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Introduction.

Roughly speaking residue theorems in geometry are results which associate topo-
logical invariants to the singularities of geometric objects. The discovery and use of
such theorems has a history dating back at least to Riemann. A classical example is
Hopf’s theorem relating the singularities of vector fields to the Euler characteristic.

A somewhat different topic in modern geometry is Chern-Weil Theory. This
associates to a smooth bundle with connection a canonical family of differential
forms which represent characteristic classes of the bundle. The forms are written
explicitly as universal polynomials in curvature. Furthermore, for two distinct con-
nections w, w’ on a bundle, the difference of the characteristic forms can be written
as a coboundary p(2) — p(Q') = dT where T = T(w,w’) is also canonically ex-
pressed in terms of the connections. These transgression forms 7' lead to important
secondary invariants (cf. [CS], [ChS]).

Recently the authors developed a generalized Chern-Weil Theory for singular
connections [HLs] where characteristic forms are replaced by characteristic currents
written in terms of curvature and the singularities of some given geometric object.
In this paper we shall use our theory to systematically deduce a wide variety of
geometric residue theorems. Our formulas refine the classical ones in several ways.
To begin they are derived canonically at the level of differential forms and currents.
For example, for a mapping a between bundles with connection there are formulas

p(2) — X(a) = dT

where: p(€2) is a canonical characteristic form as above, X(«) is a current defined
purely in terms of the singularities of o, and T is a canonical transgression form
(with L{, .-coefficients). This enables us to define secondary invariants for certain
connections and singularities.

Furthermore, our theory generates canonical smooth families
p(2) — p(Qs) = dTs for 0 <s <oo
where T,, = 0 and where one has convergence
T, =T everywhere in L],

as s — 0. In particular the families of smooth characteristic forms p(€2s) converge
to the singular current, i.e.,

p(Q2s) — X(a)

as s — 0. In certain “approximation modes” p(€s) will be supported in the s-
tubular neighborhood of ¥(«). The virtue of the explicit nature of these formulas
was seen in [HLy] where the procedure gave simple explicit formulas for the Thom
class of a bundle with connection. In fact it gave families interpolating between the
pull-back of the Euler (or top Chern) form and the current given by zero-section of
the bundle.

The emphasis in this paper will be as much on the general method as on the
detailed structure of various formulas. The authors hope to provide the reader



with the techniques for explicitly relating singularities of maps, sections of bundles
etc. to characteristic forms in the manner above whenever the need arises. How-
ever, we shall also derive here a series of such explicit formulas in a broad range
of fields. These will include: Thom-Porteous formulas at the level of forms and
currents, formulas of Poincaré-Lelong type between Chern/Pontjagin forms and
linear dependency currents of families of cross-sections of a bundle, residue the-
orems relating degeneracies of maps between manifolds and characteristic forms,
residue theorems for singularities of CR-structures, new invariants for pairs of com-
plex structures, invariants for pairs of plane fields, higher self-intersection formulas
for tangent plane fields, higher order contact currents for pairs of foliations and
relations to characteristic forms. In a subsequent paper we shall similarly establish
various determinental formulas and, in particular, explicit Poincaré-Lelong equa-
tions for Shubert cells on Grassmann manifolds.

The authors want to thank Bill Fulton for introducing them to the methods of
modern enumerative geometry so beautifully presented in his book [Fu]. They are
also indebted to John Zweck for many useful comments on early versions of this
manuscript.

A notational convention: Throughout this paper X will denote a manifold which
is oriented unless it is stated otherwise.

§1. Divisors and Atomicity.

In this section we review briefly the theory of atomic sections and divisors intro-
duced in [HS]. This material enhances the range and applicability of the subsequent
results, but it is not necessary for understanding their proofs. The reader could
skip this section and simply replace “atomicity” everywhere by “non-degenerate
vanishing”.

Let f: U — RP? be a C"*°-map where U C R" is an open set.

Definition 1.1. The map f is atomic if

% dyI 1
! <|y|m> € Lioc

for all I = (iy,...,1p) such that [I| = Xig < p.

Let p : R? — {0} — SP~! denote radial projection onto the unit sphere, and
define

(1.2) 0 = L (dvolgs)




where ¢, = vol(SP™1). The coefficients of this form are integrable in bounded
neighborhoods of 0, and © satisfies the current equation

d® = [0] in RP.

Note that if f : U — RP is atomic, then f*© € L: on U.

loc

Definition 1.3. Let f: U — RP be atomic. Then the divisor of f is the current
of degree p (and dimension n — p) on U given by taking the exterior derivative of
the potential d(f*©), i.e.,

Div(f) = d(f*6).

This current has the following properties.

(1.4) dDiv(f) = 0
(1.5) suppDiv(f) € {o € U : f(x) = 0} £ Z({)
(1.6) If 0 is a regular value of f, then Div(f) = [Z(f)]

where [Z(f)] is the current given by integration over the manifold Z(f). The first
two properties are obvious. The last is straightforward to verify. Note that the
definition of [Z(f)] involves a choice of orientation on Z(f).

Theorem 1.7. ([HS]) Let f(z) = g(z)f(¢(x)) where ¢ : U — U is a diffeomor-
phism and g : U — GL,(R) is a smooth map. Then f is atomic if and only if f is
atomic. Furthermore, if det(g) > 0 on U and ¢ is orientation preserving, then

$. Div(f) = Div(f).

As an immediate corollary the concepts of atomicity and divisor extend to sec-
tions of a vector bundle.

Definition 1.8. Let £ — X be a smooth vector bundle over an n-manifold X.
A smooth section p € I'(E) is said to be atomic if each point z € X has a
neighborhood with local coordinates and a local trivialization of E with respect to
which p is an atomic RP-valued function.

If F and X are oriented, and if y € I'(E) is atomic, then Div(u) is a well defined
current of degree p (and dimension n — p) on X, called the divisor of p.

Remark 1.9. Note that Div(u) is well-defined in the non-orientable case provided
that the first Stiefel-Whitney classes satisfy

wl(E) = wl(X)

in H'(X; Z5). This condition guarantees that we can choose local trivializations of
E over a coordinate covering so that the changes of trivialization g, and the Jaco-
bian matrices of the changes of local coordinates ¢qp satisfy det(gqap)-det(¢ag) > 0.
(See [Z].)

In [HS] effective criteria are established which guarantee atomicity.
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Theorem 1.10. ([HS]) Let f : U — RP be real analytic. If dim Z(f) < n — p,
then f is atomic.

Theorem 1.11. ([HS]) Suppose f : U — RP satisfies:
(1) There are constants ¢ > 0, N > 0 such that

1F @)l 2 edist(z, Z(f)",

(2) The Minkowski dimension of Z(f) is <n —p+ 1.

Then f is atomic.

It is also proved in [HS] that if f is atomic, its divisor is integrally flat. Hence
one has the following “regularity”.

Theorem 1.12. ([HS]) Let f : U — RP? be atomic. If the mass of Div(f) is locally
finite, then Div(f) is locally rectifiable.



§2. Degeneracy currents.

In this section we introduce the notion of the k** degeneracy current of a bundle
map. This is a current associated to the drop in rank of the map to rank < k.

For the definitions we must fix some notation. Let £ — X and F' — X be
smooth vector bundles over an oriented manifold X, where E and F' are either
both complex or both real, and let

m = rank ' and n = rankF.
Fix an integer k with 0 < &k < min{m,n} and set
r = m-—k.
Let
(2.1) m:G(F) — X
be the smooth bundle whose fibre at © € X is the set of all r-dimensional linear
subspaces of E, (the fibre of E at z). Over G, (E) there is a tautological vector
bundle U of rankr whose fibre at P € G,.(E) consists of all vectors v € P. There
is a natural bundle embedding
(2.2) UcCrn*E
and if we introduce a metric in F, this gives a natural splitting
(2.3) TE=2Uo U™
Suppose now that we are given a smooth bundle map

a:FE — F.

Then this lifts to a mapping 7*« : 7*E — 7*F over G,.(F), and composing with j
gives a map

(2.4) a o gy U—7"F.

Definition 2.5. The bundle map « is said to be k-atomic if & is an atomic section
of the bundle Hom(U, 7*F) = U* @ n*F over G,.(E).

Definition 2.6. For a bundle map a which is k-atomic, we define its k*? degen-
eracy current on X to be

D () = m, Div(Q)
where 7, denotes the push-forward of currents by 7 : G,.(F) — X.
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Note that when E and F are real bundles, Div(&), and therefore Dy (), only
make sense when w1 (U* @ m*F) = w1 (G, (F)) (cf. 1.9). This condition holds when
m=n =k (mod 2) (See Appendix A, A.6 - A.10).

The codimension of Div(&) is rn (or 2rn in the complex case), and the fibre
dimension of G, (FE) is rk (or 2rk respectively). Hence, we have

codimD = r(n—k) = (m—k)(n—k)
in the real case, and
codimDy = 2(m —k)(n — k)

in the complex case.

Lemma 2.7. For any k-atomic section «, one has

supp Dy (o) C {z € X :ranka, < k}

Proof. If z € supp Dy (), then there exist a subspace U C E, of dimension r such

that oy ‘U: 0. Hence, ranka, Sm—r =k 0O

Note that if rank o, = k, then there is exactly one subspace of dimension r
(namely ker ;) on which o, = 0. That is, above each point of X where rank o = k,
there is exactly one point in the zero set Z(&) of &.

Proposition 2.8. Suppose & vanishes non-degenerately. Then

RK (o) ¥ {z € X :ranka, = k!

is a locally rectifiable set, and
Dy (o) = [REKk()]

i.e., D () is the current given by integration over this set.

Proof. By hypothesis we know that Z(&) is a smooth proper submanifold of
G,(F), and that Div(&) = [Z(&)]. Therefore, Dy (o) = m[Z(&)], i.e., Dg () is the
d-closed locally rectifiable current given by the push-forward of the manifold Z(&).
This current has dimension N = dim X —(m—k)(n—k) (N = dim X -2(m—k)(n—k)
in the complex case). The Federer-Sard Theorem [Fe] implies that the set of critical
values of the map w ‘ Z(a) from Z(&) to X, has Hausdorff N-dimensional measure

zero. Hence m,[Z(&)] = p[R] where R is the set of regular values and p is an integer.
It remains to show that

(2.9) R C RKy(w),
since, as noted above,
m:2%a&) = {ue Z(a):m(U) € RKi(a)} — RKj(c)
is one to one. To see (2.9), we observe that if rank o, = k — p, then
{UCE,:rankU = r and U Ckera,} = 7 *(z)N Z(&)
is a submanifold of G,.(FE,) diffeomorphic to the Grassmannian of r-planes in (r+p)-

space. Thus, the preimage under 7 2(4) of each point z with ranka, < k is a

smooth submanifold of positive dimension. [

8



It is appropriate here to point out that bundle maps are generically k-atomic,
in fact they generically satisfy the hypothesis of Proposition 2.8. Recall that a
smooth cross-section of a bundle is said to vanish non-degenerately if its graph
is transversal to the zero-section. The following Propsition is a minor modification
of the standard Thom Transversality Theorem [GG].

Proposition 2.10. Suppose X is compact with (possibly empty) boundary. Then
the set of smooth bundle maps « for which & vanishes non-degenerately is open and
dense in the C'-topology. Consequently, for any manifold X the set of such « is
residual (i.e., contains the intersection of a countable family of open dense subsets.)

Proof. Openness is clear. To prove density we fix a section « and a point zg € X.
Choose trivializations of F and F' in a neighborhood U of xy. Then we have a
family of sections of Hom(E, F) over U given by

aL:aU+L

for L € Hom(E,,, Fy,). This gives a family of sections &, of Hom(U, 7*F) over

U 7Y U). We think of this as a map of manifolds

(2.11) U x V — Hom(U,7*F) |5

(u, L) — &, (u)

where V' = Hom(E,,, F,,,). This map (2.11) is actually a submersion. To see this
note first that m o d(u) = u, and so the image of T,U x {0} C T(U,L)(ﬁ x V)
is a transversal to the fibre of 7 at all points. However, the map {u} x V —
Hom(U, 7*F), is a surjective linear map at each u (which sends L to “L ‘U”). This
shows that (2.11) is a submersion.

Using a partition of unity and standard constructions one can globalize to a
submersion

(2.12) G, (E) x W - Hom(U, 7 F)
where W is a finite-dimensional vector space, where

def N
Wy = W ‘GT(E)X{w} = Qu
for a section a,, € I'(Hom(E, F')), and where ag = a. (Here W will be a direct
sum of V’s as above.) Since ¥ is a submersion, it is transversal to the zero-section
of Hom(U, 7*F). By a standard argument using Sard’s Theorem for families (cf.
[HL;]) we conclude that U,, is transversal to the zero section of Hom(U, 7*F') for
almost allw e W. [0

In general k-atomicity is much weaker than requiring & to vanish non-degenerately.
One useful criterion for k-atomicity is the following.



Lemma 2.13. Let a be a real analytic bundle map. If the set Z (&) C G, (F) has
codimension = (m — k)n, then « is k-atomic.

Proof. This is an immediate application of Theorem 1.10 above. [
Proposition 2.14. Suppose « is real analytic, and satisfies the condition that

codim RK},_ ),
(codim RKy,_yp

(m = k)(n -k +p),
2(m — k)(n — k+p) in the complex case),

v v

for all p, 0 < p < k. Then « is k-atomic.

Proof. Ifrank a, = k—p, then dimker a;, = r+p and 7~ 1(z)NZ (&) is a Grassman-
nian of r-dimensional subspaces of (r + p)-space. This is a manifold of dimension
rp (2rp in the complex case). It follows that

dim{ﬂ_l(RKk_p) NZ(&)} = dim(RKg—p) +1p

for each p. Let d = dimX. Then the condition of 2.13 will be satisfied if
dim(RKy_p) +rp =< d — (m — k)(n — k) for all p, i.e., if codim(RKy_p,) = (m —
k)Y(n — k) +rp = (m — k)(n — k + p) for all p (with appropriate changes in the
complex case). O

We now address the problem of real bundles. If £ and F' are real, then there
will be two cases of interest for our discussion. In neither case is E or F' assumed
to be orientable.

2.15. Real Bundles; Case I. Here we assume that m, n and k are all even
integers. In this case Hom(U, 7*F’) is canonically oriented even when U and F' are
not. Furthermore the fibre of 7, which is the Grassmannian G, (R™) of unoriented
r-planes in R™ (r = m — k), is also oriented. See Corollary A.6 and Corollary A.8
in Appendix A for proofs.

2.16. Real Bundles; Case II. Here we assume that m, n and k are all odd inte-
gers. In this case neither Hom(U, 7*F') nor G, (F) are oriented, but they have the
same first Stiefel-Whitney class. (See Corollary A.6 and Corollary A.8 in Appen-
dix A.) Consequently, Div(@) is defined. The fibre G,.(R™) of 7 is also not oriented,
so one must be careful when integrating over the fibre. (See Proposition A.11 and
it’s proof.)

In the remaining cases a direct analysis shows that either wy (G, (F)) # wi (Hom(U, 7*F)),
and so Div(&) is not defined as a current, or the fibre integral of the Euler form
X(Hom(U, n*F)) is zero, and so results of the type obtained in §5 are uninteresting.
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63. Poincaré-Lelong families.

In this section we briefly recall a basic result of [HL2| which provides the first
step in all of our subsequent constructions. Let V' — X be a smooth complex vector
bundle of rank m with a complex connection D and a metric < -,- > (which is in
general unrelated to the connection), and let g be an atomic section of V.

From this data we introduce a family of connections BS on V which become
singular as s N\, 0 precisely along the zeros of p. Taking the determinant of the

curvature ﬁs of D gives a family of smooth 2m-forms which converge as s — 0
to Div(p). Moreover, the transgression forms for this family also converge and
provide a canonical and functorial coboundary between ¢, (RY) and Div(p), where
RV = D? is the curvature of the given connection.

To begin the process we fix an approximation mode by choosing a function
x € C*([0,00]) with x(0) = 0, x(o0) = 1, and x’ = 0. We then define the family
of connections D 4 by setting

<V, >
|l

(3.1) BSV = Dv —xs Du

on sections v € I'(V), where xs = x(|u|?/s?). This is a smooth family of smooth
connections on F' for all s > 0. Let

(3.2) R, = (D,)?
denote the curvature of ﬁs, and consider the family of forms

(3.3) Ts 4f det (ﬁﬁ{,) = cm(ﬁs).

Note that 7oo = ¢ (RY) is the top Chern form of the given connection. For all
s > 0 there is a transgression form

(3.4) o, = (%)mfdet (Bt; ﬁt> dt

S

where

d ~
det(A; B) = 7 det(B +tA) ‘t:O = tr(BA)

where B is the transposed matrix of cofactors of B, and where Bt = (d/ dt)Bt.
These (2m — 1)-forms o, have the property that

(3.5) doy = cpm(RY) — 74.
Our main result is the following.
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Theorem 3.6. ([HL;]) Let p be an atomic section of the bundle V' with connection

D as above. Then the limit ¢ = lir% os exists in the space of forms on X with
S—r

Li .(X)-coefficients. This limit is independent of choice of approximation mode

and satisfies the current equation

(3.7) cm(RY) — Div(p) = do.

1
loc

(3.8) Ts — Div(p) = dps

In particular, the family of L; -forms ps def o satisfies the equation

and has the property that

(3.9) limp, = 0 and lim ps = o
§— 00

s—0

in Llloc.

Equation (3.7) generalizes the classical Poincaré-Lelong formula for line bundles

and for this reason we call 7, the Poincaré-Lelong family. This family provides

canonical smoothings of the divisor Div(u). If x has the property that x(t) =1 for
all t 2 1, then 7, has the additional property that

supp(7s) € {z € X = |[pall = s}

for all s > 0.
There is a companion result when V' is a real oriented bundle of rank 2m with
an orthogonal connection D, and an atomic section p. We fix any x as above and

introduce a smooth family of orthogonal connections defined on a section v € T'(V)
by

<V, u>
[

< Dv,pu >

(3.10) le/ = Dv —xs ME
1

D+ xs

where xs = x(|p|?/s?) as above. Let ﬁs = (Bs)z, and consider the family of
closed 2m-forms

(3.11) 7R 9 py (—Aﬁﬁs)

2

where Pf(A) denotes the Pfaffian of a skew-symmetric matrix A. We also define
transgression forms

(3.12) i (;—;)m/Pf(Bt; Tit)dt
where p
Pf(A; B) = EPf(B+tA) o -

These forms satisfy the equation
do® = x(RY) - 1R for s >0

s S

where x(R") = Pf (—5=R") is the Chern-Euler form of the connection D.
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Theorem 3.13. ([HL;]) Let 1 be an atomic section of the oriented bundle V' with

orthogonal connection D as above. Then the limit o® = lin% oR exists in L (X)
5—

and is independent of the choice of approximation mode. It satisfies the current
equation

(3.14) X(RY) = Div(p) = do®.

1
loc

R

In particular, the Li -forms p® = o® — oR satisfy

(3.15) ™R —Div(p) = dp?

on X and have the property that

(3.16) limp® = 0 and lim pf = o®
s—0 §—00

in LL (X).

We will call 7R the Euler family associated to D, p and x.

The results above enhance the fundamental work of of [Ch] and [ChB], [ChB,]
where the potentials o and o were introduced in the special case of the tautalogical
section over the total space of V. In this universal case our family 7, (and TR)
provide families of canonical Thom forms for s > 0 which converge to the zero
section as s — 0. See Appendix C for simple explicit formulas for 7y, os, o, TR,

oR and o® taken from [HLs).

s )
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§4. Thom-Porteous families (complex case).

In this section we generalize the results of §3 to arbitrary degeneracy currents.
Let us fix smooth complex vector bundles £ — X and F — X equipped with
connections D¥ and D and with hermitian metrics (not necessarily related to the
connections). We suppose that rank(E) = m and rank(F') = n and we assume that
X 1is oriented.

In terms of the given connections we shall derive characteristic forms which are
cohomologous to the degeneracy currents (cf. [T][P][M1][R]). To do this we must
introduce the Shur polynomials. Suppose

§ =1+&+86+--

is a differential form on X where each £ is homogeneous of degree 2k. Then for
non-negative integers a and b we define the Shur polynomial in ¢ by

(4.1) AP (&) = det(€aivj) L<i<h

1<5<b

ie., A(gb) (€) is the homogeneous form given by the determinant of the b x b matrix
whose (i, )™ entry is £a—i+j- These polynomials satisfy the fundamental identity
(cf. [Fu, pg. 264])

(42) APE) = (D7 (E
where ¢! is defined by the relation & - £~ = 1, and also the identity
(4.3) AP(E) = (—1)*AP(©)

where £ 1 — & + & — &3+ -+
Consider now the total Chern form of the connection D given by

c(RY) = det I+ £R") = 1+ (RY)+ -+ ca(RY)
where R = (DF)2. The form c¢(RP) is defined similarly, and there is the inverse
form ¢(RP)~! determined by ¢(RF)c(RF)~! = 1. The Thom-Porteous form of
type (a,b) is then defined to be the form
AP{e(RT)e(RP) 71
We consider now a smooth bundle map

a:F —F

and we fix an approximation mode y as in §3. Let k be an integer with 0 < k <
min{m,n} and set N = 2(m — k)(n — k). Then we have the following.

14



Theorem 4.4. Suppose that « is k-atomic. Then there exist a canonical smooth
family of smooth N-forms TPy and a smooth family of L . (N —1)-forms Ss on X,
for 0 < s < oo, such that

(4.5) TPy — D () = dSs
for all s, and
lim S, = 0
s—0

in Li . Furthermore, the transgression form S = Sy, is independent of the choice

of approximation mode x and satisfies the current equation

(4.6) AR (R e(RP) ™1} — Dy (@) = dS.

Proof. Counsider the (atomic) section & of the bundle H &f Hom(U, 7*F') intro-
duced in §2. The metrics and connections on £ and F' induce a natural metric and
connection on H. Thus, using x, we can define a Poincaré-Lelong family of smooth
2(m — k)n-forms 75 and canonical L] -forms ps associated to &. They satisfy the
equation

(4.7) Ts — Div(&) = dps
for all 0 < s £ co. Applying 7, to (4.7) gives the equation

(4.8) P, — Dy(a) = dS,

where TP, def 7«Ts (called the Thom-Porteous family) and S; def TePs are the

smooth and L] . forms respectively obtained by integration over the fibre of the

smooth bundle 7 : G,.(E) — X. From 3.6 we know that o = p., satisfies the
equation

(4.9) ey (RE) — Div(a) = do

on G,.(E), where M = (m — k)n. Therefore, applying 7, to (4.9) gives the formula
(4.10) meen(RT) — Dy (o) = dS

on X, where S = 7, poo = Ts0.

It remains to compute m.cpr (RT). To begin we recall from Appendix A that the
Shur polynomials are exactly what is needed to compute the top Chern form of a
tensor product connection such as that on H = U* @ n*F. The formula is

(4.11) e (RE) = AR in*c(RF) - ¢(RY)71}.
We now recall the splitting
(4.12) ™E = U U™

15



There are two connections on 7*E: the induced one 7*D¥, and the direct sum

connection DY @ DV induced from 7* DE by projection onto the factors in (4.12).
Taking the canonical convex family of connections joining these two and using the
standard transgression formula [HLs, 1.1.19] gives an equation of smooth forms

C(RU)C(RUJ_) = m*c(RF) +dn
on G, (F). This can be rewritten as
¢(RY)™ = 7*¢(RE)™t - ¢(RV") +dy
where 7’ = c(RY)~tn*c(REF)~11. Plugging this into (4.9) gives the formula
(4.13) er(RE) = Alm=k) {7r* (C(RF)C(RE)*)C(RUL)} +dy

for a smooth form 7" on G, (E).
We now observe that c(RUL) is of the form

¢(RV) = 14+ (RV )+ -+ ci(RV).
Furthermore, the fibre dimension of 7 is 2(m — k)k, and so m, has the property that

m{ (T )Y} = P(matho)

for smooth forms ¢ on X and ¢ on G,.(E), where 9 is the homogeneous component
of 1 of degree 2(m — k)k. Consequently, applying 7, to (4.13) gives

(4.14) meen (RE) = AU L e(RF)e(RP) Y, (cx(RUT)™9) 4 dS’

where S" = 7,0 is a smooth form on X. To see this observe that the only (m — k)-
fold product of Chern classes of U+ which has degree 2(m—k)k is cx(U)™*. Hence
all other terms in the determinant can be dropped when integrating over the fibre.
Now m..cp (RUL )™~k is a closed 0-form, i.e., a constant. This constant is determined
by the topological class which is computed in Proposition B.1 of Appendix B. We
prove there that

T (e (UH)™F) = 1.

Hence, we have that

meen(RT) = A (R )e(RP) 1) +dS'.

Replacing S by S5 — <1j”rs> S’ and TP, by TP, — (lis) dS' in equation (4.8) now

gives the result. [
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Remark 4.15 The adjoint problem. Let o : E — F be as above and consider
the adjoint mapping
o B — F*

of the dual bundles. If a* is k-atomic, the degeneracy current Dy (a*) is defined
and Theorem 4.4 applies. In this case equation (4.6) becomes

(4.16) APTR(REY(RET) ™1 = Dy (o) = dS.

We note from the Shur relations (4.2) and (4.3) and the fact that ¢(E*) = ¢(F) =
1-— Cl(E) + CQ(E) EEEE that

AnZHeBT)R™) ™Y = (D) ALTHRP)e(R) ™Y = AT (RN e(rP) 7

n

where d = (m — k)(n — k). Hence the left hand sides of (4.6) and (4.16) coincide.
Furthermore one can show that

supp Dy, (a*) = supp Dy (@),
and that for generic maps
(4.17) D (a®) = Dg(a).
One conjectures that (4.17) holds for general k-atomic bundle maps.
Remark 4.18. Holomorphic Case. In the special case where X, F, F' and
a are all holomorphic and where the D¥ and D are canonical hermitian connec-
tions, equation (4.7) and therefore also its push-forward (4.8) can be written as
00-equations, that is, the right hand sides can be replaced by a 90T where T is a

current of bidegree ¢,q for appropriate g. Consequently in this case Theorem 4.4
has 00-refinement.
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§5. Thom-Porteous families (real case).

In this section we shall establish the analogue of Theorem 4.2 for morphisms
a . E — F of real vector bundles. To state the result in its proper generality we
need some preliminary discussion.

Throughout this section X will be an oriented manifold and ¥ — X and F' — X
will be smooth, real vector bundles furnished with orthogonal connections D¥ and
DY respectively. We assume rank E = m and rank F' = n and we fix an integer k
with 0 < k < min{m,n}. We do not assume that E and F' are orientable. There
are two cases of interest.

Case I. The integers m = 2mg, n = 2ng, and k = 2kg are all even.

Case II. The integers m = 2mgy+ 1, n = 2ng + 1 and k& = 2ky + 1 are all odd.

To state the theorem we need to consider the Shur polynomials of Pontrjagin
forms. Suppose

n=1+m+n+---

is a differential form on X where each 7y is homogeneous of degree 4k. Then for a,
b = 0 we define

A0 - .
(5'1) AaJ (’r’) det ((na—rl-])) 1§i§b.
1<5<b
Associated to the connection D¥" is the total Pontrjagin form
p(RY) =1+ p1(R") + -+ + puy (RY),

where p(A) = det (I + ﬁAz). The form p(R¥) is given similarly, and we de-
fine the Thom-Porteous form of type (a,b) in the Pontrjagin classes to be the
homogeneous form N
APH{p(RT)p(R®) 71}
We now consider a smooth bundle map
a: B — F,

and we fix an approximation mode x as in §3.

Theorem 5.2. Let E, F and k be as above (either Case I or Case II), and suppose
that « is k-atomic. Let N = (m — k)(n — k) = 4(mg — ko)(no — ko). Then there
exists a canonical smooth family of smooth N-forms Py, s > 0, and a smooth
family of L. (N — 1)-forms Ss on X, for 0 < s < oo such that

loc

(5.3) Py — D () = dSs
for all s, and
limS; = 0
s—0

in L} .. Furthermore, the transgression form S = Sy, is independent of approxima-

tion mode and satisfies the equation

(5.4) AR (RE)p(RE) ™1 — Dy (@) = dS

no—ko

of currents on X.
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Proof. Let 7 : G, (E) — X be the fibre bundle whose fibre at x is the Grassman-
nian of unoriented r-planes in F,, where

r=m—k = 2(mg— ko) = 2rp.
Let U — G,.(E) be the tautological r-plane bundle, and let & be the section of
H = Hom(U,7*F) 2 U*®F
defined as in (2.4). By assumption & is atomic. At this point our discussion breaks
into the two cases above.

We begin with Case 1. Here both the bundle Hom(U, 7*F') and the maninfold
G, (E) are oriented. Using the approximation mode we can define the Euler family
of smooth forms 7R and the L} -forms pR associated to & as in Theorem 3.11.
They satisfy the equation
(5.5) ™R —Div(a) = dp?
on G, (F) for all 0 < s < co. Applying 7, to (5.5) gives the equation

(5.6) T, — Dp(e) = dS,

where TP, dof 7.7 (called the Thom-Porteous family) and S, def TP are
smooth and L}

L . forms respectively on X. From 3.11 we know that o® = pR
satisfies the equation

(5.7) x(R?) - Div(a) = do®

on G.(FE) where H = Hom(U,n*F), and where x(R¥) = Pf (-5 R¥) is the
Chern-Euler class of H. Applying 7, in (5.7) gives the equation

(5.8) T X (RT) — Dy () = dS
on X, where S = m,0.

It remains to compute T, x(R¥). To begin we recall from Theorem A.17 in
Appendix A the formula

H A (mo—Fk * F Uy—1
(5.9) x(RH) = Almo=kol{z*p(RF) - p(RV)™}.
Transgressing between the pullback connection and its projection onto the splitting
™E = U U+

gives the equation
(5.10) p(RO)Pp(RV") = m*p(RP) + dn
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which can be rewritten as
1
(5.11) p(RY)™Y = wp(R®)™'p(R") +dn.

Plugging this into (5.9) gives the formula
(5.12)  x(B7) = Ao Lo (p(R)p(RE) T ) p(RY") } + d”

of smooth forms on G,(F). Arguing exactly as in the proof of Theorem 4.2, we
now see that

(513)  mx(RY) = AU (p(ROP(RE) " (g (RY 7o ) + d”

no—ko

where S’ = m,n” is a smooth form on X.

The term m,pg, (RUL)mO_kO is a d-closed 0-form, i.e., a constant. In Proposition
B.5 of Appendix B it is proved that

(5.14) TP, (UH)™0 7R = 1,

and so this constant is 1. Replacing S5 by S5 — 148-5 S" and TP, by TP, —
equation (5.6) now completes the proof for Case I.

The argument for Case II is highly analogous. The main difference comes from
the fact that while X is oriented, G, (F) is not because the fibre of 7 is not ori-
entable. Consequently, when passing through the proof, one must keep in mind
the following points. Let O denote the orientation bundle for the manifold G, (E).
Tensoring the exterior powers of the cotangent bundle of G, (FE) by the real line

bundle O yields bundles whose sections are called twisted differential forms.

S Il 3
1_|_SdS in

A. Currents of dimension k on the d dimensional manifold G, (F) include
twisted forms of degree d — k which can be allowed to have L{. . coefficients.

B. Twisted forms with L _ coefficients can be integrated over the fibre and

this corresponds to current push forward =,.
C. x(RY) is a twisted form on G,.(E).

The main calculational difference in the argument is that equation (5.9) must be
replaced by

(5.15) X(BT) = (—1)terbrex (RY)A[=r) {x*p(RT) - p(R) 7'}
which is proved in Theorem A.20 in Appendix A, and (5.14) is replaced by
(5.16) T X(U)pmo (UH)™ 7R} = 1,
which is proved in Proposition B.11 of Appendix B. [

The formulas which appear in Theorem 5.2 were computed at the cohomology
level by R. MacPherson in his Harvard University Thesis in 1970 (cf. [M1][M2]).
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Remark 5.17 The adjoint problem. Let o : E — F be as above and consider
the adjoint mapping

o i B — F*
of the dual bundles. If a* is k-atomic, the degeneracy current Dy (a*) is defined
and Theorem 5.2 applies. In this case equation (5.4) becomes

(5.18) Almo=ko) £ REVH(RF) =1} — Dy (o) = dS.

mo—ko

From (4.2) we see that

A (no—k — ‘N (mo—k _
Aok (RPP(RT) Y = (~)!AT P {p(RF)p(RF) )
where d = (mg — ko)(no — ko). It can be shown that supp D (a*) = supp Dy («)
and that for generic maps

(5.19) Dy (o) = (—1)%Dy ().
One conjectures that (5.19) holds for general k-atomic bundle maps.

Remark 5.20. A version of Theorem 5.2 holds for any pair of bundles £ and F'
whenever k = 0, provided that E* ® F = Hom(F, F') is oriented or, more generally,
that wy (E* ® F) = w1 (X). In this version the characteristic form in equation (5.4)
is just the Euler form of x(E* ® F') and Dy («) is just the divisor of o considered
as a section of Hom(FE, F'). This result is merely an instance of the general results
discussed in §3.
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§6. Characteristic forms and the degeneracies of k-frame fields.

Among the classical theorems in topology are those which relate the charac-
teristic classes of a bundle to the singularities of fields of k-frames in the bundle.
We shall derive such formulas, at the level of forms and currents, as direct conse-
quences of the general theory. The results generalize the classical Chern formula
¢n(F) = Div(a) 4+ dT and our families (cf. §2) to all Chern and Pontryagin classes.

Let F — X be a smooth complex vector bundle of rank n with connection D¥
over an oriented manifold X, and consider a set of k + 1 cross-sections «q, ..., ar €
['(F) where k < n. This is equivalent to a bundle map

a:QkH—)F

from the trivial bundle CF*! given by setting ay(to, ..., 1) = Lt;ai(x) for x € X.
We shall say that this frame field («p, ..., ) has a good dependency locus if
the map « is k-atomic. In this case we can define the linear dependency current

(6.1) LD(ap,-..,ar) = Dy ().

Theorem 6.2. Let I' — X be a complex vector bundle with connection over an
oriented manifold, and suppose that ag,...,qa € T'(F) are k + 1 smooth sections

with a good dependency locus. Then there exists an Llloc—form S on X such that

(6.3) cn_r(RY) = LD(ao,...,ar) +dS

where n = rank(F). Furthermore, there exist smooth families of smooth forms TP
and L -forms Ss, 0 < s < oo, with TPy, = ¢;,_(RY) and Sy, = S, such that

(6.4) P, = LD(a,...,ar) + dSs

1
loc”

and lim S, =0 in L
s—0

Proof. We endow the trivialized bundle Qk+1 over X with the canonical metric

and flat connection. We introduce on F' a smooth hermitian metric (not necessarily

related to D), and we choose an approximation mode x. In terms of this data,

Theorem 4.4 provides the families TP, and S for the current Dy (). Formula (4.6)
translates directly into (6.3) above. [

Note. In algebraic geometry these linear dependency classes are used to define the
Chern classes in the Chow ring of a smooth variety (cf. [Fu]).

Theorem 6.2 gives a direct proof of the basic fact that if ay,...,a are lin-
early dependent on a small set, i.e., one of dimension < n — k, and if they vanish
algebraically as in Theorem 1.11 (1), then [c,_x] = 0 in H>("~F)(X).
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Theorem 6.2 can be generalized to higher dependencies. Fix integers £ > 0 and
k with 0 < k < rank(F'), and consider k + £ smooth cross-sections sy, ..., Qg4s €
['(F). They give rise to bundle map

a:Qk+e—>F

as above. We say that the frame field a = (a, . . ., ag4+¢) has a good /-dependency
locus if « is k-atomic. In this case we define the /~-dependency current

(65) ]L]Dg (a) = ]D)k (a)

which measures in a rigorous way the set of points z where at least £ of the vectors
a1(x), ..., arre(x) become linearly dependent on the remaining ones.

Theorem 6.6. Let F' be as above and suppose a = (ay, . . ., a4¢) are k-+£ sections
of F with a good {-dependency locus. Then there is an L -form S on X such that

(6.7) detoxe (cnr—itj (RT)) = LD¢(cx) + dS.

Furthermore there exist families TP, and Sy, 0 < s < oo, with properties analogous
to those in Theorem 6.2.

Proof. One applies Theorem 4.4 as in the proof above. [

Of course one retrieves Theorem 6.2 from 6.6 as the special case where / = 1.
At the other extreme we can take & = 0. Note that LD,(aq,...,ap) measures
the simultaneous vanishing of £ generic sections of F'. Here we get the predictable
formula

(6.8) cn(RF)Y = LDy(au, ..., o) + dS.

There are corresponding theorems in the real case. Let ' — X be a smooth
real vector bundle of rankn with orthogonal connection D¥. Consider smooth
cross-sections aq, ...,k € I'(F) where 0 £ k£ < n and £ is even. We say that
a = (ay,...,ase) has a good /-dependency locus if the bundle map

a:ﬂk+£—>F

given by ag(t1,...,tk+e) = Xtia;(x) is k-atomic. In this case we define the /-
dependency current
L]Dg(a) = ]D)k(a)

Since £ = 2/, is even, there are two cases to consider:

Case I. n=2ny and k =2k
Case IL. n=2ng+1 and k=2ky+1

for integers ng, kg = 0. In Case II we assume F' to be orientable.
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Theorem 6.9. Let F' and a be as above (either Case I or Case II) and suppose
that o has a good ¢-dependency locus. Then there is an Li -form S on X such
that

(6.10) det ey x o (Pro—ko—i+j (RY)) = LDy(cx) + dS.

Furthermore there exist families IPs and S, 0 < s < oo, with properties analogous
to those in Theorem 6.2.

Proof. Introduce the canonical flat orthogonal connection on the trivialized bundle
RF and apply Theorem 5.2. [

Setting £y = 1 gives the following analogue of the formula in Theorem 6.2:
(611) Prno—ko (RF) = L]D)Q (011, Ceey O!k_|_2) + ds

where k = 2k or 2ky+ 1 depending on which of the Cases I or II we are considering.
If we set kg = 0, we obtain

(6.12) P (RF) = Loy, (a1, ..., azgy) +dS
where LDqp, (a1, ..., ag,) is measuring the simultaneous vanishing of the 24, sec-
tions.

Theorem 6.9 has some interesting applications in the next section.
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§7. Singularities of projections.

Let X be a smooth oriented m-manifold with an immersion
j: X+ RN

into euclidean N-space. Fix an integer n < N and consider the set of linear maps
from RY to R™. Each P € Hom(R”,R") restricts to give a smooth mapping

P = Poj:X — R"™

We are interested in studying the singularities of these projections. In particular
for fixed k < min{m,n} and generic P we want to understand the locus where the
differential R

dP:TX — R"
has rank < k.

The projection P is called k-atomic on X if the bundle map dP is k-atomic,
and under this hypotheses one can define the k** degeneracy current of the
projection P on X to be

Theorem 7.1. Let j : X & RN be a C° immersion of a smooth oriented m-
manifold into euclidean space. Fix integers k and n with k < min{m,n} and with
k =m =n (mod 2). Then for almost all P € Hom(R~,R") the projection P is k-
atomic on X and the following holds. There is a canonical L{  -form S = S(P, k,n)
such that

(72) detfo x Lo ((pmo—ko—i+j (X))) = Dg (P) +dS
where mo = [m/2], no = [n/2], ko = [k/2], Lo = ny — ko, and where
p(RY) = 1+ pi(RY) + pa(RY) + -

is the total Pontrjagin form of X for its induced riemannian connection. Further-
more, there are smooth families of smooth forms TP, and L -forms Ss, 0 < s < oo,

loc
with TPy, = A(no_kO){p(RX)} and S, = S, such that

mo—ko
(7.3) P, = Dy(P)+ dS,

1

and lim Sy = 0 in Ly .
s—0

In particular, if ng = ko + 1 then there is a canonical cohomology
(7.4) Pmo—ko (RX) = Dy (P) +dS

between the (mg — ko)™ Pontrjagin form and the current which measures where
the differential of the projection P : X — R¥*2 drops rank by 2.
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Proof. To prove that P is k-atomic for almost all P we mimick the proof of
Proposition 2.10. Set W = Hom(R",R") and let 7 : G,.(R") — X be the bundle
projection and U — G,.(R™) the tautological r-plane bundle, where r = n — k.
Then there is a C'°° map

(7.5) W x G.(R") = W x G,(R") x X - Hom(U, 7*TX)

(into the total space of the bundle Hom(U, 7*T'X) over G,.(R")) given by

U(P,U,z) = P* where P = P
U T, X

We claim that W is transversal to the zero section of this bundle. To see this
suppose that ¥(P,U,z) = 0 and let Qp € Hom(U,T,X) be given. Extend Qo to
Q € Hom(R", RY) by defining Q to be zero on UL. Consider the curve

P, = P+tQ* in W

Then .
Yy, va| = (Q* \sz>

dt =0
Hence dV¥, restricted to W 2 T,W C T(pu,) (W x G-(R™) x X), maps onto the
fibre of Hom(U, 7*T'X ) and is therefore transversal to the zero-section as claimed.
It now follows from Sard’s Theorem for Families ([HL;]) that for almost all
P € W the restriction of ¥ to {P} x G, (R™) is transversal to the zero section
of Hom(U, 7*T'X). All such P are k-atomic. This proves the first assertion of
the theorem. The remaining assertions are straightforward consequences of Theo-
rem 6.9 applied to dP : TX — R" where T X carries the riemannian connection
for the metric induced by j and where R carries the canonical flat orthogonal
connection. [J

= Q

U

= Qo.

U
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§8. Singularities of maps.

We shall now considerably generalize the results of the last section. Let X and
Y be smooth riemannian manifolds of dimensions m and n respectively (where Y
need not be orientable) and consider a smooth mapping

f+ X —Y.

Fix an integer £ < min{m, n} and assume that m =n =k (mod 2). Then the map
f is said to be k-atomic if the differential

df :TX — f*TY

is k-atomic. Arguing as in sections 2 and 7, one can show that generic smooth maps

have this property. Whenever f is k- atomic, we can define its k*"* degeneracy
def

current Dy (f) = Dy (df).

Theorem 8.1. Let f: X — Y, m, n and k be as above, and suppose that f is
k-atomic. Set mo = [m/2], no = [n/2] and ko = [k/2]. Then there is a canonical
L} -form S on X such that

loc

(8.2) Al ko) £ p(RY) /p(R¥)} = Dy(f) +dS

’no—ko
where
p(RY) = 14+p1(RY) +po(R*)+--- and p(RY) = 1+p1(RY) +pa(RY)+---
are the total Pontrjagin forms in the riemannian curvatures of X and Y. Further-
more there are smooth families of smooth forms TPs and L], -forms Ss, 0 < s < oo,
. mo—k *
with TPy, = AéOEkOO){f p(RY)/p(R¥X)} and So = S, such that
]PS = Dk (f) + dSS

1

and lim Sy = 0 in Ly .
s—0

Proof. This is a straightforward application of Theorem 5.2. [

An interesting special case occurs when dim X = dimY = 4 and ¥ = 2. Here
(8.2) has the form
(8.3) oY) —pi(X) = Enx; +dS
where Dy (f) = Yn;z; is a discrete sum of points with integer coefficients. Let
Ny = Y¥n; denote the total 2-degeneracy number of f.

This yields a 4-dimensional analogue of the classical Riemann-Hurwitz Theorem
[M1], [M2], [R].
Corollary 8.4. Suppose that f : X — Y is a smooth map between compact
oriented 4-manifolds with isolated points of 2-degeneracy. Then

Mgpy —px = Ny

where px and py are the first Pontrjagin numbers of the manifolds X and Y

respectively, My is the degree of the map f, and Ny is the total 2-degeneracy
number of f.

In his thesis [S] Robert Stingley gives reinterpretations of Ny and methods of
computing it in terms of the local geometry of the map f.
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§9. Milnor currents.

There is a complete analogue of the formulas of §8 for the complex case. Such
results are not new; they can be deduced from work by Fulton, Bismut, Gillet and
Soulé. However we add them here for interest, and remark that the holomorphic
assumptions here can be considerably relaxed to statements about smooth almost
complex manifolds.

Let X and Y be complex manifolds of dimensions m and n respectively, and

consider a holomorphic map
f: X —Y.

Introduce complex connections and hermitian metrics on X and Y. Fix k£ <
min{m,n}. We say that f is k-atomic if

codimc{z € X : rank(df;) < k} =2 (m —k)(n — k).

By 1.10 and 2.7 this hypothesis implies the existence of the k*" degeneracy cur-

rent Dy, (f) < Dy (df).

Theorem 9.1. Let f : X — Y be a holomorphic k-atomic map as above. Then

there exists a canonical Llloc—form S on X such that

(9:2) AT Y )/} = Di(f) +dS
where d = (m — k)(n — k) and where ¢(X) = det(1 + (i/27)RX) and c(Y) =
det(1 + (i/2m)RY) are the total Chern forms of X and Y in their given connec-

tions. Furthermore, there are smooth families TP, 74, 0 < s < oo with properties
analogous to those in 8.1.

Proof. This is a direct consequence of Theorem 4.4 and (4.2). O

Remark. When X and Y are given the canonical hermitian connections associated
to the metrics, the term dR in formula (9.2) can be replaced by 00T as noted in
Remark 4.18.

An interesting case occurs when X and Y are compact, dimY = n = 1, and
k = 0. Then f is a map to a complex curve, and it will be 0-atomic iff it has
isolated singular points, say z1,...,2¢ € X. We define the Milnor current to be

¢
M(f) d:eka(f) = Zmz[%]

where the integers m; are the local Milnor numbers

m; = dim{(’)xi/<g—£,...,%>}.
Equation (9.2) has the form

(9.3) (D)™ {em(RY) = cuo1 (RY) frer(RY)} = M(f) +dS.
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When n = 1 this equation integrates to give the classical Riemann-Hurwitz For-
mula.

Another interesting case arises when X C P¥ is a projective m-manifold and
f : X — P™ is given by linear projection PN — PVN—m=1 _ P™ where X N
PN-m=1 — () (Noether normalization). Let w be the Kihler form of the metric
induced on X. Then (9.2) implies formulas of the following type. If f is (m — k)-
atomic for k? < m, then

(9.4) APHX) (1 +0) 7"} = (~1)F Dk () + dSi
for an L] -form Sg. Every such f is (m — 1)-atomic, and Dy,—_1 (f) = B(f) is the

branching divisor of f. This gives the formula:

(9.5) (m+ 1w —c1(X) = B(f) —dS.

For example if X is a curve of degree d and genus g, then (9.5) implies that 2(d +
g — 1) = |B| = the total order of branching of f.

There are of course many many such formulas coming from methods of enumer-
ative geometry.
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§10. CR-singularities.

The methods introduced above yield some interesting results in CR geometry.

Consider an immersion
f: X Z

of a real manifold X into a complex manifold Z, where
m = dimg(X) > n = dimc(Z2).
Then the differential df : TX — f*TZ extends to a complexr bundle map

(10.1) dfc : TX 9r C — f*'TZ.

Definition 10.2. Assume that the bundle map dfc is k-atomic where 0 < k < n,
and let 7 = n — k. Then we define the r** complex tangency current of f to be

Cr.(f) = Dx(dfc).

Roughly speaking this current corresponds to the locus of points = where f,7T,X
contains a complex subspace having r “excess” dimensions, i.e., more complex tan-
gency (by r) than expected. Specifically we have:

Lemma 10.3. The support of Cr,(f) satisfies
suppCr- (f) E{z € X : dimc(T, X NJT, X) 2 m —n+r}

where J denotes the almost complex structure of Z (and where for notational
convenience we have identified T, X with f,T,X).

Proof. By (2.7) we have supp Cr,.(f) C {z € X : rank(dfc) < k}. Note that at
reX,

ker(dfc) = {V+iW: VW €T, X and V 4+ JW =0}
= {V+iJV:V,JV e T, X}
= (T,XNJT,X)®C"".

Since rank(dfc) = m — dimg ker(dfc) we have rank(dfc) < k iff dime(7,X N
JT,X)z2m—-k=m—-n+r. O

We now suppose that X carries a riemannian metric and that Z carries a her-
mitian metric and a complex connection. Define ¢(Z) as in (9.1) and set

PX) = 1= pi(BY) +pa(RY) — -+ (=1)" U, 1y (RY)

and

(Z) = 1= cr(R?) + c2(R?) — -+ + (=1)"cn(R?)
where p;(RX) and ¢;(R?) are the i*® Pontrjagin and Chern forms of X and Z
respectively.
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Theorem 10.4. Let f : X — Z be an immersion of a real m-manifold into a
complex n-manifold with n < m as above, and assume that dfc is (n — r)-atomic

where 0 < r < n. Then there is a canonical L{ . form S on X such that

(10.5) AL L ABX)/E2)) = AT re(Z) (X))

= Cr,(f)+dR.

Furthermore there are smooth families TP,, S, 0 < s < oo as in Theorems 6.2, 8.1,
9.1 etc.

Note 10.6. The term on the left is computed by writing p(X)/f*¢(Z) =1+ & +
€2+ -+ -, where &; is a 2i-form, and then applying formula (4.1).

Note 10.7. In Theorem 10.4 it suffices that Z be an almost complex manifold.
Furthermore f need not be an immersion; but in this case Lemma 10.3 does not

apply.

Proof of Theorem 10.4. Apply Theorem 4.4 to the bundle map dfc and note
that

o(RTHEC) = o(RT¥OC) = p(X).

This establishes the second equality in (10.5). The first equality is a direct conse-
quence of the Shur relations (4.2) and (4.3). O

Consider for example the case where Z = C™ and r = 1. This gives the following.

Corollary 10.8. Let f : X & CF*! be an immersion of a smooth m-manifold
with the property that dfc is k- atomic. Suppose m — k = 2¢ > 0. Then there is
an Llloc—form S on X with

Cri(f) = (—=1)*pe(X) +dS.

Example 10.9. Suppose X* is a smooth 4-manifold and
f: X% C3
an immersion as above. Then we have that
p1(X) = Enz; +dS

where x1,...,xn are the points of complex tangency of the immersion and where
ni,...,ny are integers computed from the local CR geometry of f.
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Example 10.10. Consider the case where m = n. Let
[ X" 2"
be an immersion of a real n-manifold into a complex n-manifold. If dfc is (n — r)-

atomic, we have

Cr(f) = AV{B(X)/e(Z)} +dS

(where ¢(Z) is assumed to be pulled back via f to X). When r = 1 we have
(C’I“l (f) == Cl(Z) + dS.

When r = 2, a calculation yields

Cra(f) = AP e(Z) — p1(Z)p1(X) + p1(X)? + dS.

Example 10.11. Consider an immersion
f: 8" Z

and give S™ the standard Riemannian connection for which p(S™) = 1. Then if
dfc is (n — r)-atomic we have

Crr(f) = AM="0(Z)} +dS.

One case of interest is where m = n = 2r2. Then we have

cr (Z; cr+1(ZZ) e copr(2)
Cr.(f) = CH:( )l +ds.
Cl(Z) CT(Z)

There is a counterpart to all of the discussion above for the case where m < n.

Theorem 10.12. Let f : X & Z be an immersion of a real m-manifold into a
complex n-manifold where m < n. Assume that the map dfc of (10.1) is (m — r)-

atomic. For given connections and metrics on X and Z as above, there is a canonical
L} -form S such that

loc

(10.13) Crr () = Dy (dfc) = AL {e(2)/B(X)} - dS

(n—m
with approximating families TPs and S, as in (10.4).
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The proof of Lemma 10.3 shows that in this case

supp Cr,. (f) C {z € X : dimc (T, X N JT,X) = r}.

Remark 10.14. Note that if f: X & Z is a totally real immersion, then Theo-
rem 10.12 implies that

(10.15) A e(2)/p(X)} = 0 in H*(X)

for all 7 > 0. However in this case T'Z | x= (TX ® C) ® v where v is a complex
bundle of dimension n — m. Hence, on X we have

(%) = (TX®C)c(v) = p(X)e(v)

and so
(2)/[p(X) = cv) = L+a@)+ -+ cnm¥)
and (10.15) follows trivially.
On the other hand if f is Lagrangian (in the sense that f.7, X ) LJ(f.T,X) for all
x), then for a natural choice of connections on X and Z one has Al {c(2)/p(X)} =

n—m-r

0 on X, and via (10.15) a secondary invariant [T] € H°4(X;R) is defined.

Some of the results in this section are related to work of Lai [Lai], Webster
[W1,2,3], and Wolfson [Wo].
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§11. Invariants for pairs of complex structures.

In this section we shall introduce characteristic invariants which measure the
relative singularities of a pair of complex structures. Consider a real C'*° vector
bundle £ — X of rank 2n, and suppose that J; and Jy are smooth almost complex
structures on E. These structures induce decompositions

(11.1) E®rC = E"oE)' = E;°9 E)?

into the +¢ eigenspaces of J; and Js respectively. (E,i’0 is the +i eigenspace.)
Consider the bundle map « given by the composition

Ey’ < E®@r C— Ey*

Lemma 11.2. At each x € X, there is an isomorphism

kera, Z{V e E,: 1V = LV}
= the maximal subspace of E, which is simultaneously

Jv and J; complex.

Proof. Note that E{"" = {V —iJ,V : V € E,}. Now for V € E,, we have
v ¥V iV ekera < 12%(v) = 0
<— v+iJov =V -1 1V + ZJQ(V — ZJ1V) =0
— J,V = J;V. U

Definition 11.3. Fix r, 1 < r < n. The structures .J;, Jy will be called r-
transversal if the bundle map « is (n — r)-atomic. Under this hypothesis we
define the 7*" coincidence current of the pair J;, J to be

Qr (Jl, Jz) = ]D)n—r (Oé)
From 11.2 and 2.7 we have that

supp Q, (J1,J2) S {z € X : J; = J on asubspace W C E, with dimW 2 r}.

Theorem 11.4. Suppose J; and Jy are r- transversal. Then given complex con-
nections on Ey = (E, J1) and Ey = (E, Js), there exists an L -form S such that

loc
Q-(J1, J2) = Ae(By - By) +dS

where c¢(Ey — E1) = c¢(RP2)c(RPr)~1. Furthermore, there are smooth families TP,
and S;, 0 < s < oo asin6.2,8.1, 9.1.
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Proof. Apply Theorem 4.4. [

Example 11.5. Fix F; = X x C" = (X x R*, J). The product bundle with the
canonical flat connection, and consider Fy = (X x R?",J) where J is any other
almost complex structure on this trivialized R?"-bundle. For those .J which are
r-transversal to the given flat structure we have

Q. (J) € Q. (Jo,J) = AD(RT) +dS,

where ¢(R”) are the Chern forms of a J-complex connection. For example,
Q1(J) = c1(R7) +dR,
Qa2(J) = det (22 C3> +dR,

1 C2
= c% — c1c3 + dT5

C3 C4 Cp
Qg(J) = det Cy2 C3 C4 + ng
C1 Cg C3

Note. There are cohomology relations
c¢(E)e(E) = 1 and cu(E) = 0

on any complex bundle which is trivial as a real bundle. Nevertheless, £ may still

be non-trivial as a complex bundle. Consider for example the complex line bundle
L — 8! x S! of Chern class 2, and set £ = L @ C. Then

Cl(E) = Cl(L) = 2

and so F is non-trivial. However E is trivial as an R*-bundle. To see this note
first that the classifying map S* x S — BUy — BSOy4 can be lifted to a map
St x §' — BSpin, since the only obstruction to this lifting is we(FE) = ¢1(F)
(mod 2) = 0. However, BSpin, is 3-connected, so this lift, and therefore also the
map to BSOy4, are contractible.

Example 11.6. (Diffeomorphisms) Let f : X — X be a diffeomorphism of an
almost complex manifold with almost complex structure .J. For generic f, the
structures J and f*.J will be r-transversal for all r, and so given a J-compatible
connection V on X, we can take the f*J-compatible connection f*V and obtain
L} -forms S, with

loc

Qs (f) € Q. ")) = AD{f*e(RT)/e(R7)} + dS,.
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§12. Invariants for plane fields and foliations.

This discussion given in §10 for mappings can be applied to plane fields, and in
particular to foliations. Even more generally suppose F' — X is a smooth complex
vector bundle of complex dimension n, and consider a real sub-bundle

jiP < F

of (real) dimension m. Then there is a natural extension of j to a complex bundle
map

(12.1) jc: P®r C — F.

Fix an integer r, with 0 < 7 < min{m, n}, and set k& = min{m,n} —r. We say that
P has good complex r-tangencies if jc is k-atomic. Under this hypotheses the
complex tangency current

(12.2) Cr, (P) ¥ Dy (jc)

is defined. In analogy with 10.3 and (10.12) we have
suppCr.(P) C{z € X : dimc(Py N J,Py) 2 r+ max{0,m —n}}.

This is the subset of X where the dimension of the maximal complex subspace of
P is greater by at least r than the “expected” or “generic” dimension.

Theorem 12.3. Let j : P — F be a real m-dimensional subbundle with good
complex r-tangencies in a complex n-dimensional bundle F'. Let P be equipped
with a real connection and metric, and let F' be given a complex connection and
hermitian metric. (No relation among the four is assumed.)

Then there is a canonically defined L -form S on X such that

124)  Cr(P) = {AEJ;) e {B(P)JE(F)} +dS,  when m 2 n

AL i Ae(F)/B(P)} +dS,  when m S n

where ¢(F), ¢(F) and p(P) are defined as in §10. Furthermore there are approxi-
mating families ¥4, S;, 0 < s < 0o, as In previous theorems.

Note. The equations in (12.4) can be rewritten by using the elementary Shur
relations (4.2) and (4.3). In particular, with & = min{m,n} — r, we have

AU (F) B(P)}Y = AUTOB(P)JE(F)).

Example 12.5. (Plane fields and foliations). A case of geometric interest occurs
when
j:P—=TZ

is a real m-plane field on an almost complex manifold Z. This arises for example
when P is the tangent plane field T'F of an m-dimensional foliation F of Z. In this
case the currents Cr, (F) = Cr,. (T'F) correspond to the excess complex tangencies
of the foliation. The formulas in (12.4) give cohomological obstructions to finding an
isotopy of F to a foliation without complex tangencies of dimension r +max{0, m —
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§13. Higher self-intersections of plane fields and invariants for pairs of
foliations.

Let F' — X be a smooth bundle of rank n and consider two subbundles
AYSF and B F

of ranks a and b respectively. We assume all bundles to be simultaneous real or
simultaneously complex. From this data we get a bundle map

A% F/B
given by restricting the projection = : F' — F/B to A. Note that
kerao, = A, N B,
whose “expected” or “generic” dimension is
e = max{a+b—n,0}.

Fix integers r > 0 and k£ > 0 with e+r = a—k, or equivalently r+k = min{a, n—b}.
Note that rank(a,) = a —dim(A,; N B,) < k if and only if dim(A, N B;) > a—k =
e +r. We say that A and B make good r-contact if « is k-atomic. Under this
assumption we define the r-contact current

Ct,(A,B) = Dy(a)
and note that
suppCt,. (A,B) C{zr € X : dim(A; N Bg) = e+ r}.

This current measures the contact degeneracies of rank r, i.e., the set where A meets
B in at least r dimensions more than expected. Setting e* = max{n — (a +b),0}
and applying §84 and 5 give the following.

Theorem 13.1. Suppose A, B and F are complex and that F' is provided with a
complex connection and metric. If A and B make good r-contact, then there is a
canonical L{, -form T such that

Ct, (A, B) = AT (RT)/e(RA)e(RP)} + dS.

Theorem 13.2. Suppose A, B and F' are real bundles of rank 2aq, 2by and 2ng
respectively and let e = 2eg, e* = 2e(;. Suppose F' is provided with an orthogonal
connection. Then if A and B make good r-contact where r = 2rq is even, there is
a canonical L], -form S such that

Ct, (A, B) = AA) (p(RE) /p(RA)p(RP)} + dS.

eg+ro
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Remark 13.3. One could equivalently formulate the problem by considering the
adjoint map o* : (F/B)* — A*. Note that at x € X, we have

ker(af) = AXnBf
whose expected dimension is
e* = max{n — (a +b),0}.

Applying 4.4 gives us “dual” formulas which are equivalent to those of 13.1 and
13.2. To see this, observe that by the Shur relations (4.3) and (4.2) we have

AT (RT) Je(RY)e(RP)} = AL {e(RY)e(RP") [e(RT)}
and

Ale O (p(RY) [p(R)p(RP)} = AL {p(RA)p(RP)/p(RT)}.
Example 13.4. (Higher self intersection classes). Given A C F as above
one can take B to be a generic displacement of A (which will be r-atomic for all
relevant ) and compute the “higher self intersections” of the plane field. Consider
for example the complex line field A C TP3 on complex projective 3-space which
is tangent to the fibres of the twistor map P3 — S*. Now we have ¢()\) = 1 + 2w
where w € H?(P3,Z) = Z is the canonical generator. The self-intersection class
coming from taking A= B =\, F =TP3 and r = 1 in 13.1 is

AHL(TP?) /(NP = A{(1+w)*/(1+20)%) = 2w”.

This implies that a generic deformation of A (as a smooth complex subbundle) in
TP3 will coincide with X along a cycle in P? which represents the homology class
2Pl € Hy(P3; Z) & Z.

There are analogous complex line fields A on every P%"H tangent to the fibres
of the bundle 7 : P%""’l — PF;. Here the generic self-intersection locus satisfies

Ct(N) = ALH(L+w)™2/(1+2w)*} +dS = (n+1)w™ +dS.

Example 13.5. (Relative foliation cycles). Suppose we are given two foliations
F and F' of dimensions 2a¢ and 2by respectively in a Riemannian manifold of
dimension 2ny. Then we can apply 13.2 to A = TF and B = TF' to produce
canonical cohomologies between the current of (e + r)-dimensional contact points
of F and F’, i.e., between

e (TF, TF),

Ct,.(F,F')

and the characteristic forms defined in 13.2.
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APPENDIX A Orientations and tensor products

In this appendix we discuss questions of orientations and characteristic classes
of tensor product bundles. We begin with some elementary definitions. Let V' — Y
be a real vector bundle of rank n over a manifold Y. By definition there is an open
covering U = {Uy }aca of Y and local trivializations

fo: V| S U, xR
Ua

The compositions give transition functions
gap : UaNUg — GLn(R)

by setting gag(z) = foo fﬁ_l(x, -). They have the property that gos(z) = gga(z)™?
and satisfy the cocycle condition

(A.1) 9ap9pyGya = 1 on U,NUgNU,.

In terms of this data we define a Cech 1-cocycle {wqap} on the cover U by setting

Wap oof sgn{det(gnp)} : Uo NUg — {1, -1} = Zs.
From (A.1) we see that w,p satisfies the cocycle condition
(A.2) WaBWEy Wy = 1 in Uy, NUg NU,
and therefore determines a class
wi(V) € HY(Y ; Z)

which can be shown to be independent of the choice of local trivializations for V.
It is called the first Stiefel-Whitney class of V. Note that the cocycle w,g,
considered as transition functions on U, determines a two-fold covering (i.e., a Zo-
bundle) over Y, called the orientation bundle Or(V) of V. One can naturally
identity the fibre of Or(V') at & with the two possible orientations of V,. If Y is a
connected manifold then Cove(Y) = Hom(m Y, Zs) & HY(Y;Z3) (where Covy(Y)
denotes the equivalence classes of 2-fold coverings of Y'). This gives an equivalent
definition of wy (V') and shows that

(A.3) V is orientable <= wy(V) = 0.

Proposition A.4. Let U — Y and F — Y be real vector bundles with rank(U) =
m and rank(F') = n, and set H = Hom(U, F) = U* @ F. Then

(A.5) wi1(H) = nwi(U) + mw,(F).
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Proof. Let A : R™ — R™ and B : R — R” be linear maps, and consider
A® B :R" — R™. Then

det(A® B) = (det A)"(det B)™.

Now let {ang} and {bns} be transition functions for U and F respectively over an
open covering ¢ of Y. Then H has transition functions hag = a3 ® bap, and so

det(hap) = det(agng)™ det(bag)™ = det(anp)™ det(bag)™-

Hence,
sgn(det hop) = (sgndetaqg)”(sgndetbyp)™.

Rewriting this additively gives the result. [J

Corollary A.6. The bundle H = Hom(U, F) is orientable if any one of the follow-
ing conditions holds:

(i) rank U and rank F' are both even.
(ii) F is orientable and rank F' is even.
(iii) U is orientable and rank U is even.

Corollary A.7. Suppose that rank F' is odd and that either F' is orientable or
rank U is even. Then

Let G, (R™) denote the Grassmannian of (unoriented) r- planes in R™, and
let U — G, (R™) denote the tautological r-plane bundle. There is a natural
embedding U < R™ into the trivialized m-plane bundle, and this gives a splitting

R™ = U U™,

Corollary A.8. Ifr and m are both even, then G,(R™) is orientable.
Proof. Apply A.6, part (i), to TG,.(R™) = Hom(U,Ut). O

Consider a smooth real vector bundle £ — X of rank m, and let 7 : G, (E) — X
be the Grassmann bundle whose fibre at € X consists of all (unoriented) r-
planes in F,. Let U — G,(F) be the tautological r-plane bundle with canonical
embedding U — 7*FE. After a choice of metric in ' we have a splitting

™E = U U™t
and there is a bundle equivalence

(A.9) TG, (E) = 7*TX @ Hom(U,U™).
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Corollary A.10. Suppose X is orientable. If r and m are even, then G,(F) is
orientable. If r is even and m is odd, then

Proof. By A.9 and Proposition A.4 we have
w1 (Gr(E)) = 7*wi (X)) +wi(U*@U) = (m—r)wi(U) +rw, (UL). O

We now consider integration over the fibres of 7. To begin recall that an r-
form twisted by the orientation bundle on a manifold Y is a section of the
bundle A"T*Y ®z, Or(Y) where Or(Y) = Or(TY), and where Zy = {1, —1} acts
multiplicatively. A density on Y is a d-form twisted by Or(Y) where d = dim(Y').
Densities with compact support can be integrated over Y (cf [St]).

Proposition A.11. Let X, G,.(F) and U be as in Corollary A.10, and assume that
r is even and m is odd. Then for any orthogonal connection on U with curvature
RY, the Euler form of U on G,.(E)

x(RY) = Pfaff (-£RY)

is an r-form twisted by the orientation bundle of G,.(FE). For any g-form w on
G, (E) the product w A x(RY) can be integrated over the fibres of 7 : G,.(E) — X,
yielding a smooth form on X.

Proof. Let r = 2ry. For a skew-symmetric transformation A : R" — R" we have
the equation

(A.12) (LefAe)™ = ro!Paff(A)er A=+ Ae,

in A"R", where eq,...,e, denotes any orthonormal basis of R", and where e‘Ae =
Y A;je; Nej. The left hand side of (A.12) is independent of orientation. Hence from
(A.12) we see that the Pfaffian of RV is twisted by Or(U). However, from (A.9)

we have
Or(G.(E)) = m*0r(X)@0r({U*@UL) = Or(U*) = Or(U)

under our assumption that X is orientable and r is even. Now any Or (G, (E))-
twisted form « on G,.(E) (for example, x(RY) Aw) defines a current on G,.(E) and
hence can be pushed forward by 7 as a current to X. To see this push forward is well
defined let 8 be a form with compact support on X of degree d’ = dim(G,.(E)) —
deg . Then

[mea](B) = / a Nt
G, (E)

which is well-defined since a A7*f3 is a density on G, (F). Finally since « is smooth
this push forward can be computed using fibre integration yielding a smooth un-
twisted form on X, since X is oriented. [
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We have observed above that if U and F' are real vector bundles of even rank,
then U* ® F' is orientable. However, it remains to choose a canonical orientation.

Convention A.13. Let V and W be finite dimensional vector spaces with ordered
bases (e1,...,en) and (fi,..., fn) respectively. Then the canonical orientation
on V ® W with respect to these bases is given by

(€1®flv 62®f17---76m®f17 61®f27---;€m®f2;---76m®fn)-

This depends only on the orientations of V and W determined by (eq,...,e) and
(f1,--., fm). If nis even, it is independent of the orientation of V' (and if m is even
it is independent of the orientation of W). If n = m = 0 (mod 2), it is independent,
of the orientations of both V and W.

Remark A.14. Given an inner product on V there are natural isomorphisms V ®
W 2 V*®@W = Hom(V, W) which transfer the canonical orientation to Hom(V, W)
(independently of the choice of inner product).

Suppose dimg (V) = dimg (W) = 2 and both are oriented and equipped with
inner products so that V=2 W = C. Then we have a natural splitting

(A.15) Homg (V, W) = Homc(V, W) & Home(V, W)

given by writing

A= (A= JwAJv) + 3(A+ JwAly)

where Jy, Jyw are the complex structures corresponding to the orientations on V'
and W.

Lemma A.16. The canonical orientation on Homg (V, W) is opposite to the one
corresponding to the complex structure induced via (A.15).

Proof. Let (vi,vs), (w1, w2) be oriented bases for V and W, and let h;; = v; Dw;
1 <, j <2 be the corresponding basis of H = Homg (V, W). Then Homc(V, W)
has an oriented basis (€1, €2) where €; = hy; + hop and €3 = J(e1) = €1 0 Jy =
h21 - hlz. Slmllarly HOIIl(V, W) has basis 6’1 = h11 - h,zz and 6/2 = J(Ell) = 6/1 OJV =
—hso1 — hi2. Taking the wedge product over R gives

et Aea Neg Neg = (hir + haz) A (har — hi2) A (h11 — ha2) A (—ha1 — hi2)
= —4h11 AN hat A higa A hoy. [

We shall now compute the Euler form of the bundle Hom(U, F) over a manifold
Y. In practice we will set Y = G,.(E) and take U to be the tautological bundle.
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Theorem A.17. Let U — Y and F' — Y be smooth vector bundles with orthog-

onal connections. Give H % Hom(U, F) the induced tensor product connection.
Suppose
rank(U) = 2rg and rank(F) = 2ng

for integers ro, ng > 0. Then the Euler form of H for its canonical orientation is
given by

(A.18) X(RY) = AT {p(RT)p(RY) ™)
where ﬁ((zb) is the Shur polynomial introduced in §5.

Proof. We begin by proving equation A.18 at the cohomology level. Consider first
the case where dimU = dim F' = 2 and both U and F' are oriented. Set

a = x(U) = cai(U) and b = x(F) = a(F)
in H?(Y;R). Then from the equation
Homg (U, F) = Howe(U, F) & Home (U, F)

and Lemma A.16 we get

x(H) = —x(U* ®@c F)x(U* ®@c F)
= —(b—a)(=b—a)
2 g2

= p1(F) —p1(U).

Suppose now that U and F' are oriented and apply the Splitting Principle to write
them formally as

U=U®-0U, and F = F1®---dU,,
where U; and Fj are oriented 2-plane bundles. We formally set
a; = x(U;) and b; = x(Fj)

for all 7, 7. Then

Hom(U, F) = éoaé;Hom(Ui,Fj)
j=1i=1
and so
Tlo To
(A.19) x(Hom(U, F)) = T[T[0; —a}) = ALH{1+m+m+---}
j=li=1
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where 7, € H**(Y; R) is defined by

(1+03)

no

11
p(F) Jr_ol = 14m+n+---.

[1(1+a})

i=1
See [Fu, page 419] for the second equality in (A.19). This establishes formula (A.18)
at the cohomology level when U and F' are orientable.

To establish the formula at the level of forms we recall that by [NR| any k-plane
bundle with connection over a manifold Y is induced from the universal bundle
U}, with its connection over G(RY), for N sufficiently large, by a smooth map
f:Y — Gi(RYN). Suppose now that f:Y — Ga(RY) and g : Y — Ga,, (RY)
classify U and F' with their connections, i.e., f*(U3, ) = U* and g*(Usgp,) = F'.
Then f x g: Y — Gap, (RY) X Gapy (RN) has the property that

(f x9)"(Us5,, ® Ugp,) U@ F

as bundles with connection. Consequently if formula (A.18) holds for U3, ® Usay,,
it holds in general, since

X (RU*@F) — (f x 9)*x (RU§TO®U2,LO)
= (f X g)*Ag'OO) {p(RUznO )p(RU2T0)_1}
= AL {p(R")p(RV) "}

Hence it suffices to prove (A.18) in the universal case. However, here (A.18) is a con-

sequence of the cohomology calculation. To see this note that both X(RU;TO ®U2”0)

and &,({:)O){p(RUZ"O)p(RUZTO)_1} are invariant under the full isometry group of
Garo (RY) X Gapy (RY) and are therefore harmonic by a standard result in the
theory of symmetric spaces.

When U and F are possibly non-orientable we pass to the 2-fold or 4-fold covering
where they are orientable. The equation of forms (A.18) is invariant under the
covering group and therefore descends to Y. [

Theorem A.20. Let U, F and H = Hom(U, F') be as in Theorem A.17 except
that
rank(U) = 2rp and rank(F)=2ng+1

for integers rg, ng > 0. Then the canonical orientation gives an isomorphism
Or(H) =2 Or(U), and the Or(H)-twisted Euler form of H is equal to the following
Or(U)-twisted form

(A.21) X(RT) = x(RV)AL) {p(RF)p(RY)1}.
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Proof. Note that by Proposition A.4 we have wy(H) = w1(U), and so Or(H) =
Or(U) under the identification Cova(Y) & H(Y; Z3). We lift to the 2-fold covering
of Y where H and U are orientable and establish (A.21) there. Since both sides of
(A.21) transform by —1 under the (non-trivial) deck-transformation, the result will
follow.

We assume therefore that U is orientable. We may assume also that F' is ori-
entable since if not we pass to a 2-fold covering where it is, and then observe that
the equation is invariant, as in the proof of A.17. The proof now proceeds as before.
We apply the Splitting Principle and formally write

U=U& - ®U, and F = F1&---®F,, ®R

where U;, F are oriented 2-plane bundles with a; = x(U;) and b; = x(F}). Then

H=UgaF =UoPPUer,
§=0 i=0
and so
xH) = x(O) ][]0} —al) = x@)ALHp(F)pU)~'}.
j=1i=1

As above, this cohomology formula implies the formula at the level of forms via
[NR] and the uniqueness of invariant forms in the cohomology of Gay, (RY) x
Gon, (RY). O

We conclude this section by presenting the analogue of the last two theorems for
the complex case.

Theorem A.22. Let U — Y and F' — Y be smooth complex vector bundles with
complex connections and with

rank(U) = r and rank(F) = n.

Give H = Hom(U, F) = U* @ F the induced tensor product connection. Then the
top Chern form of H is given by

(A.23) Cnr(RT) = AP {c(RF)e(RY)™1}
where ¢(R) = det (1 + 5= R) denotes the top Chern form of the connection.

Proof. At the cohomology level this result is well known (cf. [Fu, 14.4.12]), and
one can deduce the formula at the level of forms by passing to the classifying spaces
as in the proof of A.17. 0O
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Alternatively one can prove (A.23) directly by establishing the following matrix
identity. Let My« denote the vector space of complex k£ x k£ matrices. For any
commutative ring R with unit, and for integers a, b > 0, let

(A.24) AW R[] — R
be the function given by
Al()a) Z Tktk = detaxa ((Tb—i—i—j))

k>0

where (rp_;1;) is the a x a matrix whose (i, j)*

and 0 otherwise.

entry is 7,_;4; when r—i4j 20

Lemma A.25. For A € M,«, and B € My, consider the matrix A®1,—1,®B €
Mabxab- Then

det {A®1,—1,® B} = A {det(1,+ tB) det(1, +tA)~}.

Proof. It suffices to restrict attention to the Zariski open dense subset of di-
agonalizable matrices (A, B) in Myxq X Mpxp. Thus we may assume that A =
diag(z1,...,2,) and B = diag(yi,...,ys). The lemma is now an immediate conse-
quence of the following.

Fact A.26. ([Fu, page 419]) In the polynomial ring R = Clzy1,...,Za,Y1,- -, Yb)
in (a + b) indeterminants, one has the identity

(1 + tyj)

—
— e
—
&
|
8
S
N—r
Il
>
SN~
&
.
IS ﬂ‘:o‘

j=li=1 ' (1+ tx;)

(3

I
—

Note. Using A.26 one can give alternative proofs of Propositions A.17 and A.20
above.
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APPENDIX B Integration over the fibres in G,(E)

In this appendix we establish the topological formulas required to complete the
computations in §§4 and 5.

Proposition B.1. Let E — X be a smooth hermitian vector bundle of rank m.
Consider the Grassmann bundle 7 : G,.(E) — X of r-planes in E, where 0 < r < m,
and let U — G,.(E) be the tautological complex r-plane bundle. Write

™E = U U™,

and let c,,_,.(UL) be the top Chern class of U+. Then under the Gysin map
T, : H("=")(G,.(E)) — H°(X) we have

(B.2) T {em_r(UH)"} = L

Proof. It suffices to prove (B.2) in the case that X is a point, i.e., to prove that
(B.3) {em—r(U)", G,(C™)) = 1.

To see this we consider the Poincaré dual of ¢,,_,(UL) i.e., the divisor Div(c,)
of an atomic section a,, € T'(U+) defined by fixing a vector v € C™ and setting

a,(U) = 7y (v)

at U € G,.(C™) where m;. : C™ = U & UL — U+ is orthogonal projection. Now
«, vanishes non-degenerately and

Div(ay) = {U € G,(C™) :v € U}.

We now choose r vectors vy,...,v, € C" which are linearly independent. Then
these divisors meet transversely and

(B.4) Div(ay,) N+ NDiv(ay,,) = {U € G.(C™) :vy,...,v, € U}
= {span(vi,...,v.)}.

Under Poincaré duality cup product followed by evaluation on the fundamental
class becomes intersection product. Hence, (B.4) = (B.3). O

Proposition B.5. Let E — X be a smooth riemannian vector bundle of rank m.
Consider the Grassmann bundle 7 : G,.(E) — X of r-planes in E, where 0 < r < m,
and let U — G,.(F) be the tautological real r-plane bundle. Suppose

r = 2rp and m = 2my
for positive integers ro and mg. Write
™E = U U™

and let py,—r, (UL) be the top Pontrjagin class of UL. Then under the Gysin map
T, 2 HA70(mo=m0)(Gy (E)) — H°(X) we have

(B.6) Tk {me_TO(UJ‘)TO} = 1.
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Proof. It suffices to consider the case where X is a point, i.e., it suffices to prove
that

(B.7) <pmo—ro(UJ_)Tov GZro(R2m0)> = 1L

To do this we lift to the Grassmannian ézm (R?™) of oriented 2rp-planes with
tautological bundle U, and prove that

(B.8) <pm0_r0(ﬁJ‘)r°, 62r0(32m0)> 1

Since Gay, (R2™0) — Gy, (R2™) is a 2-sheeted covering whose deck transformation

preserves the orientation of Ga,,, (R?>™) and the class pp,,—r, (UL), we see that (B.8)
= (B.7).
To prove (B.8) we first establish the following.

Lemma B.9. _ _
pmo—To(UJ_) = X(UJ_)2'

Proof. We apply the Splitting Principle and write Ut formally as a direct sum of
oriented 2-plane bundles

(B.10) Ut = U@ ®Uy,

where kg = mo — 79, and set a; = x(U;). Then by definition

pko(ﬁJ—) = Uko(a%w"aa%o)
_ 2 2 _ 2
— al...ako — (al...ako)
= x(UY)* O

We now proceed as in the proof of (B.1). The Poincaré dual of x(U%) is repre-

sented by the divisor of the atomic section «,, € I‘(ﬂi) defined by fixing a vector
v € R?>™ and setting

ay(U) = w5, (v)

at U € Gy, (R2™) where T R0 = U@ UL — UL is orthogonal projection.
In fact «, vanishes non-degenerately and

Div(ay,) = {U € Gayy (R*™) : v € U}.

We choose 2rq linearly independent vectors vy, ..., va,, € R?™. Then the oriented
submanifolds Div(cv,,) meet transversely and

Div(ay,) -+ N Div(ay,, ) = {ﬁ € Glayy (R2™) : 01, .. vay, € ﬁ}
{0 A+ Aoarg, —vi A Avag, ),

1%
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i.e., this intersection consists exactly of the two points corresponding to the plane
span{vy, ..., va. } with its two possible orientations. Using invariance under the
deck transformation group and a local calculation one concludes that

(Pmg-ra (TH)®, Gy (RZ™) ) = ((TH)", Gapy(R™™))
= #{Div(a,) N+ N Div(a,,)}
= 2.

This establishes (B.8) and proves (B.5). O

We now recall that if 7 is even and m is odd, then G,(R™) is non-orientable
and Or(G,.(R™)) = Or(U). More generally if £ — X is a oriented bundle of odd
rank over an oriented manifold, and if r is even, then G, (E) is non-orientable and
Or(G,(E)) = Or(U), where U is the tautological bundle as above. As seen in
(A.11), integration over the fibre gives a Gysin map w, : H¥(G,(E),Or(U)) —
HE=r(m=")(X:R) where H*(G,(E);Or(U)) denotes the cohomology of Or(U)-
twisted forms, i.e., cohomology with coefficients in the local system Or(U). As
seen also in (A.11), x(U) AQ is an Or(U)-twisted class for any 2 € H*(G,.(E); R).

Proposition B.11. Let E — X be an oriented riemannian bundle of rank m over
an oriented manifold. Let G,.(E), U and UL be as in Proposition B.5, but assume
that

r = 2rg and m = 2mg—+1

for positive integers 1o and mg. Then under the Gysin map w, : H™™~")(G,.(E); Or(U)) —
H°(X;R) we have

(B.12) Tx {X(U)pmo—To(UJ_)ro} = L

Proof. It suffices to consider the case where X is a point. Fix vg € R™ and let 3
be the cross-section of U given by

AWU) = mu(vo)

where 7y : R™ = U @ U+ — U is orthogonal projection. Now the Poincaré dual
of x(U) is represented by the oriented cycle

Div(3) = The Grassmannian of r-planes in vy

>~ Gy, (R*™0).
By the standard formula for the Poincaré dual we have
(X(U)pm, (U, Go(R™)) = (pm, (U™, x(U) NG, (R™))
= (pm,(UT)"™, Poincaré dual of x(U))

= <pm0(UJ_)r07 G2T0(R2m0)>
=1

where the last equality comes from (B.5). O
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APPENDIX C Explicit formulae

Here we collect together explicit algebraic expressions for the various forms oc-
curing in the equations of Section 3. These explicit expressions are taken from
[HL5]. Suppose that V' is either a complex vector bundle of complex rank n or
a real vector bundle of even rank 2n which is oriented. Equip V with an inner
product (, )y and a connection Dy . The equations are:

Complex Case:
n(Qy) — 15 = dog

Ts — [X] = drg
cn(Qy) — [X] = do.

Real Case: X(Qy) — 15 = dos
Ts — [X] = drg
x(Qy) — [X] = do.

In both cases o5 and r, are related by

rs = 0—0s
and
limr, = 0 lim o, = 0,
s—0 5—00
in L} (V). These are current equations on the total space of V with X C V the

zero section. Alternatively, given a smooth atomic section p : X — V they can be
pulled back to equations on X. The atomic hypothesis ensures that the Llloc(V)
form o pulls back to an L (X) form on X, as well as ensuring that Div(u) is the
appropriate replacement for [X].

In order to describe the global L{ . forms 7y, o, and o explicitely the following

notation is useful. Let eq,...,e, denote a local frame for V and let e denote
the column with 4t entry e;. Then a section p can be written as g = ue with
u = (uy,...,u,). The equation Dye = wye defines the local gauge wy as an n xn

matrix of one forms. The curvature operator Ry = D‘Z/ has matrix form €y =
dwy — wy Awy. Since Dy p = (du + uwy )e, it is convenient to let Du = du + uwy,
so that Dypu = (Du)e. Let hy = ({e;, e;),,) denote the metric matrix, and let
u* = hyat so that |u|? = uhy it = wu*. (We will also find it convenient to let |u|?
denote |u|? = uu* rather than uut.) Also, let

Du* = du* — wyu®.

Just as Du is the matrix form of Dy p, this formula is the matrix form of Dy*
where p* is the adjoint of 1 thought of as a bundle map from the trivial bundle C
to V.
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In the real case we only consider oriented orthonormal frames e and hence hy = 1
(the identity matrix) so that u* = u?, |u|? = uu® = |u|?, and Du? = du’ —wyut. As
before x(t) : [0, 00] — [0, 1] determines the approximation mode. For brevity let

_ |u|?
Xs = X\ 52 /-

In the complex case, consider the dual frame e* = (e},...,e}), together with
the frame e, as elements of the grassmann algebra A(V*@ V). Let A(e) = ef Aeg A
--- N ey A ey, denote the volume form. Then for any matrix A, the determinant
can be computed from
1
—(e*Ae) = (det A)A(e).

n!
Consequently, the equation
1

det(A; B)A(e) = m(e*fle)(6”346)”_1

can be used to compute

d
det(A; B) = %det(BthA) -

Complex Case:

i\n Du*Du
no= ()" - e (2 - 22
i)\ u? dlul? u*Du Du*Du

ne*u*Due (e"ve — x,e* buDue)r — (e*Qpe)”

s ( ) n! (271') |’U,|2 " DTIIUPDU,G
bz (D (ves e B - (e
o - = (Y *
n! \ 27 |u|2 o D7|Lu|2DUe

The choice x(t) = t/1+t is referred to as the algebraic approximation mode.
(See [HL3] and [Z]) for motivation for this choice). Note that ¢ is independent of
the choice of approximation mode Y.

Complex Case with Algebraic Approximation Mode:
2 *
N s Du*Du
Ts — (i) mdet <Qv—m>,

or equivalently,

N = L(i)t Q) e* Du*Due \ "
TsA = 4l (ﬂ) [u[2tsz | € d6veE— | + 52
* * n
. (e*ﬂve — Gl ﬁ?ﬁé‘e) — (e*Qve)”
o 1 2\ % %
o\ — —= (—) e*u*Due .
n! \ 2w e* Du* Due

Now we consider the real case. The real rank of V' is assumed to be even (= 2n).
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Real Case: Suppose A is a skew 2n x 2n matrix. Let eq,...,es, denote an
oriented orthonormal (local) frame for V and let A = e; A+ -+ Aea, € A"V denote
the unit volume element. Recall the definition of the pfaffian of A

1 n
Pf(A)N = a(%etAe) :

Since V is oriented the unit volume form A for V' is globally defined, and hence Pf(A)
is globally defined independently of the choice of oriented orthonormal frame e.

2 n
A = 1 ()" (1) <ethe—2Xs (1_x_;)M> +

- n u)? u|? (ue ue : s we)? n—1
(nzl)! (2_7:) <XS(I_XS)(1_%)_X;|S—2|> d||u||2 ( |)1(L|[2) )(SQVS—ZXS (1—%) ([|)u|2) ) .

Xs n—1
oA = (n_31)! (Z_ﬂ%)n (uefﬁg"e) / <€tQVe — 2z (1 - %) |u? > di.
0

The choice x(t) =1— \/11_+t is referred to as the real algebraic approximation
mode (See [HL3]).

Real Case with Algebraic Approximation Mode:

2 n
rA = () <etQVe (Due)” ) .

N e O T P

3

(ue)(Due)?PH1

1
i (_1)n—p 1 2! 192n—2p—1
n - (n—p—1)!(2p+1)!2 P |u|2P+2

™

oA = (e!Qye)" P~ L

p=

Thus the part of o of top degree 2n — 1 in the 1-forms duy, ..., dus, is

Oom_1 = vol(S*" 1) ~10(u)
where ) .
- 1 updug Ao Adug A - A dusy,
Ou) = Z(_l)k ' PIER
k=1

denotes the solid angle kernel on R?",

Remark. These explicit formula have two different interpretations. First they
define forms on the total space of the bundle V. In this case u = uq,...,u, is the
fiber variable. Second they define forms on X where v = (uq, ..., u,) is the n-tuple
of C'*° functions on X representing the given atomic section g in the frame e.
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