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Stiefel-Whitney Currents

By Reese Harvey and John Zweck

ABSTRACT. A canonically defined mod 2 linear dependency current is associated to each collection v of
sections, Vi, . .., Vi, of a real rank n vector bundle. This current is supported on the linear dependency set
of v. It is defined whenever the collection v satisfies a weak measure theoretic condition called “atomicity.”
Essentially any reasonable collection of sections satisfies this condition, vastly extending the usual general
position hypothesis. This current is a mod 2 d—closed locally integrally flat current of degree q =n —m + 1
and hence determines a Zy—cohomology class. This class is shown to be well defined independent of the
collection of sections. Moreover, it is the qth Stiefel-Whitney class of the vector bundle.

More is true if q is odd or ¢ = n. In this case a linear dependency current which is twisted by the
orientation of the bundle can be associated to the collection v. The mod 2 reduction of this current is the
mod 2 linear dependency current. The cohomology class of the linear dependency current is 2-torsion and is
the qth twisted integral Stiefel-Whitney class of the bundle.

In addition, higher dependency and general degeneracy currents of bundle maps are studied, together
with applications to singularities of projections and maps.

These results rely on a theorem of Federer which states that the complex of integrally flat currents mod
p computes cohomology mod p. An alternate approach to Federer’s theorem is offered in an appendix. This
approach is simpler and is via sheaf theory.

1. Introduction

It is well known [3, 17, 18, 22, 24] that the linear dependency set of a collection of sections of a
vector bundle is related to the characteristic classes of the bundle. In particular, the zero set of aregular
section defines a cohomology class which is the Chern—Euler class of the bundle. In [12] canonically
defined current representatives of the Chern classes of a complex vector bundle were associated to
collections of smooth sections of the bundle. These currents are called linear dependency currents
since they are supported on the linear dependency set of the collection of sections.

The main airh of this paper is to study the linear dependency currents of a collection of sections
of a real vector bundle. These are either mod 2 or bundle-twisted currents which represent either
the mod 2 or twisted-integer Stiefel-Whitney classes of the bundle. Since they are either mod 2
or 2-torsion, these currents were overlooked in [12].

The linear dependency current associated with an ordered collection v of sections of a real
vector bundle is defined in Section 3 paralleling a standard construction in enumerative geometry
(see, for example, [19, 7]). In general, the most one can say is that this lincar dependency current,
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LD™42 (), is a mod 2 current and that it determines a Z,-cohomology class which is well defined
independent of the particular collection of sections of the bundle (Theorem 3.14).

However, if the degree of LD™°%2 (v) is odd or equal to the rank of the bundle it is also possible to
define a (bundle-twisted) linear dependency current, LD(v), which encodes certain (twisted) integer
multiplicities of dependency among the sections (Proposition 3.16). The mod 2 reduction of this
current LD(v) is the mod 2 current LD™42(y), The current LD(v) determines a (twisted) integer
cohomology class well defined independent of the choice of collection v (Theorem 3.6). If the degree
of LD(v) is less than the rank of the bundle (which occurs when the collection consists of more than
one section), this cohomology class is a torsion class of order 2 (Corollary 3.8).

A major advantage of the approach taken here is that the lincar dependency current is defined
whenever the collection v satisfies a weak measure theoretic condition called “atomicity”, which
is vastly more general than the usual general position hypothesis. For example, a real analytic
collection of m sections of a rank »n bundle is atomic provided that, for ail j € {0,1,...,m — 1},
the codimension of the set of points over which exactly j of the sections are linear independent is at
least the expected codimension n — j (see [12], Proposition 2.14).

Another important property of the (mod 2) linear dependency current is that it is a (mod 2)
locally integrally flat current. Recall that the integrally flat currents are those of the form R + d,
where R and S are rectifiable. Federer [5] proved that the complex of locally integrally flat currents
(or such currents mod p) can be used to compute integer {or mod p) cohomology. In the Appendix we
offer an alternate approach to the theory of (mod p) integrally flat currents and their cohomological
properties. This simple approach is via sheaf theory and is distinct from the form of the theory given
in the geometric measure theory literature.

The theory of dependency currents relies heavily on the theory of zero divisor currents, which
was originally developed in [14] for “atomic” sections of an oriented vector bundle over an oriented
manifold. The notion of an atomic section provides a generalization of the notion of a section being
transverse to zero, one that is both useful and vastly more general. The zero divisor is a d—closed
locally integrally flat current which determines a unique integer cohomology class, the Euler class.
In this paper it is crucial that the notion of a zero current be understood in the non—orientable case.
This is done in Section 2 where the zero divisor is defined as a bundle twisted current. This current
determines a cohomology class (Theorem 2.5), which is the twisted Euler class, e e H'(X,Z), of
the vector bundie. The reduction mod 2 of the zero divisor eliminates the twisting, yielding a mod 2
current which represents the top Stiefel-Whitney class, w, € H*(X, Z»).

In Section 4 we identify the Z,—cohomology class of the degrec ¢ mod 2 current LD™4 2(’2)
as wy, the gth Stiefel-Whitney class of the bundle (Theorem 4.1). Moreover, if g is odd, the Z—
class of the twisted current LD(v) is identified as the gth twisted integral Stiefel-Whitney class
VT/q € H%(X,Z) (Theorem 4.10). This result is a corollary of the fact that the Bockstein of the
mod 2 dependency current LD™42(v) of degree ¢ — 1 is the degree ¢ twisted dependency current
associated with a subcollection of the collection v (c.f. [24, 21]).

The Stiefel-Whitney classes were originally defined [22, 24, 21} as the primary obstruction to
the existence of certain collections of linearly independent sections of a bundle F — X. In Section 5
we examine the relationship between linear dependency currents and obstruction cocycles. Given
a triangulation of X it is possible to choose a particular atomic collection of sections of F so that
the Steenrod obstruction cocycle of the collection is defined. The Poincaré dual of such a cocycle is
a cycle which defines a current on X by integration. We then show that this obstruction current is
equal to the linear dependency current of the particular collection of sections. Among other things,
this provides an alternate proof of the results of Section 4.
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In Section 6 higher dependency currents and general degeneracy currents of vector bundle
maps are discussed, further expanding the results of [12]. Some of the degeneracy currents studied
in Section 6 were not included in [12] since they are either not defined as twisted currents or their real
cohomology class is zero. In these cases we can define mod 2 and/or twisted degeneracy currents.
The integer cohomology classes of the twisted degereracy currents were first studied by Ronga [20]
who proved that they are uniquely determined by their torsion-free part and mod 2 reduction. We
expand upon Ronga’s result by explicitly identifying the integer cohomology classes of the higher
dependency currents as certain polynomials in the integer Pontrjagin and Stiefel-Whitney classes
(Theorem 6.15).

In Section 7 applications of the theory to singularities of projections and maps are given. In
particular we recover the well-known fact that the Steifel-Whitney classes of the tangent bundle
TX and normal bundle NX of a submanifold X ¢ R can be defined in terms of singularities of
projections. The original version of this result is due to [17, 18], [23] (see also [1]). Note, however,
that they only consider generic projections whose critical sets are non—degenerate, with multiplicity
+1. The atomic theory enables us to consider degenerate critical sets of arbitrary integer multiplicity
(Proposition 3.16). In particular, if X is a real analytic submanifold, the tangent and normal Stiefel-
Whitney classes can be defined in terms of the singularities of any projection whose degeneracy
subvarieties have at least the expected codimension. Integer and mod 2 cohomological obstructions
to the existence of smooth immersions and surjections between manifolds are also given, c.f. [20].

Two further applications are worth noting. Following [12] we can define mod 2 and twisted
integer degeneracy currents associated with higher self-intersections of plane fields and invariants
of pairs of foliations. Mod 2 and integer umbilic currents of hypersurfaces can also be studied using
these ideas. Details of these two applications are left to the reader.

Secondary (Cheeger—Chern—Simons) Stiefel-Whitney classes will be introduced in a later paper.
Canonical Lll0 . representatives of these classes will be associated to each atomic collection of sections
of a bundle with Riemannian connection. In the case of a single section «, the secondary Euler class
is represented by the Chern-Euler potential o («). As is discussed in [10] this potential satisfies
the important equation do(«¢) = x — Div(a), where x is the Euler form and Div(x) the divisor
of the section. If the collection v consists of more than one section, then there is a canonical LllOC
current T'(v) satisfying the current equation d7'(v) = — LD(v), which represents the appropriate
secondary Stiefel-Whitney class. This current equation is related to a formula of Eells [4].

Finally, we would like to draw the attention of the reader to recent work of Fu and McCrory [6]
who, in the spirit of [15], have constructed current representatives for the tangential Stiefel-Whitney
homology classes of a singular variety.

2. Divisors and atomicity

Harvey and Semmes defined the zero divisor current of an atomic section of an oriented real
rank n vector bundle over an oriented manifold. The divisor is a codimension n current which is
supported on the zero set of the section and which encodes the integer multiplicity of vanishing of
the section. Furthermore, it is a d—closed locally integrally flat current whose cohomology class in
H"(X, Z) is well defined independent of the choice of section. This class is the Euler class of the
bundle.

The aim of this section is to define and study the zero divisor current in the case in which neither
the vector bundle nor the base manifold are assumed to be orientable. In this case, the zero divisor is
defined to be a current that is twisted by the orientation bundle of the vector bundle. It is also useful
to define the mod 2 divisor to be the mod 2 reduction of the divisor. Both of these notions of divisor
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will be important in the study of linear dependency currents in Section 3.

‘We begin by recalling some definitions. Let V — X be a real rank n vector bundle over an N-
dimensional manifold. No orientation assumptions will be made on V or X. Let Oy and Oy denote
the principal Z,-bundles of orientations of 7X and V over X. An O-twisted k-form is a section of
O ®z, A¥T*X — X. (Often the subscript Z, will be dropped when tensoring with O.) A density
is a top degree smooth Oyx-twisted form on X. Note that densities can be integrated over X. A
generalized function is a continuous linear functional on the spacc of compactly supported smooth
densities on X. A current of degree p is a differential p—form on X whose coefficients (with respect
to each coordinate system) are generalized functions. Equivalently, a degree p current is a continuous
linear functional on the space of compactly supported Ox-twisted (N — p)—forms. Similarly, an
Oy -twisted current is an Oy -twisted form whose coefficients are generalized functions, i.e., it acts
on Oy ® Ox-twisted forms. An LllO . form is a form whose coefficients are Lll0 . functions. Therefore,
L11O . forms are currents that are not twisted. On the other hand, an oriented compact submanifold
of X defines an Oyx-twisted current by integrating (untwisted) forms over it. Note that exterior
differentiation is a well defined operation on (twisted) currents.

_ On acontractable open subset U of X, each Oy —twisted current T can be written in the form
T = |e] ® T where [e¢] € Oy is the orientation class of a local frame ¢ for V over U and where
T is a current on U. If V is orientable, each choice of orientation defines an isomorphism between
Oy -twisted currents and currents. These two isomorphisms differ by a minus sign. Note that the
definition of a current on a non-orientable manifold agrees with that given in [13] but disagrees with
that in [25, 26].

A. Divisors in the nonorientable case

In this subsection we define and study the divisor of a section of V — X. The divisor is defined
to be an Oy -twisted current. Note that if V and X are oriented, the definition of divisor given below
agrees with that of [14].

The solid angle kernel, 6, is the LllOC form on R” obtained by pulling back the normalized
volume form on the unit sphere to R” ~ {0} by the radial projection map. The current equation
d 6 = [0] on R”, where [0] denotes the point mass at the origin, motivates the definition of divisor.

Definition 2.1. Let X be a smooth manifold and let y = (y1, ..., y,) denote coordinates on R”.

I
In the case n > 1 a smooth function u# : X — R” is called atomic if, for each form % on R” with

p = |I] < n — 1, the pullback u*(ld—yl;) to X has an LIIOC(X) extension across the zero set Z of u.
Also assume that u does not vanish identically in any connected component of its domain X. In the
case n = 1, itis convenient to define a smooth function # : X — R to be atomic if log |u| € LllO (X)),
(cf. [14]).

If u is atomic, then the zero set Z has measure zero in X (see [14]) so that the Lllo "
are unique. In particular, the smooth form #*(6) on X ~ Z has a unique LllOC (X) extension across
Z, and therefore defines a current on X.

(X) extensions

Definition 2.2. Letu : X — R” be an atomic function. The divisor of u is the degree n current
Div(x) on X defined by

Div(u) = d («*6) .
Atomicity is a weak condition which ensures the existence of a zero divisor. Harvey and Semmes
proved that a large class of smooth functions are atomic. More specifically those functions which
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vanish algebraically and whose zero sets are not too big in the sense of Minkowski content are atomic.
In particular, real analytic functions whose zero sets have codimension » are atomic.

Lemma 2.3. Let g be a smooth GL(n, R)-valued function on an oriented manifold X and let
u: X — R” be atomic. Then v := ug is atomic and

Div(v) = =1 Div(u) ,
where £1 := sgn det(g) is constant on connected components of X .

This result of [14] allows one to extend the notion of divisor to sections of vector bundles. First,
a section v of a smooth vector bundle V — X is called atomic if for each choice of local frame e
for V the function v, defined by v = ve, is atomic.

Definition 2.4. Let v be an atomic section of a rank # bundle V — X. The divisor, Div(v), of v
is the Oy —twisted current on X defined locally on an open subset U of X as follows. Choose a local
frame e for V over U and let v : U — R" be the coordinate expression for v determined by e. Then

Div(v) = [e] ® Div(v) onU .
In particular, if V is oriented, then Div(v) is a current on X.

As described in the Appendix, the locally integrally flat currents are those currents that can be
expressed as R + dS where R and § are locally rectifiable. Furthermore, the complex 7 _(X) of
Oy-twisted currents on X which are locally integrally flat may be used to compute the cohomology,
H*(X, Zv) of X with integer coefficients twisted by Oy, i.e., ZV =0y ®z, Z

Theorem 2 5. Letv be an atomic section of areal rank n vector bundle V. — X. The zero divisor,
Div(v) € F (X), of v is an Oy —twisted d—closed locally integrally flat current of degree n on X,

whose support is contained in the zero set of the section v. Furthermore, if u is another atomic
section of V, then there is an Oy —twisted locally rectifiable current R so that

Div(v) — Div(u) = dR. (2.5.1)

That is, the cohomology class of Div(v) in H" (X, iv) is well defined independent of the choice of
section v. This class is the twisted Euler class ¢ of V. In particular, if V is oriented, the Euler class
e € H"(X, Z) of V is the cohomology class of Div(v).

Corollary 2.6. Suppose that v is an atomic section of an odd rank bundle V — X. Then there
is an Oy ~twisted locally rectifiable current R on X so that

2 Div(yv) =

Consequently, the cohomology class € € H"(X, iv) of Div(v) is a torsion class of order 2,

(. [16]).
Proof of Corollary 2.6. Since the antipodal map on the even dimensional sphere S"! is ori-

entation reversing, Div(—v) = — Div(v). The result now follows by applying Equation (2.5.1).
L] .

The proof of Theorem 2.5 relies on the following general remark.
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Remark 2.7. Letp: X — X denote the double cover Oy — X. Note that the pullback bundle
V= p*Von Xis oriented by choosing the orientation on V~ to be the one determined by the point
FeX. A current T on X is odd if a,T = ~T, where a : X —> X is the natural involution. Then
odd currents on X are in 1-1 correspondence with Oy —~twisted currents on X.

Proof of Theorem 2.5. The proof in the case that V is oriented, is given in [14], Theorem 5.1.
In the case that V is nonorientable let p : X — X be the double cover of Remark 2.7 and let v
denote the pullback of the section v to V — X. Since V is oricnted the theorem holds for the
section V. Furthermore, by Lemma 2.3, Div(V) is an odd current on_ X which corresponds to the
Oy —twisted current Div(v) on X. Incorporating the double cover p X — X into the proof of [14],
Theorem 5.1, we observe that the locally rectifiable current Ron X canbe chosen to be odd. Finally,
we let R be the corresponding Oy —twisted current on X. ]

The following structure theorem for divisors, which is a corollary of [14], Proposition 4.3, is
proved in [25]. Set Z := Zero(v) and let

RegZ = [x € X : Z is acodimension—n C' submanifold nearx}

denote the set of regular points of Z and let Sing Z := Z ~ Reg Z denote the set of singular points.
Let {Z} denote the family of connected components of Reg Z.

Theorem 2.8. Let v be an atomic section of V. — X. If Z; C spt(Div(v)), then
Orz; = Oy ®0x |Zj ;

and, given such an isomorphism, the submanifold Z; defines an Oy —twisted current [Z;] by inte-
gration. Furthermore, there are integersn; € Z such that

Div(v) = Y n; [Z;] 2.8.1)
as Oy—twisted currents on X ~ Sing Z.

Remark 2.9. By [14], Proposition 4.3, the integers n; in Equation (2.8.1) can be calculated as
follows. Let x € Z; and let I{ be an open neighborhood of x in X. Choose orientations for V and
T'X over U. These orientations induce orientations on T Z; and on the normal bundle NZ; over .
Let p : S(V) — S(R™) be an orientation preserving trivialization of the sphere bundle S(V) over
U. Then, for almost all x € Z;,

nj = Deg(pov:S(N:Zj) — S(R"))

is the degree of the induced map between oriented (n — 1)-spheres.

B. Mod 2 divisors

In this subsection, the mod 2 divisor of an atomic section is defined to be the mod 2 reduction
of the divisor of the section. The mod 2 reduction of an Oy-twisted locally integrally flat current
is a mod 2 locally integrally flat current. At the cohomology level, mod 2 reduction is simply the
natural mapping H*(X, ZV) — H*(X,Z;). The idea behind the definition of a mod 2 current
is to completely ignore orientation issues by declaring a current 7 and its negative ~T to be the
same. Although they encode less information than their twisted counterparts, mod 2 currents have
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the advantage that they push forward under proper smooth maps. This fact will be particularly useful
in Section 3.

Definition 2.10. Let 7 (X) denote the space of locally integrally flat currents of degree p on
X. Then the space ]—'f;‘fd 2(X) of mod 2 locally integrally flat currents of degree p on X is defined

to be the quotient 7 (X)/2FL (X). The natural mapping Fioc(X) — Fm92(X) is called mod 2
reduction.

The spaces Fioc(X) and ]—]‘;‘C"dz(X ) are studied in the Appendix. In particular, we show there
that the complex F"°4?(X) may be used to compute the cohomology, H* (X, Z5), of X with Z,

coefficients. In Subsection A we saw that Div(v) € fﬁc (X) is an Oy -twisted locally integrally flat
current. Now, by Lemma A.26, there is a canonical isomorphism

Froe(X) [ 2Fioc(X) = FRo92(x)y . @2.11)

loc

The induced mapping ]::100 (X) — ﬁrggdz(X ) is also called mod 2 reduction.

Definition 2.12.  The mod 2 divisor, Div™42(v) € F1%2(X), of an atomic section v of V — X
is defined to be the mod 2 reduction of the Oy —twisted current Div(v) € Fioc(X).

Now the mod 2 version of Theorem 2.5 is immediate.

Theorem 2.13. Lerv be an atomic section of a real rank n vector bundle V. — X. The mod 2
divisor, Div™%(v), is a d—closed mod 2 locally integrally flat current of degree n on X, whose
support is contained in the zero set of the section v. Furthermore, if u is another atomic section of
V, then there is a mod 2 locally rectifiable current R so that

Div™¥?(p) — Div™2(y) = dR.

That is, the cohomology class of Div™°®(v) in H* (X, Z,) is well defined independent of the choice
of section v. This class is the mod 2 Euler (or top Stiefel-Whitney) class, wy, of V.

Remark 2.14. By definition, the divisor Div(v) € Floe(X ) is determined by a collection of local
divisors Div(v,) defined on open subsets Uy, of X. These local divisors satisfy Div(v,) = £ Div(vg)
on Uy, N Ug. The mod 2 divisor Div™42(v) is the mod 2 current which is naturally associated to
this collection of local divisors.

Example 2.15. In general, a current representative for a mod 2 divisor is not d—closed. In fact, it
is easy to construct sections v for which there are no d—closed current representatives T € Fioo(X) of
Div™42(y) (though of course Div(v) is a d-closed Oy -twisted current representative of Div®°4 2 (v)).
This can be done as follows.

Let v be an atomic section of a nontrivial real line bundle L — X. Chgose a metric on L.
Then the divisor of v is the d—closed O —twisted current Div(v) = d (% ﬁ) € .7-'11OC (X). The mod 2

reduction of Div(v) is the mod 2 divisor Div™°4 2(v) which represents the first Stiefel-Whitney class
wi(L) € HY (X, Zy). A current representative 7 € ]-'ﬁ)C(X) of Divm(’dz(v) can be constructed as
follows. For simplicity we assume that 0 is a regular value of v. Let Z = Zero(v). Choose an
auxiLiary section i of L — X so that W = Zero(u) is a sullmanifold which is transverse to Z. Let
p: X — X be the double cover orienting L and let ¥, i : X — R be the pullbacks of the sections
v, i, Set x = T% Now y Div(D) € ]-'ILC(X) is well defined and T := %p*(x Div(D)) € ]-"ILC(X)
is a current on X whose mod 2 reduction is Div™42(v). Finally dT =2[Z N W] # Oon X.
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Next suppose that § = T — 2R is a current representative of Div™32(v) for which d§ = 0.
This forces [Z N W] = dR to be zero in H*(X, 7). But this is not always possible, since if
L — RP? is the tautological line bundle, then [Z N W] can be chosen to be the generator RP! of
HX(X,7Z)= H|(X,Z) = Zy.

3. Livear dependency currents

In this section we associate to each atomic collection v of n — ¢ + 1 sections of a real rank
nbundle F — X a degree ¢ current on X which is supported on the linear dependency set of the
collection of sections. This current will be called the linear dependency current of the collection
v. In all cases the linear dependency current exists as a mod 2 current. However, in the case where
g is odd or where ¢ = n, it can also be defined to be an Op—twisted current. Note that if g = n,
the linear dependency current is simply the divisor of the section v (sce Section 2). Henceforth we
assume that ¢ < n.

The linear dependency currents are defined using the construction of such currents in [12] which
we now briefly recall. Let F — X be a real rank n vector bundle. Fix ¢ € {1,2,...,n — 1} and let
v=(],..., V) beacollectionof m =n — g + 1 > 1 sections of F — X. (Such collections will

m
always be ordered.) These sections define a bundle map v : R”™ — F by v(1,...,t) = Z v
i=1

which drops rank on the set where vy, . . ., vy, are linearly dependent. Letn : P(R™) — X denote the
trivial bundle of (m — 1)—dimensional real projective spaces and let U C R™ be the tautological line
bundle over P(R™). Using 7 to pull back the bundle map v : R™ — F to P(R™) and then restricting
to the subbundle U < R™ we obtain an induced section v of the bundle H := Hom(U, n* F) over
P@R™) = P(R™) x X. By construction the projection by 7 to X of the zero set of ¥ is the linear
dependency set of vy, ..., vy.

Definition 3.1. The collection v of sections v, .. ., v, is called atomic if the induced section V
of H — P(R™) is atomic.

If the collection v is atomic, then the Og—twisted divisor current, Div(V), and its mod 2
reduction, Div™©42 (%), are well defined. The linear dependency current is defined to be the current
push forward of Div™“2(¥), or whenever possible the push forward of Div(D).

Generally speaking, it is not possible to push forward twisted currents on P(R™) x X to X
by the projection 7. However, the push forward by 7 of an Opgn) ® n*Op-twisted current on
P(R™) x X is well defined and is an Op—twisted current on X. This observation together with
the following elementary lemma, will be used to determine when it is possible to push forward the
Oy —twisted current Div(D).

Lemma 3.2. Ifn = m mod 2, then there is a canonical isomorphism

Oy = OP(RWI) R OF .

Proof. First recall that if V and W are oriented finite dimensional vector spaces, then there is a
canonical choice of orientation on V ® W. Furthermore, if the dimension of W is even this choice
is independent of the orientation on V and so there is a canonical isomorphism Ow = Ovgw. The
canonical choice of orientation on V®W is defined as follows. Choosc ordered bases v = (v1, ... vp)
and w = (wy,..., wy) for V and W. Then the canonical orientation on V ® W is given by the
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VOW = (v1®w1,v2®w1,...,vp®w1,v1®w2,...vp®w2,...,vp®wq) . (33

Second, recall [16] that there is a canonical vector bundle isomorphism U* @ U L~ TPR™), where
U+ denotes the orthogonal complement of U in R™.

So if n and m are both even, then the result is true since there are canonical isomorphisms
On = Og+p (as nis even) and Opmy = OprgpL = R. Here the last isomorphism is well defined
by sending [u* ® u'] to 1, where u' is chosen so that (u, u™) is a positively oriented frame for
U @ U+ = R™. Similarly, if n and m are both odd, then Oy = Op+ ® Or=F and since m — 1 is
even O+ = Opsgpr = Opgr), as required. L]

A. Linear dependency currents (q odd)

Throughout this subsection we assume that ¢ < n is odd, and hence, m = n (mod 2). Then, by
Lemma 3.2, the push forward by 7 of the Opgny ® 7*OFp-twisted current Div(V) on P(R™) x X
exists and is an Op-twisted current on X.

Definition 3.4. Let g be odd. The linear dependency current, LD(v), of an atomic collection
vofn — g + 1 sections of F — X is the Op-twisted current on X defined by

LDQ) := n, (Div (D)) .

Remark 3.5. The following equivalent definition of the linear dependency current is often useful,
especially when n and m are both odd as in this case the fibers Hom(U, F;) and P(R™), are
nonorientable. Let p : S(R™) — P(R™) be the double cover by the unit sphere and let p :=
mop:SR™ — X. Let NS(R™) denote the normal bundle to S(R™) in R™, with its canonical
orientation. Then, as above, there is associated to the collection v a section ¥ of the bundle H =
Hom(NS@R™), p*F) over S(R™). Note that the sections V and V are simultaneously atomic. As
above there is a canonical isomorphism Of = p*Op. Consequently Div(V) is a well-defined
p*Op—twisted current on S(R™). Then, if ¢ is odd, we have that

1
LD() = 3 0« (Div (D)) . 3.5.1)
We verify (3.5.1) as follows. First note that H= p*H and thatV = p*V. Since n = m (mod 2),
the p*O p—twisted current Div(p*7) is even in that
a, Div(p*V) = Div(p*D) on S(R™),

where a : S(R™) — S(R™) is the antipodal map. Now even currents on S(R™) are in 1-1 corre-
spondence with Op(gmy—twisted currents on P(R™). In particular, if ¢ is odd,

1 ~
Div (V) = 3 P (Div (p*7)) onP(R") .
This fact immediately implies (3.5.1). Note that if g is even, then Div(p*V) is an odd twisted current
on S(R™) and so its current push forward is zero. In general, odd currents on S(R™) are in 1-1

correspondence with Oy ® Opgny—twisted currents on P(R™), see [26].

The following result generalizes Theorem 2.5.
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Theorem 3.6. Let F — X be a real rank n bundle and let q be odd. For each atoniic collection
v ofn —q + 1 sections of F — X the linear dependency current LD(v) is an O p—twisted d-closed
locally integrally flat current of degrec q on X whose support is contained in the linear dependency
set of the collection of sections. Furthermore, if 1 is another atomic collection of sections of F — X,
then there is an O p—twisted locally rectifiable current R so that

LD(yv) — LD(u) = dR.

That is, the cohomology class of LD(v) in H9(X, Zr) is well defined independent of the choice of
sections.

Proof. Since the push forward of a locally rectifiable current is locally rectifiable, the current
LD(v) inherits its properties from those of the divisor of the induced section V (see Theorem 2.5).

]

Note. In the next section the cohomology class of LD(v) is shown to be VT/q € Hi(X, 7 F), the
(twisted) integer Stiefel-Whitney class of F', whose mod 2 reduction is the standard Stiefel-Whitney
class wy € HY(X,Zy) of F.

Proposition 3.7. Letv : R™ — F beas above and lety : R™ — R™ and¢ : F — F be bundle
isomorphisms. Then the collection of sections corresponding to the bundle mappovoyr : R™ — F
is also atomic. Furthermore, if q is odd,

ILD(p ovoy) = sgndet(y) sgndet(p) LD(v),
as Op—twisted currents on X.

The proof of the proposition will be given at the end of this subsection. The following result
generalizes Corollary 2.6.

Corollary 3.8. Under the same hypothesis as in Theorem 3.6, withgq < n, there is an O p—twisted
locally rectifiable current R on X so that

2LD(v) = dR.
Consequently, the cohomology class Wq of LD(v) in HY(X, Z F) Is a torsion class of order 2.

Proof of Corollary. Define v : R — R™ by ¥(t1,....tw) = (~f1,2, ..., ty) and let
i = voir. Then, by Proposition 3.7, LD(u) = — LD(v). Theresult now follows from Theorem 3.6.
For an alternate proof, see Theorem 4.10. ]

Next we study the case ¢ = 1 in more detail.

Remark 3.9. Let (’)Hlﬁ := Or ®z, R denote the orientation line bundle of F. The divisor Div(o) =
d (% %) of an atomic section o of (’)ﬂﬁ is called the orientation current of F' associated with o. Note
that Div(o) is an O p-twisted current whose cohomology class in H NX, 7 F)is VNVI.

To each collection v of n sections of a rank » bundle F there is an associated section o of OD}%

well defined as follows. Choose a local frame f for F and let A be the matrix defined by v = Af.
Then o := [f] ® det A.
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Proposition 3.10 (The case q = 1).  Let v be an atomic collection of n sections of a rank n
bundle F. Suppose that the associated section o of OII§ is also atomic. Then

LD(v) = Div(o)
as O p—twisted currents on X.

Proof. Choose a local frame f for F and define A by v = Af. Then the local expression for
the induced section V of p : Hom(NS(R"), p*F) — S(R") is the mapping ¢ : X x S(R") — R”
defined by ¥ (x, y) = yA(x). Let 6 denote the normalized solid angle kernel on R”. Now, by the
Change of Variables and Stokes’s Theorems,

_ det A(x)
/ v T |det A(x)] for each x ¢ Zero(det A) .

p7H)

This implies the proposition since Div(c) = [f] ® d (% %) and LD(v) = [f]1® 5pu(dy*0)).
]

Proof of Proposition 3.7. By (3.5.1) it suffices to show that

Div(gov) = sgndet(p) Div(®) on S (Bﬁ’”) (3.11)
and, if g is odd, that
¥, Div(vo¢) = sgndet(y) Div(®),  onS(R"), (3.12)

where ¥ : S(R™) — S(R™) is the diffeomorphism induced by 1. Now since gov = g oV, (3.11)
follows from Lemma 2.3. To prove (3.12) let u = v o and note that the pullback of the section v of
H by W is a section W*V of UHH = Hom(¥*NS@R™), p*F). Lety* : Hom(W*NSR™), p*F) —
Hom(N S(R™), p* F) be the bundle isomorphism defined by ¥r* (o) := o o 1. Then

n o= y* (VD).

Clearly, v, W*V and 1t are simultaneously atomic. Since Equation (3.12) is local on X we can
assume that F and X are oriented. Then [ and ¥ are sections of the oriented bundle H over the
oriented manifold S(R™). Furthermore, since g is odd the orientation induced on U*H by the
diffeomorphism W is the same as that induced by the bundle isomorphism /*. Equation (3.12) now
follows immediately by applying Lemma 2.3 to v, the Change of Variables theorem to ¥, and noting
that sgn det(DW) = sgn det(vr). L]

B. Mod 2 linear dependency currents
Since mod 2 currents can always be pushed forward by proper maps we can define the mod 2

linear dependency current for an even as well as an odd number of sections.

Definition 3.13. Suppose 1 < ¢ < n. The mod 2 linear dependency current, LD™42(y), of
an atomic collection v of m = n —¢ + 1 sections of ¥ — X is defined to be the current push forward
of the mod 2 divisor of the induced section v of H — P(R™),

LD™42(y) = 7, (Divm"“(ﬁ)) .
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Note. If g isoddorg = n the mod 2 linear dependency current, LD™42(y), is the mod 2 reduction
of the O p—twisted linear dependency current, LD(v).

The mod 2 analogs of Theorem 3.6 and Proposition 3.7 hold. In particular,
Theorem 3.14. For each atomic collection v of n — q + 1 sections of a real rank n bundle
F — X the linear dependency current LD™°% (v) is a d—closed mod 2 locally integrally flat current
of degree q on X whose support is contained in the linear dependency set of the collection of sections.

Furthermore, if u is another atomic collection of sections of F — X, then there is a mod 2 locally
rectifiable current R so that

LDW)™®2 — LD™®(u) = dR.

That is, the cohomology class of LD™% (v) in H1(X, Zy) is well defined independent of the choice
of sections.

Note. In the next section the cohomology class of LD™°42 (1) is shown to be we(F) € HI(X, Zy),
the gth Steifel-Whitney class of F.

C. The structure of linear dependency currents

The following result concerning the structure of the twisted lincar dependency current builds
on Proposition 2.8 of [12] and Theorem 2.8 above. Let ¢ be odd and let v be an atomic collection of
m =n — q + 1 sections of F — X. Suppose that the zero set, Z(V), of V is a smooth submanifold
of P(R™) x X. Let {Z;} denote the connected components of Z (V). Then, by Theorem 2.8, there
are integers n; € Z so that

Div(®) = Y n;[Z;] (3.15)
as Opgry ® m*OF—twisted currents on P(R™). By {12], Proposition 2.8, the subset
RK,,_1(v) = {xe€ X : ranky, = m—1}

of the linear dependency set of v is a locally rectifiable set. Let RK; := RK,,_1(v) N7 (Z;). If
nj # 0, then
Orrk; = Or®Ox |RKj

(wherever it makes sense) and, given an isomorphism of these two bundles, RK; defines an Of—
twisted current [R K ;] by integration. Arguing as in the proof of [12], Proposition 2.8, it follows that
7+[Z;] = [RK;]. Consequently we have the following:
Proposition 3.16. Let v be as above. Then

LD(v) = an [RK;]

as O p—twisted currents on X, where the integers n; are given by (3.15).

Next we examine the structure of the twisted and mod 2 linear dependency currents in the case
that m — 1 of the m sections are everywhere linearly independent.

Theorem 3.17. Letpi, ..., jtm be acollection of m = n — q + 1 sections of F — X. Suppose
that iy, ..., -1 are everywhere linearly independent. Choose a metric on F and let ,u,# denote
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the projection of ., onto the orthogonal complement of [11, . .., Wy,—1 in F. Then ,u,i is atomic if
and only if the induced section i of H — P(R™) is atomic. Furthermore, if q is odd, then

LD(x) = Div (ML) as O p—twisted currents on X , (3.17.1)
and, for any q,

LD™42(;) = Div™*¢? (,ui) as mod 2 currents on X . (3.17.2)

Proof. We present the proof in the twisted case. The mod 2 case follows similarly. The first step is
to choose local coordinates and frames and to relate the local coordinate expression for the induced
section /I of H — X x P(R™) to that of the section ;5.

First note that the linear dependency set of w1, ... [y is equal to the zero set Z (/L,J,;) of ,ufn-.
Fix a point xg € Z (;L,J,;) and let I/ be a sufficiently small open neighborhood of xg in X. Choosing
orientations for 77X and F over U we can regard LD(u) and Div(,u,i;) as currents on /. Now, since
W1, ..., m—1 are linearly independent, there is precisely one point X of the zero set Z(ji) of & in
X x P(R™) lying over each point x of Z(;:-) in X. Let W C m~' () be a sufficiently small open
neighborhood of £y in X x P(R™) which contains Z (%) N 7w~ ).

Choose the coordinate chart ¥ : R™™! — P(R™) defined by ¥ (s) = [s, 1] and the local
frame u for U — P(R™) over ¢ (R™!) defined by u(s) = (s, 1) € Up,1) € R™. Note that the
orientations induced on TP(R™) and U by v and u are compatible and that W C YRy x U
since 1,..., im—1 are linearly independent on I/. Also note that the orientations on U and F
induce a natural orientation on H over WV.

Choose a positively oriented local frame fi, ..., f, for F over U so that f; = u; for1 <i <
m —1and f; L Span{fi, ..., f—1} fori > m — 1. Define g; : U/ — Rby

n
Mm = Zaifi .
i=1

letad =(ai,...,au-1) and a” = Gy, ..., an)-

Then the local coordinate expression for w;! in terms of the local frame f,,, ..., fyisa” : U —
RY and the coordinate expression for 7 in terms of the frames u, f is (a”, s +a’) : U x R™* ™1 — R".
These two coordinate expressions can be related as follows. Let ¥ : I/ x R™™! — 1/ x R™~! be
the orientation preserving change of variables W(x, s) = (x, s +a’(x)) and let Id : R" 1 — R"~!
denote the identity map. Then

(a",s+d) = (a" x1d)oW.

By the Change of Variables Theorem and Lemma 3.18 below it follows that 7, (Div(ii)) = Div(u,ﬁ)
as required. O

The following elementary fact about divisors is included for the sake of completeness.

Lemma3.18. Let X beanoriented manifoldand f : X — R" asmoothmap. Let 1d : R" — R™
be the identity map and let t : X x R™ — X denote projection onto X. Then f is atomic if and
only if f x Id is atomic. Furthermore, if X x R™ is given the induced orientation, then

7 (Div(f x Id)) = Div(f).
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Proof. By induction we may assume that m = 1. Let ¢ denotc the coordinate on R. First,

1
l(f;"g{pﬂ € LL(X xR for p = |I| <n—1iff log|f] € L] (X) in case p = 0, and iff
mp € LIIOC(X) in case p > 0. This is because

R/\f1

- W / <s+1>f’H'
0

/ (el + 1 fhett
l{/<R

I 1
Of course, KTde’;)‘W 1s dominated by %. Consequently f x Id is atomic if and only if f is atomic.

Let 8, denote the normalized solid angle kernel on R”, and recall that Div( f) = d(f*6,) where
d is exterior differentiation of generalized forms. Let 35 denote the boundary of a current S. Then
dS = (=1)¥*13S, where k = deg S. Consequently w.d = —dn.. Therefore, it suffices to show
that
o ((f xI)* Ong1) = —f76,.

Let w, = Vol(S" 1y and A(f) = dfi A ... Adf,. Then

FxId)yO = D e U

Wp41 (tz—l—]fl )‘%‘ Wn4-1 ( +|f|2)%

Now, since the push forward of (f x 1d)*0,+ by 7 is equal to the integral of (f x Id)*8,1 over
the fibers of 7,

n*((fod)*9n+1) O f ( Iflndt,_, F*0,

Wy 1 K t2+|f|2)x_§_

/2
2w,

= - / cos" Vrdr f*0, = — f%6,,

Wn+1

as required. l

4, Stiefel-Whitney currents

The purpose of this section is to identify the cohomology class of a linear dependency current.
First we consider the mod 2 case, and recall from Example A.25 of the Appendix that Z, cohomology
can be computed using mod 2 integrally flat currents, .ﬁ’;‘f“(X ).

Theorem 4.1. Given an atomic collection v, .. ., vy, of m = n — g + 1 sections of a real rank
n vector bundle F over X the mod 2 linear dependency current LD™42(y) € ]-"f;‘é’d 2(X) represents
the q th Stiefel-Whitney class wy(F) € H1(X, 7).

Before proving this result, we note that the analog of a theorem of Bott for complex vector
bundles and Chern classes is valid for real vector bundles and Stiefel-Whitney classes. Let w(E) :=
14+wi(E)+...+w,(E) denote the total Stiefel-Whitney class of a rcal rank 7 bundle E over X. Let
U denote the universal line bundle on the projectivization P(E), and leta := wy(U) € H YP(E), Zy)
denote the first Stiefel-Whitney class of U on P(E). Letw : P(E) — X denote the natural projection,
and let 77, : HI1"Y(P(E), Zy) — H4(X, Z,) denote the induced map.
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Lemma 4.2.
- ((1+a)—1) = w(E)".

Proof. Choose an inner product for E. Let E denote the pullback of the bundle E to P(E), and
let U+ denote the orthogonal bundle to U C E. The product formula for Stiefel-Whitney classes
implies that

w(E) = w(U)w(Ul) (4.3)

so that
wU)~! = w(E)*lw(Ul) . (4.4)

Since the fibre dimension of P(E) ism — 1,
n*(wj (Ul)) =0 ifj<m—1. (4.5)

Therefore, 7, (w(UL)) = 7, (Wy—1(UL)). It remains to show that

e (wm~1 <UL>) = 1. (4.6)

First note that H°(X, Zy) = Z, for X connected. One can verify (4.6) by choosing a section « of
U+ and computing that 7, (Div(e)) # 0 mod 2. (Note that Div(x) represents the mod 2 Euler class
of U+ which is equal to the top Stiefel-Whitney class, wy,_1(U™).)

An alternate proof of (4.6) can be given as follows. Equations (4.4) and (4.5) imply that
T (Wn—1(U1)) = m(@™ ). Using the standard fact that if a is the nonzero element of H ' (P(R™), Z,),
then a™~! is the non—zero element of H™~L(P(R™), Z,), we conclude that 7, (a™ 1) = 1. ]

We only need Lemma 4.2 in the special case that E = R™ is trivial.

Corollary 4.7. Consider the tautological line bundle U on P(R™). Then
T @) =0 ifj#Em—1

and
T (i (U)™ 1=1.

Proof of Theorem 4.1. As in Section 3, let v : R™ — F denote the bundle map corresponding
to the sections vy, ..., v,. Let v : R™ — F denote the pullback of v to the projectivization
P(R™). Let v denote the restriction of v to the tautological line bundle U C R™. Then, considering
Div™42(3) e Fmod2(P(R™)) as a mod 2 current, the linear dependency current is defined to be the

loc
current push forward

loc

LD™2() = . (Div™? () € A2(x) .

Now, by Theorem 2.13, the mod 2 divisor Div™%? () represents the top Stiefel-Whitney class of
H := Hom(U, F) over P(R™). The standard formula for the Stiefel-Whitney classes of a tensor
product (see [16]) says that

wa(H) = w, (U ®F) = Y waj(F) (w1 (V) .
j=0
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So, by Corollary 4.7, . (w,(H)) = wWy—m+1{F). Therefore, LD™od2(3) represents wy (F) as
desired.

Now we consider the case that ¢ is odd and identify the cohomology class of the Or—twisted
current LD(v) € .ﬂoc(X) in H1(X, Z) where 7 = ZF = OF ®z, Z. Consider the short exact

triple 0 — 737 Z; — 0 and the induced long exact sequence
o HT X ) S B (X D) 3 (X D) DS HO X, ) > ... (48)
Define the gth Z—Stiefel—Whitney class Wq € H1(X, Z) to be the Bockstein of w1,
W, = B (wg1) - 4.9)

Recall from Example A.16 of the Appendix that Z—cohomology can be computed using O p—twisted
integrally flat currents, Fioc(X).

Theorem 4.10 (q odd).  Given an atomic collection v of m = n — q + 1 sections of a real
vector bundle F — X the linear dependency current LD(v) represents the qth Z—St1efel Whitney
class, Wq (F) e H1(X, Z) of the bundle F. Moreover, the mod 2 reduction of Wq equals wy, ie.,

p(Wq) = wy,. Hence, Sq := p o B maps wy—1 tow, forq odd.

Proof. A representative for Wq(F ) can be computed as follows. Choose an atomic collection
o= (1, ..., hms) of m+1 =m~— (g — 1) + 1 sections. By Theorem 4.1, the mod 2 lin-
ear dependency current LD™2(;) € F7%¢2(X) represents the (g — )th Stiefel—Whitney class

loc
wy—(F) € HI™ (X, Z,). Choose an O p—twisted current represcnmuve T e floc(X ) of the mod

2 current LD™92 (1), Then, by the definition of 8, the current 5 dT represents Wq(F ).

Suppose that the subcollection n = (41, . .., in) is atomic and that p satisfies two additional
assumptions described below. Then it is possible to choose T so that
1
—dT = LD(n) on X . 4.11)

Consequently LD(#n) represents Wq (F). The theorem now follows from Theorem 3.6. Also note
that since the mod 2 reduction of LD(7) is LD™°42(5), Theorem 4.1 implies that p(Wq) = wy.

The Op-twisted current 1" representing LDm°d2(,u) can be chosen as follows. First, if g = 1
define T to be the O p—twisted generalized function T := { L where o is the section of (’)R associated
to n (c.f. Remark 3.9). In this case (4.11) is s1mp1y a restatement of Proposition 3. 10 Second,
if g > 1is odd, T is defined as follows. Let i be the induced section of the rank »n bundle
H = Hom(NS@®R™), p*F) over SR™"). Embed R” < R™*! = R” @ R and let ¢ be
the coordinate on R. Set x := L € L (S@®™*)) and let p : SR™Y - PR™) and

|t loc
7 : P(R™!) — X denote the projection maps. Assume that the current Div(fZ) on S(R™*!) has
locally finite mass. Then Div(iz) is an odd locally rectifiable O r—twisted current on SR™) and so
x Div(ix) is a well defined even O p—twisted flat currenton S R, Let T .= 5 p* ( X Div(ii)) be the
corresponding Op(Rm)—twmted current on P(R™1). Since the mod 2 reduction of T is Div™d2(f)
its push forward 7 := . T is an Op—twisted current on X whose mod 2 reduction is LD™942(y).

Next we verify that Equation (4.11) holds for this choice of T. Suppose that the codimension
n — 1 Hausdorff measure of Zero(7) is zero. Then, since 7 = & |s (3> Lemma 4.12 below implies
that B
d(xDiv(@) = 2i.Div(H) onS (R"’“) ,



Stiefel-Whitney Currents 825

wherei : S(R™) — S(Rf”“) 1s the inclusion map. Finally, by (3.5.1), this equation pushes forward
to give Equation (4.11) on X. ]

Lemma 4.12. Letu : X x R — R” be atomic and suppose that Div(u) has locally finite mass.
Suppose that the functionv : X — R" defined by v(x) = u(x, 0) is atomic and that the codimension
n — 1 Hausdorff measure of Zero(v) in X is zero. Let t denote the coordinate on R and define
it X > XxRbyi(x) =(x,0). Then

d (ﬁ Div(u)) = 2i,Div(v) onX xR. @.12.1)

Proof. Let # denote the solid angle kernel on R”. First note that since i,d = — diy, Equa-
tion (4.12.1) is the exterior derivative of the degree n current equation

? t
d (|7| u*@) = o Div(u) + 2i. (v*6) onX xR.
To verify this equation we argue as follows. First, the equation holds on (X x R) ~ (Zero(v) x {0})
since it is true if 1 % O and if ¥ = 0 and x ¢ Zero(v), then d(l%i u*0) = 2[XTu*8 = 2i,.(v*9).
Finally, since the codimension n Hausdorff measure of Zero(v) in X x R is zero, the Federer Support
Theorem for flat currents implies that the equation holds on all of X x R. [

Remark 4.13 (Non—injectivity currents). Letm =1k E <tk F =nandsetg =n—m+1.
In this remark we study the non-injectivity current of a bundle map v : E — F. This is a degree ¢
current which is supported on the set of points of X over which the bundle map v fails to be injective.
The mod 2 non-injectivity current, D&92(v), is defined by replacing R™ by E in Definition 3.13.
The analog of Theorem 3.14 holds for D%)dz(v). Furthermore, the cohomology class of Dﬁ’dz(v)
in HY(X, Zy) is {w(F) w(E)_I}q, the degree ¢ part of w(F) w(E)~L.

If 4 is odd, the non-injectivity current, Dyy(v), is defined as in Definition 3.4. (Note that,
in the case that ¢ = n is odd, the current Dny(v) is simply the divisor of the induced section of
Hom(E, F) — X.) This current is an O ® Op—twisted current on X. The analogs of all the results
of Section 3A hold for Dny(v). Furthermore, the cohomology class of Dyy(v) in H(X, Zgger) is
B ({w(F) w(E)~'},_1), the Bockstein of the degree ¢ — 1 part of w(F) w(E) ™.

5. Obstruction currents

The Stiefel-Whitney classes were originally defined (see {22, 24]) as obstruction classes. The
gth obstruction class of a real rank n vector bundle F — X is a cohomology class, which is the
obstruction to the existence of a collection of n — ¢ + 1 linearly independent sections of F over
the g-skeleton of a cell decomposition of X. It is defined to be the cohomology class of a certain
obstruction g—cocycle which is associated to each suitable collection of 7 — g + 1 sections of F.
If this obstruction cocycle is defined for an atomic collection of sections, then, by Poincaré duality,
there is a canonical obstruction current defined on X as well. The aim of this section is to show
that this obstruction current is equal to the linear dependency current of this special collection of
sections.

We begin by recalling the definition of the obstruction cocycle as given by Steenrod [21]. Fix
g €{l,...,n}. Let V441 (F) — X be the bundle whose fibre over x € X is the Stiefel manifold
consisting of all (n — g + 1)-tuples of linearly independent vectors of F. Choose a smooth locally
finite simplicial decomposition K of X and let K’ be the first barycentric subdivision of K. Each
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barycentrically subdivided g—simplex, a4, of K is a simplicial subcomplex of K'. In fact, since it is
diffeomorphic to a g—ball, a? is a g—cell. If g isodd or ¢ = n, choose an orientation on each cell. The
collection of such (oriented) cells forms a cellular subdivision K, of K’. Since 7; (V, —g+1RM) =0

foralli < g — 1, there is a section 1 of V,,_,1(F) over the (g — 1)—skeleton Kg_l of K,.

Now
Z ifgisoddorg =n
n —
Tg—1 (V’HIH (R )) - { Zn ifgisevenandg < n .

Consequently there is no guarantee that 1 will extend to a section of V4 1.1 (F) over the g—skeleton
KZ. Steenrod defines a twisted (or mod 2) cellular g—cochain, w, (1), which is zero iff  can be
extended over KJ. Fix a point x, in each g—cell a? of K. The cochain wgy (1) assigns an element
wg(M(a?) of my_1(V,_g11(Fy,)) to each g—cell a?. Itis defined as follows. Choose a trivialization
of Fovera? andlet v : V,, _411(F) — Vy—g41(Fy,) be theinduced map. Then w?(n)(a?) is defined
to be the homotopy class of ¥ o n : da? — V,,_44+1(Fy,). This class is well defined independent of
the choice of trivialization of F. Steenrod shows that w, (1) is a cocycle whose cohomology class in
HY(X, g 1(Vy_g+1(F))) is well defined independent of the choice of section 7. By definition this
class is the gth obstruction class of F. In keeping with the notation of Section 4 the gth obstruction
class will be denoted by w, (F) when ¢ is even and by Wq (F) when q is odd.

In summary, if ¢ is odd or ¢ = n (resp. ¢ is even and ¢ < n) Steenrod associates a
7g—1(Vi—g41(F))—twisted cochain (resp. mod 2 cochain), w,(77), to each section 7 of the Stiefel

bundle V;, 411 (F) — K =1, On the other hand, in Section 3 we associated the O p—twisted current
LD(v) (resp. mod 2 current LD™*42 (1)) to a collection of n — g + 1 sections of the vector bundle
F — X. Our goal is to relate these two constructions. We begin by considering the case that g is
odd or g = n.

The case that g is odd or ¢ = n.

First note that there is a bundle isomorphism
¢ : 71 (Vag1 (F)) — Zp

defined, in terms of a generator [o'] of 741 (V,—g41(R")), as follows. (See [21] Section 25.6, for
a definition of the homotopy generator [0].) Fixx € X and let 5 : sl Vi—g+1(Fy) represent
an element of 7w, _1(V,—441(F))x. For each frame f of F; we obtain a map ¢ : V,—;41(Fy) —
Vi—g+1(R"). Define A € Zby [Yron] = Alo]inmy 1V, ¢+1(R") and let [ f] denote the orientation
class of the frame f in Op. Then ¢(n) is defined to be the class of ([ f1, A) in Zr. (Recall that Zg
is the space of orbits of the Zy—action p([f], A) = (—[f], —A) on Of x Z.)

Let N = dim X. Now there is a dual cellular decomposition K}, of K’ characterized by the fact
that to each g—cell a? of K, there is a unique (N — g)—cell, bN=4, of K}, so that the dual of each
face of a2 has bV 7 as a face. Choose an orientation on each cell of K. Note that the intersection
of a cell and its dual is the common centerpoint of both cells and that cells a? and »"~¢ which
are not dual to each other do not intersect. Therefore, the (¢ — 1)—cells of K, do not intersect the
(N — g)—cells of K.

Using the fact that 7;(V,—g+1(R")) = O fori < g — 1 we can construct smooth sections

V], ..., Vp of V. — X sothat foreach g € {1, ..., n} the linear dependency set of vy, ..., Vy—g1 is

a cellular subcomplex K;V*q (v) of K;\/—q. Notethatvy, ..., vs—g41 define asection  of V41 (F)
g—1

over K; .

Now the cohomology group H*(X, Z ) can be computed using the smooth OF @ Ox—twisted
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infinite integral dual cellular chain complex. The (N — g)—dimensional chains of this complex are
formal infinite combinations of the form )_ A bj.v_q where the A ; are O ® Ox—twisted integers

and the b" 7 are the oriented (N — g)—cells of Kp. Our intermediate goal is to associate to the
cocycle wy(n) (defined by the collection of sections vy, ..., Vy—g+1) an Or ® Ox-twisted integral
cellular (N — g)—cycle, wy—4(v), which represents Wq (F) e HI(X; 7 7). It is defined as follows.
First let a? and "~ be oriented dual cells and set {x} := a? N 5" ~9. Let [a, b] denote the local
section of Oy — b™ 7 induced by the decomposition T, X = Tya? ® T,b¥ 9. Then

wy—g) =Y A;b; 7 (5.1)
j

where the sum is taken over the cells b;v_q of the linear dependency subcomplex K ZV “(v) of
Vi, ..., Vn—g+1, and where A; is the O ® Ox-twisted integer

Aj= [a?, b;\]—q] ® @ (wq ) (af)) ]

That is, wy_4(v) is the Poincaré dual of w?(n).

Since an Oy-twisted smooth oriented cellular chain defines a locally rectifiable current, the
twisted cellular cycle wy _, (v) defines an O p—twisted locally integrally flat current on X, which we
also denote by wy_4(v). Now, by [14] Theorem 3.2, we can choose the sections vy, ..., Vy_g+1 SO
that the induced section v of H — P(R™) is atomic. Then we have the following result.

Theorem 5.2.  For the collection of sections vi, ..., Vy_q41 described above,
LD(v) = wy_4(v)

as Op-twisted locally integrally flat currents on X. Consequently, the obstruction class VT/q (F) €
H1(X, ZF) is the cohomology class of LD(v).

Proof. Letm = n — g + 1. By construction vy, ..., vy,—1 are linearly independent sections of
Fover X ~ K, N=4=1 et E™! denote the oriented span of vi, ..., Uy—1 over X ~ K, N=g-1
and let G1 denote the orthogonal complement of E™~! in F with respect to some metric on F.
Let v denote the orthogonal prOJectlon of vy, onto G? over X ~ K, N=g=1
V1, ..., Vm—1 SO that the section vm is atomic. Then we have the followmg:

. Now we can choose

Lemma 5.3.
wy—¢(V) = Div (vn#) over X ~ K;,V*q—l .

Proof of Lemma 5.3. To prove the lemma we need to calculate cach twisted integer A; of
Equation (5.1) in terms of the degree of a certain map between (¢ — 1)-spheres. This was done by
Halperin and Toledo [15] as follows. Since K év ~471 and K7 are disjoint, the bundle G? is defined
over the g—cell ajf. Choose a trivialization p : G¢ — R? of G7 over a?. This induces an orientation

on G4 — af. Let [ /] denote the induced orientation on F = E"~9 & G4 over a? Then

I ET

where n; is the degree of the induced map between oriented (g — 1)-spheres,

nj := Deg (povrf_q_l_l : aaj — S(Rq)) .



828 Reese Harvey and John Zweck

The lemma now follows from Theorem 2.8 and Remark 2.9. ]

Completion of the proof of Theorem 5.2. By Theorem 3.17 and Lemma 5.3

wy—¢(v) = LD(v) over X ~ K;V---q L

Let S := wy—4(v) — LD(v). Then S is a flat current of dimension N — g which is supported on the
N — g — 1 dimensional submanifold K év —a! 5o, by the Federer Support Theorem for flat currents,

[51, S = 0 on X, as required. J

The case that ¢ is even and q < n.

In the case that g is even and g < n the obstruction class, w, (F), is an element of H?(X, Z5).
Now the cohomology group H?(X, Z;) can be computed using the smooth infinite mod 2 dual cellular
chain complex. The (N — g)—dimensional chains of this complex are formal infinite combinations

of the form )" A; bév_q where A ; € Z; and the bj-v_q are the (unoriented) (N — g)—cells of Kj.

Just as in the case described above, we construct sections vy, ...V;—4+] of F and a mod 2

cellular (N — g)—cycle, wﬁ"_dqz(v) =) Aj ijmq, which is supported on the linear dependency set

of vy, ... v,—4+1 and which represents the obstruction class w, (F) € H?(X, Z). This cycle defines
a mod 2 locally integrally flat current in the obvious way. Arguing as in the proof of Theorem 5.2,
we have the following:

Theorem 5.4. For the collection of sections v1, ..., V,—q+1 described above,
mod 2 . mod 2
LD ) = Wy_g )

as mod 2 locally integrally flat currents on X. Consequently, the obstruction class w,(F) €
HY(X, 7Zy) is the cohomology class of LD™0d2(y).

Remark 5.5 (Obstructions to injective bundle maps). The results of this section can
be generalized to the case of vector bundle maps v : E — F wherem =tk E < rk F. Let
Hom* (E, F) — X denote the bundle of injective bundle maps from E to F. The Steenrod obstruc-
tion class of the bundle Hom* (E, F) — X is adegree ¢ = n — m + 1 cohomology class which is
the obstruction to the existence of an injective bundle map v : E — F over the g—skeleton of X.
Combining Remark 4.13 with the analogs of Theorems 5.2 and 5.4, we conclude that this class is
equal to

1. the twisted Euler class € of Hom(E, F) when g = n,
2. the degree g part of w(F) w(E)~! when g < n is even, and
3. the Bockstein of the degree g — 1 part of w(F) w(E y~! when q < nisodd.

6. Higher dependency currents

The aim of this section is to study the currents associated with higher dependencies, c.f. [12].
Let v be an ordered collection of m sections vq, ..., vy of a rank n bundle F — X. In Section 3
we studied the linear dependency current, LD(v), which is supported on the set of points x where
at least one of the vectors vi(x), ..., v, (x) depends linearly on the remaining ones. Fix an integer
£ with max{0, m —n} < £ < m. In this section we study the higher dependency current, LD, (v),
which is supported on the set where at least £ of the sections depends linearly on the remaining ones,
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i.e., on the set of points over which the induced bundle map v : R” — F has rank < m — £. The
higher dependency current LD, (v) has degree g := £(n — m + £), and so the dimension of LD, (v)
decreases as £ increases.

The current LD, (v) is defined as follows. Let 7 : G¢(R™) — X denote the trivial Grassmann
bundle of unoriented £~dimensional linear subspaces of the trivial bundle R” — X, andletU c R”
be the tautological rank £ bundle over G;(R™). The collection v is called {~dependency atomic if
the induced section V of the bundle H = Hom(U, 7*F) over G¢(R™) is atomic.

" The mod 2 higher dependency current, LD‘}‘"G1 2(v), is defined by
LDT2(y) = 7, Divi®2 (@)  onX. (6.1)

In this mod 2 case, orientation issues are irrelevant.

If m = n mod 2, it is possible to push forward the O -twisted current Div(D) by the projection
7. This is because there is a canonical isomorphism

~ | Og,emy @ n*OF if £is odd,
On = O if € i
Go (™) if € is even .

In this case, the higher dependency current, LD, (v), is defined by

LD;(v) = n,Div(D) onX. (6.2)
Note that 7
. an O — twisted current on X if £ is odd,
LD (v) is { acurrent on X if £ is even .

The following equivalent definition of LDy (v) is often useful (c.f. Remark 3.5). Let p :
@g (R™) — X be the Grassmann bundle of oriented ¢—dimensional linear subspaces of R™. Note
that the fibers @z (R™Y of 6@ (R™) are canonically oriented manifolds. Let U be the canonically
oriented tautological bundle over G ¢(R™), and let 7 denote the induced section of the bundle H=
Hom(U, p*F) over G¢(R™). Then, if m = n mod 2,

LD;(v) = —;—p* Div (V) . ‘ 6.3)

Proposition 6.4. Letv : R™ — F be as above and let  : R™ — R™ be a bundle isomorphism.
Then the collection of sections corresponding to the bundle map v oy : R" — F is also £—
dependency atomic. Furthermore, ifn = m mod 2, '

sgn det(y) LDy(v) if€ is odd,

LD(voy) = { LD, (v) if¢ iseven.

Note. The analogs of the main Theorems 3.6 and 3.14 for (mod 2) linear dependency currents also

hold for the (mod 2) higher dependency currents. This fact, together with Proposition 6.4, implics
the following corollary.

Corollary 6.5. Letn = m mod 2 and let £ be odd. Then there is a locally rectifiable O p—twisted
current T so-that

2LDy(v) = dT .
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Proof of Proposition 6.4. Lety = votyrandlet W : Gi([®R™) — G¢(R™)be the diffeomorphism
induced by . Arguing as in the proof of Proposition 3.7 it suffices to show that

W, (Div (1)) = sgn det(DY) Div(®)  on Ge (R™) , (6.6)

and that
6.7

sgn det if £ is odd,
sgn det(DV) = { lg W) if £iseven.

The proof of (6.6) is the same as that of Equation (3.12). Next we prove (6.7). Clearly, it suffices
to consider orthogonal linear maps ¥ : R™ — Rm Now there is a canonical orientation preserving
bundle isomorphism ¢ : Hom(U, U l) — TGg(]R’”) defined as follows. Fix P € Gg (R™) and
consider the canonical map ¢p : Hom(P, Pty < Gz (R™) which sends a linear map to its graph.
Let Id : Hom(P, P1) — TQ Hom(P, P1) be the canonical isomorphism. Then ¢p := Dyp o Id
defines ¢ pointwise. Let ¥ : Hom(P, PL) — Hom(y(P), y(P-)) be the map defined by W

@y pyoWopp. Now W (o) = ¥ ooy~ is a linear map and so sgn det(DW) = sgn det(W). The
result now follows by applying (3.3). ]

A. The mod 2 cohomology class of LD’2“°dz »)

The goal of this subsection is to identify the mod 2 cohomology class of the mod 2 higher
dependency current. Let w(F) = 1+ wi(F) + wa(F) + ... + w,(F) denote the total Stiefel-
Whitney class of F. The Shur polynomial, Ag) (w(F)) € H''(X, Zy), is the polynomial in w (F)
defined by

AO(F)) = det(wy—i+;(F)1=i,jzc - (6.8)

Theorem 6.9. Letv : R™ — F be as above and let g = £(n — m + £). Then the cohomology
class of the mod 2 higher dependency current LDrg“’dz(v) in HY(X,Z,) is the Shur polynomial

AY L w(F)).

Example 6.10. (a) Since AP (w(TRP*)) # 0, it is not possible to find a collection of six vector
fields on RP* so that at each point of RP* at least four of the six vectors are linearly independent.

(b) Since A(3)(w(TR]I”IO)) 0, for any collection of 10 vector fields on RP'O there is a point of
3

RP'9 50 that at least 3 of the vectors at that point depend linearly on the remaining ones.

Proof of Theorem 6.9. Letw : Go,(R™) — X. As in the proof of Theorem 4.1, it suffices to
show that
tawe(H) = A, (F)  inH (X, Zo) .

Now the standard formula for the Stiefel-Whitney class of a tensor product says that
wi(H) = wen (U@ F) = AP (wF) w@)™) .

(One way to see this is to apply Equation (A.26) of [12] to Problem 7C of [16].) Letk = m — .
Then, arguing as in the proof of Theorem 4.4 of [12], we see that

wn(H) = A w(F) 7, (w@h') .

The proof is completed by observing that wy (U 1y¢ is the generator of H*(G, R, 7)) = 2.
e
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Remark 6.11 (Mod 2 degeneracy currents). Letv : E™ — F" be a bundle map. Fix an
integer k withO < k < min{m, n} andlet £ = m—k. The mod 2 degeneracy current, Dz“(’dz(v), of the
bundle map v is defined as in Equation (6.1), with R™ replaced by E. Itisadegreeq = (m—k)(n—k)
current which is supported on the set of points over which the bundle map has rank < k. The
cohomology class of D42 (v) in HY(X, Zy) is given by A(m -0 (w(F) w(E)™1).

Remark 6.12 (Non-surjectivity currents). Next we specialize Remark 6.11 to the case that
m=1kE >1kF =nandk =n —1sothat g = m —n + 1. The mod 2 non-surjectivity
current, Dm°d2(v) = Dnmf‘%z(v), is supported on the set over which the bundle map v fails to be

surjective. The cohomology class of Dﬁgdz(v) in HY(X, Z) is given by qu) (w(F Yw(E )“1) =
AP (wEYwE™) = (w(E) w(F)~1),, the degree ¢ part of w(E) w(F)™,

If ¢ is odd, the non~surjectivity current, Dns(v) := D,—1(v), is an O ® Op-twisted current
defined as in Equation (6.2). Let v* : F* — E* be the adjoint map. Then, at least for generic maps,
Dns(v) = Dni(v*), where Dnp(v*) is the non-injectivity current of v* as defined in Remark 4.13.
So, by Remark 4.13, the cohomology class of Dyg(v) in H4(X, ZE@F) is B ({w(E) w(F)~ 1}q 1)
the Bockstein of the degree g — 1 = m — n part of w(E) w(F)~1.

B. The integer cohomology class of L.D;(v). The case n = m mod 2

The aim of this subsection is to identify the (twisted) integer cohomology class [LD;(v)] of the
higher dependency current LD, (v), which is defined whenever n = m mod 2. The torsion-free part
of [LDg(v)] is well known. If £ is even it is a certain Shur polynomial in the total Pontrjagin class
p(F) (see, for example, [12], Theorem 6.9) while if £ is odd it is zero, by Corollary 6.5 above. The
mod 2 reduction of [LD,(v)] is given in Theorem 6.9 above. We will prove that the (twisted) integer
class of LDy (v) is the sum of its torsion-free part and 2—torsion term, Tn(e ' +Z(W) defined below.
This result builds on work of Ronga [20] who showed that the integer class of LDg(v) is determined
by its mod 2 and rational reductions. Our contribution is to explicitly identify the 2—torsion term as
a certain polynomial in the Pontrjagin and twisted integral Stiefel-Whitney classes of F.

Throughout this subsection, 7. denotes the O F-twisted integers, 7:=0 r ®z, Z. Let pi(F) €
H* (X, Z)denote the ith integral Pontrjagin class of F and W2 +1(F)e H Zitl(x, Z) the (27 + 1)th
twisted integral Stiefel-Whitney class, defined by (4.9). Recall that ,o(Wz j+1) = w241, Note that,
since 2W2J+1 = 0, the subring of H*(X,7Z) & H*(X, Z) generated by p; (F) and W;4+1(F) is
commutative. Also note that the product of two elements of H*(X, Z) is an element of H (X, 7).
Let W j denote the formal square root of the jth Pontrjagin class, i.e. , Waj j = /P;- We make this

definition because w2 f is the mod 2 reduction of p; (see [16] Problem 15A). Of course, the formal
symbol Wo; ; has no cohomological meaning.

Definition 6.13. Let S; denote the symmetric group on £ elements. Define T € S; by 7(i) =
£+41—1i,and note that 72 = Id. Let R : S; — S; be the involution defined by R(o) = 1o 't.
Define an index set J C Sy by

J = {o €8 : R(r) =0 and, if £ is even, then ¢ (i) # i mod 2 for some i.}
Setr :=n — m + £ and note that £ = r mod 2. Then we define

T([) Z 1_[ Wr-{—z—a(l)

oedJ i=1
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Lemma 6.14. Suppose ¢ =r mod 2. Then
(1) T,(Z)(VNV) is a polynomial in the p; and V~sz+1.

(2) If¢ is odd (resp. even), then each term of T\ (W) is of odd (tesp. even) degree in the variables
Waj1. Therefore, T.Y (W (F)) is an element of HY(X, Z) (resp. H4(X, 7)), where q = £r.

(3) Each term of the polynomial T,(Z)(VV) has a factor of the form VT’Z j+1. Therefore, the class
Tr(g) (VT/(F )) is a torsion class of order 2.

In the case that £ is even set £ = 2£y and r = 2rg. The main result is the following:

Theorem 6.15. The(twisted) integer cohomology class of the higher dependency current LDy (v)
is

7.© (W(F)) in HY (X. i) when £ is odd,

[LD(v)] = o) OPE~ . .

A (p(F)) + T.(W(F)) in HY(X,Z) when £ is even .
Remark 6.16. For £ even (resp. £ O&d) let* : H¥(X,Z) — H*(X,R) (resp. * : H*(X, Z) -
H*(X,R)) denote the usual coefficient homomorphism, and let p* : H*(X,Z) — H*(X, Z) (resp.
p* 1 H¥(X,Z) — H*(X, 7)) denote mod 2 reduction. Then

. o if ¢ is odd,

(LD, )] = { A (p(F)) if £s even (6.16.1)
and

p* (LD ()] = [LD;%”“(v)] = AP W(F)) . (6.16.2)

These two formulae are well known (see [20]) and will be used to prove the more general result of
Theorem 6.15.

Example 6.17.

(1)If€ =2, thenr = 2rg = n — m + 2 and [LDy ()] = pry + Wy_ 1 Wy 1.

@QIf £ =r =3, then [LD3(W)] = p1Ws + poWy + W3 + W WsWs.

(3)If £ = r = 4, then [LD4(v)]

= P% —pip3+ P1W5W7 + p2 (VT’3W5 + VT’1W7) + p3W1W3 + (Wl Ws + W;) (VT@VTG + VT/52> .

Remark 6.18. The following equivalent definition of Tr(l)(ﬁ/) will be useful. Define an £ x £
matrix (a;;) by N
aj = Wryizj 1=i,j=£. (6.18.1)

Note that the matrix (a;;) is symmetric under reflection in the antidiagonal i + j = £ + 1, i,
Gp41-j, e+1-i = a;;. Let T denote the collection of subsets I of the index set {G, ) : 1=i,j<t}
which satisfy the following three properties:

1. Poreachi (resp. j)in{l,..., £} there there is exactly one elecment j (resp. i) of {1, ..., £}
so that (i, j) € 1.

2. The subset I is symmetric under reflection in the antidiagonal i + j = £+ 1,ie., (i, j) € I
iff(€+1—i,£+1—j)el, and
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3. If £ is even, then there is at least one element (i, j) € I for which i # j mod 2.

Then

rOW) = Y [T Wi (6.18.2)

Iel (,j)el
To see that Definition 6.13 and (6.18.2) agree, note that each o € 7 defines a subset /(o) of
{G,7) : 1 <i,j<L}byl(o):={0,0@)) : 1 <i < {}. Furthermore, the set associated with
R(o) is the reflection in the line i + j = £ + 1 of the subset associated with o.

Proof of Lemma 6.14. Let 0 € 7. Then, since R(c) = o, we have (i, j) € I(o) iff
(t(j), ©(D)) € I(o), where t(i) = £ + 1 —i. So, since a(jy¢) = aij,

T(Z) Z l_[ r+l o(i) l_[ W’Jri_”(i)’

ceJ ielU(o) ieA(o)

where U(c) = {i : i+0(@l) < £+ 1}and A(o) = {i : i+ 0@{) = £+ 1}. Note that
|A(6)| = £ mod 2. Conclusions (1, 2, and 3) now follow from the fact that if i € A(o), then
r4+i—o(@)=r—£+2i —1is odd. Conclusion 4 follows from the fact that |A(s)| = 0 in the
case that £ is odd, and from the definition of 7 in the case that £ is even. (]

Proof of Theorem 6.15. By naturality we can reduce to the case in which the bundle F — X is
the tautological rank n bundle U over a sufficiently high dimensional approximation, G, (R™), to the
classifying space G, (R*). Now, if N is large enough, the torsion subgroup of H7(G, ®RY), 2) is
a direct sum of cyclic groups of order 2 (see [2]). Furthermore, choosing N to be odd, O Gn(®Y) = =
Oy and so H*(G,(RM), Z) = Hi(G, RMY, Z). So, by the universal coefficient theorem, the
torsion subgroup of H9(G, (RY), Z) is also a direct sum of cyclic groups of order 2. Consequently,
elements of HY(G,(RY), Z) and H1(G, R, Z) are completely determined by their mod 2 and
real reductions. So, setting

0® . | T WEY if ¢ is odd,
T AL @) + TOWFE) ifLiseven,

it suffices to prove that

0Y) = 0 if £ is odd, 6.19)
ro AﬁgO)(p(F)) if £is even , '
and
p(20) = AL wEy, (620

that is, that Qﬁe) and [LD,(v)] have the same torsion-free part and mod 2 reduction.

Now (6.19) follows immediately from Lemma 6.14 (3). Let w(o) := H Wrti—o(@)- Then,

since the matrix a;; = wy;_; is symmetric under reflection in the ant1d1agona1

w(R(©@)) = wo). (6.21)

In the case that £ is odd, we verify (6.20) by observing that, by Definition 6.13, A (w(F)) —

P (Q([')) = Y w(o), which is zero, since, by (6.21), the sum is a sum of terms of the form
o

w(o) + w(R(a)) 2w(o) = 0.
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Finally, we verify (6.20) in the case that £ = 2{g is even. Let ¢ : S¢; — S be the injection
defined for j € {1,2, ..., 4o} by

Y@ -D:=2()-1 and  FME)) =2n(j).

The map ¥ can be interpreted as follows. Let (b;;) denote the £g x £o matrix b;; := pry4i—; and
let C(n) = {bj 5y : 1 =< j < £o} be the subset of entries of (b;;) defined by n € Sgz;. Then
Ciym) =1ai,yma : 1 <i < £} 1is the set of those entries of (a;;) obtained from C(n) by
replacing each element b; ;) of C(n) by the diagonal entries of the corresponding 2 x 2 submatrix

W2(ro+j—1(j)) 0

Watrg+j-n(j))
of the product of the elements of C(n) equals the product, w(y(n)), of the elements of C(yr(n)).

Summing over 1 € S¢, we conclude that

of the matrix (a;;). So, since p*(p;) = w2 ., the mod 2 reduction
J Pj 2]

(A pE) = Y w).
oY (Sy)

Now let IC := Sg ~ (¥(Sg,) U J). To verify (6.20) it suffices to show that
> w() = 0. (6.22)
oek

To prove (6.22) we study the index set K. Define g € S; by

BRj—1) = 2j and B2j = 2j-1 for j e {1,..., £},
and define P : S; — Sy by P(0) := BoB. The involution P can be interpreted as follows. First,
each entry a;; of the £ x £ matrix (a;;) has a pair P(a;;) defined as follows. Partition (a;;) nto
2 x 2 submatrices. Let ch Z ) be one such submatrix. Then P(a) = d and P(b) = c. Let C{o)
denote the set of entries of (a;;) defined by o € S;. Then C(P (o)) = C(0). The pairing involution
P is introduced because

¥ (Se,) = {0 €8 : P(6) =0 andi =0 (i)mod2 foralii} . (6.23)
Define
Kr={o€eK : R(o) # 0} and Kp={oceK : R(c) =0 and P(g) #0}.

We claim that K is the disjoint union K = g U Kp. To see this choose 0 € K ~ Kg. Then,
since 0 ¢ J,i = o (i) mod 2 for all i. Therefore, since o & ¥ (S¢,), Equation (6.23) implies that
P(0) # o, as required.

Note that since the pair of the reflection of an entry of (g;;) is the reflection of the pair of that
entry,

R(P(0)) = P(R(0)). (6.24)

Hence, R preserves the decomposition Sy = ¥(Sg,) U J U Kg U Kp. Now, since the involution

R : Kg — Kg has no fixed points, it follows that Y w(o) = 0, since it is the sum of terms of

o EICR
the form w{o) + w(R(¢)) = 2w(c) = 0. Finally, by (6.24), P : Kp — Kp is an involution with
no fixed points, and once again Y. w{o’) = 0. Hence, (6.22) holds, as desired. U

ocekp
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7. Applications

In this section we apply the general results of the previous sections to study singularities of pro-
jections and singularities of maps (c.f. [12]). The results of this section hold whenever the projections
and maps in question are atomic, by which we mean that the induced section of Hom(U, F) — G;(E)
is atomic. This hypothesis is assumed throughout. In particular, in the real analytic case we simply
require that the degeneracy subvarieties of the map have codimension greater than or equal to the
expected codimension in X, (see [12], Propostion 2.14).

A. Singularities of projections

Let j : X — RY be an immersion of a smooth m—manifold. Fix an integer n < N and let

P : RN — R” bealinear map. We study the singularities of the smooth projection P=Poj:X—

R”". Fix an integer k with 0 < k < min{m, n}. The kth mod 2 degeneracy current of the projection

P on X is defined to be Dm"dz(P) Dm‘)dz(d P) (cf. Remark 6.11). This current is a degree

= (m — k)(n — k) current which is supported on the set where the differential d P:TX » R"
has rank < k. By Remark 6.11,

[kaodz(P)] - Ag’:k) (u)(TX)_1> (” k)(w(TX)) in H (X, Zy) . (7.1)

If » = m mod 2, the kth degeneracy current of the projection P on X, Dy (P) := Dp(d ﬁ)
can also be defined [as in (6. 2)] Let (d P)* : R" — T*X denote the adjoint map. Then, at least for
generic P, Dy (P) = Dr((d P) ). Therefore, by Theorem 6.15,

TP W (T X)) in H? (X, Z), when n — k is odd,
Du(P)] = 1 "tksy) (n—=k) ({7 o - -
A (p(T*X)) + T, (W(T*X)) in HY(X,Z), whenn —k is even,

mo—ko

where 2(ng — ko) =n —k and 2(mg — ko) = m — k.

Example 7.2 (Tangential Stiefel-Whitney classes). Fix 1 < g < mandlet P : RY —
R™~9*! be linear. The mod 2 non-submersion current of the projection P on X is defined by
DmOdz(P) = Dm"dz(d P) on X. This is a degree ¢ cutrent which is supported on the subset of X

on which the map P : X — R™ 4% fails to be a submersion. By (7.1),
[DRP)] = w0 i HY(X,Zo) .

Furthermore, if ¢ is odd, then the non—submersion current, Dns(P), can also be defined and, by
Remark 6.12, 5 ~
Dns(P)] = Wo(TX)  inH?(X,Z) .

Example 7.3 (Normal Stiefel-Whitney classes). Fix1 <¢g < N —mandlet P : RN —
R™*4~! be linear. The mod 2 non-immersion current of the projection P on X is defined by
DUed2(p) = Dm°d2(d P) on X. This is a degree g current which is supported on the subset of X

on which the map P : X — R™"4! fajls to be a immersion. By (7.1),
[DE2P)| = wyVX) i HO (X, %) |

where NX is the normal bundle to X in RY. Furthermore, if ¢ is odd, then the non-immersion
current, Dn1(P), can also be defined and, by Remark 4.13,

[Dni(P)] = W,(NX) inH?(X,Z) .
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B. Singularities of maps

Let X and Y be smooth manifolds of dimensions m and n respectively, and let f : X — Y be
a smooth mapping. Let 0 < k < min{m, n}. The kth mod 2 degeneracy current of the map f is
defined to be D}{“(’dz( = D}C“Odz(d f). This is a degree ¢ = (m — k)(n — k) current supported on
the set where df : TX — T7Y has rank < k. By Remark 6.11,

Example 7.5 (Non—submersion currents). Suppose that m = dim X > dimY = » and let
g = m —n+ 1. Then, by Remark 6.12, the cohomology class of the mod 2 non—submetrsion current
DII2(f) 1= D42 (f) s

[pre2n] = {wan f (wan™)) - nE )

and, if g is odd,

Dxs()] = ﬂ({w(TX) f* (w(TY>_1)}degq_1> in HY (X, Z)

Example 7.6 (Non—-immersion currents). Suppose that m = dimX < dimY = n and let
g = n —m+ 1. Then, by Remark 4.13, the cohomology class of the mod 2 non—immersion current
D2 (f) =D (f) is

m—1
pE;n] = [Fuanwan™] o nHET)

and, if g is odd,

Dri(H] = ﬂ({f*w(TY)w(TX)_l}degq_l> in HY (X, 7) .

A. Appendix. Computing cohomology with currents

This appendix is included for two reasons; first for the sake of completeness, second for although
the approach taken here is both simple and natural (via standard sheaf theory) it does not appear in
the geometric measure theory literature.

Definition A.1. The complex
0-8->rP4 5%  SF oo
of sheaves is called an acyclic resolution of the sheaf S if

1. the complex is exact, and
2. each sheaf F? is acyclic, i.e., H/ (X, FP) =0for j=1,....

The basic result is that cohomology with coefficients in S can be computed from such a reso-
lution. That is,
{op eT(X,FP) : do =0}

HAX,S) = ar (x, 7r-Y)
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and
{(P € Fcpt(X’}.P) : d(p:O}
dTepe (X, FP-1)

A classical reference for this and other standard results from sheaf theory is Godement [8].

Hél;t(Xa S) =

In this paper the cases and coefficient sheaves of most interest are:

The integer case with coefficient sheaf Z, the sheaf of germs of locally constant integer valued
functions (see Corollary A.13).

The mod 2 case with coefficient sheaf 7 := Z / 27, (see Example A.25), and

The twisted integer case with coefficient sheaf 7 =7 ®z, Oy, where Oy is the orientation sheaf
of areal vector bundle V — X (see Example A.16).

Throughout this appendix X is a C* (paracompact) n—dimensional manifold. Let Orx or Ox
denote the orientation sheaf of X and let Zx := Z ®z, Ox and Ry := R ®z, Ox.

Example A.2 (Differential forms). Let& denote the sheaf of germs of C™ differential p—forms
with d taken to be exterior differentiation. Then
lpel?(X) : dp=0}

dér—1(X)
Each £7? is acyclic because £7 is fine (i.e., there exists a partition of unity). Also the sequence,
0—>R— & — ... > £" — 0is exact by the Poincaré lemma for exterior differentiation.

HP(X,R) =

Example A.3 (Currents). Let D'” denote the sheaf of germs of degree p currents (defined in
Section 2). Then
0R-D' D' 5. .. 5D"50

is an acyclic resolution of R and hence can be used to compute real cohomology H? (X, R). Note
that £P(X) C D'’ (X), i.e. each p-form, ¢, is a current of degree p, defined by () = fX @ A,
for all twisted n — p forms, .

The spaces Rf;c (X) ¢ D'P(X) of locally rectifiable currents on X, of degree p or dimension

n — p, are very natural for computing Z-cohomology. However they are not closed under exterior
differentiation. There are several ways to remedy this defect (see Examples A4, A.5 and A.8 below).

Examples of locally rectifiable currents, T C Rf;c (X)), can be constructed as follows. Choose
an oriented submanifold S of X, which has an orientable neighborhood in X, and fix an orientation
on the neighborhood. Then T(y) = [5¢ defines T € RE (X), where ¥ is an arbitrary Ox-
twisted n — p form on X with compact support and where ¥ denotes the corresponding (untwisted)
n — p-form on a neighborhood of S.

Example A.4 (Twisted Singular chains). Let C? ¢ R denote the subsheaf of germs of

loc
currents arising from integration of (twisted) forms over finite sums of simplicies with oriented neigh-
borhoods as discussed above. Then, using exterior differentiation or the usual boundary operator,
0—2Z—C—C!

>C = ...=(C"=>0

is an acyclic resolution of Z, and hence can be used to compute integer cohomology.

Example A.5 (Integral currents). The space I, (X) of (locally) integral currents of degree
pon X is defined tobe {T € RY (X) : dT € RP+1(X)}. Let 77 denote the sheaf of germs of

loc loc
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(locally) integral currents with ¢ taken to be exterior differentiation. Then
042> 5 ... 5T">0

is an acyclic resolution of Z, and hence can be used to compute integer cohomology.

Example A.6 (Ox-twisted currents). Let D, denote the sheaf of germs of k£ dimensional Ox-
twisted currents on X. Then 0 - Ry — D), — D;hl — ... — Dy — 0is an acyclic resolution

of HN%X, and hence, can be used to compute H? (X, @X) or real homology H (X, R) := H‘f;t(X, Iﬁx),
where p +k = n.

Example A.7 (Singular chains). Via integration of forms, each smooth singular k-chain deter-
mines a k-dimensional Ox-twisted current. Let C; C D), denote the subsheaf of the sheaf of germs
of twisted currents cotresponding to integration over singular chains. Then

0> Zy—Cyp—Cny—>...—>Co—0

is an acyclic resolution of ZX and hence can be used to compute H P(X ZX) and to compute

t(X ZX) It can be shown that this H ’ t(X ZX) computed from " agrees with the usual
homology Hy(X,Z) (k =n — p) of the complex of smooth singular chains. That is, homology is
just (compactly supported) cohomology with the coefficient sheaf Zx, the twisted integers.

Example A.8 (Integrally flat currents). This is one of the examples of central importance in
this paper and so will be treated in more detail. Let ]—'lf) (X) denote the space of locally integrally flat

degree p currents on X. We take as definition 10C(X )= IOC(X )+ deOC (X) i.e., all currents

that can be written as A + dB with A € Rloc (X) and B € RIOC (X) where RIOC(X ) denotes the
space of locally rectifiable degree p currents. In results where the degree of a locally integrally flat
current can be arbitrary, we use the less encumbered notation Fioc (U).

The spaces {Fioc(U) : U°P™ C X} form a presheaf of abelian groups. One can form the
associated sheaf Fioc of germs, and consider the natural map from F,.(U) to I'(U, Fioc). This map
is injective because the support axiom is satisfied.

Support axiom

Let F be a presheaf. If T € F(X) restricts to be zero in a neighborhood of each point of X,
then T = 0.

Note. For a general presheaf F this axiom is equivalent to the concept of support being well
defined. The support of T € F(X) is defined to be the complement of the set of points x € X such
that T | = 0 for some neighborhood U of x.

This map is surjective because the following axiom is satisfied.

Local to global axiom

Suppose T, € F(U,) is given, where {U,} is a locally finite open cover of X. Let Uyg =
Uy NUp. M Tppg = Ty ~-Ts |, , vanishes, then there exists a global T € F(X) such that

T, = T

[0ag

For a given presheaf, if both of these conditions/axioms are satisfied, then the presheaf is said to
be a sheaf. A sheaf is said to be soft if for each closed set C C X and each section of the sheaf on C
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there exists an extension to all of X. That is, for each section on a neighborhood of C there exists a
section on X which agrees with the given section on a (smaller) neighborhood of C. Soft sheaves are
always acyclic, for basically the same reason fine sheaves are acyclic. Namely, the decompositions
provided by a partition of unity exist (even though these may not arise from a partition of unity).

Theorem A.9. The presheaf {Fi,.(U)} of locally integrally flat currents is a sheaf and this sheaf
Floc 18 Soft.

Proof. Since each Fi,c(U) is a subset of D’'(U) and the support axiom is satisfied for the presheaf
D'(U), the support axiom is automatic for Fioe(U).

To prove the local to global property we first describe the proof for Ry (U). Given A, €
Rioc(Uy) with A, = Agon Uyg choose a partition of unity {x, } for {U, } with each x, acharacteristic
function of a Borel set. Then, since x,Aq 1is also a rectifiable current on U, (but vanishing near
dUy), we may consider x, Ay € Rioc(X) extended by zero to all of X. Set A = )" xgAg and note
that A |Uoz = Aqg.

The proof of the local to global property for Fio.(U) can be outlined as follows. For a more
complete proof, see [9], Lemma 3.1. Suppose that we are given T, = A, + dB, with Ay, B, €
Rioc(Uy) and Ty = Tg on Ugg, ie., Ay — Ag = d(Bg — Bg). Suppose we could set T = Y x4 T,
and verify that

XaTo = XaAa + XadBy = XoAw — (dXa) By + d(xaBa) - i (A.10)

More precisely we must show that x, Ay — dxoBe and xqo B, define locally rectifiable currents
satisfying Equation (A.10). This is not always true because (d xy)By and/or x,d B, may not be
defined. However, by Federer’s theory of slicing, we may choose a slight perturbation of x, so that
dxo By is a well-defined rectifiable current and so that y,d B, is a well-defined current with the
equation d(xq By) = (dxo)By + xod By satisfied.

The proof that Fio is soft is easier. First consider the analogous result for locally rectifiable
currents. Riqc 18 soft because given aclosed set C C X and A € Ryoc(U) where U is a neighborhood
of C we may choose x to be the characteristic function of V C U where V is an open neighborhood
of C and then set A = XA € Rioe(X) to be the desired extension. Similarly, givenT = A +dB €
Fioc(U) the current T= x A+ d(x B) provides the required extension. L]

Since Fioc is soft we have the following:

Corollary A.11. The sheaf Fi, is acyclic. In particular, for each locally finite open cover
U = {U,)} of X, the cohomology H' (U, Fio.) = 0. That is, given Spg € ]—“lﬁc(Ua,g) satisfying

Sep + Sgy + Sy =0 onUyg,
there exists S, € ]-'lﬁc(Ua) such that
Saﬂ = Sa — Sﬂ on Uozﬂ .

Theorem A.12.

0—>Z—>]-'1?)C——>.7-'ﬁ)c—>...—> {(’)C—>0

Is exact.

Proof. Exactness on the left is equivalent to 0 — Z — R
RO

Toc*

0 1 e ; —
e —> Ry, being exact since ]-'I%C =

This follows immediately from the standard fact that 0 - R — D’ O 5 plis exact, i.c.,
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locally a d—closed generalized function is represented by a constant function. Let U be an open ball
inR”*. Suppose T = A+dB where A € Rff)c(U), Be Rp—l(U), and p > 1. If T is d—losed, then

loc

dA = 0. Using the standard cone construction (and Federer’s theory) there exists Ae Rf;;l(U )

such that d4 = A on U. Thercfore, d(A + B) = T where A + B e R{.' (W) c 72 '), [
Corollary A.13.
TeFl (X) :dT =0
HP(X, Z) —_ { IOC( 31 } .
dFige (X

That is, the integrally flat currents can be used to compute Z cohomology.

Lemma A.14. Given T € Foo(X) and a neighborhood U of sptT there exist A, B € Rioc(X)
satisfyingT = A+ dB and with sptA C U,sptB C U.

Remark. Inparticular, Lemma A.14 implies thatif T € Fp(X), thenthereexist A, B € Repi(X)
with T = A + dB. Consequently, Federer’s definition of Fepe(X) (where Fept(X) = Repe(X) +
dRepi(X)) agrees with the definition given in this appendix (where Fep (X) is the space of compactly
supported sections of Fioc).

Federer defines Fioc(X) to be the space of those currents on X which locally agree with a
current of the type A + dB where A, B € Repi(X). As a consequence of the discussion above, one
can easily show that the definition of Fj,c(X) given in this appendix (namely Rioc(X) + dRioc (X))
agrees with the definition in [5].

Proof of Lemma. Choose 4, B € Rioe{X) with T = A+ dB. On X ~ spt7, both B and
dB = —A are locally rectifiable. By Federer’s theory of slicing, there exists a neighborhood
V of sptT with V ¢ U such that on X ~ spt T, the slice (dx)B € Rige(X ~ sptT) exists
and d(xB) = (dx)B + xdB on X ~ sptT. Here x denotes the characteristic function of V.
Consquently,

T=A+dB=xA+ xdB=xA—-(dx)B+d(xB),

where x A — (dy)B and d(x B) are locally rectifiable on X with supportin U. ]

Example A.15 (Integrally flat O x-twisted currents). This cxample is almost identical to
Example A.8. Let R}f’c (X) denote the space of locally rectifiable Oy -twisted currents of dimension
k, and let F, ,ioc = ’R}COC X)+d R}co" (X) denote the space of locally integrally flat Oy -twisted currents
of dimension k. Then

0= Zyx — F - F% = ... > F* >0

is an acyclic resolution of 7 x. Hence, the complex {F, loc 4} can be used to compute H? (X, Z x),
or integer homology Hy (X, Z) = Hc%t(X, Zx), where p + k = n.

Example A.16 (Integrally flat Oy—twisted currents). Lct V — X be a real bundle with

~

orientation sheaf Oy and let Zy = Z ®z, Ov. Let .ﬁﬁc (X) denote the space of degree p locally
integrally flat Oy~twisted currents on X. Then

~ ~ ~ ~
02y > F. > Fl.— ...~ -0

loc

is an acyclic resolution of Zv. Hence, the complex {.7-'lp d} can be used to compute H? (X, iv).

oc’
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Example A.17 (Mod q integrally flat currents). Cohomology with Z, coefficients can be
computed using mod g currents.

Definition A.18. The space F, mOdq(X ) of mod ¢ locally integrally flat currents on X is defined
to be the quotient 100(X ) / q IOC(X)

To avoid an excess of subscripts and superscripts we always drop the superscript p for the
degree and the subscript & for the dimension when describing mod g currents.

Remark Federer takes the quotient of F; loc (X) by the closure of g F; (X ) in the flat topology on

Floc P (X) in order to prove compactness theorems for mod g currents. For our purposes — conmputing
cohomology — this closure is an unnecessary complication. In addition, Fred Almgren (private
communication) has proven that g F; 1 - (X) is already closed in ]-'lp (X).

Theorem A.19. The presheaf {J”-‘lrgco 9(U)) is a sheaf and this sheaf j:1 7 js soft.
Proof. First we must verify the support axiom. Suppose T € .7-"1 dg (X) is given (and represented
by T € Fioc(X)). Further suppose T |Ua_ 0 for cach «, i.e., there exists Sy € Fioc{Uy) such that
T an = ¢S, foreacha. Now ¢S, = gSg on Uyg implies Sy = Sg on Uyg. Since {Fioc(U)} satisfies
the local to global axiom, there exists S € Fioc(X) such that § |Ua= Sq. Consequently T = ¢S on
X sothat T = 0.

Second we must verify the local to global axiom for {.ﬁlggdq (U)}. Suppose T, € ]:]rgf a4 Uy)
are given with Ty = T g on Uyg. Choosing representatives 7y € Foc(Uy) for T, the equation
Ty = T,g on U,g says that there exists Sug € Fioc(Ung) such that T, — Tg = gSup on Uyg. The
cocycle condition for Sug is satisfied since it is satisfied for g Sys. Recall that H YU, Fioe) = 0.

This implies that there exists Sy € Floc(Uy) such that S, — Sg = Ss. Consequently,
T =Ty —qSy € Floc(X)

is well defined independent of & and provides the global representation of a class T € .ﬁr::dq(X )
with T [U =T, for each «.

Finally, we must show that the sheaf ]-"mo 9 is soft. Suppose T € F™4(U) is given (repre-

loc

sented by T € Fioc(U)) and U is an open nelghborhood of a closed set C. Since Fiq is soft, there
exists § € Fioc(X) suchthat § |,= T |,, for some neighborhood V C U of C. Now § € .ﬁ’:qu(X )
and S = T on the neighborhood V of C. ]

Proposition A.20. GivenT ¢ ,ﬁOOdq(X) and a neighborhood U of A := sptT there exists a
representative T € Fipc.(X) of T with sptT C U.

Proof. LetT € Fio.(X) denote an arbitrary representative of 7. Restricted to X ~ A, T ‘ A=

qS for some S € Froc(X ~ A). Since Fiyc 1s soft there exists a global section § € Fj.(X) which
agrees with Sona neighborhood of the closed set X ~ U. Now T — ¢S € Fioc(X) is another
representative of 7 and T — ¢S vanishes on a neighborhood of X ~ U. L]

Note that the sheaf Z; is a subsheaf of ]-'lrgg 4 when the degree is zero (i.e., when dimension is

n).
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Lemma A.21. Suppose T € ]:lrgf Y9(U) is of degree zero on the open unit ball U. IfdT = 0,
then T is represented by a constant integer valued function.

Proof. The equation dT = 0 means that dT = ¢S with S € ]-'ILC(U) and T € fl%c(U) a

representative for T. The current ¢S and hence S is d—closed. Therefore, there exists R & J’-'I%C(U )

satisfying dR = § (because this is true for locally rectifiable currents). Now T — gR € ]-”I%C(U )
also represents T and is d—closed. Therefore, T — g R is a constant integer valued function. L]
This proves that 0 — Z, — ﬁrgf’izgo 4 .ﬁrgfizgl is exact.

Lemma A.22. Letp > 1. GivenT ¢ ]—'lrgg igg »(U) on the unit ball U satisfying dT = 0 there

exists S & Fraoge ,_(U) withd S =T.

Proof. There exist T € F7 (U) and § € FET' (U) such that dT = ¢S. Thus, dS = 0. Now
S = A+ dB where A, B € Rioc(U). Thus, dA = 0. Since degree A = p + 1 > 1 there exists
R € RF (U) such that A = dR. Therefore, S = dB for somc B € RF (U). Consequently

loc loc 53
T=T-¢gqB¢ .ﬁ';c(U ) is another representative of T with dT = 0. Finally solve dS = T on U
with S € Fpp (U). O]

In summary, the mod ¢ currents .ﬂrgqu(X) may be used to compute cohomology with Z,
coefficients.

Theorem A.23. - d i
p [Teﬁrél:,dggp(X) : dT:o]
H (X, Zq) = mod g
d fioc,deg p~1 (X)

Exampie A.24 (Mod q integrally flat O x—twisted currents). This example is almostidenti-
calto Example A.17. Let 7.9, ,X) = FI(X) [ qF°°(X) e the space of mod g locally integrally

flat Oy -twisted currents on X and let 'Zq = Ox ®z, Zg. Then the complex {]:i?gd g (X), d} canbe

used to compute HP (X, Zq), or Hi(X, Zg) = Hg;l(X, %q) where p + k = n.

Example A.25 (The mod 2 integrally flat case). In this example we wish to compute Z
cohomology H?(X, Z,). This can be done in several equivalent ways. First, restating Theorem A.23
inthecaseq = 2, HP(X, Z;) can be computed from the complex ]—"ﬂ‘é’d 2(X) = Fre(X) / 2F5 (X)
of mod 2 locally integrally flat currents on X.

Next suppose that V is a real bundle with orientation sheaf Oy and let ]?féc(X ) denote the
degree p locally integrally flat Oy—twisted currents on X.

Lemma A.26. N N
FhoX) [ 270 (X) = F(X) [ 2F5(X)

Therefore, HP (X, 7) can also be computed using the complex of mod 2 locally integrally flat
Qv —twisted currents.

Proof of Lemma A.26. First we define a mapping ¢ : f]ﬁc(X ) > FPAX) [ 2FF (X). Let

loc

€ f{;c (X). Choose alocally finite open cover {U,} of X and fix ordcred frames e, for V over U,.
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For each pair (U, ey) let T, € ]:lf)C(Ua) be defined by T = [e4] ® T, on Uy. Note that T, = £Tp
on U N Up. Define Spg € Froc(Ux N Up) by

S .= 0 ifTy=TgonU,NUpg,
=) T, ifTy=~TgonU,NUs.

Then
Ty — Tp = 284 onU, NUg. (A2T)

LetT, € f'ggw(Ua) be the mod 2 class of T,. Then, by Equation (A.27), T, = T_ﬁ on U, N Usg.
Since the presheaf {F 5 OdZ(U )} satisfies the Local to Global Axiom (see Theorem A.19), there is
a well-defined element o(T) € F°42(X) so that o(T) | 0= T,. Note that ¢(T) is well defined

loc
independent of the choices of locally finite open cover {U,} and frames e, for V over U,.

In summary, we have defined a map ¢ X) — lOC(X) / 2 IOC(X) Now, since

1oc
(2T) |, = 2T, = 0, the induced map @ : Fip (X) / 270 .(X) — FL.(X) [ 27 (X) is well
defined. Fmally, to show that ¢ is an isomorphism, we can use the same procedure to construct an
inverse for @. ]
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