitney 
class Wq ~ H q (X, Z2) of F. 

P r o p o s i t i o n  3.7. Let  v : R m -+ F be as above and let ~ : ~m ~ .~m and q) : F ~ F be bundle 
isomorphisms, Then the collection o f  sections corresponding to the bundle map ~o o v o ~ : R__ m -+ F 
is also atomic. Furthermore, i f  q is odd, 

LD(~o o v o 0)  = sgn det(O) sgn det(q)) LD(v) ,  

as OF-twis ted  currents on X. 

The proof of the proposition will be given at the end of this subsection. The following result 
generalizes Corollary 2.6. 

C o r o l l a r y 3 . 8 .  Under the same hypothesis as in Theorem3.6, with q < n, there is an O F-twisted 
locally rectifiable current R on X so that 

2 L D ( v )  = d R .  

Consequently, the cohomology class ffTq o f  LD(  v ) in H q ( x ,  Z F ) is a torsion class o f  order 2. 

P r o o f  of  Coro l l a ry .  Define ~p : R__ m ~ R__ m by ~(t l  . . . . .  tin) = ( - t l ,  t2 . . . . .  tin) and let 
# := voO. Then, by Proposition 3.7, LD(/z) = - LD(v). The result now follows from Theorem 3.6. 
For an alternate proof, see Theorem 4.10. [~ 

Next we study the case q =- 1 in more detail. 

R e m a r k  3.9. Let OFlIF~ := O F | ]~ denote the orientation line bundle of F. The divisor Div(a) = 

d(�89 i~-~) of an atomic section a of O F is called the orientation current of F associated with a.  Note 

that Div(o-) is an OF-twisted current whose cohomology class in H t (X, ZF) is r~l. 

To each collection v of n sections of a rank n bundle F there is an associated section tr of (,9~ 
well defined as follows. Choose a local frame f for F and let A be the matrix defined by v = A f .  

Then cr := [ f ]  | det A. 
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Proposition 3.10 (The  case q = 1). Let v be an atomic collection of  n sections of  a rank n 
bundle F. Suppose that the associated section cr of  O~F is also atomic. Then 

LD(v) = Div(o') 

as OF-tWisted currents on X. 

Proof .  Choose a local frame f for F and define A by v = Af .  Then the local expression for 
the induced section ~" of p : Hom(NS(Rn), p ' F )  -+ S(R n) is the mapping ~ :X  x S(R n) -+ ]K n 
defined by ~(x,  y) = yA(x).  Let 0 denote the normalized solid angle kernel on R n. Now, by the 
Change of Variables and Stokes's Theorems, 

f det A (x) 
7~*0 - I det A(x)l 

p I(X) 

for each x r Zero(det A).  

1 det A This implies the proposition since Div(a) = [ f ]  | d \~ ~d~A~] and LD(v) = [ f ]  | �89 
[] 

Proof of Proposition 3.7. By (3.5.1) it suffices to show that 

Div ( ~ - v )  = sgn det(q)) Div (~) on S (R '~) (3.11) 

and, if q is odd, that 

q~, Div (v~g-O) = sgn det(~) Div (~), on S (R_ m) , (3.12) 

where qJ : S(~  m) --> S (~_m) is the diffeomorphism induced by 0.  Now since ~"-v = ~0 o ~', (3.11) 
follows from Lemma 2.3. To prove (3.12) let/z = v o gr and note that the pullback of the section~of 
H b y  qJ is a section qJ%'of qJ*/~ = Hom(qJ*NS(Rm), p 'F) .  Let 0 "  " Hom(~*NS@_m), p ' F )  --> 
Hom(NS@_m), p ' F )  be the bundle isomorphism defined by ~*(~) := ot o 0 .  Then 

: 

Clearly, ~, qJ%" and ~ are simultaneously atomic. Since Equation (3.12) is local on X we can 
assume that F and X are oriented. Then ~ and ~" are sections of the oriented bundle H over the 
oriented manifold S(Nm). Furthermore, since q is odd the orientation indnced on qJ*H by the 
diffeomorphism qJ is the same as that induced by the bundle isomorphism ~*. Equation (3,12) now 
follows immediately by applying Lemma 2.3 to ge, the Change of Variables theorem to qJ, and noting 
that sgn det(DqJ) = sgn det(Tt). [ ]  

B. Mod 2 linear dependency currents 

Since mod 2 currents can always be pushed forward by proper maps we can define the mod 2 
linear dependency current for an even as well as an odd number of sections. 

Definition 3.13. Suppose 1 _< q _< n. The mod 2 linear dependency current, LDm~ of 
an atomic collection v of m = n - q + 1 sections of F -+ X is defined to be the current push forward 
of the mod 2 divisor of the induced section ~ of H --+ I?(Rm), 

LDm~ :_-- 
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Note. If q is odd or q = n the mud 2 linear dependency current, LO m~ 2 (v), is the mud 2 reduction 
of the Of- twis ted  linear dependency current, LD(v). 

The mud 2 analogs of Theorem 3.6 and Proposition 3.7 hold. In particular, 

Theorem 3.14. For each atomic collection v of  n - q + 1 sections of  a real rank n bundle 
F --~ X the linear dependency current LD m~ (v) is a d-closed mud 2 locally integrally fiat current 
of  degree q on X whose support is contained in the linear dependency set o f  the collection o f  sections. 
Furthermore, i f  it is another atomic collection of  sections o f F  --+ X, then there is a mud 2 locally 
rectifiable current R so that 

LD(v) m~ - LDm~ = d R .  

That is, the cohomology class ofLD m~ (v) in H q ( X, Z2) is well defined independent o f  the choice 

of  sections. 

Note. In the next section the cohomology class of LD m~ 2 (v) is shown to be U)q (F) E Hq (X, Z2), 

the qth Steifel-Whitney class of F. 

C. The structure of linear dependency currents 

The following result concerning the structure of the twisted linear dependency current builds 
on Proposition 2.8 of [12] and Theorem 2.8 above. Let q be odd and let v be an atomic collection of 
m = n - q + 1 sections of F -+ X. Suppose that the zero set, Z(~), o f f  is a smooth submanifold 
of P(R m) • X. Let {Zj } denote the connected components of Z(~). Then, by Theorem 2.8, there 
are integers nj E Z so that 

Div(Y) = E n j  [Z j] (3.1S) 

as O~(1~,,,) | 7r*Of-twisted currents on ]?(Nm). By [12], Proposition 2.8, the subset 

RKm-I(V) := {x C X : rankvx = m - 1} 

of the linear dependency set of v is a locally rectifiable set. Let RKj :=  RKm-1 (v) A ~(Zj).  If 
n j # O, then 

OTRKj ~- OF @ OX IRKj 

(wherever it makes sense) and, given an isomorphism of these two bundles, R K j  defines an OF-- 
twisted current [RKj] by integration. Arguing as in the proof of [12], Proposition 2.8, it follows that 
~ , [Z j ]  = IRK j]. Consequently we have the following: 

Proposition 3,16. Let v be as above. Then 

LD(v) = E n J  [RKj]  

as OF-twisted currents on X, where the integers n j are given by (3.15). 

Next we examine the structure of the twisted and mud 2 linear dependency currents in the case 
that m - 1 of the m sections are everywhere linearly independent. 

Theorem 3,17. Let Iz~ . . . . .  I~rn be a collection of  m = n - q + 1 sections o f F  -+ X. Suppose 
that IZl . . . . .  lzm-1 are everywhere linearly independent. Choose a metric on F and let lZLm denote 
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the projection o f  lzm onto the orthogonal complement o f  tz 1, �9 . . ,  IZm- 1 in F. Then I~m • is atomic i f  
and only i f  the induced section ~ o f  H ~ I?(R__ m) is atomic. Furthermore, i f  q is odd, then 

LD(/*) = Div(/z,~] a s O F - t w i s t e d c u r r e n t s o n X ,  (3.17.1) 
\ - - , ,  

and, for any q, 

LDm~ = Divm~ a s m o d 2 c u r r e n t s o n X .  (3.17.2) 

P roo f .  We present the proof in the twisted case. The mod 2 case follows similarly. The first step is 
to choose local coordinates and frames and to relate the local coordinate expression for the induced 
section ~ o f H  --~ X x P(R m) to that of the section • ]~ T/'/" 

First note that the linear dependency set of/Zl . . . .  /Zm is equal to the zero set Z(/Zm ~) of/Zm x. 
Fix a point x0 ~ Z(/z,~) and let b /be  a sufficiently small open neighborhood of  x0 in X, Choosing 
orientations for T X  and F over b /we  can regard LD(#)  and Div(/Zm ~) as currents on b/. Now, since 
/Zl . . . . .  /Zm-1 are linearly independent, there is precisely one point ~" of the zero set Z(~)  of  ~ in 
X x t?(R m) lying over each point x of Z(/xm ~) in X. Let 142 C zc-l(L/) be a sufficiently small open 
neighborhood of  ~0 in X • ~(R m) which contains Z(~)  A Jr -1 (b/). 

Choose the coordinate chart ~ : R m-1 ~ I?(IR m) defined by ~(s )  = [s, 1] and the local 
frame u for U --~ ~(R m) over ~ ( R  m-l )  defined by u(s) = (s, 1) e U[s, ll C R m. Note that the 
orientations induced on rlP(R m) and U by ~ and u are compatible and that 14; C ~ ( R  m-I ) x b/ 
s ince/zl  . . . . .  ]Zm-1 are linearly independent on b/. Also note that the orientations on U and F 
induce a natural orientation on H over 142. 

Choose a positively oriented local frame f t  . . . . .  fn for F over b / so  that fi = Ixi for 1 < i < 
m - 1 and f/A_ Span{f1 . . . . .  fro-l} for i > m - 1. Define ai : L / - +  R by 

n 

IXm = E ai fi �9 
i = 1  

Let a t = (al . . . . .  am-I)  and a"  = (am . . . . .  an). 

Then the local coordinate expression for/x~ in terms of  the local frame fm . . . . .  fn is a"  : b/ 
IR q and the coordinate expression for ~ in terms of  the frames u, f is ( a ' ,  s + a  t) : b / x  N m-1 --~ ]R n . 
These two coordinate expressions can be related as follows. Let qJ : / / / x  ]~m-1 __+/.d x I~ m-1 be 
the orientation preserving change of  variables qJ(x, s) = (x, s + at(x)) and let Id : R m-1 --~ R m-1 
denote the identity map. Then 

(a" , s  + a ' )  = (a" x I d ) o  qs. 

By the Change of  Variables Theorem and Lemma 3.18 below it follows that zr, (Div (~)) = Dlv(btm)" • 
as required. [ ]  

The following elementary fact about divisors is included for the sake of  completeness. 

L e m m a  3.18. Let  X be an orientedmanifoldand f : X -+ R n a smooth map. Let  Id : N m --~ R m 
be the identity map and let rc : X • R m --+ X denote projection onto X. Then f is atomic i f  and 
only i f  f • Id is atomic. Furthermore, i f  X • R m is given the induced orientation, then 

~ , ( D i v ( f  x Id)) = D i v ( f ) .  
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P r o o f .  By induction we may assume that m = 1. Let t denote the coordinate on JR. First, 

dtdfl L~oc(X x R) for p n [(t,f)lp+t E =III  _< - 1 iff log l / ]  ~ L]o~(X) in case p = 0, and iff 

ifipdfl e L~oc(X ) in case p > 0. This is because 

R/Ifl 

f (Itl + l f l )P +1 If t  p (s + I ) P b l  " 
Iti<R 0 

Of course, ~ dfs is dominated by ij--~.df! Consequently f x Id is atomic if and only if f is atomic. 

Let On denote the normalized solid angle kernel on R n, and recall that Div( f )  = d(f*On) where 
d is exterior differentiation of generalized forms. Let aS denote the boundary of a current S. Then 
dS  = ( -1 )~+Ios ,  where k = deg S. Consequently Jr, d = -dJr , .  Therefore, it suffices to show 
that 

Jr, ( ( f  x Id)*On+l) = - f * O n .  

Let cox = Vol(S n- 1) and L ( f )  = df l  A . . . / x  dfn. Then 

( f  x Id)*0n+l -- 1 t )~(f) (On [f[ndt  f*On �9 

(on+  (t2 + i/I 2)  On+l 02 + i/i 2) 

Now, since the push forward of ( f  x Id)*0n+l by Jr is equal to the integral of ( f  x Id)*0n+l over 
the fibers of zr, 

Jr, ( ( f  • Id)*0n+l) f Iflndt f*On 
: - ( ,2  + i i i 2 )  

~/2 

2(on f - cos n - l t d t  f*On = - f * O n ,  
(on+l 

0 

as required. [ ]  

4.  S t i e f e l - W h i t n e y  c u r r e n t s  

The purpose of this section is to identify the cohomology class of a linear dependency current. 
First we consider the mod 2 case, and recall from Example A.25 of the Appendix that 22 cohomology 
can be computed using mod 2 integrally flat currents, rood2 ~{oc (X). 

T h e o r e m  4.1. Given an atomic collection vl . . . . .  I) m o f  m = n - q + l sections o f  a real rank 
n vector bundle F over X the rood 2 linear dependency currentLDm~ ~ flomc~ 2(X) represents 

the q th S t ie fe l -Wbimey class Wq (F)  ~ Hq (X, Z2). 

Before proving this result, we note that the analog of a theorem of Bott for complex vector 
bundles and Chern classes is valid for real vector bundles and Stiefel-Whitney classes. Let w ( E )  := 
1 + w I (E) + . . .  +Wm (E) denote the total Stiefel-Whitney class of a real rank m bundle E over X. Let 
U denote the universal line bundle on the projectivization P(E),  and let a :---- wl (U) c H 1 (I?(E), Z2) 
denote the first Stiefel-Whitney class of U on P(E). Let Jr : P(E) -+ X denote the natural projection, 
and let Jr, : H q+m-1 (~(E), 22) --+ H q (X, 2~2) denote the induced map. 
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Lemma 4.2. 
Jr, ((1 + a )  -1 )  = w(E) -1 . 

Proof .  Choose an inner product for E. Let E denote the pullback of the bundle E to I?(E), and 
let U • denote the orthogonal bundle to U C E. The product formula for Stiefel-Whitney classes 
implies that 

so that 

w(E) = w(U) w (U 2) (4.3) 

w(g )  -1 = w(E) -1 w ( g  •  . ( 4 . 4 )  

Since the fibre dimension of I?(E) is m - 1, 

= 0 i f j  < m - 1 .  (4.5) 

Therefore, Jr,(w(UZ)) = Jr,(wm-1 (uZ)) .  It remains to show that 

J r , ( W m - l ( U i ) )  = 1. (4.6) 

First note that H~ Z2) = Z2 for X connected. One can verify (4.6) by choosing a section o~ of 
U • and computing that Jr,(Div(ot)) # 0 mod 2. (Note that Div(~) represents the mod 2 Euler class 
of U • which is equal to the top Stiefel-Whitney class, win-1 (uZ) . )  

An alternate proof of (4.6) can be given as follows. Equations (4.4) and (4.5) imply that 
1 m Jr, (win- 1 (U • = Jr, (a m- 1 ). Using the standard fact that i fa  is the nonzero element of H ( ~ ( R ) ,  Z2), 

then a m-1 is the non-zero element of H m-1 (~)(]Rm), Z2), we conclude that Jr,(a m-l)  = 1. [ ]  

We only need Lemma 4.2 in the special case that E = R__ m is trivial. 

C o r o l l a r y  4.7. Consider the tautological line bundle U on I?(R__m). Then 

Jr, (wl (U))  j = 0 i f  j # m - 1  

and 
Jr,  ( W l ( U ) ) r n  I = 1 . 

P r o o f  of  T h e o r e m  4.1. As in Section 3, let v : R__ m -+ F denote the bundle map corresponding 
to the sections Vl . . . . .  Vm. Let v : R m --+ F denote the pullback of v to the projectivization 
]?(R__m). Let g denote the restriction of v to the tautological line bundle U C N_ m. Then, considering 

mod 2 m Div m~ 2(7) c ~oc (IP(R_)) as a mod 2 current, the linear dependency current is defined to be the 
current push forward 

) w-mod 2 ( y ~  LDm~ := Jr, Div m~ ('~) c . ,  loc ~ �9 

Now, by Theorem 2.13, the mod 2 divisor Div m~ 2(-~) represents the top Stiefel-Whitney class of 
H := Hom(U, F) over I?(Rm). The standard formula for the Stiefel-Whitney classes of a tensor 
product (see [16]) says that 

n 

= (u* |  = 
j=0 
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So, by Corollary 4.7, 7c,(wn(H)) 
desired. 
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= w,~-m+l(F). Therefore, LDm~ represents wq(F) as 
[] 

Now we consider the case that q i s  odd andidenfify the cohomology class of the OF-twisted 
current LD(v) 6 filoc(X) in Hq(x,  Z), where Z = ZF := OF | Z. Consider the short exact 

triple 0 ~ Z =2 ~ -+ Z2 ~ 0 and the induced long exact sequence 

. . .  ---> H q-1 (X, Z2)  L H q (X, ~)  2 H q (X, ~)  P-~ H q (X, Z2)  ----> . . . .  (4.8) 

Define the qth Z-Stiefel-Whitney class ffZq < Hq(X, Z) to be the Bockstein of Wq-1, 

:= fl (Wq-1) �9 (4.9) 

Recall from Example A. 16 of the Appendix that Z cohomology can be computed using OF-twisted 
integrally flat currents, ~oc (X). 

T h e o r e m  4.10 (q odd).  Given an atomic collection v of m = n - q + 1 sections of a real 
vector bundle F -~ X the linear dependency current LD(v) represents the qth Z TStiefel-Whitney 
class, ffZq(F) ~ Hq(x,  ~), of the bundle F. Moreover, the rood2 reduction of Wq equals Wq, i.e., 

p(Wq) -- Wq. Hence, ~ql := P o fi maps Wq-1 to Wq forq odd. 

Proof .  A representative for Wq (F) can be computed as follows. Choose an atomic collection 
~t = (/.tl . . . . .  ~tm+j) of m + 1 = m - (q - 1) + 1 sections. By Theorem 4.1, the rood 2 lin- 

rood 2 ear dependency current LDm~ ~ ~oc (X) represents the (q - 1)th Stiefel-Whitney class 

wq-l (F)  ~ Hq-I(X,  Z2), Choose an OF-twisted current representative T E 5~loc(X) of the rood 

2 current LD m~ 2 (/x). Then, by the definition of t ,  the current �89 d T represents l~q (F). 

Suppose that the subcollection tj = (/zl . . . . .  #m) is atomic and that/z satisfies two additional 
assumptions described below. Then it is possible to choose T so that 

1 
- d T  = LD(~) o n X .  (4.11) 
2 

Consequently LD(~) represents Wq (F). The theorem now follows from Theorem 3.6. Also note 
that since the rood 2 reduction of LD(~) is LD m~ 2 (r/) ,  Theorem 4.1 implies that p (l~q) = W q. 

The OF-twisted current T representing LDm~ can be chosen as follows. First, if q = 1 
define T to be the OF-twisted generalized function T := ~@1' where c~ is the section of OF R associated 
to ~ (c.f. Remark 3.9). In this case (4.11) is simply a restatement of Proposition 3.10. Second, 
i f q  > 1 is odd, T is defined as follows. Let ~ be the induced section of the rank n bundle 
H = Hom(NS@_m+I), p 'F )  over s@_m+l). Embed _R m ~ R m+l = R m ff~ _R_ and let t be 

t L~oc(S@_m+l)) and let p : S(R_ re+l) --~ P(R 'n+l) and the coordinate on R_. Set X := N c 

Jr : IP(R re+l) --+ X denote the projection maps. AssUme that the current Div(~) on S(R re+l) has 
locally finite mass. Then Div(~) is an odd locally rectifiable OF-twisted current on S@_ m) and so 

m+l  X Div(~)isawelldefinedevenOF-twistedftatcurrentonS(R__ ). LetT := l p , ( x  Div(~))bethe 

corresponding Oe(R,,,)-twisted current on I?(N_ m+l). Since the rood 2 reduction of T is Div m~ 2 ( ~ )  

its push forward T := 7r, T is an Oy-twisted current on X whose rood 2 reduction is LD m~ 2(/x). 

Next we verify that Equation (4.11) holds for this choice of T. Suppose that the codimension 
n - 1 Hausdorff measure of Zero(~ is zero. Then, since ~" = ~ I sQ'"r Lemma 4.12 below implies 

that 
d ( x D i v ( ~ ) )  = 2i, Div(~ ~') onSI_Rm+l} , 

/ N 

k ,' 
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where i : S ( ~  m) ~-+ S(~ re+l) is the inclusion map. Finally, by (3.5.1), this equation pushes forward 
to give Equation (4.11) on X. [ ]  

L e m m a  4 .12 .  Let  u : X x R --+ R n be atomic and suppose that Div(u) has locally finite mass. 

Suppose that the function v : X --~ R n defined by v (x ) = u (x, 0) is atomic and that the codimension 

n - 1 Hausdorff  measure o f  Zero(v) in X is zero. Le t  t denote the coordinate on R and define 

i : X ~ X x R b y i ( x )  = (x, 0). Then 

(+ )  d Div(u) = 2i, Div(v) on X x R .  (4.12.1) 

Proof .  Let 0 denote the solid angle kernel on ~n. First note that since i , d  = - d i , ,  Equa- 
tion (4.12.1) is the exterior derivative of the degree n current equation 

(l~l * ) t Div(u) + 2i , (v*O)  d . 0  : )5 o n X  x R .  

To verify this equation we argue as follows. First, the equation holds on (X x R) ~ (Zero(v) x {0}) 
since it is true if t # 0 and if t = 0 and x ~ Zero(v), then d ( ~  u*O) = 2IX] u*O = 2i,(v*O). 

Finally, since the codimension n Hausdorff measure of Zero(v) in X x ]R is zero, the Federer Support 
Theorem for fiat currents implies that the equation holds on all of X x R. [ ]  

R e m a r k  4 .13  ( N o n - i n j e c t i v i t y  c u r r e n t s ) .  Let m = rk E < rk F = n an d set q = n - m + 1. 
In this remark we study the non-injectivity current of a bundle map v : E --> F. This is a degree q 
current which is supported on the set of points of X over which the bundle map v fails to be injective. 
The rood 2 non-injectivity current, nmod 2~. ~NI ~v), is defined by replacing ~,n by E in Definition 3.13. 
The analog of Theorem 3.14 holds rood 2 for DNI (v). Furthermore, the cohomology class of D~d2(v)  

in H q (X, Z2) is {w(F) w ( E ) - l } q ,  the degree q part of w (F)  w ( E )  -1.  

If q is odd, the non-injectivity current, DNI(V), is defined as in Definition 3.4. (Note that, 
in the case that q = n is odd, the current DNI(V) is simply the divisor of the induced section of 
Horn(E, F) -+ X.) This current is an OE | OF-twisted current on X. The analogs of all the results 
of Section 3A hold for D~i(v). Furthermore, the cohomology class of DNI(v) in Hq (X, Z E e F )  is 
13 ({w (F) w (E ) -  1 }q_ 1), the Bockstein of the degree q - 1 part of w (F) w (E)-1.  

5. O b s t r u c t i o n  c u r r e n t s  

The Stiefel-Whitney classes were originally defined (see [22, 24]) as obstruction classes. The 
qth obstruction class of a real rank n vector bundle F --> X is a cohomology class, which is the 
obstruction to the existence of a collection of n - q + 1 linearly independent sections of F over 
the q-skeleton of a cell decomposition of X. It is defined to be the cohomology class of a certain 
obstruction q-cocycle which is associated to each suitable collection of n - q + l sections of F. 
If  this obstruction cocycle is defined for an atomic collection of sections, then, by Poincar6 duality, 
there is a canonical obstruction current defined on X as well. The aim of this section is to show 
that this obstruction current is equal to the linear dependency current of this special collection of 
sections. 

We begin by recalling the definition of the obstruction cocycle as given by Steem-od [21]. Fix 
q e {1 . . . . .  n}. Let Vn-q+l (F)  --+ X be the bundle whose fibre over x 6 X is the Stiefel manifold 
consisting of all (n - q + 1)-tuples of linearly independent vectors of Fx. Choose a smooth locally 
finite simplicial decomposition K of X and let K ~ be the first barycentric subdivision of K. Each 
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barycentrically subdivided q-simplex, a q, of K is a simplicial subcomplex of  K' .  In fact, since it is 
diffeomorphic to a q-ball, a q is a q-cell. I fq  is odd or q = n, choose an orientation on each cell. The 
collection of such (oriented) cells forms a cellular subdivision Ka of K f. Since 7ri (Vn-q+l (]Rn)) = 0 

for all i < q - 1, there is a section 7 of Vn-q+l(F) over the (q - 1)-skeleton K q-1 of Ka. 

N o w  

ygq_l(gn_q+l(]~n)) = { Z ifqisoddorq=n 
Z2 if q is even and q < n .  

Consequently there is no guarantee that 7 will extend to a section of  Vn-q+~ (F) over the q-skeleton 
K q. Steenrod defines a twisted (or mod 2) cellular q-cochain, Wq (7), which is zero iff 7 can be 
extended over K q. Fix a point Xa in each q-cell  a q of K q . The cochain Wq (7) assigns an element 
Wq (7)(a q) o f  Zrq-1 (Vn-q+l (Fxa)) to  each q-cell  a q. It is  defined as follows. Choose a triviaiization 
o f F  over aq and let ~ : Vn-q+l (F) --+ Wn-q+l (Fxa) be theinduced map. Then wq (7)(a q) is defined 
to be the homotopy class of 7* o 7 : Oaq -+ Vn-q+l (Fxa). This class is well defined independent of  
the choice of triviaiization of F. Steenrod shows that wq (7) is a cocycle whose cohomology class in 
H q (X, 7rq_l (Vn-q+l (F)))  is well defined independent of the choice of  section 7. By definition this 
class is the qth obstruct ion class of  F. In keeping with the notation of Section 4 the qth obstruction 
class will be denoted by Wq (F) when q is even and by Wq (F)  when q is odd. 

In summary, if q is odd or q = n (resp. q is even and q < n) Steenrod associates a 
Zrq_l (Vn-q+l(F))-twisted cochain (resp. mod 2 cochain), Wq (7), to each section 7 of  the Stiefel 

bundle V~-q+l (F) --+ K q-1 . On the other hand, in Section 3 we associated the OF-twisted current 
LD(v)  (resp. mod 2 current LDm~ to a collection of  n - q + 1 sections of the vector bundle 
F --+ X. Our goal is to relate these two constructions. We begin by considering the case that q is 
odd or q = n. 

T h e  case  t h a t  q is o d d  o r  q = n .  

First note that there is a bundle isomorphism 

~0 : 7rq_l(Vn_q+l(F)) > ~F 

defined, in terms of  a generator [cr] of rCq_l (Vn-q+l (IRn)), as follows. (See [21] Section 25.6, for 
a definition of the homotopy generator [o-].) Fix x 6 X and let 7 : S q-1 -+ Vn-q+l (Fx) represent 
an element of  :rCq-l(Vn-q+l(F))x. For each frame f of  Fx we obtain a map 7* : V~-q+l(Fx) --+ 
Vn-q+l (~4~n). Define )v c Z by [7* o 7] = )v[cr] in ~q-1Vn-q+l  (]~n) and let [ f ]  denote the orientation 
class of  the frame f in OF. Then ~o(7 ) is defined to be the class of ([f] ,)v) in ZF. (Recall that 7"F 
is the space of  orbits of  the Z2-action p ( [ f ] ,  )0 = ( - [ f ] ,  - ) , )  on OF • Z.) 

Let N = dim X. Now there is a dual cellular decomposition Kb of  K ~ characterized by the fact 
that to each q-cel l  a q of Ka there is a unique (N - q)-cell,  b N-q, o f  Kb so that the dual of each 
face of aq has b N-q as a face. Choose an orientation on each cell of  Kb. Note that the intersection 
of  a cell and its dual is the common centerpoint of both cells and that cells aq and b N-q which 
are not dual to each other do not intersect. Therefore, the (q - 1)-cells of Ka do not intersect the 
(N - q)-cells of  Kb. 

Using the fact tha t  7fi(Vn_q+l(]~n)) = 0 for i < q -- 1 we can construct smooth sections 
Vl . . . . .  vn of  V --> X so that for each q ~ {1 . . . . .  n} the linear dependency set of  vl . . . . .  Vn-q+l is 

a cellular subcomplex K N-q (v) N-q o f K  b . Notethat Vl . . . . .  Jan_q+ 1 define a section 7 of  Vn_q+I(F) 

over K q -  1. 

Now the cohomology group H* (X, ZF) can be computed using the smooth OF | Ox-twisted 
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infinite integral dual cellular chain complex. The (N - q)--dimensional chains of this complex are 

formal infinite combinations of  the form ~ ,kj b y  -q where the )U are OF | Ox- twis ted  integers 
J 

and the b f  -q are the oriented (N - q)-cells  of Kb. Our intermediate goal is to associate to the 
cocycle Wq (77) (defined by the collection of sections Vl . . . . .  Vn-q+l) an OF @ Ox- twis ted  integral 

, t  

cellular (N - q)-cycle,  WN-q (v), which represents Wq (F) ~ H q (X; 7ZF). It is defined as follows. 
First let a q and b N-q be oriented dual cells and set {x} := a q n b N-q . Let [a, b] denote the local 
section of O x  --> b N-q induced by the decomposition Tx X ~- Txa q �9 Txb N-q . Then 

: =  (5.1) 

J 

where the sum is taken over the cells b ;  -q of the lineal" dependency subcomplex K b  -q (v) of 
Vl . . . . .  Vn-q+b and where )U is the OF | Ox- twis ted  integer 

k j  := [aq ,b t / -q]  |  ( a ] ) )  . 

That is, WN-q (v) is the Poincar6 dual of  w q frO. 

Since an Ox-twisted smooth oriented cellular chain defines a locally rectifiable current, the 
twisted cellular cycle WN-q (v) defines an OF-twis ted  locally integrally fiat current on X, which we 
also denote by WU-q (v). Now, by [14] Theorem 3.2, we can choose the sections Vl . . . . .  Vn-q+l so 
that the induced section 7 of H -+ P(R__ m) is atomic. Then we have the following result. 

T h e o r e m  5.2. For the collection o f  sections Vl . . . . .  Vn-q+l described above, 

LD(v)  = WN_q(12 ) 

as OF- twis ted  locally integrally fiat currents on X.  Consequently, the obstruction class ffZ q ( F)  E 
Hq (X, ZF) is the cohomology class o f L D ( v ) .  

Proof. Let m = n - q § 1. By construction Vl . . . . .  vm-1 are linearly independent sections of 

F over X ~ K N-q -1 .  Let E m-1 denote the oriented span of Vl . . . . .  vm-1 over X ~ K N - q - 1  

and let G q denote the orthogonal complement of  E m-1 in F with respect to some metric on F. 

Let v~ denote the orthogonal projection of Vm onto G q over X ~ K N - q - l .  Now we can choose 

vl . . . . .  Vm-1 so that the section Vm 2 is atomic. Then we have the following: 

Lemma 5.3. 
W N - q ( P )  = D i v ( v ~ )  over  X ~ K N - q -  1 . 

P r o o f  o f  L e m m a  5.3. To prove the lemma we need to calculate each twisted integer )U of 
Equation (5.1) in terms of the degree of a certain map between (q - D-spheres.  This was done by 

Halperin and Toledo [15] as follows. Since K N - q - 1  and Ka q are disjoint, the bundle G q is defined 

over the q-cel l  a q. Choose a trivialization p : G q --> •q of G q over a q. This induces an orientation 

q Then on G q --+ a q.J Let [ f ]  denote the induced orientation on F = E n-q ~3 G q over aj .  

aq N - q  ]| 
where nj  is the degree of the induced map between oriented (q - 1)-spheres, 

( i a s(Rqt) nj  :=- Deg p o Vn_q+ 1 
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The lemma now follows from Theorem 2.8 and Remark 2.9. [ ]  

Completion of the proof of Theorem 5.2. By Theorem 3.17 and Lemma 5.3 

WN-q(V) = LD(v)  over X ~ K N---q - 1 

Let S :=  WN-q(V) -- LD(v).  Then S is a flat current of dimension N - q which is supported on the 
�9 . �9 N - q - 1  

N - q - 1 dimensional submamfold K b . So, by the Federer Support Theorem for flat currents, 
[5], S = 0 on X, as required. [ ]  

The case that q is even and q < n. 

In the case that q is even and q < n the obstruction class, Wq (F) ,  is an element of  H q (X, Z2). 
Now the cohomology group H q (X, Z2) can be computed using the smooth infinite mod 2 dual cellular 
chain complex. The (N - q)~l imensional  chains of  this complex are formal infinite combinations 

of  the form ~ ~j  b y  -q where )~j ~ Z2 and the b f  -q are the (unoriented) (N - q ) -ce l l s  of  Kb. 

Just as in the case described above, we construct sections vl . . . .  Vn-q+l of  F and a mod 2 

cellular (N - q) -cycle ,  w~v~ = ~ ,kj b y  -q , which is supported on the linear dependency set 

of  vl . . . .  Vn-q+l and which represents the obstruction class Wq (F) c Hq (X, Z2). This cycle defines 

a mod 2 locally integrally flat current in the obvious way. Arguing as in the proof of  Theorem 5.2, 

we have the following: 

Theorem 5.4. For the collection o f  sections v 1 . . . . .  Pn-q+ l described above, 

LDm~ = w~v~ 

as rood 2 locally integrally fiat currents on X.  Consequently, the obstruction class wq(F)  E 
H q (X, Z2) is the cohomology class o f L D  m~ 2 (v). 

Remark 5.5 (Obstructions to injective bundle m a p s ) .  The results of this section can 

be generalized to the case of vector bundle maps v �9 E -~  F where m = rk E _< rk F .  Let 
Horn • (E,  F )  --~ X denote the bundle ofinject ive bundle maps from E to F .  The Steenrod obstruc- 
tion class of the bundle Horn • (E,  F )  --> X is a degree q = n - m + 1 cohomology class which is 
the obstruction to the existence of  an injective bundle map v : E ~ F over the q-skele ton of  X. 
Combining Remark 4.13 with the analogs of Theorems 5.2 and 5.4, we conclude that this class is 

equal to 

1. the twisted Euler class ~ of Horn(E,  F )  when q = n, 

2. the degree q part of w ( F )  w(E)  -1 when q < n is even, and 

3. the Bockstein of  the degree q - 1 part of w ( F )  w(E)  -1 when q < n is odd. 

6. Higher dependency currents 

The aim of  this section is to study the currents associated with higher dependencies, c.f. [12]. 

Let v be an ordered collection of  m sections Vl . . . . .  Vm of a rank n bundle F --+ X. In Section 3 
we studied the linear dependency current, LD(v) ,  which is supported on the set of  points x where 

at least one of  the vectors Vl (x) . . . . .  Vm (x) depends linearly on the remaining ones. Fix an integer 
g with max{0, m - n} < g < m. In this section we study the higher dependency current, LDe(v) ,  
which is supported on the set where at least s of the sections depends linearly on the remaining ones, 
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i.e., on the set of points over which the induced bundle map v : R_ m -+ F has rank < m - g. The 
higher dependency current LDe (v) has degree q := g(n - m + g), and so the dimension of LDe (v) 
decreases as g increases. 

The current LDe(v) is defined as follows. Let zc �9 Ge(R m) --+ X denote the trivial Grassmann 
bundle of unoriented g-dimensional linear subspaces of the trivial bundle ~m ~ X, and let U C R_ m 
be the tautological rank g bundle over Ge (_Nm). The collection v is called g-dependency atomic if 
the induced section ~" of the bundle H = Horn(U, zr*F) over Ge(R m) is atomic. 

The rood 2 higher dependency current, LD~n~ is defined by 

LD~n~ := zt, Divm~ o n X .  (6.1) 

In this rood 2 case, orientation issues are irrelevant. 

If m =- n rood 2, it is possible to push forward the OH-twisted current Div(~) by the projection 
zr. This is because there is a canonical isomorphism 

OH ~ I OGe(Rm)(~Yr*OF i fg i sodd ,  
! Ooe(~m) if s is even. 

In this case, the higher dependency current, LD~ (v), is defined by 

LDe(v) := 7r, Div (7) on X .  (6.2) 

Note that 
LDe (v) is [ an OF -- twisted current on X if s is odd, 

/ a current on X if g is even. 

The following equivalent definition of LDe(v) is often useful (c.f. Remark 3.5). Let p �9 
Ge(R m) -~ X be the Grassmann bundle of oriented e-dimensional linear subspaces of _R r~. Note 
that the fibers Ge(R m) of Ge(R_m~are canonically oriented manifolds. Let U be the canonically 
oriented tautological bundle over Ge (R_m), and let ~" denote the induced section of the bundle H = 
Hom(U, p ' F )  over Ge(Rm). Then, i fm -= n rood 2, 

1 
LD~(v) = ~ p, Div (b') . (6.3) 

Proposition 6.4. Let  v : ~n~ _+ F be as above and let 7, : R_ m -+ R_ m be a bundle isomorphism. 

Then the collection o f  sections corresponding to the bundle map v o ~ �9 ~m __> F is a l so  g.- 

dependency atomic. Furthermore, i f  n -- m rood 2, 

sgn det(O) LDe(v) f f s  is odd, 
LDe (v o 0 )  = LDe (v) i fg  is even. 

Note. The analogs of the main Theorems 3.6 and 3.14 for (mod 2) linear dependency currents also 
hold for the (mod 2) higher dependency currents. This fact, together with Proposition 6.4, implies 
the following corollary. 

Corollary 6.5. 
current T so that 

Let n =- m rood 2 and let s be odd. Then there is a locally rectil~able OF-twis ted 

2LDe(v) --- d T .  
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Proof of Proposition 6.4. Let/ ,  = v o gr and let qJ : Ge (R m) -+ Ge (R m) be the diffeomorphism 
induced by gr. Arguing as in the proof of Proposition 3.7 it suffices to show that 

~P, (Oiv (~)) = sgn det(D~P) Div (V) on Ge (I~m) , (6.6) 

and that 

det(DqJ) = { sgnl det(~) ifif s163 iSis even.~ (6.7) sen 

The proof of (6.6) is the same as that of Equation (3.12). Next wc prove (6.7). Clearly, it suffices 
to consider orthogonal linear maps ~ : R m -+ N m._ Now there is a canonical orientation preserving 
bundle isomorphism ~b : Horn(U, 9 • --+ TGe(IR m) defined as follows. Fix P e Ge(R m) and 
consider the canonical map 9P : Horn(P, P• ~ Ge(R m) which sends a linear map to its graph. 
Let Id : Horn(P, P• --> To Hom(P, P• be the canonical isomorphism. Then Cp := Dgp o Id 
defines r pointwise. Let �9 : Horn(P, P• --+ Hom(gr(P), ~p(P- )) be the map defined by �9 := 
fp~(p) o q / o  (tip. NOW ~ ( a )  = ~ o a o ~-1 is a linear map and so sgn det(DqO = sgn det(~). The 
result now follows by applying (3.3). [] 

A. The mod 2 cohomology class of LD~ a~ (v) 

The goal of this subsection is to identify the rood 2 cohomology class of the mod 2 higher 
dependency current. Let w(F)  = 1 + wl (F)  + w2(F) + . . .  + w, (F)  denote the total Stiefel- 
Whitney class of F. The Shur polynomial, A~ e) (w(F))  ~ H r~ (X, 2;2), is the polynomial in wj (F) 
defined by 

A~e)(w(F)) := det(wr-i+j(F))l<_i,j<_e. (6.8) 

Theorem 6.9. Let v �9 R m -+ F be as above and let q = s - m + s Then the cohomology 
class of  the rood 2 higher dependency current LD~n~ in Hq (X, Z2) is the Shut polynomial 

A(e)_m+e(w(F)), 

�9 (3) (w(TRip4)) # 0, it is not possible to find a collection of six vector Example  6.10, Ca) Since zx 1 
fields on RII ~4 so that at each point of R~ 4 at least four of the six vectors are linearly independent. 

(b) Since A~3)(w(TR]?I~ # 0, for any collection of 10 vector fields on RI? 1~ there is a point of 

NF 1~ so that at least 3 of the vectors at that point depend linearly on the remaining ones. 

Proof of Theorem 6.9. Let rc : Ge(N m) --> X. As in the proof of Theorem 4.1, it suffices to 
show that 

Jr, Wen(H) = A~e~)_m+e(w(F)) in H q (X, Z2) �9 

Now the standard formula for the Stiefel-Whitney class of a tensor product says that 

wen(H) wen (U* | F) " (e) (w(F)  w ( U ) - '  ) 

(One way to see this is to apply Equation (A.26) of [12] to Problem 7C of [16].) Let k = m - ~. 
Then, arguing as in the proof of Theorem 4.4 of [12], we see that 

wen(H) = A}[)k(w(F)) n,  (wk(U• ~) . 

The proof is completed by observing that wk(U• e is the generator of H ke (Ge (IR~+e), Zs) = Zs. 
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Remark 6.11 (Mod  2 d e g e n e r a c y  cur ren ts ) .  Let v : E m --+ F n be a bundle map. Fix an 
integer k with 0 < k < min{m, n} and let ~ = m - k .  The mod 2 degeneracy current, Dp ~ 2 (v), of the 
bundle map v is defined as in Equation (6.1), with R__ m replaced by E. It is a degree q = (m - k) (n - k) 
current which is supported on the set of points over which the bundle map has rank < k, The 

A(m--k) cohomology class of D~n~ in Hq(X, Ze) is given by ~n-k  (w(F) w ( E ) - l ) .  

R e m a r k  6.12 (Non- su r j ec t i v i t y  cur ren t s ) .  Next we specialize Remark 6.11 to the case that 
m = r k E  > r k F  = n andk  = n -  1 so thatq  = m - n + l .  Themod2non-sur jec t iv i ty  

ll~mod 2 (. ~ Dmod 2- - current, --NS ~v) := n-1 tV), is supported on the set over which the bundle map v fails to be 

surjective. The cohomology class of D~d2(v)  in Hq (X, Z2) is given by A~ q) (w(F) w(E) -1) = 

AO) q (w(E) w(F) -1) = {w(E) w(F)-l}q, the degree q part of w(E) w(F) -1 

If q is odd, the non-surjectivity current, DNS(V) := Dn-I  (v), is an OE | OF-twisted current 
defined as in Equation (6.2). Let v* : F* --+ E* be the adjoint map. Then, at least for generic maps, 
DNS(V) = Drq(v*), where DNI(V*) is the non-injectivity current of v* as defined in Remark 4.13. 
So, by Remark 4.13, the cohomology class of DNS (v) in H q (X, "~'E~)F) is fl ({W (E) to(F) -1 }q-l), 
the Bockstein of the degree q - 1 = m - n part of w(E) w(F) -1. 

B. The integer cohomology class of LDe (v). The case n - m mod 2 

The aim of this subsection is to identify the (twisted) integer cohomology class [LDe (v)] of the 
higher dependency current LDg (v), which is defined whenever n = m rood 2. The torsion-free part 
of [LDg(v)] is well known. If e is even it is a certain Shur polynomial in the total Pontrjagin class 
p(F) (see, for example, [12], Theorem 6.9) while if e is odd it is zero, by Corollary 6.5 above. The 
rood 2 reduction of [LDg (v)] is given in Theorem 6.9 above. We will prove that the (twisted) integer 

class of LDe (v) is the sum of its torsion-free part and 2-torsion term, T~e)_m+ l (1~), defined below. 
This result builds on work of Ronga [20] who showed that the integer class of LDg (v) is determined 
by its rood 2 and rational reductions. Our contribution is to explicitly identify the 2-torsion term as 
a certain polynomial in the Pontrjagin and twisted integral Sfiefel-Whitney classes of F. 

Throughout this subsection, Z denotes the OF-twisted integers, ~ := OF | Let Pi (F) c 
H 4i (X, Z)denote the ith integral Pontrjagin class of F and W2j+l (F) ~ H 2j§ (X, •) the (2j + 1)th 
twisted ~tegral Stiefel-Whitney class, defined by (4.9). Recall that p(l~2j+l) = w2j+l~ Note that, 
since 2W2j+l = 0, the subring of H*(X, Z) • H*(X, Z) generated by pi(F) and W2j+I(F) is 
commutative. Also note that the product of two elements of H*(X, Z) is an element of H*(X, g). 
Let l~2j denote the formal square root of the j th  Pontrjagin class, i.e., W2j := Vr~ -. We make this 

definition because w2j is the mod 2 reduction of pj (see [16] Problem 15A). Of course, the formal 

symbol r~2j has no cohomological meaning. 

Definition 6.13. Let Se denote the symmetric group on ~ elements. Define r 6 Se by r(i)  = 
g + 1 - i, and note that r 2 = Id. Let R : Se --+ Se be the involution defined by R(cr) = r c r - l r .  
Define an index set f f  C Sg by 

ff  := {~r 6 Sg �9 R(~r) = cr and, i fg is even, then cr(i) 7~ i mod2 for some i.} 

Set r := n - m + ~ and note that ~ - r mod 2. Then we define 

g 
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Lemma 6.14. Suppose ~ =- r mod 2. Then 

(1) Tr(e) (W) is a polynomial in the Pi and W2j+I. 

(2) I f  s is odd (resp. even), then each term ofT/e) (W) is of  odd (resp. even) degree in the variables 
W2j+I. Therefore, T/e) (W(F))  is an element of  Hq (X, Z) (resp. Hq (X, Z)), where q = g.r. 

(3) Each term of  the polynomial Tr(e) (W) has a factor of  the form I~2j+l. Therefore, the class 

T/e) (W ( F) ) is a torsion class of  order 2. 

In the case that ~ is even set s = 2~0 and r = 2r0. The main result is the following: 

Theorem 6.15. 
is 

[LDe(v)] 

The(twisted) integer cohomology class of the higher dependency current LDe (v) 

T/e) (W(F))  i n H  q (X,~)  wheng isodd, 
= (eo) F Aro ( P ( ) )  + Tff)(ffZ(F)) i n H q ( X , Z )  wheng, iseven 

/ 

Remark 6.16. For s even (resp. g odd) let t* : H*(X, Z) -+ H*(X, ~)  (resp. t* : H*(X, Z) 
H* (X, ~)) @note the usual coefficient homomorphism, and let p* : H* (X, Z) -+ H* (X, Z2) (resp. 
p* : H*(X, Z) -+ H*(X, Z2))denote mod 2 reduction. Then 

t* ([LDe(v)]) = { 0 i fs  is odd, 
(e0) F . (6.16.1) 

Ar0 ( P ( ) )  i f s  

and 
p* ( [ L D , ( v ) ] ) =  [LD~~ = A~')(w(F)) .  (6.16.2) 

These two formulae are well known (see [20]) and will be used to prove the more general result of 
Theorem 6.15. 

Example 6.17. 

(1) I fs  = 2, then r = 2r0 = n - m + 2 and [LD2(v)] = Pro + W,-I ~rr+l. 

(2) I f s  = 3 ,  then[LD3(v)] = plI~5 -t- p2WI q- I~3 3 + WIW3W5. 

(3) If s = r = 4, then [LD4(v)] 

- -  + + (+3+5 + + , + +  + + (+,+5 + + 

Remark 6.18. The following equivalent definition of Tr(e)(ff z) will be useful. Define an s • g 
matrix (aij) by 

aij := ffZr+i-j 1 <_ i, j < s . (6.18.1) 

Note that the matrix (aij) is symmetric under reflection in the antidiagonal i + j = ~ + 1, i.e., 
ae+l-j,  e+l-i = aij. LetZ  denote the collection of subsets I of the index set {(i, j )  : 1 < i, j < s 
which satisfy the following three properties: 

1. For each i (resp. j )  in { 1 . . . . .  g} there there is exactly one element j (resp. i) of { 1 . . . . .  g} 
so that (i, j )  C I. 

2. The subset I is symmetric under reflection in the antidiagonal i + j = s § 1, i.e., (i, j )  6 I 
i f f ( s 1 6 3  6I ,  and 
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3. If  s is even, then there is at least one element (i, j )  �9 I for which i ~ j mod 2. 

833 

Then 

T~(s (#)  = Z E Wr+i-j . (6.18.2) 
IEZ (i,j)EI 

To see that Definition 6.13 and (6.18.2) agree, note that each cr �9 ,7 defines a subset I(a) of 
{(i, j )  : 1 < i, j < s by I(a) :=  {(i, a(i)) : 1 < i < s Furthermore, the set associated with 
R(a) is the reflection in the line i + j = s + 1 of the subset associated with a .  

Proof of Lemma 6.14. Let a �9 ,7. Then, since R(a)  = a, we have (i, j )  �9 l ( a )  iff 
(v( j ) ,  r ( i ) )  �9 I(a),  where r ( i )  = s + 1 - i. So, since ar(j)r(i) = aij, 

E [-I -e : Wr+i-a(i) E Wr+i-cr(i), 
creJ iEU(a) iEA(a) 

where U(a) = {i : i + a(i) < g +  1} and A(cr) = {i : i + a(i) = s  1}. Note that 
I~x(o-)l - g mod 2. Conclusions (1, 2, and 3) now follow from the fact that if i E A(a) ,  then 
r + i - a ( i )  = r - g + 2i - 1 is odd. Conclusion 4 follows from the fact that JA(a)J # 0 in the 
case that s is odd, and from the definition of  ,7 in the case that g is even. [ ]  

Proof of T h e o r e m  6,15. By naturality we can reduce to the case in which the bundle F -+ X is 
the tautological rank n bundle U over a sufficiently high dimensional approximation, Gn (RN), to the 
classifying space Gn (N~176 Now, if N is large enough, the torsion subgroup of H q (Gn (RN), Z) is 
a direct sum of cyclic groups of order 2 (see [2]). Furthermore, choosing N to be odd, OTGn(xN ) ~- 

Ou and so H*(Gn(~N), ~) ~- H,(Gn(RN), Z). So, by the universal coefficient theorem, the 
torsion subgroup of H q (Gn (]RN), ~) is also a direct sum of cyclic groups of order 2. Consequently, 
elements of  Hq (Gn (]RN), Z) and H q (Gn (]RN), ~) are completely determined by their mod 2 and 
real reductions. So, setting 

T/e)(ff/(F)) i f g  is odd, 

O(g) := (go) F Tr(g)(ff/(F)) i f ~ i s e v e n  ~r Aro ( p ( ) ) +  

it suffices to prove that 

and 

t,(Q~O ) = { 0 i f ~ i s o d d ,  
A~e0~ i f g i s  even,  (6.19) 

/~\~Q~re) ) _-_ A~O(w(F) ) ,  (6.20) p* 

that is, that Q~e) and [LDe(v)] have the same torsion-free part and mod 2 reduction. 

s 

Now (6.19) follows immediately from Lemma 6.14 (3). Let w(a )  :=  I-I Wr+i-c~(i). Then, 
i=1 

since the matrix aij = Wr+i-j is symmetric under reflection in the antidiagonal, 

w(R(a)) = w(o-).  .(6.21) 

In the case that ~ is odd, we verify (6.20) by observing that, by Definition 6.13, A~g)(w(F)) - 
p.(Q~e)) = ~ w(o-), which is zero, since, by (6.21), the sum is a sum of terms of the form 

w(a) + w(R(~r)) = 2w(a )  = O. 



834 Reese Harvey and John Zweck 

Finally, we verify (6.20) in the case that ~ = 2e0 is even. Let ~ : Se o --+ Se be the injection 
defined for j E {1, 2 . . . . .  ~0} by 

~07) (2 j  - 1) :=  2~7(j) - 1 and ~k07)(2j) :=  2~7(j). 

The map ~ can be interpreted as follows. Let (bij) denote the e0 x ~0 matrix bij : =  Pro+i-j and 
let C07) = {b j, rl(j) : 1 < j <_ ~0} be the subset of entries of (bij) defined by t/ E Se o. Then 
C(~( t / ) )  = {ai,~p(#)(i) : 1 < i < g} is the set of  those entries of  (aij) obtained from C01) by 
replacing each element b j ,  ~ (j) of C (~/) by the diagonal entries of the corresponding 2 x 2 submatrix 

( W2(ro+j-~l(j))o tO2(ro+j-r~(J))O )o f thematr ix (a i j ) .  So, s i n c e p . ( p j ) = w Z j , t h e m o d 2 r e d u c t i o  n 

of the product of  the elements of C(~) equals the product, w(gt(0)),  of  the elements of C(~(~) ) .  
Summing over 0 6 Seo we conclude that 

~eO(&o) 

Now let/G := Se ~ (7t(Seo) U J ) .  To verify (6.20) it suffices to show that 

2 w(a) = 0 .  (6 .22)  

crE/C 

To prove (6.22) we study the index set E.  Define fi E Se by 

f l ( 2 j - 1 )  = 2 j  and f l(2j)  = 2 j - 1  f o r j  E{1 . . . . .  g0} , 

and define P : Se -+ Se by P(a)  :=  ficrfl. The involution P can be interpreted as follows. First, 
each entry aij of the g x g matrix (aij) has a pair P(aij) defined as follows. Partition (aij) into 

2 x 2 submatrices. Let ( a b ) c d be one such submatfix. Then P(a) = d and P(b) = c. Let C(a)  
k / 

denote the set of  entries of (aij) defined by a E Se. Then C(P(a) )  = C(a ) .  The pairing involution 
P is introduced because 

gt(Sc0) = {a ESe : P ( a ) = a a n d i = - a ( i ) m o d 2 f o r a l l i }  . (6.23) 

Define 

1CR = {a E iC : R(a)  ~ a} and ](~p = {a E ]C : R(a)  = o- and P ( a )  7~ a} . 

We claim that ~ is the disjoint union/G = /GR U ~ p .  To see this choose a 6 /G ~ /(;n. Then, 
since a r J ,  i =- a(i)  rood 2 for all i. Therefore, since a r Equation (6.23) implies that 
P(a)  7~ a, as required. 

Note that since the pair of  the reflection of an entry of  (aij) is the reflection of  the pair of  that 
entry, 

R(P(a ) )  = P ( R ( a ) ) .  (6.24) 

Hence, R preserves the decomposition S~ = ~(Se 0) U ,7 U ]~R I J ~(~p. NOW, since the involution 
R : ~ n  -+ /Gn has no fixed points, it follows that ~ w(a)  = 0, since it is the sum of terms of 

cre/CR 
the form w(cr) + w(R(a) )  = 2w(a )  = 0. Finally, by (6.24), P : ~ t ,  -+  K2p is an involution with 
no fixed points, and once again ~ w(a )  = 0. Hence, (6.22) holds, as desired. [ ]  
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7. Applications 

In this section we apply the general results of the previous sections to study singularities of  pro- 
jections and singularities of maps (c.f. [12]). The results of  this section hold whenever the projections 
andmapsinquest ionareatomic,  bywhichwemean tha t the inducedsec t ionofHom(U,  F) --+ G e ( E ) 
is atomic. This hypothesis is assumed throughout. In particular, in the real analytic case we simply 
require that the degeneracy subvarieties of the map have codimension greater than or equal to the 
expected codimension in X, (see [12], Propostion 2.14). 

A. Singularities of projections 

Let j : X -+ ~N be an immersion of a smooth m-manifold.  Fix an integer n < N and let 
p : ~N __~ Rn be a linear map. We study the singularities of the smooth projection P" = P o j : X -+ 
R n . Fix an integer k with 0 _< k < rain{m, n}. The kth m o d  2 degeneracy current of the projection 
P on X is defined to be D~n~ := D~n~ ") (c.f. Remark 6.11). This current is a degree 

q := (m - k)(n - k) current which is supported on the set where the differential dfi" : T X  --~ ]R n 
has rank < k. By Remark 6.11, 

= = A m _  k (w(TX) )  i n  H q (X ,  Z 2 )  �9 (7.1) 

A 

If  n -= m rood 2, the kth degeneracy current of the projection P on X, Dk(P)  := D~(dP)  
can also be defined [as in (6.2)]. Let (alP')* : R n -+ T*X denote the adjoint map. Then, at least for 

A 

generic P,  D~(P)  = D~((dP)*).  Therefore, by Theorem 6.15, 

(~k~)(VC(T*X)) in Hq (X, Z),  when n - k is odd, 

[Dk(P)] = A(n~176 + T(n--kk)(w(T*X)) i n H q ( X , Z ) , w h e n n - k i s e v e n  
mo-ko 

where 2(no - ko) = n - k and 2(mo - ko) = m - k. 

Example 7.2 (Tangential Stiefel-Whitney classes). Fix 1 <_ q _< m and let P : ]~N ___> 
]R m-q+1 be linear. The rood 2 non-submersion current of the projection P on X is defined by 
DmOd 2 ( p )  Dmod 2 (d P) NS := m - q ,  on X. This is a degree q current which is supported on the subset of X 

on which the map P :  X ~ R m-q+1 fails to be a submersion. By (7.1), 

[mod  ] DNS (P)  = wq(TX)  i n H  q(X ,Z2)  �9 

Furthermore, if q is odd, then the non-submersion current, DNS(P), can also be defined and, by 
Remark 6.12, 

[DNs(P)] = ffZq(TX) in H q (X, Z) . 

Example 7.3 (Normal Stiefel-Whitney classes). Fix 1 < q < N - m and let P : ~U _+ 
]~m+q-1 be linear. The rood 2 non-immersion current of the projection P on X is defined by 

rood 2 A D~pd2(p)  := Din_ 1 (dP) on X. This is a degree q current which is supported on the subset of  X 

on which the map P : X --+ ~ m + q - 1  f a i l s  t o  be a immersion. By (7.1), 

modZ(p)] = wq(NX)  i n H q ( X ,  Z2) 
~ 'NI  

where N X  is the normal bundle to X in R N. Furthermore, if q is odd, then the non-immersion 
current, DNI(P),  can also be defined and, by Remark 4.13, 

[DM(P)]  = Wq(NX) in H q (X, 5)  . 
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B. Singularities of maps 

Let X and Y be smooth manifolds of  dimensions m and n respectively, and let f : X --+ Y be 
a smooth mapping. Let 0 < k < min{m, n}. The kth mod 2 degeneracy current of the map f is 
defined to be D~n~ := D~n~ This is a degree q = (m - k)(n - k) current supported on 
the set where d f  : T X  -+ T Y  has rank < k. By Remark 6.11, 

[D~n~ = A(nm7 k) ( f * ( w ( T Y ) ) w ( T X )  -1 )  in H q ( X , ~ 2 )  . (7.4) 

Example 7.5 (Non-submersion currents). Suppose that m = dim X > dim Y = n and let 
q = m - n + 1. Then, by Remark 6.12, the cohomology class of  the mod 2 non-submersion current 

rood 2 Dmod 2 {~-,~ is  
DNS ( f )  := n-I  , a ,  

[ D ~ d 2 ( f ) ]  

and, if q is odd, 

= { w ( T X ) f *  (11)(TY)-l)}deg q in H q (X, Z2) , 

[ D N s ( f ) ]  = fl ( { w ( T X )  f* (w(Ty)- l )}degq-1)  inHq (X '~)  " 

Example 7.6 (Non-immersion currents), Suppose that m = dim X < dim Y = n and let 
q = n - m + 1. Then, by Remark 4.13, the cohomology class of the mod 2 non-immersion current 

mod 2 mod 2 
DN~ ( f )  : =  D m _  1 ( f )  is 

rood 2 [DNI ( f ) ]  = { f*w(TY)  w(TX)-l ldeg q in Hq (X, Z2) , 

and, if q is odd, 

A. Appendix. Computing cohomology with currents 

This appendix is included for two reasons; first for the sake of completeness, second for although 
the approach taken here is both simple and natural (via standard sheaf theory) it does not appear in 
the geometric measure theory literature. 

Definition A.1.  The complex 

0_+ S__+.,.o ~ 71 d d yn ---> ...--+ --+ 0 

of sheaves is called an aeyclic resolution of the sheaf S if 

1. the complex is exact, and 

2. each sheaf UP is acyclic, i.e., H j (X, 5 t-p) = 0 for j = 1 . . . . .  

The basic result is that cohomology with coefficients in S can be computed from such a reso- 

lution. That is, 
{ ~ 0 c F ( X , , T P )  : d~o=0}  

HP (X, ,5) = 
dF (X, ~re -1 ) 
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and 
{goEVcpt(X, 5 cp) : dgo=0}  

H4t ( X, ,..q) : 
dFcp t (X, f ' p -1 )  

A classical reference for this and other standard results from sheaf theory is Godement [8]. 

In this paper the cases and coefficient sheaves of most interest are: 

The integer ease with coefficient sheaf Z, the sheaf of germs of locally constant integer valued 
functions (see Corollary A. 13). 

The mod 2 ease with coefficient sheaf Z2 := Z / 2Z (see Example A.25), and 

The twisted integer ease with coefficient sheaf Z := Z | Or, where Ov is the orientation sheaf 
of a real vector bundle V --+ X (see Example A.16). 

Throughout this appendix X is a Cr n-dimensional manifold. Let Orx or Ox 
denote the orientation sheaf of X and let Zx := Z |  and Rx := ]R |  

Example A.2 (Differential forms). Let s denote the sheaf of germs of C ~ differential p-forms 
with d taken to be exterior differentiation. Then 

{go~g p(X) : dgo=0} 
HP(X, R) = 

dgP-l(X) 

Each gP is acyclic because gP is fine (i.e., there exists a partition of unity). Also the sequence, 
0 --+ R -+ go __+... __+ gn __+ 0 is exact by the Poincar6 lemma for exterior differentiation. 

Example A.3 (Currents). Let 7) 'p denote the sheaf of germs of degree p currents (defined in 
Section 2). Then 

0 ----> R --+/)tO --~ 79fl --+ . . .  --+ Din -+ 0 

is an acyclic resolution of R and hence can be used to compute real cohomology HP(X, I~). Note 
that gP(X) C 7)tP(x), i.e. each p-form, go, is a current of degree p, defined by go0P) = f x  go A 7r, 
for all twisted n - p forms, gr. 

The spaces 7~lPoc(X) C 7)'P(x) of locally rectifiable currents on X, of degree p or dimension 
n - p, are very natural for computing Z-cohomology. However they are not closed under exterior 
differentiation. There are several ways to remedy this defect (see Examples A.4, A.5 and A.8 below). 

Examples of locally rectifiable currents, T C ~lPoc(X), can be constructed as follows. Choose 
an oriented submanifold S of X, which has an orientable neighborhood in X, and fix an orientation 
on the neighborhood. Then T(~)  -- f s ~  defines T ~ 7~Poc(X), where ~ is an arbitrary Ox-  

twisted n - p form on X with compact support and where 7t denotes the corresponding (untwisted) 
n - p-form on a neighborhood of S. 

Example A.4 (Twisted Singular chains). Let CP C 7"41Poe denote the subsheaf of germs of 
currents arising from integration of (twisted) forms over finite sums of simplicies with oriented neigh- 
borhoods as discussed above. Then, using exterior differentiation or the usual boundary operator, 

o - +  . . .  Yn o 

is an acyclic resolution of Z, and hence can be used to compute integer cohomology. 

Example A.5 (Integral currents). The space 1Ee(x ) of (locally) integral currents of degree 
.]-~p+ 1 "X p on X is defined to be {T ~ T4~oe(X ) : d T  ~ loe ( )}" Let ZP denote the sheaf of germs of 
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(locally) integral currents with d taken to be exterior differentiation. Then 

O ~  g ~  ~ ~ Z 1 ~ . . . ~  Z n ~ 0 

is an acyclic resolution of Z, and hence can be used to compute integer cohomology. 

Example A.6 (Ox- tw i s t ed  currents). Let 79~ denote the sheaf of germs of k dimensional Ox- 
t twisted currents on X. Then 0 ~ Rx ~ 79~n ~ D~n-1 --> " "  --> 790 ~ 0 is an acyclic resolution 

p 
of ~X, and hence, can be used to compute H p (X, Nx) or real homology Hk (X, R) : =  Hcp t (X, ~ x ) ,  
where p + k : n. 

Example A.7 (Singular chains). Via integration of forms, each smooth singular k-chain deter- 
mines a k-dimensional Ox-twisted current. Let Ck C D~ denote the subsheaf of the sheaf of germs 
of twisted currents corresponding to integration over singular chains. Then 

0--+ ~X "-> Cn ----> Cn-I  -~  ' ' '  -+  CO --> 0 

is an ac~lic  resolution of Zx and hence can be used to compute HP(X, Zx) and to compute 
HPt(X, Zx). It can be shown that this HPt (x ,  Zx) computed from C* agrees with the usual 
homology Hk(X, Z) (k = n - p) of the complex of smooth singul~ar chains. That is, homology is 
just (compactly supported) cohomology with the coefficient sheaf Zx, the twisted integers. 

Example A.8 (Integrally flat currents). This is one of the examples of central importance in 
this paper and so will be treated in more detail. Let 5Cs (X) denote the space of locally integrally flat 

degree p currents on X. We take as definition 5ClPoc(X) := ~oc(X)  + dT~p~I(x), i.e., all currents 

that can be written as A + dB with A ~ TCPoc(X) and B ~ 7-r 1 (X) where TgPoc(X) denotes the 
space of locally rectifiable degree p currents. In results where the degree of a locally integrally flat 
current can be arbitrary, we use the less encumbered notation ~oc (U)- 

The spaces {~oc(U) : U ~ C X} form a presheaf of abelian groups. One can form the 
associated sheaf floc of germs, and consider the natural map from fk~c (U) to F (U, floc). This map 
is injective because the support axiom is satisfied. 

Support axiom 

Let 5 c be a presheaf. If T ~ .T(X) restricts to be zero in a neighborhood of each point of X, 
then T = 0. 

Note. For a general presheaf 5 c this axiom is equivalent to the concept of support being well 
defined. The support of T E f ( X )  is defined to be the complement of the set of points x 6 X such 
that T Iv = 0 for some neighborhood U of x. 

This map is surjective because the following axiom is satisfied. 

Local to global axiom 

Suppose T~ c 5c(U~) is given, where {U~} is a locally finite open cover of X. Let U ~  = 
U~ fq U~. If T~3 -- T~ I w~ - T~ I u~ vanishes, then there exists a global Z c 5c(X) such that 

T [ u = T c ~ .  

For a given presheaf, if both of these conditions/axioms are satisfied, then the presheaf is said to 
be a sheaf. A sheaf is said to be soft if for each closed set C C X and each section of the sheaf on C 
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there exists an extension to all of X. That is, for each section on a neighborhood of C there exists a 
section on X which agrees with the given section on a (smaller) neighborhood of C. Soft sheaves are 
always acyclic, for basically the same reason fine sheaves are acyclic. Namely, the decompositions 
provided by a partition of unity exist (even though these may not arise from a partition of unity). 

Theorem A.9. The presheaf {3Cloc (U)} of  locally integrally fiat currents is a sheaf and this sheaf 
f'loc is soft. 

Proof. Since each Uloc(U) is a subset of D~(U) and the support axiom is satisfied for the presheaf 
D~(U), the support axiom is automatic for ~oc(U).  

To prove the local to global property we first describe the proof for TCloc(U). Given A~ E 
Tr (U~) with A~ = Aft on U~  choose a partition of unity {X~ } for { U~ } with each ;(~ a characteristic 
function of a Borel set. Then, since x~A~ is also a rectifiable current on U~ (but vanishing near 
OU,), we may consider ;(,A~ E TC]oc(X) extended by zero to all of X. Set A = Y~, x~A~ and note 
that A ] G =  Ac~. 

The proof of the local to global property for ~oc(U) can be outlined as follows. For a more 
complete proof, see [9], Lemma 3.1. Suppose that we are given T~ = Ae + dB~ with A~, B~ E 
~loc(U~) and T~ = T~ on Uefi, i.e., A~ - Aft = d(Bfi - B~). Suppose we could set r = ~ Xe Tc~, 
and verify that 

xc~Tc~ = x~Ac~ + xc~dB~ = x~A~ - (dx~)B~ + d(xo~B~) �9 (A.10) 

More precisely we must show that xc~Ar - dxc~Br and x~B~ define locally rectifiable currents 
satisfying Equation (A.10). This is not always true because (dx~)B~ and/or x~dBc~ may not be 
defined. However, by Federer's theory of slicing, we may choose a slight perturbation of X~ so that 
dxr is a well-defined rectifiable current and so that xr is a well-defined current with the 
equation d (xe~ Bc~ ) = ( d xr ) Bc~ + xr  Be~ satisfied~ 

The proof that )C~oc is soft is easier. First consider the analogous result for locally rectifiable 
currents. 7-41oc is soft because given a closed set C C X and A 6 741oc (U) where U is a neighborhood 
of C we may choose X to be the characteristic function of V C U where V is an open neighborhood 
of C and then set A = xA E "]~loc(X) to be the desired extension. Similarly, given T = A + dB  E 
5~oc (U) the current T" = X A § d (X B) provides the required extension. [ ]  

Since 5~o~ is soft we have the following: 

Corollary A.11. The sheaf 3C~oc is acyclic. In particular, for each locally finite open cover 
b / =  {Uc~} of  X,  the cohomology Hi(b/, 2~oc) = 0. That is, given S~fi E flPoc(Uc~fi) satisfying 

S~fi + S~y + S• = 0  o n U ~ y  

P there exists S~ ~ ~/oc(U~) such that 

S ~  = S~ - Sfi on U ~ .  

Theorem A.12. 

is exact. 

0 - +  -+ 711oc - + 0  

Proof .  Exactness on the left is equivalent to 0 --+ Z --~ 7~~ -+ 7~o c being exact since ~loc = 

7~1~ . This follows immediately from the standard fact that 0 --~ R ~ 7) I~ -+ D tl is exact, i.e., 
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locally a d-closed generalized function is represented by a constant function. Let U be an open ball 

i nE  n. Suppose T = A + d B  where A �9 ~Poc(U), B �9 T~Pocl(U), and p _> 1. I fT  is d-closed, then 

dA = 0. Using the standard cone construction (and Federer's theory) there exists A" �9 7~Pc l (U) 

(u). [] such that dA" = A on U. Therefore, d(A + B) = T where A'+ B �9 7~1o c (U) C 

Corollary A.13. 

H P ( X , Z )  = {T�9 : d T = O }  

d.~'lPoc l ( X ) 

That is, the integrally fiat currents can be used to compute 7, cohomology. 

L e m m a  A.14. Given T e 5floe(X) and a neighborhood U o f  spt T there exist A, B e T~loc(X) 
satisfying T = A + d B and with spt A C U, spt B C U. 

Remark. In particular, Lemma A. 14 implies that if T e .~cpt (X), then there exist A, B e "]~cpt (X) 
with T = A + dB. Consequently, Federer's definition of f 'cpt(X) (where f 'cpt(X) = ~cpt(X) -[- 
dT-~cpt (X)) agrees with the definition given in this appendix (where fcp, (X) is the space of compactly 
supported sections of ~oc). 

Federer defines 5~oc(X) to be the space of those currents on X which locally agree with a 
current of the type A + dB where A, B e "P~cpt(X). As a consequence of the discussion above, one 
can easily show that the definition of ~'loc (X) given in this appendix (namely gloc (X) + dT~]oc (X)) 
agrees with the definition in [5]. 

Proof of L e m m a .  Choose A, B e ~loc(X) with T = A + d B .  On X ~ spt T, both B and 
dB = - A  are locally rectifiable. By Federer's theory of slicing, there exists a neighborhood 
V of sptT with V C U such that on X ~ sptT, the slice (dx)B e ~loc(X ~ sptT) exists 
and d(xB)  ---- (dx)B + x d B  on X ~ spt T. Here X denotes the characteristic function of V. 
Consquently, 

T = A + d B  = x A  + x d B  = x A -  (dx )B  + d ( x B ) ,  

where X A - ( dx )B  and d(x B) are locally rectifiable on X with support in U. ~3 

Example A.15 (Integrally flat Ox-twisted currents). This cxample is almost identical to 
Example A.8. Let T~l~ (X) denote the space of locally rectifiable Ox-twisted currents of dimension 

k, and let 5c~ ~ := T~ ~ (X) + dT~ ~ (X) denote the space of locally integrally flat Ox-twisted currents 
of dimension k. Then 

,~-loc . .T(l~c 0--+ gX----> ,~nl~ ~, n_ i - - -~ . .  ~ "--~0 

t ~cloc d} can be used to compute HP(X,  ~x),  is an acyclic resolution of Zx. Hence, the complex t- ~ , 

or integer homology Hk(X, Z) = HPt(X, Zx), where p + k = n. 

Example A.16 (Integrallyflat Or-twisted currents). Let V -+ X be a real bundle with 
orientation sheaf Ov and let Zv := Z | Or.  Let ~Poc(X) denote the space of degree p locally 
integrally flat Or-twisted currents on X. Then 

is an acyclic resolution of 7,v. Hence, the complex {5~lPoc , d} can be used to compute HP(X, ~v) .  
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Example A.17 (Mod q integrally flat currents). Cohomology with Zq coefficients can be 
computed using mod q currents. 

m o d q  X Defini t ion A,18. The space ~ioc ( ) of rood q locally integrally flat currents on X is defined 

to be the quotient 5Cs / q~Poc(X). 

To avoid an excess of subscripts and superscripts we always drop the superscript p for the 
degree and the subscript k for the dimension when describing mod q currents. 

R e m a r k .  Federer takes the quotient of ~Poc (X) by the closure of @t-P c (X) in the flat topology on 

~Poc (X) in order to prove compactness theorems for mod q currents. For our purposes - -  computing 
cohomology - -  this closure is an unnecessary complication. In addition, Fred Almgren (private 
communication) has proven that q~Poc (X) is already closed in UlPoc (X). 

m o d  q 
The presheaf { ~oc (U)} is a sheaf and this sheaf J-lo~ d q Theorem A.19. is soft. 

- -  m o d  q �9 Proof. First we must verify the support axiom. Suppose T ~ .Tio c (X) is given (and represented 

by r e -Tloc(X)). Further suppose T ] u =  0 for each oe, i.e., there exists S, ~ ~-loc(U~) such that 

r [ u~ = q S~ for each or. Now q S~ = q Sg on U~fi implies S~ = Sfi on U~fi. Since {-~oc (U) } satisfies 

the local to global axiom, there exists S ~ )rloc(X) such that S I u =  S~. Consequently T -- qS  on 

X so that T = 0. 
mod q - -  rood q 

Second we must verify the local to global axiom for {~oc (U)}. Suppose r~  E ~oc (b/u) 

are given with T ,  = Tfi on U~.  Choosing representatives T~ ~ ~oc(U~) for T~, the equation 

T~ = Tfi on U~  says that there exists S ~  e ~-~oc(U~/~) such that T~ - T~ = q S ~  on U~.  The 
cocycle condition for Su~ is satisfied since it is satisfied for q S ~ .  Recall that HI(/g, 5C~oc) = 0. 
This implies that there exists S~ 6 5~oc(b/~) such that S~ - S/~ = S~ .  Consequently, 

T = T~ - qS~ E 5tqoc(X) 

- -  r o o d  q is well defined independent of o~ and provides the global representation of a class T 6 ~oc (X) 

with T [~, = -f~ for each o~. 

";c 'm~ q - -  "c'm~ q (U) is given (repre- Finally, we must show that the sheaf ~ loc is soft. Suppose T E ~ 1oc 
sented by T ~ .T~oc(U)) and U is an open neighborhood of a closed set C. Since ~oc is soft, there 

%--rood q { T . 
exists S 6 ~oc (X) such that S I v = T Iv for some neighborhood V C U of C. Now S E ,  loc t-~) 

and S = T on the neighborhood V of C. [ ]  

- -  m o d  q 
Propos i t ion  A.20. Given T ~ 5~o c (X)  and a neighborhood U o f  A := spt r there exists a 

representative T 6 3Cloc(X) o f T  with spt T C U. 

Proof .  Let T E 5t'loc(X) denote an arbitrary representative o fT .  Restricted to X ~ A, T ]X~A = 

qSfo r  some S 6 5Cloc(X ~ A). Since Yrloc is soft there exists a global section S c 5Cloc(X) which 
agrees with S o n  a neighborhood of the closed set X ~ U. Now T - qS  ~ 5~oc(X) is another 
representative of T and T - qS  vanishes on a neighborhood of X ~ U. [ ]  

Note that the sheaf Zq is a subsheaf o f  .fi'io m~ when the degree is zero (i.e., when dimension is 
n). 
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- -  ~ m o d  q Lemma A.21. Suppose r c J-loc (U) is o f  degree zero on the open unit ball U. 

then T is represented by a constant integer valued function. 

i r fdT  = o,  

P r o o f .  The equation d T =  0 means that d T =  qS with S 6 ~lloc(U) and T e ~-~loc(U) a 
representative for T. The current qS and hence S is d-closed. Therefore, there exists R 6 ,~~ 
satisfying dR = S (because this is true for locally rectifiable currents). Now T - qR ~ 91oc(U) 
also represents T and is d-closed. Therefore, T - qR is a constant integer valued function. [] 

~ m o d  q d q~-mod q 
This proves that 0 ~ Zq ~ ~ loc,deg 0 " |oc,deg 1 is exact. 

- -  r o o d  q Lemma A.22. Let p >_ 1. Given T ~ f'ioc,degp(U) On the unit ball U satisfying d T  = 0 there 
"i~m~ q "U" exists S ~ ~ loc,degp_ll ,  ) with d S = T. 

, ~ p + l  
Proof.  There exist T ~ flPoc(U) and S E loc (U) such that d r  = qS. Thus, dS = 0. Now 
S = A + dB where A, B ~ 7~1oc(U). Thus, dA = 0. Since degree A = p + 1 > 1 there exists 
R c T~Poc(U) such that A = dR. Therefore, S = d B  for some B c ~foc(U). Consequently 

= r - qB ~ ~Poc(U) is another representative of T with d T =  0. Finally solve dS = T" on U 

with S 6 f~c(U).  [] 

,Fmod q 
In summary, the mod q currents ~ loc (X) may be used to compute cohomology with Zq 

coefficients. 

Theorem A.23. 

(x, = 

{T ";c'm~ (X ~ " d T  = 0} 
E ~, loc,degp~ j 

d ;c'm~ q (X'~ 
loc,deg p _ l  ~ 

Example A.24 (Mod q integrally flat Ox-twisted currents). This example is almost identi- 
loc Le Ioc X :--5~ec(x) qf~  (X)bethespaceofmodqlocaltyintegrally cal to Example A.17. t f 'mod q ( ) / 

flat Ox-twisted currents on X and let Zq := Ox | Zq. Then the complex f ~cloc (X~ d} can be t~ modq~ J ' 

P Zq) where + k  n. used to compute H P ( X ,  ~q), or Hk(X, Zq)  ~- H c p t ( X  , p : 

Example A.25 (The m o d  2 integrally flat case). In this example we wish to compute Z2 
cohomology H p (X, Z2). This can be done in several equivalent ways. First, restating Theorem A.23 

mod ~ * inthecaseq = 2, HP(X, Z2) can be computed from the complex f , o c -(X) := $-~oc(X) / 2~*c(X) 
of mod 2 locally integrally flat currents on X. 

Next suppose that V is a real bundle with orientation sheaf Ov and let ~Poc(X) denote the 
degree p locally integrally flat Or-twisted currents on X. 

Lemma A.26. 
~lPoc(X) / 2f~c(X) --- f~c(X) / 2flPoc(X) 

Therefore, HP (X, E2) can also be computed using the complex of  rood 2 locally integrally flat 

Ov- twis ted  currents. 

Proof of Lemma A.26. First we define a mapping ~0 : f~c(X) -+ ~leoc(X) / 2fleoc(X). Let 
r E ~-~c (X). Choose a locally finite open cover {U~ } of X and fix ordered frames e~ for V over U~. 
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P For each pair (Us, es) let Ts ~ ~oc(Us) be defined by T = [es] | T, on Us. Note that T, = + T  3 
on Ua N Ub. Define S,  3 c 5Cloc(Us A U3) by 

J 0 i f T ~ = T  3 o n U s N U 3 ,  
Ss~ / Ts if Tc~ = - T ~  on U. fq U~ . 

Then 
Tc~ - T~ = 2Sc~3 on Us A U/~. (A.27) 

Let ~ 6 )t~molo~ be the rood 2 class of Ts. Then, by Equation (A.27), ~ = ~-~ on Us N U 3. 

Since the presheaf {SC~loc~ satisfies the Local to Global Axiom (see Theorem A.19), there is 
a well-defined element q)(T) 6 jrlmc~ SO that q)(T) [ w =  ~-~. Note that ~o(T) is well defined 
independent of the choices of locally finite open cover {Us} and frames es for V over Us. 

In summary, we have defined a map ~o : ~Poc(X) --+ ~Poc(X) / 2.T~e(X ). Now, since 
~0(2T) i v =  2-Ts = 0, the induced map ~ :  ~Poc(X) / 2~Poc(X) --+ ~Poc(X) / 2.TPc(X) is well 
defined. Finally, to show that ~" is an isomorphism, we can use the same procedure to construct an 
inverse for ~'. []  
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