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Introdution.

Roughly speaking residue theorems in geometry are results whih assoiate topo-

logial invariants to the singularities of geometri objets. The disovery and use of

suh theorems has a history dating bak at least to Riemann. A lassial example is

Hopf's theorem relating the singularities of vetor �elds to the Euler harateristi.

A somewhat di�erent topi in modern geometry is Chern-Weil Theory. This

assoiates to a smooth bundle with onnetion a anonial family of di�erential

forms whih represent harateristi lasses of the bundle. The forms are written

expliitly as universal polynomials in urvature. Furthermore, for two distint on-

netions !, !

0

on a bundle, the di�erene of the harateristi forms an be written

as a oboundary p(
) � p(


0

) = dT where T = T (!; !

0

) is also anonially ex-

pressed in terms of the onnetions. These transgression forms T lead to important

seondary invariants (f. [CS℄, [ChS℄).

Reently the authors developed a generalized Chern-Weil Theory for singular

onnetions [HL

2

℄ where harateristi forms are replaed by harateristi urrents

written in terms of urvature and the singularities of some given geometri objet.

In this paper we shall use our theory to systematially dedue a wide variety of

geometri residue theorems. Our formulas re�ne the lassial ones in several ways.

To begin they are derived anonially at the level of di�erential forms and urrents.

For example, for a mapping � between bundles with onnetion there are formulas

p(
)� �(�) = dT

where: p(
) is a anonial harateristi form as above, �(�) is a urrent de�ned

purely in terms of the singularities of �, and T is a anonial transgression form

(with L

1

lo

-oeÆients). This enables us to de�ne seondary invariants for ertain

onnetions and singularities.

Furthermore, our theory generates anonial smooth families

p(
)� p(


s

) = dT

s

for 0 < s � 1

where T

1

= 0 and where one has onvergene

T

s

! T everywhere in L

1

lo

as s! 0. In partiular the families of smooth harateristi forms p(


s

) onverge

to the singular urrent, i.e.,

p(


s

)! �(�)

as s ! 0. In ertain \approximation modes" p(


s

) will be supported in the s-

tubular neighborhood of �(�). The virtue of the expliit nature of these formulas

was seen in [HL

2

℄ where the proedure gave simple expliit formulas for the Thom

lass of a bundle with onnetion. In fat it gave families interpolating between the

pull-bak of the Euler (or top Chern) form and the urrent given by zero-setion of

the bundle.

The emphasis in this paper will be as muh on the general method as on the

detailed struture of various formulas. The authors hope to provide the reader
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with the tehniques for expliitly relating singularities of maps, setions of bundles

et. to harateristi forms in the manner above whenever the need arises. How-

ever, we shall also derive here a series of suh expliit formulas in a broad range

of �elds. These will inlude: Thom-Porteous formulas at the level of forms and

urrents, formulas of Poinar�e-Lelong type between Chern/Pontjagin forms and

linear dependeny urrents of families of ross-setions of a bundle, residue the-

orems relating degeneraies of maps between manifolds and harateristi forms,

residue theorems for singularities of CR-strutures, new invariants for pairs of om-

plex strutures, invariants for pairs of plane �elds, higher self-intersetion formulas

for tangent plane �elds, higher order ontat urrents for pairs of foliations and

relations to harateristi forms. In a subsequent paper we shall similarly establish

various determinental formulas and, in partiular, expliit Poinar�e-Lelong equa-

tions for Shubert ells on Grassmann manifolds.

The authors want to thank Bill Fulton for introduing them to the methods of

modern enumerative geometry so beautifully presented in his book [Fu℄. They are

also indebted to John Zwek for many useful omments on early versions of this

manusript.

A notational onvention: Throughout this paper X will denote a manifold whih

is oriented unless it is stated otherwise.

x1. Divisors and Atomiity.

In this setion we review briey the theory of atomi setions and divisors intro-

dued in [HS℄. This material enhanes the range and appliability of the subsequent

results, but it is not neessary for understanding their proofs. The reader ould

skip this setion and simply replae \atomiity" everywhere by \non-degenerate

vanishing".

Let f : U ! R

p

be a C

1

-map where U � R

n

is an open set.

De�nition 1.1. The map f is atomi if

f

�

�

dy

I

jyj

jIj

�

2 L

1

lo

for all I = (i

1

; : : : ; i

p

) suh that jIj = �i

k

< p.

Let � : R

p

� f0g �! S

p�1

denote radial projetion onto the unit sphere, and

de�ne

� =

1



p

�

�

(d vol

S

p�1
)(1.2)

=

1



p

 

p

X

k=1

y

k

�

�y

k

!

�

dy

1

^ � � � ^ dy

p

jyj

p

�

=

1



p

p

X

k=1

(�1)

k�1

y

k

jyj

p

dy

1

^ � � � ^



dy

k

^ � � � ^ dy

p
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where 

p

= vol(S

p�1

). The oeÆients of this form are integrable in bounded

neighborhoods of 0, and � satis�es the urrent equation

d� = [0℄ in R

p

:

Note that if f : U ! R

p

is atomi, then f

�

� 2 L

1

lo

on U .

De�nition 1.3. Let f : U ! R

p

be atomi. Then the divisor of f is the urrent

of degree p (and dimension n � p) on U given by taking the exterior derivative of

the potential d(f

�

�), i.e.,

Div(f) = d(f

�

�):

This urrent has the following properties.

dDiv(f) = 0(1.4)

suppDiv(f) � fx 2 U : f(x) = 0g

def

= Z(f)(1.5)

If 0 is a regular value of f , then Div(f) = [Z(f)℄(1.6)

where [Z(f)℄ is the urrent given by integration over the manifold Z(f). The �rst

two properties are obvious. The last is straightforward to verify. Note that the

de�nition of [Z(f)℄ involves a hoie of orientation on Z(f).

Theorem 1.7. ([HS℄) Let

~

f(x) = g(x)f(�(x)) where � : U ! U is a di�eomor-

phism and g : U ! GL

p

(R) is a smooth map. Then

~

f is atomi if and only if f is

atomi. Furthermore, if det(g) > 0 on U and � is orientation preserving, then

�

�

Div(

~

f) = Div(f):

As an immediate orollary the onepts of atomiity and divisor extend to se-

tions of a vetor bundle.

De�nition 1.8. Let E ! X be a smooth vetor bundle over an n-manifold X.

A smooth setion � 2 �(E) is said to be atomi if eah point x 2 X has a

neighborhood with loal oordinates and a loal trivialization of E with respet to

whih � is an atomi R

p

-valued funtion.

If E and X are oriented, and if � 2 �(E) is atomi, then Div(�) is a well de�ned

urrent of degree p (and dimension n� p) on X, alled the divisor of �.

Remark 1.9. Note that Div(�) is well-de�ned in the non-orientable ase provided

that the �rst Stiefel-Whitney lasses satisfy

w

1

(E) = w

1

(X)

in H

1

(X; Z

2

). This ondition guarantees that we an hoose loal trivializations of

E over a oordinate overing so that the hanges of trivialization g

��

and the Jao-

bian matries of the hanges of loal oordinates �

��

satisfy det(g

��

)�det(�

��

) > 0.

(See [Z℄.)

In [HS℄ e�etive riteria are established whih guarantee atomiity.

5



Theorem 1.10. ([HS℄) Let f : U ! R

p

be real analyti. If dimZ(f) 5 n � p,

then f is atomi.

Theorem 1.11. ([HS℄) Suppose f : U ! R

p

satis�es:

(1) There are onstants  > 0, N > 0 suh that

kf(x)k =  dist(x; Z(f))

N

;

(2) The Minkowski dimension of Z(f) is < n� p+ 1.

Then f is atomi.

It is also proved in [HS℄ that if f is atomi, its divisor is integrally at. Hene

one has the following \regularity".

Theorem 1.12. ([HS℄) Let f : U ! R

p

be atomi. If the mass of Div(f) is loally

�nite, then Div(f) is loally reti�able.
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x2. Degeneray urrents.

In this setion we introdue the notion of the k

th

degeneray urrent of a bundle

map. This is a urrent assoiated to the drop in rank of the map to rank 5 k.

For the de�nitions we must �x some notation. Let E ! X and F ! X be

smooth vetor bundles over an oriented manifold X, where E and F are either

both omplex or both real, and let

m = rankE and n = rankF:

Fix an integer k with 0 5 k 5 minfm;ng and set

r = m� k:

Let

(2.1) � : G

r

(E) �! X

be the smooth bundle whose �bre at x 2 X is the set of all r-dimensional linear

subspaes of E

x

(the �bre of E at x). Over G

r

(E) there is a tautologial vetor

bundle U of rank r whose �bre at P 2 G

r

(E) onsists of all vetors v 2 P . There

is a natural bundle embedding

(2.2) U � �

�

E

and if we introdue a metri in E, this gives a natural splitting

(2.3) �

�

E

�

=

U � U

?

:

Suppose now that we are given a smooth bundle map

� : E �! F:

Then this lifts to a mapping �

�

� : �

�

E ! �

�

F over G

r

(E), and omposing with j

gives a map

(2.4) �̂

def

= �

�

�

�

�

U

: U �! �

�

F:

De�nition 2.5. The bundle map � is said to be k-atomi if �̂ is an atomi setion

of the bundle Hom(U; �

�

F ) = U

�


 �

�

F over G

r

(E).

De�nition 2.6. For a bundle map � whih is k-atomi, we de�ne its k

th

degen-

eray urrent on X to be

D

k

(�) = �

�

Div(�̂)

where �

�

denotes the push-forward of urrents by � : G

r

(E)! X.
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Note that when E and F are real bundles, Div(�̂), and therefore D

k

(�), only

make sense when w

1

(U

�


 �

�

F ) = w

1

(G

r

(E)) (f. 1.9). This ondition holds when

m � n � k (mod 2) (See Appendix A, A.6 - A.10).

The odimension of Div(�̂) is rn (or 2rn in the omplex ase), and the �bre

dimension of G

r

(E) is rk (or 2rk respetively). Hene, we have

odim D

k

= r(n� k) = (m� k)(n� k)

in the real ase, and

odim D

k

= 2(m� k)(n� k)

in the omplex ase.

Lemma 2.7. For any k-atomi setion �, one has

supp D

k

(�) � fx 2 X : rank�

x

5 kg

Proof. If x 2 supp D

k

(�), then there exist a subspae U � E

x

of dimension r suh

that �

x

�

�

U

= 0. Hene, rank�

x

5 m� r = k. �

Note that if rank�

x

= k, then there is exatly one subspae of dimension r

(namely ker�

x

) on whih �

x

= 0. That is, above eah point of X where rank� = k,

there is exatly one point in the zero set Z(�̂) of �̂.

Proposition 2.8. Suppose �̂ vanishes non-degenerately. Then

RK

k

(�)

def

= fx 2 X : rank�

x

= kg

is a loally reti�able set, and

D

k

(�) = [RK

k

(�)℄

i.e., D

k

(�) is the urrent given by integration over this set.

Proof. By hypothesis we know that Z(�̂) is a smooth proper submanifold of

G

r

(E), and that Div(�̂) = [Z(�̂)℄. Therefore, D

k

(�) = �

�

[Z(�̂)℄, i.e., D

k

(�) is the

d-losed loally reti�able urrent given by the push-forward of the manifold Z(�̂).

This urrent has dimensionN = dimX�(m�k)(n�k) (N = dimX�2(m�k)(n�k)

in the omplex ase). The Federer-Sard Theorem [Fe℄ implies that the set of ritial

values of the map �

�

�

Z(�̂)

, from Z(�̂) to X, has Hausdor� N -dimensional measure

zero. Hene �

�

[Z(�̂)℄ = p[R℄ where R is the set of regular values and p is an integer.

It remains to show that

(2.9) R � RK

k

(�);

sine, as noted above,

� : Z

0

(�̂) = fu 2 Z(�̂) : �(U) 2 RK

k

(�)g �! RK

k

(�)

is one to one. To see (2.9), we observe that if rank�

x

= k � p, then

fU � E

x

: rankU = r and U � ker�

x

g = �

�1

(x) \ Z(�̂)

is a submanifold of G

r

(E

x

) di�eomorphi to the Grassmannian of r-planes in (r+p)-

spae. Thus, the preimage under �

�

�

Z(�̂)

of eah point x with rank�

x

< k is a

smooth submanifold of positive dimension. �
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It is appropriate here to point out that bundle maps are generially k-atomi,

in fat they generially satisfy the hypothesis of Proposition 2.8. Reall that a

smooth ross-setion of a bundle is said to vanish non-degenerately if its graph

is transversal to the zero-setion. The following Propsition is a minor modi�ation

of the standard Thom Transversality Theorem [GG℄.

Proposition 2.10. Suppose X is ompat with (possibly empty) boundary. Then

the set of smooth bundle maps � for whih �̂ vanishes non-degenerately is open and

dense in the C

1

-topology. Consequently, for any manifold X the set of suh � is

residual (i.e., ontains the intersetion of a ountable family of open dense subsets.)

Proof. Openness is lear. To prove density we �x a setion � and a point x

0

2 X.

Choose trivializations of E and F in a neighborhood U of x

0

. Then we have a

family of setions of Hom(E;F ) over U given by

�

L

= �

�

�

U

+L

for L 2 Hom(E

x

0

; F

x

0

). This gives a family of setions �̂

L

of Hom(U; �

�

F ) over

e

U

def

= �

�1

(U). We think of this as a map of manifolds

e

U � V �! Hom(U; �

�

F )

�

�

e

U

(2.11)

(u; L) 7�! �̂

L

(u)

where V = Hom(E

x

0

; F

x

0

). This map (2.11) is atually a submersion. To see this

note �rst that � Æ �̂

L

(u) = u, and so the image of T

u

e

U � f0g � T

(u;L)

(

e

U � V )

is a transversal to the �bre of � at all points. However, the map fug � V !

Hom(U; �

�

F )

u

is a surjetive linear map at eah u (whih sends L to \L

�

�

U

"). This

shows that (2.11) is a submersion.

Using a partition of unity and standard onstrutions one an globalize to a

submersion

(2.12) G

r

(E)�W

	

�! Hom(U; �

�

F )

where W is a �nite-dimensional vetor spae, where

	

w

def

= 	

�

�

G

r

(E)�fwg

= �̂

w

for a setion �

w

2 �(Hom(E;F )), and where �

0

= �. (Here W will be a diret

sum of V 's as above.) Sine 	 is a submersion, it is transversal to the zero-setion

of Hom(U; �

�

F ). By a standard argument using Sard's Theorem for families (f.

[HL

1

℄) we onlude that 	

w

is transversal to the zero setion of Hom(U; �

�

F ) for

almost all w 2W . �

In general k-atomiity is muh weaker than requiring �̂ to vanish non-degenerately.

One useful riterion for k-atomiity is the following.
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Lemma 2.13. Let � be a real analyti bundle map. If the set Z(�̂) � G

r

(E) has

odimension = (m� k)n, then � is k-atomi.

Proof. This is an immediate appliation of Theorem 1.10 above. �

Proposition 2.14. Suppose � is real analyti, and satis�es the ondition that

odimRK

k�p

= (m� k)(n� k + p);

(odimRK

k�p

= 2(m� k)(n� k + p) in the omplex ase);

for all p, 0 � p � k. Then � is k-atomi.

Proof. If rank�

x

= k�p, then dimker�

x

= r+p and �

�1

(x)\Z(�̂) is a Grassman-

nian of r-dimensional subspaes of (r + p)-spae. This is a manifold of dimension

rp (2rp in the omplex ase). It follows that

dimf�

�1

(RK

k�p

) \ Z(�̂)g = dim(RK

k�p

) + rp

for eah p. Let d = dimX. Then the ondition of 2.13 will be satis�ed if

dim(RK

k�p

) + rp 5 d � (m � k)(n � k) for all p, i.e., if odim(RK

k�p

) = (m �

k)(n � k) + rp = (m � k)(n � k + p) for all p (with appropriate hanges in the

omplex ase). �

We now address the problem of real bundles. If E and F are real, then there

will be two ases of interest for our disussion. In neither ase is E or F assumed

to be orientable.

2.15. Real Bundles; Case I. Here we assume that m, n and k are all even

integers. In this ase Hom(U; �

�

F ) is anonially oriented even when U and F are

not. Furthermore the �bre of �, whih is the Grassmannian G

r

(R

m

) of unoriented

r-planes in R

m

(r = m� k), is also oriented. See Corollary A.6 and Corollary A.8

in Appendix A for proofs.

2.16. Real Bundles; Case II. Here we assume that m, n and k are all odd inte-

gers. In this ase neither Hom(U; �

�

F ) nor G

r

(E) are oriented, but they have the

same �rst Stiefel-Whitney lass. (See Corollary A.6 and Corollary A.8 in Appen-

dix A.) Consequently, Div(�̂) is de�ned. The �bre G

r

(R

m

) of � is also not oriented,

so one must be areful when integrating over the �bre. (See Proposition A.11 and

it's proof.)

In the remaining ases a diret analysis shows that either w

1

(G

r

(E)) 6= w

1

(Hom(U; �

�

F )),

and so Div(�̂) is not de�ned as a urrent, or the �bre integral of the Euler form

�(Hom(U; �

�

F )) is zero, and so results of the type obtained in x5 are uninteresting.
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x3. Poinar�e-Lelong families.

In this setion we briey reall a basi result of [HL

2

℄ whih provides the �rst

step in all of our subsequent onstrutions. Let V ! X be a smooth omplex vetor

bundle of rankm with a omplex onnetion D and a metri < �; � > (whih is in

general unrelated to the onnetion), and let � be an atomi setion of V .

From this data we introdue a family of onnetions

�!

D

s

on V whih beome

singular as s & 0 preisely along the zeros of �. Taking the determinant of the

urvature

�!

R

s

of

�!

D

s

gives a family of smooth 2m-forms whih onverge as s ! 0

to Div(�). Moreover, the transgression forms for this family also onverge and

provide a anonial and funtorial oboundary between 

m

(R

V

) and Div(�), where

R

V

= D

2

is the urvature of the given onnetion.

To begin the proess we �x an approximation mode by hoosing a funtion

� 2 C

1

([0;1℄) with �(0) = 0, �(1) = 1, and �

0

= 0. We then de�ne the family

of onnetions

�!

D

s

by setting

(3.1)

�!

D

s

� = D� � �

s

< �; � >

j�j

2

D�

on setions � 2 �(V ), where �

s

= �(j�j

2

=s

2

). This is a smooth family of smooth

onnetions on F for all s > 0. Let

(3.2)

�!

R

s

= (

�!

D

s

)

2

denote the urvature of

�!

D

s

, and onsider the family of forms

(3.3) �

s

def

= det

�

i

2�

�!

R

s

�

= 

m

(

�!

R

s

):

Note that �

1

= 

m

(R

V

) is the top Chern form of the given onnetion. For all

s > 0 there is a transgression form

(3.4) �

s

=

�

i

2�

�

m

1

Z

s

det

�

_

�!

D

t

;

�!

R

t

�

dt

where

det(A;B) =

d

dt

det(B + tA)

�

�

t=0

= tr(

e

BA)

where

e

B is the transposed matrix of ofators of B, and where

_

�!

D

t

= (d=dt)

�!

D

t

.

These (2m� 1)-forms �

s

have the property that

(3.5) d�

s

= 

m

(R

V

)� �

s

:

Our main result is the following.
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Theorem 3.6. ([HL

2

℄) Let � be an atomi setion of the bundle V with onnetion

D as above. Then the limit � = lim

s!0

�

s

exists in the spae of forms on X with

L

1

lo

(X)-oeÆients. This limit is independent of hoie of approximation mode

and satis�es the urrent equation

(3.7) 

m

(R

V

)� Div(�) = d�:

In partiular, the family of L

1

lo

-forms �

s

def

= � � �

s

satis�es the equation

(3.8) �

s

� Div(�) = d�

s

and has the property that

(3.9) lim

s!0

�

s

= 0 and lim

s!1

�

s

= �

in L

1

lo

.

Equation (3.7) generalizes the lassial Poinar�e-Lelong formula for line bundles

and for this reason we all �

s

the Poinar�e-Lelong family. This family provides

anonial smoothings of the divisor Div(�). If � has the property that �(t) = 1 for

all t = 1, then �

s

has the additional property that

supp(�

s

) � fx 2 X : k�

x

k 5 sg

for all s > 0.

There is a ompanion result when V is a real oriented bundle of rank 2m with

an orthogonal onnetion D, and an atomi setion �. We �x any � as above and

introdue a smooth family of orthogonal onnetions de�ned on a setion � 2 �(V )

by

(3.10)

�!

D

s

� = D� � �

s

< �; � >

j�j

2

D�+ �

s

< D�; � >

j�j

2

�

where �

s

= �(j�j

2

=s

2

) as above. Let

�!

R

s

= (

�!

D

s

)

2

, and onsider the family of

losed 2m-forms

(3.11) �

R

s

def

= Pf

�

�

1

2�

�!

R

s

�

where Pf(A) denotes the PfaÆan of a skew-symmetri matrix A. We also de�ne

transgression forms

(3.12) �

R

s

=

�

�1

2�

�

m

1

Z

s

Pf(

_

�!

D

t

;

�!

R

t

)dt

where

Pf(A ; B) =

d

dt

Pf(B + tA)

�

�

t=0

:

These forms satisfy the equation

d�

R

s

= �(R

V

)� �

R

s

for s > 0

where �(R

V

) = Pf

�

�

1

2�

R

V

�

is the Chern-Euler form of the onnetion D.

12



Theorem 3.13. ([HL

2

℄) Let � be an atomi setion of the oriented bundle V with

orthogonal onnetion D as above. Then the limit �

R

= lim

s!0

�

R

s

exists in L

1

lo

(X)

and is independent of the hoie of approximation mode. It satis�es the urrent

equation

(3.14) �(R

V

)�Div(�) = d�

R

:

In partiular, the L

1

lo

-forms �

R

s

= �

R

� �

R

s

satisfy

(3.15) �

R

s

� Div(�) = d�

R

s

on X and have the property that

(3.16) lim

s!0

�

R

s

= 0 and lim

s!1

�

R

s

= �

R

in L

1

lo

(X).

We will all �

R

s

the Euler family assoiated to D, � and �.

The results above enhane the fundamental work of of [Ch℄ and [ChB℄, [ChB

2

℄

where the potentials � and �

s

were introdued in the speial ase of the tautalogial

setion over the total spae of V . In this universal ase our family �

s

(and �

R

s

)

provide families of anonial Thom forms for s > 0 whih onverge to the zero

setion as s ! 0. See Appendix C for simple expliit formulas for �

s

, �

s

, �, �

R

s

,

�

R

s

, and �

R

taken from [HL

2

℄.

13



x4. Thom-Porteous families (omplex ase).

In this setion we generalize the results of x3 to arbitrary degeneray urrents.

Let us �x smooth omplex vetor bundles E ! X and F ! X equipped with

onnetions D

E

and D

F

and with hermitian metris (not neessarily related to the

onnetions). We suppose that rank(E) = m and rank(F ) = n and we assume that

X is oriented.

In terms of the given onnetions we shall derive harateristi forms whih are

ohomologous to the degeneray urrents (f. [T℄[P℄[M1℄[R℄). To do this we must

introdue the Shur polynomials. Suppose

� = 1 + �

1

+ �

2

+ � � �

is a di�erential form on X where eah �

k

is homogeneous of degree 2k. Then for

non-negative integers a and b we de�ne the Shur polynomial in � by

(4.1) �

(b)

a

(�) = det

��

�

a�i+j

��

1�i�b

1�j�b

i.e., �

(b)

a

(�) is the homogeneous form given by the determinant of the b� b matrix

whose (i; j)

th

entry is �

a�i+j

. These polynomials satisfy the fundamental identity

(f. [Fu, pg. 264℄)

(4.2) �

(b)

a

(�) = (�1)

ab

�

(a)

b

(�

�1

)

where �

�1

is de�ned by the relation � � �

�1

= 1, and also the identity

(4.3) �

(b)

a

(�) = (�1)

ab

�

(b)

a

(

~

�)

where

~

�

def

= 1� �

1

+ �

2

� �

3

+ � � � .

Consider now the total Chern form of the onnetion D

F

given by

(R

F

) = det

�

I +

i

2�

R

F

�

= 1 + 

1

(R

F

) + � � �+ 

n

(R

F

)

where R

F

= (D

F

)

2

. The form (R

E

) is de�ned similarly, and there is the inverse

form (R

E

)

�1

determined by (R

E

)(R

E

)

�1

= 1. The Thom-Porteous form of

type (a; b) is then de�ned to be the form

�

(b)

a

f(R

F

)(R

E

)

�1

g:

We onsider now a smooth bundle map

� : E �! F

and we �x an approximation mode � as in x3. Let k be an integer with 0 � k <

minfm;ng and set N = 2(m� k)(n� k). Then we have the following.

14



Theorem 4.4. Suppose that � is k-atomi. Then there exist a anonial smooth

family of smooth N -forms TP

s

and a smooth family of L

1

lo

(N � 1)-forms S

s

on X,

for 0 < s 51, suh that

(4.5) TP

s

� D

k

(�) = dS

s

for all s, and

lim

s!0

S

s

= 0

in L

1

lo

. Furthermore, the transgression form S = S

1

is independent of the hoie

of approximation mode � and satis�es the urrent equation

(4.6) �

(m�k)

n�k

f(R

F

)(R

E

)

�1

g � D

k

(�) = dS:

Proof. Consider the (atomi) setion �̂ of the bundle H

def

= Hom(U; �

�

F ) intro-

dued in x2. The metris and onnetions on E and F indue a natural metri and

onnetion on H. Thus, using �, we an de�ne a Poinar�e-Lelong family of smooth

2(m � k)n-forms �

s

and anonial L

1

lo

-forms �

s

assoiated to �̂. They satisfy the

equation

(4.7) �

s

� Div(�̂) = d�

s

for all 0 < s 51. Applying �

�

to (4.7) gives the equation

(4.8) TP

s

� D

k

(�) = dS

s

where TP

s

def

= �

�

�

s

(alled the Thom-Porteous family) and S

s

def

= �

�

�

s

are the

smooth and L

1

lo

forms respetively obtained by integration over the �bre of the

smooth bundle � : G

r

(E) ! X. From 3.6 we know that � = �

1

satis�es the

equation

(4.9) 

M

(R

H

)�Div(�̂) = d�

on G

r

(E), where M = (m� k)n. Therefore, applying �

�

to (4.9) gives the formula

(4.10) �

�



M

(R

H

)� D

k

(�) = dS

on X, where S = �

�

�

1

= �

�

�.

It remains to ompute �

�



M

(R

H

). To begin we reall from Appendix A that the

Shur polynomials are exatly what is needed to ompute the top Chern form of a

tensor produt onnetion suh as that on H = U

�


 �

�

F . The formula is

(4.11) 

M

(R

H

) = �

(m�k)

n

f�

�

(R

F

) � (R

U

)

�1

g:

We now reall the splitting

(4.12) �

�

E = U � U

?

:
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There are two onnetions on �

�

E: the indued one �

�

D

E

, and the diret sum

onnetion D

U

�D

U

?

indued from �

�

D

E

by projetion onto the fators in (4.12).

Taking the anonial onvex family of onnetions joining these two and using the

standard transgression formula [HL

2

, I.1.19℄ gives an equation of smooth forms

(R

U

)(R

U

?

) = �

�

(R

E

) + d�

on G

r

(E). This an be rewritten as

(R

U

)

�1

= �

�

(R

E

)

�1

� (R

U

?

) + d�

0

where �

0

= (R

U

)

�1

�

�

(R

E

)

�1

�. Plugging this into (4.9) gives the formula

(4.13) 

M

(R

H

) = �

(m�k)

n

n

�

�

�

(R

F

)(R

E

)

�1

�

(R

U

?

)

o

+ d�

00

for a smooth form �

00

on G

r

(E).

We now observe that (R

U

?

) is of the form

(R

U

?

) = 1 + 

1

(R

U

?

) + � � �+ 

k

(R

U

?

):

Furthermore, the �bre dimension of � is 2(m�k)k, and so �

�

has the property that

�

�

f(�

�

�) g = �(�

�

 

0

)

for smooth forms � on X and  on G

r

(E), where  

0

is the homogeneous omponent

of  of degree 2(m� k)k. Consequently, applying �

�

to (4.13) gives

(4.14) �

�



M

(R

H

) = �

(m�k)

n�k

f(R

F

)(R

E

)

�1

g�

�

(

k

(R

U

?

)

(m�k)

) + dS

0

where S

0

= �

�

�

00

is a smooth form on X. To see this observe that the only (m�k)-

fold produt of Chern lasses of U

?

whih has degree 2(m�k)k is 

k

(U)

m�k

. Hene

all other terms in the determinant an be dropped when integrating over the �bre.

Now �

�



k

(R

U

?

)

m�k

is a losed 0-form, i.e., a onstant. This onstant is determined

by the topologial lass whih is omputed in Proposition B.1 of Appendix B. We

prove there that

�

�

(

k

(U

?

)

m�k

) = 1:

Hene, we have that

�

�



M

(R

H

) = �

(m�k)

n�k

f(R

F

)(R

E

)

�1

g+ dS

0

:

Replaing S

s

by S

s

�

�

s

1+s

�

S

0

and TP

s

by TP

s

�

�

s

1+s

�

dS

0

in equation (4.8) now

gives the result. �
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Remark 4.15 The adjoint problem. Let � : E �! F be as above and onsider

the adjoint mapping

�

�

: E

�

�! F

�

of the dual bundles. If �

�

is k-atomi, the degeneray urrent D

k

(�

�

) is de�ned

and Theorem 4.4 applies. In this ase equation (4.6) beomes

(4.16) �

(n�k)

m�k

f(R

E

�

)(R

F

�

)

�1

g � D

k

(�

�

) = dS:

We note from the Shur relations (4.2) and (4.3) and the fat that (E

�

) = ~(E) =

1� 

1

(E) + 

2

(E)� : : : , that

�

(n�k)

m�k

f(R

E

�

)(R

F

�

)

�1

g = (�1)

d

�

(n�k)

m�k

f(R

E

)(R

F

)

�1

g = �

(m�k)

n�k

f(R

F

)(R

E

)

�1

g

where d = (m � k)(n� k). Hene the left hand sides of (4.6) and (4.16) oinide.

Furthermore one an show that

supp D

k

(�

�

) = supp D

k

(�);

and that for generi maps

(4.17) D

k

(�

�

) = D

k

(�):

One onjetures that (4.17) holds for general k-atomi bundle maps.

Remark 4.18. Holomorphi Case. In the speial ase where X, E, F and

� are all holomorphi and where the D

E

and D

F

are anonial hermitian onne-

tions, equation (4.7) and therefore also its push-forward (4.8) an be written as

�

�

�-equations, that is, the right hand sides an be replaed by a �

�

�T where T is a

urrent of bidegree q; q for appropriate q. Consequently in this ase Theorem 4.4

has �

�

�-re�nement.
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x5. Thom-Porteous families (real ase).

In this setion we shall establish the analogue of Theorem 4.2 for morphisms

� : E ! F of real vetor bundles. To state the result in its proper generality we

need some preliminary disussion.

Throughout this setion X will be an oriented manifold and E ! X and F ! X

will be smooth, real vetor bundles furnished with orthogonal onnetions D

E

and

D

F

respetively. We assume rankE = m and rankF = n and we �x an integer k

with 0 � k < minfm;ng. We do not assume that E and F are orientable. There

are two ases of interest.

Case I. The integers m = 2m

0

, n = 2n

0

, and k = 2k

0

are all even.

Case II. The integers m = 2m

0

+ 1, n = 2n

0

+ 1 and k = 2k

0

+ 1 are all odd.

To state the theorem we need to onsider the Shur polynomials of Pontrjagin

forms. Suppose

� = 1 + �

1

+ �

2

+ � � �

is a di�erential form on X where eah �

k

is homogeneous of degree 4k. Then for a,

b = 0 we de�ne

(5.1)

e

�

(b)

a

(�) = det

��

�

a�i+j

��

1�i�b

1�j�b

:

Assoiated to the onnetion D

F

is the total Pontrjagin form

p(R

F

) = 1 + p

1

(R

F

) + � � �+ p

n

0

(R

F

);

where p(A) = det

�

I +

1

4�

2

A

2

�

. The form p(R

E

) is given similarly, and we de-

�ne the Thom-Porteous form of type (a; b) in the Pontrjagin lasses to be the

homogeneous form

e

�

(b)

a

fp(R

F

)p(R

E

)

�1

g:

We now onsider a smooth bundle map

� : E �! F;

and we �x an approximation mode � as in x3.

Theorem 5.2. Let E, F and k be as above (either Case I or Case II), and suppose

that � is k-atomi. Let N = (m � k)(n � k) = 4(m

0

� k

0

)(n

0

� k

0

). Then there

exists a anonial smooth family of smooth N -forms TP

s

, s > 0, and a smooth

family of L

1

lo

(N � 1)-forms S

s

on X, for 0 < s 51 suh that

(5.3) TP

s

� D

k

(�) = dS

s

for all s, and

lim

s!0

S

s

= 0

in L

1

lo

. Furthermore, the transgression form S = S

1

is independent of approxima-

tion mode and satis�es the equation

(5.4)

e

�

(m

0

�k

0

)

n

0

�k

0

fp(R

F

)p(R

E

)

�1

g � D

k

(�) = dS

of urrents on X.

18



Proof. Let � : G

r

(E)! X be the �bre bundle whose �bre at x is the Grassman-

nian of unoriented r-planes in E

x

, where

r = m� k = 2(m

0

� k

0

) = 2r

0

:

Let U ! G

r

(E) be the tautologial r-plane bundle, and let �̂ be the setion of

H = Hom(U; �

�

F )

�

=

U

�


 F

de�ned as in (2.4). By assumption �̂ is atomi. At this point our disussion breaks

into the two ases above.

We begin with Case I. Here both the bundle Hom(U; �

�

F ) and the maninfold

G

r

(E) are oriented. Using the approximation mode we an de�ne the Euler family

of smooth forms �

R

s

and the L

1

lo

-forms �

R

s

assoiated to �̂ as in Theorem 3.11.

They satisfy the equation

(5.5) �

R

s

� Div(�̂) = d�

R

s

on G

r

(E) for all 0 < s 51. Applying �

�

to (5.5) gives the equation

(5.6) TP

s

� D

k

(�) = dS

s

where TP

s

def

= �

�

�

R

s

(alled the Thom-Porteous family) and S

s

def

= �

�

�

R

s

are

smooth and L

1

lo

forms respetively on X. From 3.11 we know that �

R

= �

R

1

satis�es the equation

(5.7) �(R

H

)�Div(�̂) = d�

R

on G

r

(E) where H = Hom(U; �

�

F ), and where �(R

H

) = Pf

�

�

1

2�

R

H

�

is the

Chern-Euler lass of H. Applying �

�

in (5.7) gives the equation

(5.8) �

�

�(R

H

)� D

k

(�) = dS

on X, where S = �

�

�.

It remains to ompute �

�

�(R

H

). To begin we reall from Theorem A.17 in

Appendix A the formula

(5.9) �(R

H

) =

e

�

(m

0

�k

0

)

n

0

f�

�

p(R

F

) � p(R

U

)

�1

g:

Transgressing between the pullbak onnetion and its projetion onto the splitting

�

�

E = U � U

?

gives the equation

(5.10) p(R

U

)p(R

U

?

) = �

�

p(R

E

) + d�
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whih an be rewritten as

(5.11) p(R

U

)

�1

= �

�

p(R

E

)

�1

p(R

U

?

) + d�

0

:

Plugging this into (5.9) gives the formula

(5.12) �(R

H

) =

e

�

(m

0

�k

0

)

n

0

n

�

�

�

p(R

F

)p(R

E

)

�1

�

p(R

U

?

)

o

+ d�

00

of smooth forms on G

r

(E). Arguing exatly as in the proof of Theorem 4.2, we

now see that

(5.13) �

�

�(R

H

) =

e

�

(m

0

�k

0

)

n

0

�k

0

�

p(R

F

)p(R

E

)

�1

	

�

�

�

p

k

0

(R

U

?

)

m

0

�k

0

�

+ dS

0

where S

0

= �

�

�

00

is a smooth form on X.

The term �

�

p

k

0

(R

U

?

)

m

0

�k

0

is a d-losed 0-form, i.e., a onstant. In Proposition

B.5 of Appendix B it is proved that

(5.14) �

�

p

k

0

(U

?

)

m

0

�k

0

= 1;

and so this onstant is 1. Replaing S

s

by S

s

�

s

1+s

S

0

and TP

s

by TP

s

�

s

1+s

dS

0

in

equation (5.6) now ompletes the proof for Case I.

The argument for Case II is highly analogous. The main di�erene omes from

the fat that while X is oriented, G

r

(E) is not beause the �bre of � is not ori-

entable. Consequently, when passing through the proof, one must keep in mind

the following points. Let O denote the orientation bundle for the manifold G

r

(E).

Tensoring the exterior powers of the otangent bundle of G

r

(E) by the real line

bundle O yields bundles whose setions are alled twisted di�erential forms.

A. Currents of dimension k on the d dimensional manifold G

r

(E) inlude

twisted forms of degree d�k whih an be allowed to have L

1

lo

oeÆients.

B. Twisted forms with L

1

lo

oeÆients an be integrated over the �bre and

this orresponds to urrent push forward �

�

.

C. �(R

U

) is a twisted form on G

r

(E).

The main alulational di�erene in the argument is that equation (5.9) must be

replaed by

(5.15) �(R

H

) = (�1)

(n

0

+1)r

0

�(R

U

)

e

�

(m

0

�k

0

)

n

0

f�

�

p(R

F

) � p(R

U

)

�1

g

whih is proved in Theorem A.20 in Appendix A, and (5.14) is replaed by

(5.16) �

�

f�(U)p

m

0

(U

?

)

m

0

�k

0

g = 1;

whih is proved in Proposition B.11 of Appendix B. �

The formulas whih appear in Theorem 5.2 were omputed at the ohomology

level by R. MaPherson in his Harvard University Thesis in 1970 (f. [M1℄[M2℄).
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Remark 5.17 The adjoint problem. Let � : E �! F be as above and onsider

the adjoint mapping

�

�

: E

�

�! F

�

of the dual bundles. If �

�

is k-atomi, the degeneray urrent D

k

(�

�

) is de�ned

and Theorem 5.2 applies. In this ase equation (5.4) beomes

(5.18)

e

�

(n

0

�k

0

)

m

0

�k

0

fp(R

E

)p(R

F

)

�1

g � D

k

(�

�

) = dS:

From (4.2) we see that

e

�

(n

0

�k

0

)

m

0

�k

0

fp(R

E

)p(R

F

)

�1

g = (�1)

d

e

�

(m

0

�k

0

)

n

0

�k

0

fp(R

F

)p(R

E

)

�1

g

where d = (m

0

� k

0

)(n

0

� k

0

). It an be shown that supp D

k

(�

�

) = supp D

k

(�)

and that for generi maps

(5.19) D

k

(�

�

) = (�1)

d

D

k

(�):

One onjetures that (5.19) holds for general k-atomi bundle maps.

Remark 5.20. A version of Theorem 5.2 holds for any pair of bundles E and F

whenever k = 0, provided that E

�


F = Hom(E;F ) is oriented or, more generally,

that w

1

(E

�


F ) = w

1

(X). In this version the harateristi form in equation (5.4)

is just the Euler form of �(E

�


 F ) and D

k

(�) is just the divisor of � onsidered

as a setion of Hom(E;F ). This result is merely an instane of the general results

disussed in x3.
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x6. Charateristi forms and the degeneraies of k-frame �elds.

Among the lassial theorems in topology are those whih relate the hara-

teristi lasses of a bundle to the singularities of �elds of k-frames in the bundle.

We shall derive suh formulas, at the level of forms and urrents, as diret onse-

quenes of the general theory. The results generalize the lassial Chern formula



n

(F ) = Div(�)+ dT and our families (f. x2) to all Chern and Pontryagin lasses.

Let F ! X be a smooth omplex vetor bundle of rank n with onnetion D

F

over an oriented manifold X, and onsider a set of k+1 ross-setions �

0

; : : : ; �

k

2

�(F ) where k < n. This is equivalent to a bundle map

� : C

k+1

�! F

from the trivial bundle C

k+1

given by setting �

x

(t

0

; : : : ; t

k

) = �t

i

�

i

(x) for x 2 X.

We shall say that this frame �eld (�

0

; : : : ; �

k

) has a good dependeny lous if

the map � is k-atomi. In this ase we an de�ne the linear dependeny urrent

(6.1) LD (�

0

; : : : ; �

k

)

def

= D

k

(�):

Theorem 6.2. Let F ! X be a omplex vetor bundle with onnetion over an

oriented manifold, and suppose that �

0

; : : : ; �

k

2 �(F ) are k + 1 smooth setions

with a good dependeny lous. Then there exists an L

1

lo

-form S on X suh that

(6.3) 

n�k

(R

F

) = LD (�

0

; : : : ; �

k

) + dS

where n = rank(F ). Furthermore, there exist smooth families of smooth forms TP

s

and L

1

lo

-forms S

s

, 0 < s 51, with TP

1

= 

n�k

(R

F

) and S

1

= S, suh that

(6.4) TP

s

= LD (�

0

; : : : ; �

k

) + dS

s

and lim

s!0

S

s

= 0 in L

1

lo

.

Proof. We endow the trivialized bundle C

k+1

over X with the anonial metri

and at onnetion. We introdue on F a smooth hermitian metri (not neessarily

related to D

F

), and we hoose an approximation mode �. In terms of this data,

Theorem 4.4 provides the families TP

s

and S

s

for the urrent D

k

(�). Formula (4.6)

translates diretly into (6.3) above. �

Note. In algebrai geometry these linear dependeny lasses are used to de�ne the

Chern lasses in the Chow ring of a smooth variety (f. [Fu℄).

Theorem 6.2 gives a diret proof of the basi fat that if �

0

; : : : ; �

k

are lin-

early dependent on a small set, i.e., one of dimension < n � k, and if they vanish

algebraially as in Theorem 1.11 (1), then [

n�k

℄ = 0 in H

2(n�k)

(X).
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Theorem 6.2 an be generalized to higher dependenies. Fix integers ` > 0 and

k with 0 � k < rank(F ), and onsider k + ` smooth ross-setions �

1

; : : : ; �

k+`

2

�(F ). They give rise to bundle map

� : C

k+`

�! F

as above. We say that the frame �eld � = (�

1

; : : : ; �

k+`

) has a good `-dependeny

lous if � is k-atomi. In this ase we de�ne the `-dependeny urrent

(6.5) LD

`

(�) = D

k

(�)

whih measures in a rigorous way the set of points x where at least ` of the vetors

�

1

(x); : : : ; �

k+`

(x) beome linearly dependent on the remaining ones.

Theorem 6.6. Let F be as above and suppose � = (�

1

; : : : ; �

k+`

) are k+` setions

of F with a good `-dependeny lous. Then there is an L

1

lo

-form S on X suh that

(6.7) det

`�`

��



n�k�i+j

(R

F

)

��

= LD

`

(�) + dS:

Furthermore there exist families TP

s

and S

s

, 0 < s 51, with properties analogous

to those in Theorem 6.2.

Proof. One applies Theorem 4.4 as in the proof above. �

Of ourse one retrieves Theorem 6.2 from 6.6 as the speial ase where ` = 1.

At the other extreme we an take k = 0. Note that LD

`

(�

1

; : : : ; �

`

) measures

the simultaneous vanishing of ` generi setions of F . Here we get the preditable

formula

(6.8) 

n

(R

F

)

`

= LD

`

(�

1

; : : : ; �

`

) + dS:

There are orresponding theorems in the real ase. Let F ! X be a smooth

real vetor bundle of rankn with orthogonal onnetion D

F

. Consider smooth

ross-setions �

1

; : : : ; �

k+`

2 �(F ) where 0 5 k < n and ` is even. We say that

� = (�

1

; : : : ; �

k+`

) has a good `-dependeny lous if the bundle map

� : R

k+`

�! F

given by �

x

(t

1

; : : : ; t

k+`

) = �t

i

�

i

(x) is k-atomi. In this ase we de�ne the `-

dependeny urrent

LD

`

(�) = D

k

(�):

Sine ` = 2`

0

is even, there are two ases to onsider:

Case I. n = 2n

0

and k = 2k

0

Case II. n = 2n

0

+ 1 and k = 2k

0

+ 1

for integers n

0

, k

0

= 0. In Case II we assume F to be orientable.

23



Theorem 6.9. Let F and � be as above (either Case I or Case II) and suppose

that � has a good `-dependeny lous. Then there is an L

1

lo

-form S on X suh

that

(6.10) det

`

0

�`

0

��

p

n

0

�k

0

�i+j

(R

F

)

��

= LD

`

(�) + dS:

Furthermore there exist families TP

s

and S

s

, 0 < s � 1, with properties analogous

to those in Theorem 6.2.

Proof. Introdue the anonial at orthogonal onnetion on the trivialized bundle

R

k+`

and apply Theorem 5.2. �

Setting `

0

= 1 gives the following analogue of the formula in Theorem 6.2:

(6.11) p

n

0

�k

0

(R

F

) = LD

2

(�

1

; : : : ; �

k+2

) + dS

where k = 2k

0

or 2k

0

+1 depending on whih of the Cases I or II we are onsidering.

If we set k

0

= 0, we obtain

(6.12) p

n

0

(R

F

)

`

0

= LD

2`

0

(�

1

; : : : ; �

2`

0

) + dS

where LD

2`

0

(�

1

; : : : ; �

2`

0

) is measuring the simultaneous vanishing of the 2`

0

se-

tions.

Theorem 6.9 has some interesting appliations in the next setion.
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x7. Singularities of projetions.

Let X be a smooth oriented m-manifold with an immersion

j : X # R

N

into eulidean N -spae. Fix an integer n < N and onsider the set of linear maps

from R

N

to R

n

. Eah P 2 Hom(R

N

;R

n

) restrits to give a smooth mapping

b

P = P Æ j : X �! R

n

:

We are interested in studying the singularities of these projetions. In partiular

for �xed k < minfm;ng and generi P we want to understand the lous where the

di�erential

d

b

P : TX �! R

n

has rank 5 k.

The projetion P is alled k-atomi on X if the bundle map d

b

P is k-atomi,

and under this hypotheses one an de�ne the k

th

degeneray urrent of the

projetion P on X to be

D

k

(P )

def

= D

k

(d

b

P ):

Theorem 7.1. Let j : X # R

N

be a C

1

immersion of a smooth oriented m-

manifold into eulidean spae. Fix integers k and n with k < minfm;ng and with

k � m � n (mod 2). Then for almost all P 2 Hom(R

N

;R

n

) the projetion P is k-

atomi on X and the following holds. There is a anonial L

1

lo

-form S = S(P; k; n)

suh that

(7.2) det

`

0

�`

0

��

p

m

0

�k

0

�i+j

(X)

��

= D

k

(P ) + dS

where m

0

= [m=2℄, n

0

= [n=2℄, k

0

= [k=2℄, `

0

= n

0

� k

0

, and where

p(R

X

) = 1 + p

1

(R

X

) + p

2

(R

X

) + � � �

is the total Pontrjagin form of X for its indued riemannian onnetion. Further-

more, there are smooth families of smooth forms TP

s

and L

1

lo

-forms S

s

, 0 < s 51,

with TP

1

=

e

�

(n

0

�k

0

)

m

0

�k

0

fp(R

X

)g and S

1

= S, suh that

(7.3) TP

s

= D

k

(P ) + dS

s

and lim

s!0

S

s

= 0 in L

1

lo

.

In partiular, if n

0

= k

0

+ 1 then there is a anonial ohomology

(7.4) p

m

0

�k

0

(R

X

) = D

k

(P ) + dS

between the (m

0

� k

0

)

th

Pontrjagin form and the urrent whih measures where

the di�erential of the projetion

b

P : X ! R

k+2

drops rank by 2.
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Proof. To prove that P is k-atomi for almost all P we mimik the proof of

Proposition 2.10. Set W = Hom(R

N

;R

n

) and let � : G

r

(R

n

) ! X be the bundle

projetion and U ! G

r

(R

n

) the tautologial r-plane bundle, where r = n � k.

Then there is a C

1

map

(7.5) W �G

r

(R

n

) = W �G

r

(R

n

)�X

	

�! Hom(U; �

�

TX)

(into the total spae of the bundle Hom(U; �

�

TX) over G

r

(R

n

)) given by

	(P;U; x) =

e

P

�

�

�

�

�

U

where

e

P = P

�

�

�

�

T

x

X

:

We laim that 	 is transversal to the zero setion of this bundle. To see this

suppose that 	(P;U; x) = 0 and let Q

0

2 Hom(U; T

x

X) be given. Extend Q

0

to

Q 2 Hom(R

n

;R

N

) by de�ning Q to be zero on U

?

. Consider the urve

P

t

= P + tQ

�

in W:

Then

d

dt

	(P

t

; U; x)

�

�

�

�

t=0

=

�

Q

�

�

�

T

x

X

�

�

�

�

�

�

U

= Q

�

�

�

�

U

= Q

0

:

Hene d	, restrited to W

�

=

T

p

W � T

(P;U;x)

(W � G

r

(R

n

) � X), maps onto the

�bre of Hom(U; �

�

TX) and is therefore transversal to the zero-setion as laimed.

It now follows from Sard's Theorem for Families ([HL

1

℄) that for almost all

P 2 W the restrition of 	 to fPg � G

r

(R

m

) is transversal to the zero setion

of Hom(U; �

�

TX). All suh P are k-atomi. This proves the �rst assertion of

the theorem. The remaining assertions are straightforward onsequenes of Theo-

rem 6.9 applied to d

b

P : TX �! R

n

where TX arries the riemannian onnetion

for the metri indued by j and where R

n

arries the anonial at orthogonal

onnetion. �
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x8. Singularities of maps.

We shall now onsiderably generalize the results of the last setion. Let X and

Y be smooth riemannian manifolds of dimensions m and n respetively (where Y

need not be orientable) and onsider a smooth mapping

f : X �! Y:

Fix an integer k < minfm;ng and assume that m � n � k (mod 2). Then the map

f is said to be k-atomi if the di�erential

df : TX �! f

�

TY

is k-atomi. Arguing as in setions 2 and 7, one an show that generi smooth maps

have this property. Whenever f is k- atomi, we an de�ne its k

th

degeneray

urrent D

k

(f)

def

= D

k

(df).

Theorem 8.1. Let f : X ! Y , m, n and k be as above, and suppose that f is

k-atomi. Set m

0

= [m=2℄, n

0

= [n=2℄ and k

0

= [k=2℄. Then there is a anonial

L

1

lo

-form S on X suh that

(8.2)

e

�

(m

0

�k

0

)

n

0

�k

0

�

f

�

p(R

Y

)=p(R

X

)

	

= D

k

(f) + dS

where

p(R

X

) = 1+p

1

(R

X

)+p

2

(R

X

)+ � � � and p(R

Y

) = 1+p

1

(R

Y

)+p

2

(R

Y

)+ � � �

are the total Pontrjagin forms in the riemannian urvatures of X and Y . Further-

more there are smooth families of smooth forms TP

s

and L

1

lo

-forms S

s

, 0 < s 51,

with TP

1

= �

(m

0

�k

0

)

n

0

�k

0

ff

�

p(R

Y

)=p(R

X

)g and S

1

= S, suh that

TP

s

= D

k

(f) + dS

s

and lim

s!0

S

s

= 0 in L

1

lo

.

Proof. This is a straightforward appliation of Theorem 5.2. �

An interesting speial ase ours when dimX = dimY = 4 and k = 2. Here

(8.2) has the form

(8.3) f

�

p

1

(Y )� p

1

(X) = �n

i

x

i

+ dS

where D

2

(f) = �n

i

x

i

is a disrete sum of points with integer oeÆients. Let

N

f

= �n

j

denote the total 2-degeneray number of f .

This yields a 4-dimensional analogue of the lassial Riemann-Hurwitz Theorem

[M1℄, [M2℄, [R℄.

Corollary 8.4. Suppose that f : X ! Y is a smooth map between ompat

oriented 4-manifolds with isolated points of 2-degeneray. Then

M

f

p

Y

� p

X

= N

f

where p

X

and p

Y

are the �rst Pontrjagin numbers of the manifolds X and Y

respetively, M

f

is the degree of the map f , and N

f

is the total 2-degeneray

number of f .

In his thesis [S℄ Robert Stingley gives reinterpretations of N

f

and methods of

omputing it in terms of the loal geometry of the map f .
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x9. Milnor urrents.

There is a omplete analogue of the formulas of x8 for the omplex ase. Suh

results are not new; they an be dedued from work by Fulton, Bismut, Gillet and

Soul�e. However we add them here for interest, and remark that the holomorphi

assumptions here an be onsiderably relaxed to statements about smooth almost

omplex manifolds.

Let X and Y be omplex manifolds of dimensions m and n respetively, and

onsider a holomorphi map

f : X �! Y:

Introdue omplex onnetions and hermitian metris on X and Y . Fix k <

minfm;ng. We say that f is k-atomi if

odim

C

fx 2 X : rank(df

x

) 5 kg = (m� k)(n� k):

By 1.10 and 2.7 this hypothesis implies the existene of the k

th

degeneray ur-

rent D

k

(f)

def

= D

k

(df).

Theorem 9.1. Let f : X ! Y be a holomorphi k-atomi map as above. Then

there exists a anonial L

1

lo

-form S on X suh that

(9.2) �

(m�k)

n�k

ff

�

(Y )=(X)g = D

k

(f) + dS

where d = (m � k)(n � k) and where (X) = det(1 + (i=2�)R

X

) and (Y ) =

det(1 + (i=2�)R

Y

) are the total Chern forms of X and Y in their given onne-

tions. Furthermore, there are smooth families TP

s

, �

s

, 0 < s 5 1 with properties

analogous to those in 8.1.

Proof. This is a diret onsequene of Theorem 4.4 and (4.2). �

Remark. When X and Y are given the anonial hermitian onnetions assoiated

to the metris, the term dR in formula (9.2) an be replaed by �

�

�T as noted in

Remark 4.18.

An interesting ase ours when X and Y are ompat, dimY = n = 1, and

k = 0. Then f is a map to a omplex urve, and it will be 0-atomi i� it has

isolated singular points, say x

1

; : : : ; x

`

2 X. We de�ne the Milnor urrent to be

M (f)

def

= D

k

(f) =

`

X

i=1

m

i

[x

i

℄

where the integers m

i

are the loal Milnor numbers

m

i

= dim

n

O

x

i

.D

�f

�t

1

; : : : ;

�f

�t

m

Eo

:

Equation (9.2) has the form

(9.3) (�1)

m

f

m

(R

X

)� 

m�1

(R

X

)f

�



1

(R

Y

)g = M (f) + dS:
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When n = 1 this equation integrates to give the lassial Riemann-Hurwitz For-

mula.

Another interesting ase arises when X � P

N

is a projetive m-manifold and

f : X ! P

m

is given by linear projetion P

N

� P

N�m�1

! P

m

, where X \

P

N�m�1

= ; (Noether normalization). Let ! be the K�ahler form of the metri

indued on X. Then (9.2) implies formulas of the following type. If f is (m � k)-

atomi for k

2

5 m, then

(9.4) �

(k)

k

f(X)(1 + !)

�(m+1)

g = (�1)

k

2

D

m�k

(f) + dS

k

for an L

1

lo

-form S

k

. Every suh f is (m � 1)-atomi, and D

m�1

(f) = B (f) is the

branhing divisor of f . This gives the formula:

(9.5) (m+ 1)! � 

1

(X) = B (f) � dS:

For example if X is a urve of degree d and genus g, then (9.5) implies that 2(d+

g � 1) = jB j = the total order of branhing of f .

There are of ourse many many suh formulas oming from methods of enumer-

ative geometry.
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x10. CR-singularities.

The methods introdued above yield some interesting results in CR geometry.

Consider an immersion

f : X # Z

of a real manifold X into a omplex manifold Z, where

m = dim

R

(X) � n = dim

C

(Z):

Then the di�erential df : TX ! f

�

TZ extends to a omplex bundle map

(10.1) df

C

: TX 


R

C �! f

�

TZ:

De�nition 10.2. Assume that the bundle map df

C

is k-atomi where 0 � k < n,

and let r = n� k. Then we de�ne the r

th

omplex tangeny urrent of f to be

C r

r

(f) = D

k

(df

C

):

Roughly speaking this urrent orresponds to the lous of points x where f

�

T

x

X

ontains a omplex subspae having r \exess" dimensions, i.e., more omplex tan-

geny (by r) than expeted. Spei�ally we have:

Lemma 10.3. The support of C r

r

(f) satis�es

supp C r

r

(f) j fx 2 X : dim

C

(T

x

X \ JT

x

X) = m� n+ rg

where J denotes the almost omplex struture of Z (and where for notational

onveniene we have identi�ed T

x

X with f

�

T

x

X).

Proof. By (2.7) we have supp C r

r

(f) � fx 2 X : rank(df

C

) 5 kg. Note that at

x 2 X,

ker(df

C

) = fV + iW : V;W 2 T

x

X and V + JW = 0g

= fV + iJV : V; JV 2 T

x

Xg

= [(T

x

X \ JT

x

X)
C℄

0;1

:

Sine rank(df

C

) = m � dim

C

ker(df

C

) we have rank(df

C

) 5 k i� dim

C

(T

x

X \

JT

x

X) = m� k = m� n+ r. �

We now suppose that X arries a riemannian metri and that Z arries a her-

mitian metri and a omplex onnetion. De�ne (Z) as in (9.1) and set

~p(X) = 1� p

1

(R

X

) + p

2

(R

X

)� � � �+ (�1)

[m=4℄

p

[m=4℄

(R

X

)

and

~(Z) = 1� 

1

(R

Z

) + 

2

(R

Z

)� � � �+ (�1)

n



n

(R

Z

)

where p

i

(R

X

) and 

i

(R

Z

) are the i

th

Pontrjagin and Chern forms of X and Z

respetively.
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Theorem 10.4. Let f : X ! Z be an immersion of a real m-manifold into a

omplex n-manifold with n 5 m as above, and assume that df

C

is (n� r)-atomi

where 0 < r 5 n. Then there is a anonial L

1

lo

form S on X suh that

(10.5) �

(r)

m�n+r

f~p(X)=f

�

~(Z)g = �

(m�n+r)

r

ff

�

(Z)=~p(X)g

= C r

r

(f) + dR:

Furthermore there are smooth families TP

s

, S

s

0 < s 51 as in Theorems 6.2, 8.1,

9.1 et.

Note 10.6. The term on the left is omputed by writing ~p(X)=f

�

~(Z) = 1 + �

1

+

�

2

+ � � � , where �

i

is a 2i-form, and then applying formula (4.1).

Note 10.7. In Theorem 10.4 it suÆes that Z be an almost omplex manifold.

Furthermore f need not be an immersion; but in this ase Lemma 10.3 does not

apply.

Proof of Theorem 10.4. Apply Theorem 4.4 to the bundle map df

C

and note

that

(R

T

�

X
C

) = (R

TX
C

) = ~p(X):

This establishes the seond equality in (10.5). The �rst equality is a diret onse-

quene of the Shur relations (4.2) and (4.3). �

Consider for example the ase where Z = C

n

and r = 1. This gives the following.

Corollary 10.8. Let f : X # C

k+1

be an immersion of a smooth m-manifold

with the property that df

C

is k- atomi. Suppose m � k = 2` > 0. Then there is

an L

1

lo

-form S on X with

C r

1

(f) = (�1)

`

p

`

(X) + dS:

Example 10.9. Suppose X

4

is a smooth 4-manifold and

f : X

4

# C

3

an immersion as above. Then we have that

p

1

(X) = �n

i

x

i

+ dS

where x

1

; : : : ; x

N

are the points of omplex tangeny of the immersion and where

n

1

; : : : ; n

N

are integers omputed from the loal CR geometry of f .
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Example 10.10. Consider the ase where m = n. Let

f : X

n

# Z

n

be an immersion of a real n-manifold into a omplex n-manifold. If df

C

is (n� r)-

atomi, we have

C r

r

(f) = �

(r)

r

f~p(X)=~(Z)g+ dS

(where ~(Z) is assumed to be pulled bak via f to X). When r = 1 we have

C r

1

(f) = 

1

(Z) + dS:

When r = 2, a alulation yields

C r

2

(f) = �

(2)

2

(Z)� p

1

(Z)p

1

(X) + p

1

(X)

2

+ dS:

Example 10.11. Consider an immersion

f : S

m

# Z

and give S

m

the standard Riemannian onnetion for whih p(S

m

) � 1. Then if

df

C

is (n� r)-atomi we have

C r

r

(f) = �

(m�n+r)

r

f(Z)g+ dS:

One ase of interest is where m = n = 2r

2

. Then we have

C r

r

(f) =

�

�

�

�

�

�

�

�



r

(Z) 

r+1

(Z) � � � 

2r

(Z)



r�1

(Z) 

r

(Z)

.

.

.



1

(Z) 

r

(Z)

�

�

�

�

�

�

�

�

+ dS:

There is a ounterpart to all of the disussion above for the ase where m 5 n.

Theorem 10.12. Let f : X # Z be an immersion of a real m-manifold into a

omplex n-manifold where m 5 n. Assume that the map df

C

of (10.1) is (m� r)-

atomi. For given onnetions and metris onX and Z as above, there is a anonial

L

1

lo

-form S suh that

(10.13) C r

r

(f)

def

= D

m�r

(df

C

) = �

(r)

(n�m+r)

f(Z)=~p(X)g � dS

with approximating families TP

s

and S

s

as in (10.4).
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The proof of Lemma 10.3 shows that in this ase

supp C r

r

(f) � fx 2 X : dim

C

(T

x

X \ JT

x

X) = rg:

Remark 10.14. Note that if f : X # Z is a totally real immersion, then Theo-

rem 10.12 implies that

(10.15) �

(r)

n�m+r

f(Z)=~p(X)g = 0 in H

�

(X)

for all r > 0. However in this ase TZ

�

�

X

= (TX � C ) � � where � is a omplex

bundle of dimension n�m. Hene, on X we have

(Z) = (TX � C )(�) = ~p(X)(�)

and so

(Z)=~p(X) = (�) = 1 + 

1

(�) + � � �+ 

n�m

(�)

and (10.15) follows trivially.

On the other hand if f is Lagrangian (in the sense that f

�

T

x

X)?J(f

�

T

x

X) for all

x), then for a natural hoie of onnetions onX and Z one has �

(r)

n�m+r

f(Z)=~p(X)g �

0 on X, and via (10.15) a seondary invariant [T ℄ 2 H

odd

(X;R) is de�ned.

Some of the results in this setion are related to work of Lai [Lai℄, Webster

[W1,2,3℄, and Wolfson [Wo℄.
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x11. Invariants for pairs of omplex strutures.

In this setion we shall introdue harateristi invariants whih measure the

relative singularities of a pair of omplex strutures. Consider a real C

1

vetor

bundle E ! X of rank 2n, and suppose that J

1

and J

2

are smooth almost omplex

strutures on E. These strutures indue deompositions

(11.1) E 


R

C = E

1;0

1

� E

0;1

1

= E

1;0

2

� E

0;1

2

into the �i eigenspaes of J

1

and J

2

respetively. (E

1;0

k

is the +i eigenspae.)

Consider the bundle map � given by the omposition

E

1;0

1

,! E 


R

C� E

0;1

2

Lemma 11.2. At eah x 2 X, there is an isomorphism

ker�

x

�

=

fV 2 E

x

: J

1

V = J

2

V g

= the maximal subspae of E

x

whih is simultaneously

J

1

and J

2

omplex.

Proof. Note that E

1;0

1

= fV � iJ

1

V : V 2 E

x

g. Now for V 2 E

x

, we have

v

def

= V � iJ

1

V 2 ker�() �

1;0

2

(v) = 0

() v + iJ

2

v = V � iJ

1

V + iJ

2

(V � iJ

1

V ) = 0

() J

2

V = J

1

V: �

De�nition 11.3. Fix r, 1 � r � n. The strutures J

1

, J

2

will be alled r-

transversal if the bundle map � is (n � r)-atomi. Under this hypothesis we

de�ne the r

th

oinidene urrent of the pair J

1

, J

2

to be

Q

r

(J

1

; J

2

) = D

n�r

(�):

From 11.2 and 2.7 we have that

suppQ

r

(J

1

; J

2

) j fx 2 X : J

1

= J

2

on a subspae W � E

x

with dimW = rg:

Theorem 11.4. Suppose J

1

and J

2

are r- transversal. Then given omplex on-

netions on E

1

� (E; J

1

) and E

2

� (E; J

2

), there exists an L

1

lo

-form S suh that

Q

r

(J

1

; J

2

) = �

(r)

r

(E

2

�E

1

) + dS

where (E

2

� E

1

) = (R

E

2

)(R

E

1

)

�1

. Furthermore, there are smooth families TP

s

and S

s

, 0 < s 51 as in 6.2, 8.1, 9.1.
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Proof. Apply Theorem 4.4. �

Example 11.5. Fix E

1

= X�C

n

= (X�R

2n

; J

0

). The produt bundle with the

anonial at onnetion, and onsider E

2

= (X � R

2n

; J) where J is any other

almost omplex struture on this trivialized R

2n

-bundle. For those J whih are

r-transversal to the given at struture we have

Q

r

(J)

def

= Q

r

(J

0

; J) = �

(r)

r

(R

J

) + dS

r

where (R

J

) are the Chern forms of a J -omplex onnetion. For example,

Q

1

(J) = 

1

(R

J

) + dR

1

Q

2

(J) = det

�



2



3



1



2

�

+ dR

2

= 

2

2

� 

1



3

+ dT

2

Q

3

(J) = det

0

�



3



4



5



2



3



4



1



2



3

1

A

+ dR

3

:

Note. There are ohomology relations

(E)(E) = 1 and 

n

(E) = 0

on any omplex bundle whih is trivial as a real bundle. Nevertheless, E may still

be non-trivial as a omplex bundle. Consider for example the omplex line bundle

L! S

1

� S

1

of Chern lass 2, and set E = L�C. Then



1

(E) = 

1

(L) = 2

and so E is non-trivial. However E is trivial as an R

4

-bundle. To see this note

�rst that the lassifying map S

1

� S

1

�! BU

2

�! BSO

4

an be lifted to a map

S

1

� S

1

�! BSpin

4

sine the only obstrution to this lifting is w

2

(E) = 

1

(E)

(mod 2) = 0. However, BSpin

4

is 3-onneted, so this lift, and therefore also the

map to BSO

4

, are ontratible.

Example 11.6. (Di�eomorphisms) Let f : X ! X be a di�eomorphism of an

almost omplex manifold with almost omplex struture J . For generi f , the

strutures J and f

�

J will be r-transversal for all r, and so given a J -ompatible

onnetion r on X, we an take the f

�

J -ompatible onnetion f

�

r and obtain

L

1

lo

-forms S

r

with

Q

r;J

(f)

def

= Q

r

(J; f

�

J) = �

(r)

r

ff

�

(R

J

)=(R

J

)g+ dS

r

:
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x12. Invariants for plane �elds and foliations.

This disussion given in x10 for mappings an be applied to plane �elds, and in

partiular to foliations. Even more generally suppose F ! X is a smooth omplex

vetor bundle of omplex dimension n, and onsider a real sub-bundle

j : P ,! F

of (real) dimension m. Then there is a natural extension of j to a omplex bundle

map

(12.1) j

C

: P 


R

C �! F:

Fix an integer r, with 0 < r 5 minfm;ng, and set k = minfm;ng� r. We say that

P has good omplex r-tangenies if j

C

is k-atomi. Under this hypotheses the

omplex tangeny urrent

(12.2) C r

r

(P )

def

= D

k

(j

C

)

is de�ned. In analogy with 10.3 and (10.12) we have

supp C r

r

(P ) � fx 2 X : dim

C

(P

x

\ J

x

P

x

) = r +maxf0;m� ngg:

This is the subset of X where the dimension of the maximal omplex subspae of

P is greater by at least r than the \expeted" or \generi" dimension.

Theorem 12.3. Let j : P ,! F be a real m-dimensional subbundle with good

omplex r-tangenies in a omplex n-dimensional bundle F . Let P be equipped

with a real onnetion and metri, and let F be given a omplex onnetion and

hermitian metri. (No relation among the four is assumed.)

Then there is a anonially de�ned L

1

lo

-form S on X suh that

(12.4) C r

r

(P ) =

(

�

(r)

m�n+r

f~p(P )=~(F )g+ dS; when m = n

�

(r)

n�m+r

f(F )=~p(P )g+ dS; when m 5 n

where (F ), ~(F ) and ~p(P ) are de�ned as in x10. Furthermore there are approxi-

mating families �

s

, S

s

, 0 < s 51, as in previous theorems.

Note. The equations in (12.4) an be rewritten by using the elementary Shur

relations (4.2) and (4.3). In partiular, with k = minfm;ng � r, we have

�

(m�k)

n�k

f(F )=~p(P )g = �

(n�k)

m�k

f~p(P )=~(F )g:

Example 12.5. (Plane �elds and foliations). A ase of geometri interest ours

when

j : P ,! TZ

is a real m-plane �eld on an almost omplex manifold Z. This arises for example

when P is the tangent plane �eld TF of an m-dimensional foliation F of Z. In this

ase the urrents C r

r

(F) � C r

r

(TF) orrespond to the exess omplex tangenies

of the foliation. The formulas in (12.4) give ohomologial obstrutions to �nding an

isotopy of F to a foliation without omplex tangenies of dimension r+maxf0;m�

ng.
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x13. Higher self-intersetions of plane �elds and invariants for pairs of

foliations.

Let F ! X be a smooth bundle of rank n and onsider two subbundles

A

i

,! F and B

j

,! F

of ranks a and b respetively. We assume all bundles to be simultaneous real or

simultaneously omplex. From this data we get a bundle map

A

�

�! F=B

given by restriting the projetion � : F ! F=B to A. Note that

ker�

x

= A

x

\ B

x

whose \expeted" or \generi" dimension is

e = maxfa+ b� n; 0g:

Fix integers r > 0 and k � 0 with e+r = a�k, or equivalently r+k = minfa; n�bg.

Note that rank(�

x

) = a� dim(A

x

\B

x

) � k if and only if dim(A

x

\B

x

) � a� k =

e + r. We say that A and B make good r-ontat if � is k-atomi. Under this

assumption we de�ne the r-ontat urrent

C t

r

(A;B) = D

k

(�)

and note that

supp C t

r

(A;B) � fx 2 X : dim(A

x

\ B

x

) = e+ rg:

This urrent measures the ontat degeneraies of rank r, i.e., the set where Ameets

B in at least r dimensions more than expeted. Setting e

�

= maxfn � (a + b); 0g

and applying xx4 and 5 give the following.

Theorem 13.1. Suppose A, B and F are omplex and that F is provided with a

omplex onnetion and metri. If A and B make good r-ontat, then there is a

anonial L

1

lo

-form T suh that

C t

r

(A;B) = �

(e+r)

e

�

+r

f(R

F

)=(R

A

)(R

B

)g+ dS:

Theorem 13.2. Suppose A, B and F are real bundles of rank 2a

0

, 2b

0

and 2n

0

respetively and let e = 2e

0

, e

�

= 2e

�

0

. Suppose F is provided with an orthogonal

onnetion. Then if A and B make good r-ontat where r = 2r

0

is even, there is

a anonial L

1

lo

-form S suh that

C t

r

(A;B) =

e

�

(e

0

+r

0

)

e

�

0

+r

0

fp(R

F

)=p(R

A

)p(R

B

)g+ dS:
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Remark 13.3. One ould equivalently formulate the problem by onsidering the

adjoint map �

�

: (F=B)

�

! A

�

. Note that at x 2 X, we have

ker(�

�

x

) = A

?

x

\ B

?

x

whose expeted dimension is

e

�

= maxfn� (a+ b); 0g:

Applying 4.4 gives us \dual" formulas whih are equivalent to those of 13.1 and

13.2. To see this, observe that by the Shur relations (4.3) and (4.2) we have

�

(e+r)

e

�

+r

f(R

F

)=(R

A

)(R

B

)g = �

(e

�

+r)

e+r

f(R

A

�

)(R

B

�

)=(R

F

�

)g

and

e

�

(e

0

+r

0

)

e

�

0

+r

0

fp(R

F

)=p(R

A

)p(R

B

)g =

e

�

(e

�

0

+r

0

)

e

0

+r

0

fp(R

A

)p(R

B

)=p(R

F

)g:

Example 13.4. (Higher self intersetion lasses). Given A � F as above

one an take B to be a generi displaement of A (whih will be r-atomi for all

relevant r) and ompute the \higher self intersetions" of the plane �eld. Consider

for example the omplex line �eld � � TP

3

on omplex projetive 3-spae whih

is tangent to the �bres of the twistor map P

3

! S

4

. Now we have (�) = 1 + 2!

where ! 2 H

2

(P

3

;Z)

�

=

Z is the anonial generator. The self-intersetion lass

oming from taking A = B = �, F = TP

3

and r = 1 in 13.1 is

�

(1)

2

f(TP

3

)=(�)

2

g = �

(1)

2

f(1 + !)

4

=(1 + 2!)

2

g = 2!

2

:

This implies that a generi deformation of � (as a smooth omplex subbundle) in

TP

3

will oinide with � along a yle in P

3

whih represents the homology lass

2[P

1

℄ 2 H

2

(P

3

; Z)

�

=

Z.

There are analogous omplex line �elds � on every P

2n+1

C

tangent to the �bres

of the bundle � : P

2n+1

C

! P

n

H

. Here the generi self-intersetion lous satis�es

C t

1

(�) = �

(1)

2n

f(1 + !)

2n+2

=(1 + 2!)

2

g+ dS = (n+ 1)!

2n

+ dS:

Example 13.5. (Relative foliation yles). Suppose we are given two foliations

F and F

0

of dimensions 2a

0

and 2b

0

respetively in a Riemannian manifold of

dimension 2n

0

. Then we an apply 13.2 to A = TF and B = TF

0

to produe

anonial ohomologies between the urrent of (e + r)-dimensional ontat points

of F and F

0

, i.e., between

C t

r

(F ;F

0

)

def

= C t

r

(TF ; TF

0

);

and the harateristi forms de�ned in 13.2.
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APPENDIX A Orientations and tensor produts

In this appendix we disuss questions of orientations and harateristi lasses

of tensor produt bundles. We begin with some elementary de�nitions. Let V ! Y

be a real vetor bundle of rank n over a manifold Y . By de�nition there is an open

overing U = fU

�

g

�2A

of Y and loal trivializations

f

�

: V

�

�

�

�

U

�

�

�! U

�

�R

n

:

The ompositions give transition funtions

g

��

: U

�

\ U

�

�! GL

n

(R)

by setting g

��

(x) = f

�

Æ f

�1

�

(x; �). They have the property that g

��

(x) = g

��

(x)

�1

and satisfy the oyle ondition

(A.1) g

��

g

�

g

�

� 1 on U

�

\ U

�

\ U



:

In terms of this data we de�ne a

^

Ceh 1-oyle fw

��

g on the over U by setting

w

��

def

= sgnfdet(g

��

)g : U

�

\ U

�

�! f1;�1g

�

=

Z

2

:

From (A.1) we see that w

��

satis�es the oyle ondition

(A.2) w

��

w

�

w

�

� 1 in U

�

\ U

�

\ U



and therefore determines a lass

w

1

(V ) 2 H

1

(Y ; Z

2

)

whih an be shown to be independent of the hoie of loal trivializations for V .

It is alled the �rst Stiefel-Whitney lass of V . Note that the oyle w

��

,

onsidered as transition funtions on U , determines a two-fold overing (i.e., a Z

2

-

bundle) over Y , alled the orientation bundle Or(V ) of V . One an naturally

identity the �bre of Or(V ) at x with the two possible orientations of V

x

. If Y is a

onneted manifold then Cov

2

(Y )

�

=

Hom(�

1

Y;Z

2

)

�

=

H

1

(Y ;Z

2

) (where Cov

2

(Y )

denotes the equivalene lasses of 2-fold overings of Y ). This gives an equivalent

de�nition of w

1

(V ) and shows that

(A.3) V is orientable () w

1

(V ) = 0:

Proposition A.4. Let U ! Y and F ! Y be real vetor bundles with rank(U) =

m and rank(F ) = n, and set H = Hom(U; F ) = U

�


 F . Then

(A.5) w

1

(H) = nw

1

(U) +mw

1

(F ):
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Proof. Let A : R

m

! R

m

and B : R

n

! R

n

be linear maps, and onsider

A
B : R

nm

! R

nm

. Then

det(A
 B) = (detA)

n

(detB)

m

:

Now let fa

��

g and fb

��

g be transition funtions for U and F respetively over an

open overing U of Y . Then H has transition funtions h

��

= a

�

��


 b

��

, and so

det(h

��

) = det(a

�

��

)

n

det(b

��

)

m

= det(a

��

)

n

det(b

��

)

m

:

Hene,

sgn(deth

��

) = (sgn det a

��

)

n

(sgn det b

��

)

m

:

Rewriting this additively gives the result. �

Corollary A.6. The bundle H = Hom(U; F ) is orientable if any one of the follow-

ing onditions holds:

(i) rankU and rankF are both even.

(ii) F is orientable and rankF is even.

(iii) U is orientable and rankU is even.

Corollary A.7. Suppose that rankF is odd and that either F is orientable or

rankU is even. Then

w

1

(H) = w

1

(U):

Let G

r

(R

m

) denote the Grassmannian of (unoriented) r- planes in R

m

, and

let U �! G

r

(R

m

) denote the tautologial r-plane bundle. There is a natural

embedding U ,! R

m

into the trivialized m-plane bundle, and this gives a splitting

R

m

= U � U

?

:

Corollary A.8. If r and m are both even, then G

r

(R

m

) is orientable.

Proof. Apply A.6, part (i), to TG

r

(R

m

) = Hom(U;U

?

). �

Consider a smooth real vetor bundle E ! X of rank m, and let � : G

r

(E)! X

be the Grassmann bundle whose �bre at x 2 X onsists of all (unoriented) r-

planes in E

x

. Let U ! G

r

(E) be the tautologial r-plane bundle with anonial

embedding U ,! �

�

E. After a hoie of metri in E we have a splitting

�

�

E = U � U

?

and there is a bundle equivalene

(A.9) TG

r

(E)

�

=

�

�

TX � Hom(U;U

?

):
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Corollary A.10. Suppose X is orientable. If r and m are even, then G

r

(E) is

orientable. If r is even and m is odd, then

w

1

(U) = w

1

(G

r

(E)):

Proof. By A.9 and Proposition A.4 we have

w

1

(G

r

(E)) = �

�

w

1

(X) + w

1

(U

�


 U

?

) = (m� r)w

1

(U) + rw

1

(U

?

): �

We now onsider integration over the �bres of �. To begin reall that an r-

form twisted by the orientation bundle on a manifold Y is a setion of the

bundle �

r

T

�

Y 


Z

2

Or(Y ) where Or(Y ) = Or(TY ), and where Z

2

= f1;�1g ats

multipliatively. A density on Y is a d-form twisted by Or(Y ) where d = dim(Y ).

Densities with ompat support an be integrated over Y (f [St℄).

Proposition A.11. Let X, G

r

(E) and U be as in Corollary A.10, and assume that

r is even and m is odd. Then for any orthogonal onnetion on U with urvature

R

U

, the Euler form of U on G

r

(E)

�(R

U

) = Pfa�

�

�

1

2�

R

U

�

is an r-form twisted by the orientation bundle of G

r

(E). For any q-form ! on

G

r

(E) the produt ! ^ �(R

U

) an be integrated over the �bres of � : G

r

(E)! X,

yielding a smooth form on X.

Proof. Let r = 2r

0

. For a skew-symmetri transformation A : R

r

! R

r

we have

the equation

(A.12)

�

1

2

e

t

Ae

�

r

0

= r

0

! Pfa�(A)e

1

^ � � � ^ e

r

in ^

r

R

r

, where e

1

; : : : ; e

r

denotes any orthonormal basis of R

r

, and where e

t

Ae =

�A

ij

e

i

^ e

j

. The left hand side of (A.12) is independent of orientation. Hene from

(A.12) we see that the PfaÆan of R

U

is twisted by Or(U). However, from (A.9)

we have

Or(G

r

(E)) = �

�

Or(X)
Or(U

�


 U

?

) = Or(U

�

) = Or(U)

under our assumption that X is orientable and r is even. Now any Or(G

r

(E))-

twisted form � on G

r

(E) (for example, �(R

U

)^!) de�nes a urrent on G

r

(E) and

hene an be pushed forward by � as a urrent toX. To see this push forward is well

de�ned let � be a form with ompat support on X of degree d

0

= dim(G

r

(E))�

deg�. Then

[�

�

�℄(�) =

Z

G

r

(E)

� ^ �

�

�

whih is well-de�ned sine �^�

�

� is a density on G

r

(E). Finally sine � is smooth

this push forward an be omputed using �bre integration yielding a smooth un-

twisted form on X, sine X is oriented. �
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We have observed above that if U and F are real vetor bundles of even rank,

then U

�


 F is orientable. However, it remains to hoose a anonial orientation.

Convention A.13. Let V andW be �nite dimensional vetor spaes with ordered

bases (e

1

; : : : ; e

m

) and (f

1

; : : : ; f

n

) respetively. Then the anonial orientation

on V 
W with respet to these bases is given by

(e

1


 f

1

; e

2


 f

1

; : : : ; e

m


 f

1

; e

1


 f

2

; : : : ; e

m


 f

2

; : : : ; e

m


 f

n

):

This depends only on the orientations of V and W determined by (e

1

; : : : ; e

m

) and

(f

1

; : : : ; f

m

). If n is even, it is independent of the orientation of V (and if m is even

it is independent of the orientation of W ). If n � m � 0 (mod 2), it is independent

of the orientations of both V and W .

Remark A.14. Given an inner produt on V there are natural isomorphisms V 


W

�

=

V

�


W = Hom(V;W ) whih transfer the anonial orientation to Hom(V;W )

(independently of the hoie of inner produt).

Suppose dim

R

(V ) = dim

R

(W ) = 2 and both are oriented and equipped with

inner produts so that V

�

=

W

�

=

C . Then we have a natural splitting

(A.15) Hom

R

(V;W ) = Hom

C

(V;W )�Hom

C

(V;W )

given by writing

A =

1

2

(A� J

W

AJ

V

) +

1

2

(A+ J

W

AJ

V

)

where J

V

, J

W

are the omplex strutures orresponding to the orientations on V

and W .

Lemma A.16. The anonial orientation on Hom

R

(V;W ) is opposite to the one

orresponding to the omplex struture indued via (A.15).

Proof. Let (v

1

; v

2

), (w

1

; w

2

) be oriented bases for V and W , and let h

ij

= v

�

j

�w

i

1 � i, j � 2 be the orresponding basis of H = Hom

R

(V;W ). Then Hom

C

(V;W )

has an oriented basis (�

1

; �

2

) where �

1

= h

11

+ h

22

and �

2

= J(�

1

) = �

1

Æ J

V

=

h

21

�h

12

. Similarly Hom(V;W ) has basis �

0

1

= h

11

�h

22

and �

0

2

= J(�

0

1

) = �

0

1

ÆJ

V

=

�h

21

� h

12

. Taking the wedge produt over R gives

�

1

^ �

2

^ �

3

^ �

4

= (h

11

+ h

22

) ^ (h

21

� h

12

) ^ (h

11

� h

22

) ^ (�h

21

� h

12

)

= �4h

11

^ h

21

^ h

12

^ h

22

: �

We shall now ompute the Euler form of the bundle Hom(U; F ) over a manifold

Y . In pratie we will set Y = G

r

(E) and take U to be the tautologial bundle.
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Theorem A.17. Let U ! Y and F ! Y be smooth vetor bundles with orthog-

onal onnetions. Give H

def

= Hom(U; F ) the indued tensor produt onnetion.

Suppose

rank(U) = 2r

0

and rank(F ) = 2n

0

for integers r

0

, n

0

> 0. Then the Euler form of H for its anonial orientation is

given by

(A.18) �(R

H

) =

e

�

(r

0

)

n

0

fp(R

F

)p(R

U

)

�1

g

where

e

�

(b)

a

is the Shur polynomial introdued in x5.

Proof. We begin by proving equation A.18 at the ohomology level. Consider �rst

the ase where dimU = dimF = 2 and both U and F are oriented. Set

a = �(U) = 

1

(U) and b = �(F ) = 

1

(F )

in H

2

(Y ;R). Then from the equation

Hom

R

(U; F ) = Hom

C

(U; F )�Hom

C

(U; F )

and Lemma A.16 we get

�(H) = ��(U

�




C

F )�(U

�




C

F )

= �(b� a)(�b� a)

= b

2

� a

2

= p

1

(F )� p

1

(U):

Suppose now that U and F are oriented and apply the Splitting Priniple to write

them formally as

U = U

1

� � � � � U

r

0

and F = F

1

� � � � � U

n

0

where U

i

and F

j

are oriented 2-plane bundles. We formally set

a

i

= �(U

i

) and b

j

= �(F

j

)

for all i, j. Then

Hom(U; F ) =

n

0

M

j=1

r

0

M

i=1

Hom(U

i

; F

j

)

and so

(A.19) �(Hom(U; F )) =

n

0

Y

j=1

r

0

Y

i=1

(b

2

j

� a

2

i

) =

e

�

(r

0

)

n

0

f1 + �

1

+ �

2

+ � � � g
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where �

k

2 H

4k

(Y ;R) is de�ned by

p(F )

p(U)

=

n

0

Q

j=1

(1 + b

2

j

)

r

0

Q

i=1

(1 + a

2

i

)

= 1 + �

1

+ �

2

+ � � � :

See [Fu, page 419℄ for the seond equality in (A.19). This establishes formula (A.18)

at the ohomology level when U and F are orientable.

To establish the formula at the level of forms we reall that by [NR℄ any k-plane

bundle with onnetion over a manifold Y is indued from the universal bundle

U

k

with its onnetion over G

k

(R

N

), for N suÆiently large, by a smooth map

f : Y ! G

k

(R

N

). Suppose now that f : Y ! G

2r

0

(R

N

) and g : Y ! G

2n

0

(R

N

)

lassify U and F with their onnetions, i.e., f

�

(U

�

2r

0

)

�

=

U

�

and g

�

(U

2n

0

)

�

=

F .

Then f � g : Y ! G

2r

0

(R

N

)�G

2n

0

(R

N

) has the property that

(f � g)

�

(U

�

2r

0


U

2n

0

)

�

=

U

�


 F

as bundles with onnetion. Consequently if formula (A.18) holds for U

�

2r

0


U

2n

0

,

it holds in general, sine

�

�

R

U

�


F

�

= (f � g)

�

�

�

R

U

�

2r

0


U

2n

0

�

= (f � g)

�

�

(r

0

)

n

0

�

p(R

U

2n

0

)p(R

U

2r

0

)

�1

	

=

e

�

(r

0

)

n

0

�

p(R

F

)p(R

U

)

�1

	

:

Hene it suÆes to prove (A.18) in the universal ase. However, here (A.18) is a on-

sequene of the ohomology alulation. To see this note that both �(R

U

�

2r

0


U

2n

0

)

and

e

�

(r

0

)

n

0

fp(R

U

2n

0

)p(R

U

2r

0

)

�1

g are invariant under the full isometry group of

G

2r

0

(R

N

) � G

2n

0

(R

N

) and are therefore harmoni by a standard result in the

theory of symmetri spaes.

When U and F are possibly non-orientable we pass to the 2-fold or 4-fold overing

where they are orientable. The equation of forms (A.18) is invariant under the

overing group and therefore desends to Y . �

Theorem A.20. Let U , F and H = Hom(U; F ) be as in Theorem A.17 exept

that

rank(U) = 2r

0

and rank(F ) = 2n

0

+ 1

for integers r

0

, n

0

> 0. Then the anonial orientation gives an isomorphism

Or(H)

�

=

Or(U), and the Or(H)-twisted Euler form of H is equal to the following

Or(U)-twisted form

(A.21) �(R

H

) = �(R

U

)

e

�

(r

0

)

n

0

�

p(R

F

)p(R

U

)

�1

	

:
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Proof. Note that by Proposition A.4 we have w

1

(H) = w

1

(U), and so Or(H)

�

=

Or(U) under the identi�ation Cov

2

(Y )

�

=

H

1

(Y ;Z

2

). We lift to the 2-fold overing

of Y where H and U are orientable and establish (A.21) there. Sine both sides of

(A.21) transform by �1 under the (non-trivial) dek-transformation, the result will

follow.

We assume therefore that U is orientable. We may assume also that F is ori-

entable sine if not we pass to a 2-fold overing where it is, and then observe that

the equation is invariant, as in the proof of A.17. The proof now proeeds as before.

We apply the Splitting Priniple and formally write

U = U

1

� � � � � U

r

0

and F = F

1

� � � � � F

n

0

�R

where U

i

, F

j

are oriented 2-plane bundles with a

i

= �(U

i

) and b

j

= �(F

j

). Then

H = U

�


 F = U

�

�

n

0

M

j=0

r

0

M

i=0

U

�

i


 F

j

and so

�(H) = �(U)

n

0

Y

j=1

r

0

Y

i=1

(b

2

j

� a

2

i

) = �(U)�

(r

0

)

n

0

fp(F )p(U)

�1

g:

As above, this ohomology formula implies the formula at the level of forms via

[NR℄ and the uniqueness of invariant forms in the ohomology of G

2r

0

(R

N

) �

G

2n

0

(R

N

). �

We onlude this setion by presenting the analogue of the last two theorems for

the omplex ase.

Theorem A.22. Let U ! Y and F ! Y be smooth omplex vetor bundles with

omplex onnetions and with

rank(U) = r and rank(F ) = n:

Give H = Hom(U; F ) = U

�

� F the indued tensor produt onnetion. Then the

top Chern form of H is given by

(A.23) 

nr

(R

H

) = �

(r)

n

f(R

F

)(R

U

)

�1

g

where (R) = det

�

1 +

i

2�

R

�

denotes the top Chern form of the onnetion.

Proof. At the ohomology level this result is well known (f. [Fu, 14.4.12℄), and

one an dedue the formula at the level of forms by passing to the lassifying spaes

as in the proof of A.17. �
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Alternatively one an prove (A.23) diretly by establishing the following matrix

identity. Let M

k�k

denote the vetor spae of omplex k � k matries. For any

ommutative ring R with unit, and for integers a, b > 0, let

(A.24) �

(a)

b

: R[[t℄℄ �! R

be the funtion given by

�

(a)

b

0

�

X

k�0

r

k

t

k

1

A

= det

a�a

��

r

b�i+j

��

where

��

r

b�i+j

��

is the a� a matrix whose (i; j)

th

entry is r

b�i+j

when r� i+ j = 0

and 0 otherwise.

Lemma A.25. For A 2M

a�a

and B 2M

b�b

, onsider the matrixA�1

b

�1

a

�B 2

M

ab�ab

. Then

det fA� 1

b

� 1

a

� Bg = �

(a)

b

�

det(1

b

+ tB) det(1

a

+ tA)

�1

	

:

Proof. It suÆes to restrit attention to the Zariski open dense subset of di-

agonalizable matries (A;B) in M

a�a

� M

b�b

. Thus we may assume that A =

diag(x

1

; : : : ; x

a

) and B = diag(y

1

; : : : ; y

b

). The lemma is now an immediate onse-

quene of the following.

Fat A.26. ([Fu, page 419℄) In the polynomial ring R = C [x

1

; : : : ; x

a

; y

1

; : : : ; y

b

℄

in (a+ b) indeterminants, one has the identity

b

Y

j=1

a

Y

i=1

(y

j

� x

i

) = �

(a)

b

8

>

>

>

<

>

>

>

:

b

Q

j=1

(1 + ty

j

)

a

Q

i=1

(1 + tx

i

)

9

>

>

>

=

>

>

>

;

:

Note. Using A.26 one an give alternative proofs of Propositions A.17 and A.20

above.
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APPENDIX B Integration over the �bres in G

r

(E)

In this appendix we establish the topologial formulas required to omplete the

omputations in xx4 and 5.

Proposition B.1. Let E ! X be a smooth hermitian vetor bundle of rankm.

Consider the Grassmann bundle � : G

r

(E)! X of r-planes in E, where 0 < r < m,

and let U ! G

r

(E) be the tautologial omplex r-plane bundle. Write

�

�

E = U � U

?

;

and let 

m�r

(U

?

) be the top Chern lass of U

?

. Then under the Gysin map

�

�

: H

2r(m�r)

(G

r

(E))! H

0

(X) we have

(B.2) �

�

�



m�r

(U

?

)

r

	

= 1:

Proof. It suÆes to prove (B.2) in the ase that X is a point, i.e., to prove that

(B.3)






m�r

(U

?

)

r

; G

r

(C

m

)

�

= 1:

To see this we onsider the Poinar�e dual of 

m�r

(U

?

) i.e., the divisor Div(�

v

)

of an atomi setion �

v

2 �(U

?

) de�ned by �xing a vetor v 2 C

m

and setting

�

v

(U) = �

U

?(v)

at U 2 G

r

(C

m

) where �

U

?
: C

m

= U � U

?

! U

?

is orthogonal projetion. Now

�

v

vanishes non-degenerately and

Div(�

v

) = fU 2 G

r

(C

m

) : v 2 Ug:

We now hoose r vetors v

1

; : : : ; v

r

2 C

m

whih are linearly independent. Then

these divisors meet transversely and

Div(�

v

1

) \ � � � \Div(�

v

r

) = fU 2 G

r

(C

m

) : v

1

; : : : ; v

r

2 Ug(B.4)

= fspan(v

1

; : : : ; v

r

)g :

Under Poinar�e duality up produt followed by evaluation on the fundamental

lass beomes intersetion produt. Hene, (B.4) ) (B.3). �

Proposition B.5. Let E ! X be a smooth riemannian vetor bundle of rankm.

Consider the Grassmann bundle � : G

r

(E)! X of r-planes in E, where 0 < r < m,

and let U ! G

r

(E) be the tautologial real r-plane bundle. Suppose

r = 2r

0

and m = 2m

0

for positive integers r

0

and m

0

. Write

�

�

E = U � U

?

and let p

m

0

�r

0

(U

?

) be the top Pontrjagin lass of U

?

. Then under the Gysin map

�

�

: H

4r

0

(m

0

�r

0

)

(G

2r

0

(E))! H

0

(X) we have

(B.6) �

�

�

p

m

0

�r

0

(U

?

)

r

0

	

= 1:
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Proof. It suÆes to onsider the ase where X is a point, i.e., it suÆes to prove

that

(B.7)




p

m

0

�r

0

(U

?

)

r

0

; G

2r

0

(R

2m

0

)

�

= 1:

To do this we lift to the Grassmannian

e

G

2r

0

(R

2m

0

) of oriented 2r

0

-planes with

tautologial bundle

e

U, and prove that

(B.8)

D

p

m

0

�r

0

(

e

U

?

)

r

0

;

e

G

2r

0

(R

2m

0

)

E

= 2:

Sine

e

G

2r

0

(R

2m

0

)! G

2r

0

(R

2m

0

) is a 2-sheeted overing whose dek transformation

preserves the orientation of

e

G

2r

0

(R

2m

0

) and the lass p

m

0

�r

0

(

e

U

?

), we see that (B.8)

) (B.7).

To prove (B.8) we �rst establish the following.

Lemma B.9.

p

m

0

�r

0

(

e

U

?

) = �(

e

U

?

)

2

:

Proof. We apply the Splitting Priniple and write

e

U

?

formally as a diret sum of

oriented 2-plane bundles

(B.10)

e

U

?

= U

1

� � � � � U

k

0

where k

0

= m

0

� r

0

, and set a

j

= �(U

j

). Then by de�nition

p

k

0

(

e

U

?

) = �

k

0

(a

2

1

; : : : ; a

2

k

0

)

= a

2

1

� � �a

2

k

0

= (a

1

� � �a

k

0

)

2

= �(

e

U

?

)

2

: �

We now proeed as in the proof of (B.1). The Poinar�e dual of �(

e

U

?

) is repre-

sented by the divisor of the atomi setion �

v

2 �(

e

U

?

) de�ned by �xing a vetor

v 2 R

2m

0

and setting

�

v

(

e

U) = �

e

U

?

(v)

at

e

U 2

e

G

2r

0

(R

2m

0

) where �

e

U

?

: R

2m

0

=

e

U �

e

U

?

!

e

U

?

is orthogonal projetion.

In fat �

v

vanishes non-degenerately and

Div(�

v

) = f

e

U 2

e

G

2r

0

(R

2m

0

) : v 2

e

Ug:

We hoose 2r

0

linearly independent vetors v

1

; : : : ; v

2r

0

2 R

2m

0

. Then the oriented

submanifolds Div(�

v

j

) meet transversely and

Div(�

v

1

) \ � � � \ Div(�

v

2r

0

) =

n

e

U 2

e

G

2r

0

(R

2m

0

) : v

1

; : : : ; v

2r

0

2

e

U

o

�

=

fv

1

^ � � � ^ v

2r

0

; �v

1

^ � � � ^ v

2r

0

g ;
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i.e., this intersetion onsists exatly of the two points orresponding to the plane

spanfv

1

; : : : ; v

2r

0

g with its two possible orientations. Using invariane under the

dek transformation group and a loal alulation one onludes that

D

p

m

0

�r

0

(

e

U

?

)

r

0

;

e

G

2r

0

(R

2m

0

)

E

=

D

�(

e

U

?

)

r

0

;

e

G

2r

0

(R

2m

0

)

E

= #fDiv(�

v

1

) \ � � � \Div(�

v

2r

0

)g

= 2:

This establishes (B.8) and proves (B.5). �

We now reall that if r is even and m is odd, then G

r

(R

m

) is non-orientable

and Or(G

r

(R

m

)) = Or(U). More generally if E ! X is a oriented bundle of odd

rank over an oriented manifold, and if r is even, then G

r

(E) is non-orientable and

Or(G

r

(E)) = Or(U), where U is the tautologial bundle as above. As seen in

(A.11), integration over the �bre gives a Gysin map �

�

: H

k

(G

r

(E); Or(U)) !

H

k�r(m�r)

(X;R) where H

k

(G

r

(E);Or(U)) denotes the ohomology of Or(U)-

twisted forms, i.e., ohomology with oeÆients in the loal system Or(U). As

seen also in (A.11), �(U)^
 is an Or(U)-twisted lass for any 
 2 H

�

(G

r

(E);R).

Proposition B.11. Let E ! X be an oriented riemannian bundle of rankm over

an oriented manifold. Let G

r

(E), U and U

?

be as in Proposition B.5, but assume

that

r = 2r

0

and m = 2m

0

+ 1

for positive integers r

0

andm

0

. Then under the Gysin map �

�

: H

r(m�r)

(G

r

(E);Or(U))!

H

0

(X;R) we have

(B.12) �

�

�

�(U)p

m

0

�r

0

(U

?

)

r

0

	

= 1:

Proof. It suÆes to onsider the ase where X is a point. Fix v

0

2 R

m

and let �

be the ross-setion of U given by

�(U) = �

U

(v

0

)

where �

U

: R

m

= U � U

?

! U is orthogonal projetion. Now the Poinar�e dual

of �(U) is represented by the oriented yle

Div(�) = The Grassmannian of r-planes in v

?

0

�

=

G

2r

0

(R

2m

0

):

By the standard formula for the Poinar�e dual we have




�(U)p

m

0

(U

?

)

r

0

; G

r

(R

m

)

�

=




p

m

0

(U

?

)

r

0

; �(U) \G

r

(R

m

)

�

=




p

m

0

(U

?

)

r

0

; Poinar�e dual of �(U)

�

=




p

m

0

(U

?

)

r

0

; G

2r

0

(R

2m

0

)

�

= 1

where the last equality omes from (B.5). �
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APPENDIX C Expliit formulae

Here we ollet together expliit algebrai expressions for the various forms o-

uring in the equations of Setion 3. These expliit expressions are taken from

[HL

2

℄. Suppose that V is either a omplex vetor bundle of omplex rank n or

a real vetor bundle of even rank 2n whih is oriented. Equip V with an inner

produt h ; i

V

and a onnetion D

V

. The equations are:



n

(


V

)� �

s

= d�

s

Complex Case:

�

s

� [X℄ = dr

s



n

(


V

)� [X℄ = d�:

�(


V

)� �

s

= d�

s

Real Case:

�

s

� [X℄ = dr

s

�(


V

)� [X℄ = d�:

In both ases �

s

and r

s

are related by

r

s

= � � �

s

and

lim

s!0

r

s

= 0 lim

s!1

�

s

= 0;

in L

1

lo

(V ). These are urrent equations on the total spae of V with X � V the

zero setion. Alternatively, given a smooth atomi setion � : X ! V they an be

pulled bak to equations on X. The atomi hypothesis ensures that the L

1

lo

(V )

form � pulls bak to an L

1

lo

(X) form on X, as well as ensuring that Div(�) is the

appropriate replaement for [X℄.

In order to desribe the global L

1

lo

forms �

s

, �

s

, and � expliitely the following

notation is useful. Let e

1

; : : : ; e

n

denote a loal frame for V and let e denote

the olumn with i

th

entry e

i

. Then a setion � an be written as � = ue with

u = (u

1

; : : : ; u

n

). The equation D

V

e = !

V

e de�nes the loal gauge !

V

as an n� n

matrix of one forms. The urvature operator R

V

= D

2

V

has matrix form 


V

=

d!

V

�!

V

^!

V

. Sine D

V

� = (du+ u!

V

)e, it is onvenient to let Du � du+ u!

V

,

so that D

V

� = (Du)e. Let h

V

� (he

i

; e

j

i

V

) denote the metri matrix, and let

u

�

� h

V

�u

t

so that j�j

2

= uh

V

�u

t

= uu

�

. (We will also �nd it onvenient to let juj

2

denote j�j

2

= uu

�

rather than u�u

t

.) Also, let

Du

�

= du

�

� !

V

u

�

:

Just as Du is the matrix form of D

V

�, this formula is the matrix form of D�

�

where �

�

is the adjoint of � thought of as a bundle map from the trivial bundle C

to V .
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In the real ase we only onsider oriented orthonormal frames e and hene h

V

= 1

(the identity matrix) so that u

�

= u

t

, j�j

2

= uu

t

= juj

2

, and Du

t

= du

t

�!

V

u

t

. As

before �(t) : [0;1℄! [0; 1℄ determines the approximation mode. For brevity let

�

s

� �

�

juj

2

s

2

�

:

In the omplex ase, onsider the dual frame e

�

= (e

�

1

; : : : ; e

�

n

), together with

the frame e, as elements of the grassmann algebra ^(V

�

� V ). Let �(e) � e

�

1

^ e

1

^

� � � ^ e

�

n

^ e

n

denote the volume form. Then for any matrix A, the determinant

an be omputed from

1

n!

(e

�

Ae) = (detA)�(e):

Consequently, the equation

det(A ; B)�(e) =

1

(n� 1)!

(e

�

Ae)(e

�

Ae)

n�1

an be used to ompute

det(A ; B) �

d

dt

det(B + tA)

�

�

t=0

:

Complex Case:

�

s

=

�

i

2�

�

n

(1� �

s

) det

�




V

� �

s

Du

�

Du

juj

2

�

+

�

i

2�

�

n

�

�

s

(1� �

s

)� �

0

s

juj

2

s

2

�

djuj

2

juj

2

det

�

u

�

Du

juj

2

; 


V

� �

s

Du

�

Du

juj

2

�

:

�

s

�(e) = �

1

n!

�

i

2�

�

n

e

�

u

�

Due

juj

2

(e

�




V

e� �

s

e

�

Du

�

Du

juj

2

e)

n

� (e

�




F

e)

n

e

�

Du

�

Du

juj

2

e

�� = �

1

n!

�

i

2�

�

n

e

�

u

�

Due

juj

2

(e

�




V

e� e

�

Du

�

Du

juj

2

e)

n

� (e

�




V

e)

n

e

�

Du

�

Du

juj

2

e

The hoie �(t) � t=1+ t is referred to as the algebrai approximation mode.

(See [HL

2

℄ and [Z℄) for motivation for this hoie). Note that � is independent of

the hoie of approximation mode �.

Complex Case with Algebrai Approximation Mode:

�

s

=

�

i

2�

�

n

s

2

juj

2

+ s

2

det

�




V

�

Du

�

Du

juj

2

+ s

2

�

;

or equivalently,

�

s

� =

1

n!

�

i

2�

�

n

s

2

juj

2

+s

2

�

e

�




V

e�

e

�

Du

�

Due

juj

2

+ s

2

�

n

:

�

s

� = �

1

n!

�

i

2�

�

n

e

�

u

�

Due

�

e

�




V

e�

e

�

Du

�

Due

juj

2

+s

2

�

n

� (e

�




V

e)

n

e

�

Du

�

Due

:

Now we onsider the real ase. The real rank of V is assumed to be even (= 2n).
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Real Case: Suppose A is a skew 2n � 2n matrix. Let e

1

; : : : ; e

2n

denote an

oriented orthonormal (loal) frame for V and let � � e

1

^� � �^ e

2n

2 �

2n

V denote

the unit volume element. Reall the de�nition of the pfaÆan of A

Pf(A)� =

1

n!

�

1

2

e

t

Ae

�

n

:

Sine V is oriented the unit volume form � for V is globally de�ned, and hene Pf(A)

is globally de�ned independently of the hoie of oriented orthonormal frame e.

�

s

� =

1

n!

�

�1

4�

�

n

(1� �

s

)

�

e

t




V

e� 2�

s

�

1�

�

s

2

�

(Due)

2

juj

2

�

n

+

2

(n�1)!

�

�1

4�

�

n

 

�

s

(1��

s

)

�

1�

�

s

2

�

��

0

s

juj

2

s

2

!

djuj

2

juj

2

(ue)(Due)

juj

2

�

e

t




V

e�2�

s

�

1�

�

s

2

�

(Due)

2

juj

2

�

n�1

:

�

s

� =

2

(n�1)!

�

�1

4�

�

n

(ue)(Due)

juj

2

�

s

Z

0

�

e

t




V

e� 2x

�

1�

x

2

�

(Due)

2

juj

2

�

n�1

dx:

The hoie �(t) = 1�

1

p

1+t

is referred to as the real algebrai approximation

mode (See [HL

2

℄).

Real Case with Algebrai Approximation Mode:

�

s

� =

1

n!

�

�1

4�

�

n

s

p

juj

2

+ s

2

�

e

t




V

e�

(Due)

2

juj

2

+ s

2

�

n

:

�� =

1

�

n

n�1

X

p=0

(�1)

n�p

p!

(n�p�1)!(2p+1)!2

2n�2p�1

(ue)(Due)

2p+1

juj

2p+2

(e

t




V

e)

n�p�1

:

Thus the part of � of top degree 2n� 1 in the 1-forms du

1

; : : : ; du

2n

is

�

2n�1

= vol(S

2n�1

)

�1

�(u)

where

�(u) �

2n

X

k=1

(�1)

k�1

u

k

du

1

^ � � � ^



du

k

^ � � � ^ du

2n

juj

2n

denotes the solid angle kernel on R

2n

.

Remark. These expliit formula have two di�erent interpretations. First they

de�ne forms on the total spae of the bundle V . In this ase u � u

1

; : : : ; u

n

is the

�ber variable. Seond they de�ne forms on X where u � (u

1

; : : : ; u

n

) is the n-tuple

of C

1

funtions on X representing the given atomi setion � in the frame e.
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