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Introdu
tion.

Roughly speaking residue theorems in geometry are results whi
h asso
iate topo-

logi
al invariants to the singularities of geometri
 obje
ts. The dis
overy and use of

su
h theorems has a history dating ba
k at least to Riemann. A 
lassi
al example is

Hopf's theorem relating the singularities of ve
tor �elds to the Euler 
hara
teristi
.

A somewhat di�erent topi
 in modern geometry is Chern-Weil Theory. This

asso
iates to a smooth bundle with 
onne
tion a 
anoni
al family of di�erential

forms whi
h represent 
hara
teristi
 
lasses of the bundle. The forms are written

expli
itly as universal polynomials in 
urvature. Furthermore, for two distin
t 
on-

ne
tions !, !

0

on a bundle, the di�eren
e of the 
hara
teristi
 forms 
an be written

as a 
oboundary p(
) � p(


0

) = dT where T = T (!; !

0

) is also 
anoni
ally ex-

pressed in terms of the 
onne
tions. These transgression forms T lead to important

se
ondary invariants (
f. [CS℄, [ChS℄).

Re
ently the authors developed a generalized Chern-Weil Theory for singular


onne
tions [HL

2

℄ where 
hara
teristi
 forms are repla
ed by 
hara
teristi
 
urrents

written in terms of 
urvature and the singularities of some given geometri
 obje
t.

In this paper we shall use our theory to systemati
ally dedu
e a wide variety of

geometri
 residue theorems. Our formulas re�ne the 
lassi
al ones in several ways.

To begin they are derived 
anoni
ally at the level of di�erential forms and 
urrents.

For example, for a mapping � between bundles with 
onne
tion there are formulas

p(
)� �(�) = dT

where: p(
) is a 
anoni
al 
hara
teristi
 form as above, �(�) is a 
urrent de�ned

purely in terms of the singularities of �, and T is a 
anoni
al transgression form

(with L

1

lo


-
oeÆ
ients). This enables us to de�ne se
ondary invariants for 
ertain


onne
tions and singularities.

Furthermore, our theory generates 
anoni
al smooth families

p(
)� p(


s

) = dT

s

for 0 < s � 1

where T

1

= 0 and where one has 
onvergen
e

T

s

! T everywhere in L

1

lo


as s! 0. In parti
ular the families of smooth 
hara
teristi
 forms p(


s

) 
onverge

to the singular 
urrent, i.e.,

p(


s

)! �(�)

as s ! 0. In 
ertain \approximation modes" p(


s

) will be supported in the s-

tubular neighborhood of �(�). The virtue of the expli
it nature of these formulas

was seen in [HL

2

℄ where the pro
edure gave simple expli
it formulas for the Thom


lass of a bundle with 
onne
tion. In fa
t it gave families interpolating between the

pull-ba
k of the Euler (or top Chern) form and the 
urrent given by zero-se
tion of

the bundle.

The emphasis in this paper will be as mu
h on the general method as on the

detailed stru
ture of various formulas. The authors hope to provide the reader
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with the te
hniques for expli
itly relating singularities of maps, se
tions of bundles

et
. to 
hara
teristi
 forms in the manner above whenever the need arises. How-

ever, we shall also derive here a series of su
h expli
it formulas in a broad range

of �elds. These will in
lude: Thom-Porteous formulas at the level of forms and


urrents, formulas of Poin
ar�e-Lelong type between Chern/Pontjagin forms and

linear dependen
y 
urrents of families of 
ross-se
tions of a bundle, residue the-

orems relating degenera
ies of maps between manifolds and 
hara
teristi
 forms,

residue theorems for singularities of CR-stru
tures, new invariants for pairs of 
om-

plex stru
tures, invariants for pairs of plane �elds, higher self-interse
tion formulas

for tangent plane �elds, higher order 
onta
t 
urrents for pairs of foliations and

relations to 
hara
teristi
 forms. In a subsequent paper we shall similarly establish

various determinental formulas and, in parti
ular, expli
it Poin
ar�e-Lelong equa-

tions for Shubert 
ells on Grassmann manifolds.

The authors want to thank Bill Fulton for introdu
ing them to the methods of

modern enumerative geometry so beautifully presented in his book [Fu℄. They are

also indebted to John Zwe
k for many useful 
omments on early versions of this

manus
ript.

A notational 
onvention: Throughout this paper X will denote a manifold whi
h

is oriented unless it is stated otherwise.

x1. Divisors and Atomi
ity.

In this se
tion we review brie
y the theory of atomi
 se
tions and divisors intro-

du
ed in [HS℄. This material enhan
es the range and appli
ability of the subsequent

results, but it is not ne
essary for understanding their proofs. The reader 
ould

skip this se
tion and simply repla
e \atomi
ity" everywhere by \non-degenerate

vanishing".

Let f : U ! R

p

be a C

1

-map where U � R

n

is an open set.

De�nition 1.1. The map f is atomi
 if

f

�

�

dy

I

jyj

jIj

�

2 L

1

lo


for all I = (i

1

; : : : ; i

p

) su
h that jIj = �i

k

< p.

Let � : R

p

� f0g �! S

p�1

denote radial proje
tion onto the unit sphere, and

de�ne

� =

1




p

�

�

(d vol

S

p�1
)(1.2)

=

1




p

 

p

X

k=1

y

k

�

�y

k

!

�

dy

1

^ � � � ^ dy

p

jyj

p

�

=

1




p

p

X

k=1

(�1)

k�1

y

k

jyj

p

dy

1

^ � � � ^




dy

k

^ � � � ^ dy

p
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where 


p

= vol(S

p�1

). The 
oeÆ
ients of this form are integrable in bounded

neighborhoods of 0, and � satis�es the 
urrent equation

d� = [0℄ in R

p

:

Note that if f : U ! R

p

is atomi
, then f

�

� 2 L

1

lo


on U .

De�nition 1.3. Let f : U ! R

p

be atomi
. Then the divisor of f is the 
urrent

of degree p (and dimension n � p) on U given by taking the exterior derivative of

the potential d(f

�

�), i.e.,

Div(f) = d(f

�

�):

This 
urrent has the following properties.

dDiv(f) = 0(1.4)

suppDiv(f) � fx 2 U : f(x) = 0g

def

= Z(f)(1.5)

If 0 is a regular value of f , then Div(f) = [Z(f)℄(1.6)

where [Z(f)℄ is the 
urrent given by integration over the manifold Z(f). The �rst

two properties are obvious. The last is straightforward to verify. Note that the

de�nition of [Z(f)℄ involves a 
hoi
e of orientation on Z(f).

Theorem 1.7. ([HS℄) Let

~

f(x) = g(x)f(�(x)) where � : U ! U is a di�eomor-

phism and g : U ! GL

p

(R) is a smooth map. Then

~

f is atomi
 if and only if f is

atomi
. Furthermore, if det(g) > 0 on U and � is orientation preserving, then

�

�

Div(

~

f) = Div(f):

As an immediate 
orollary the 
on
epts of atomi
ity and divisor extend to se
-

tions of a ve
tor bundle.

De�nition 1.8. Let E ! X be a smooth ve
tor bundle over an n-manifold X.

A smooth se
tion � 2 �(E) is said to be atomi
 if ea
h point x 2 X has a

neighborhood with lo
al 
oordinates and a lo
al trivialization of E with respe
t to

whi
h � is an atomi
 R

p

-valued fun
tion.

If E and X are oriented, and if � 2 �(E) is atomi
, then Div(�) is a well de�ned


urrent of degree p (and dimension n� p) on X, 
alled the divisor of �.

Remark 1.9. Note that Div(�) is well-de�ned in the non-orientable 
ase provided

that the �rst Stiefel-Whitney 
lasses satisfy

w

1

(E) = w

1

(X)

in H

1

(X; Z

2

). This 
ondition guarantees that we 
an 
hoose lo
al trivializations of

E over a 
oordinate 
overing so that the 
hanges of trivialization g

��

and the Ja
o-

bian matri
es of the 
hanges of lo
al 
oordinates �

��

satisfy det(g

��

)�det(�

��

) > 0.

(See [Z℄.)

In [HS℄ e�e
tive 
riteria are established whi
h guarantee atomi
ity.

5



Theorem 1.10. ([HS℄) Let f : U ! R

p

be real analyti
. If dimZ(f) 5 n � p,

then f is atomi
.

Theorem 1.11. ([HS℄) Suppose f : U ! R

p

satis�es:

(1) There are 
onstants 
 > 0, N > 0 su
h that

kf(x)k = 
 dist(x; Z(f))

N

;

(2) The Minkowski dimension of Z(f) is < n� p+ 1.

Then f is atomi
.

It is also proved in [HS℄ that if f is atomi
, its divisor is integrally 
at. Hen
e

one has the following \regularity".

Theorem 1.12. ([HS℄) Let f : U ! R

p

be atomi
. If the mass of Div(f) is lo
ally

�nite, then Div(f) is lo
ally re
ti�able.
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x2. Degenera
y 
urrents.

In this se
tion we introdu
e the notion of the k

th

degenera
y 
urrent of a bundle

map. This is a 
urrent asso
iated to the drop in rank of the map to rank 5 k.

For the de�nitions we must �x some notation. Let E ! X and F ! X be

smooth ve
tor bundles over an oriented manifold X, where E and F are either

both 
omplex or both real, and let

m = rankE and n = rankF:

Fix an integer k with 0 5 k 5 minfm;ng and set

r = m� k:

Let

(2.1) � : G

r

(E) �! X

be the smooth bundle whose �bre at x 2 X is the set of all r-dimensional linear

subspa
es of E

x

(the �bre of E at x). Over G

r

(E) there is a tautologi
al ve
tor

bundle U of rank r whose �bre at P 2 G

r

(E) 
onsists of all ve
tors v 2 P . There

is a natural bundle embedding

(2.2) U � �

�

E

and if we introdu
e a metri
 in E, this gives a natural splitting

(2.3) �

�

E

�

=

U � U

?

:

Suppose now that we are given a smooth bundle map

� : E �! F:

Then this lifts to a mapping �

�

� : �

�

E ! �

�

F over G

r

(E), and 
omposing with j

gives a map

(2.4) �̂

def

= �

�

�

�

�

U

: U �! �

�

F:

De�nition 2.5. The bundle map � is said to be k-atomi
 if �̂ is an atomi
 se
tion

of the bundle Hom(U; �

�

F ) = U

�


 �

�

F over G

r

(E).

De�nition 2.6. For a bundle map � whi
h is k-atomi
, we de�ne its k

th

degen-

era
y 
urrent on X to be

D

k

(�) = �

�

Div(�̂)

where �

�

denotes the push-forward of 
urrents by � : G

r

(E)! X.
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Note that when E and F are real bundles, Div(�̂), and therefore D

k

(�), only

make sense when w

1

(U

�


 �

�

F ) = w

1

(G

r

(E)) (
f. 1.9). This 
ondition holds when

m � n � k (mod 2) (See Appendix A, A.6 - A.10).

The 
odimension of Div(�̂) is rn (or 2rn in the 
omplex 
ase), and the �bre

dimension of G

r

(E) is rk (or 2rk respe
tively). Hen
e, we have


odim D

k

= r(n� k) = (m� k)(n� k)

in the real 
ase, and


odim D

k

= 2(m� k)(n� k)

in the 
omplex 
ase.

Lemma 2.7. For any k-atomi
 se
tion �, one has

supp D

k

(�) � fx 2 X : rank�

x

5 kg

Proof. If x 2 supp D

k

(�), then there exist a subspa
e U � E

x

of dimension r su
h

that �

x

�

�

U

= 0. Hen
e, rank�

x

5 m� r = k. �

Note that if rank�

x

= k, then there is exa
tly one subspa
e of dimension r

(namely ker�

x

) on whi
h �

x

= 0. That is, above ea
h point of X where rank� = k,

there is exa
tly one point in the zero set Z(�̂) of �̂.

Proposition 2.8. Suppose �̂ vanishes non-degenerately. Then

RK

k

(�)

def

= fx 2 X : rank�

x

= kg

is a lo
ally re
ti�able set, and

D

k

(�) = [RK

k

(�)℄

i.e., D

k

(�) is the 
urrent given by integration over this set.

Proof. By hypothesis we know that Z(�̂) is a smooth proper submanifold of

G

r

(E), and that Div(�̂) = [Z(�̂)℄. Therefore, D

k

(�) = �

�

[Z(�̂)℄, i.e., D

k

(�) is the

d-
losed lo
ally re
ti�able 
urrent given by the push-forward of the manifold Z(�̂).

This 
urrent has dimensionN = dimX�(m�k)(n�k) (N = dimX�2(m�k)(n�k)

in the 
omplex 
ase). The Federer-Sard Theorem [Fe℄ implies that the set of 
riti
al

values of the map �

�

�

Z(�̂)

, from Z(�̂) to X, has Hausdor� N -dimensional measure

zero. Hen
e �

�

[Z(�̂)℄ = p[R℄ where R is the set of regular values and p is an integer.

It remains to show that

(2.9) R � RK

k

(�);

sin
e, as noted above,

� : Z

0

(�̂) = fu 2 Z(�̂) : �(U) 2 RK

k

(�)g �! RK

k

(�)

is one to one. To see (2.9), we observe that if rank�

x

= k � p, then

fU � E

x

: rankU = r and U � ker�

x

g = �

�1

(x) \ Z(�̂)

is a submanifold of G

r

(E

x

) di�eomorphi
 to the Grassmannian of r-planes in (r+p)-

spa
e. Thus, the preimage under �

�

�

Z(�̂)

of ea
h point x with rank�

x

< k is a

smooth submanifold of positive dimension. �
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It is appropriate here to point out that bundle maps are generi
ally k-atomi
,

in fa
t they generi
ally satisfy the hypothesis of Proposition 2.8. Re
all that a

smooth 
ross-se
tion of a bundle is said to vanish non-degenerately if its graph

is transversal to the zero-se
tion. The following Propsition is a minor modi�
ation

of the standard Thom Transversality Theorem [GG℄.

Proposition 2.10. Suppose X is 
ompa
t with (possibly empty) boundary. Then

the set of smooth bundle maps � for whi
h �̂ vanishes non-degenerately is open and

dense in the C

1

-topology. Consequently, for any manifold X the set of su
h � is

residual (i.e., 
ontains the interse
tion of a 
ountable family of open dense subsets.)

Proof. Openness is 
lear. To prove density we �x a se
tion � and a point x

0

2 X.

Choose trivializations of E and F in a neighborhood U of x

0

. Then we have a

family of se
tions of Hom(E;F ) over U given by

�

L

= �

�

�

U

+L

for L 2 Hom(E

x

0

; F

x

0

). This gives a family of se
tions �̂

L

of Hom(U; �

�

F ) over

e

U

def

= �

�1

(U). We think of this as a map of manifolds

e

U � V �! Hom(U; �

�

F )

�

�

e

U

(2.11)

(u; L) 7�! �̂

L

(u)

where V = Hom(E

x

0

; F

x

0

). This map (2.11) is a
tually a submersion. To see this

note �rst that � Æ �̂

L

(u) = u, and so the image of T

u

e

U � f0g � T

(u;L)

(

e

U � V )

is a transversal to the �bre of � at all points. However, the map fug � V !

Hom(U; �

�

F )

u

is a surje
tive linear map at ea
h u (whi
h sends L to \L

�

�

U

"). This

shows that (2.11) is a submersion.

Using a partition of unity and standard 
onstru
tions one 
an globalize to a

submersion

(2.12) G

r

(E)�W

	

�! Hom(U; �

�

F )

where W is a �nite-dimensional ve
tor spa
e, where

	

w

def

= 	

�

�

G

r

(E)�fwg

= �̂

w

for a se
tion �

w

2 �(Hom(E;F )), and where �

0

= �. (Here W will be a dire
t

sum of V 's as above.) Sin
e 	 is a submersion, it is transversal to the zero-se
tion

of Hom(U; �

�

F ). By a standard argument using Sard's Theorem for families (
f.

[HL

1

℄) we 
on
lude that 	

w

is transversal to the zero se
tion of Hom(U; �

�

F ) for

almost all w 2W . �

In general k-atomi
ity is mu
h weaker than requiring �̂ to vanish non-degenerately.

One useful 
riterion for k-atomi
ity is the following.
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Lemma 2.13. Let � be a real analyti
 bundle map. If the set Z(�̂) � G

r

(E) has


odimension = (m� k)n, then � is k-atomi
.

Proof. This is an immediate appli
ation of Theorem 1.10 above. �

Proposition 2.14. Suppose � is real analyti
, and satis�es the 
ondition that


odimRK

k�p

= (m� k)(n� k + p);

(
odimRK

k�p

= 2(m� k)(n� k + p) in the 
omplex 
ase);

for all p, 0 � p � k. Then � is k-atomi
.

Proof. If rank�

x

= k�p, then dimker�

x

= r+p and �

�1

(x)\Z(�̂) is a Grassman-

nian of r-dimensional subspa
es of (r + p)-spa
e. This is a manifold of dimension

rp (2rp in the 
omplex 
ase). It follows that

dimf�

�1

(RK

k�p

) \ Z(�̂)g = dim(RK

k�p

) + rp

for ea
h p. Let d = dimX. Then the 
ondition of 2.13 will be satis�ed if

dim(RK

k�p

) + rp 5 d � (m � k)(n � k) for all p, i.e., if 
odim(RK

k�p

) = (m �

k)(n � k) + rp = (m � k)(n � k + p) for all p (with appropriate 
hanges in the


omplex 
ase). �

We now address the problem of real bundles. If E and F are real, then there

will be two 
ases of interest for our dis
ussion. In neither 
ase is E or F assumed

to be orientable.

2.15. Real Bundles; Case I. Here we assume that m, n and k are all even

integers. In this 
ase Hom(U; �

�

F ) is 
anoni
ally oriented even when U and F are

not. Furthermore the �bre of �, whi
h is the Grassmannian G

r

(R

m

) of unoriented

r-planes in R

m

(r = m� k), is also oriented. See Corollary A.6 and Corollary A.8

in Appendix A for proofs.

2.16. Real Bundles; Case II. Here we assume that m, n and k are all odd inte-

gers. In this 
ase neither Hom(U; �

�

F ) nor G

r

(E) are oriented, but they have the

same �rst Stiefel-Whitney 
lass. (See Corollary A.6 and Corollary A.8 in Appen-

dix A.) Consequently, Div(�̂) is de�ned. The �bre G

r

(R

m

) of � is also not oriented,

so one must be 
areful when integrating over the �bre. (See Proposition A.11 and

it's proof.)

In the remaining 
ases a dire
t analysis shows that either w

1

(G

r

(E)) 6= w

1

(Hom(U; �

�

F )),

and so Div(�̂) is not de�ned as a 
urrent, or the �bre integral of the Euler form

�(Hom(U; �

�

F )) is zero, and so results of the type obtained in x5 are uninteresting.
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x3. Poin
ar�e-Lelong families.

In this se
tion we brie
y re
all a basi
 result of [HL

2

℄ whi
h provides the �rst

step in all of our subsequent 
onstru
tions. Let V ! X be a smooth 
omplex ve
tor

bundle of rankm with a 
omplex 
onne
tion D and a metri
 < �; � > (whi
h is in

general unrelated to the 
onne
tion), and let � be an atomi
 se
tion of V .

From this data we introdu
e a family of 
onne
tions

�!

D

s

on V whi
h be
ome

singular as s & 0 pre
isely along the zeros of �. Taking the determinant of the


urvature

�!

R

s

of

�!

D

s

gives a family of smooth 2m-forms whi
h 
onverge as s ! 0

to Div(�). Moreover, the transgression forms for this family also 
onverge and

provide a 
anoni
al and fun
torial 
oboundary between 


m

(R

V

) and Div(�), where

R

V

= D

2

is the 
urvature of the given 
onne
tion.

To begin the pro
ess we �x an approximation mode by 
hoosing a fun
tion

� 2 C

1

([0;1℄) with �(0) = 0, �(1) = 1, and �

0

= 0. We then de�ne the family

of 
onne
tions

�!

D

s

by setting

(3.1)

�!

D

s

� = D� � �

s

< �; � >

j�j

2

D�

on se
tions � 2 �(V ), where �

s

= �(j�j

2

=s

2

). This is a smooth family of smooth


onne
tions on F for all s > 0. Let

(3.2)

�!

R

s

= (

�!

D

s

)

2

denote the 
urvature of

�!

D

s

, and 
onsider the family of forms

(3.3) �

s

def

= det

�

i

2�

�!

R

s

�

= 


m

(

�!

R

s

):

Note that �

1

= 


m

(R

V

) is the top Chern form of the given 
onne
tion. For all

s > 0 there is a transgression form

(3.4) �

s

=

�

i

2�

�

m

1

Z

s

det

�

_

�!

D

t

;

�!

R

t

�

dt

where

det(A;B) =

d

dt

det(B + tA)

�

�

t=0

= tr(

e

BA)

where

e

B is the transposed matrix of 
ofa
tors of B, and where

_

�!

D

t

= (d=dt)

�!

D

t

.

These (2m� 1)-forms �

s

have the property that

(3.5) d�

s

= 


m

(R

V

)� �

s

:

Our main result is the following.
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Theorem 3.6. ([HL

2

℄) Let � be an atomi
 se
tion of the bundle V with 
onne
tion

D as above. Then the limit � = lim

s!0

�

s

exists in the spa
e of forms on X with

L

1

lo


(X)-
oeÆ
ients. This limit is independent of 
hoi
e of approximation mode

and satis�es the 
urrent equation

(3.7) 


m

(R

V

)� Div(�) = d�:

In parti
ular, the family of L

1

lo


-forms �

s

def

= � � �

s

satis�es the equation

(3.8) �

s

� Div(�) = d�

s

and has the property that

(3.9) lim

s!0

�

s

= 0 and lim

s!1

�

s

= �

in L

1

lo


.

Equation (3.7) generalizes the 
lassi
al Poin
ar�e-Lelong formula for line bundles

and for this reason we 
all �

s

the Poin
ar�e-Lelong family. This family provides


anoni
al smoothings of the divisor Div(�). If � has the property that �(t) = 1 for

all t = 1, then �

s

has the additional property that

supp(�

s

) � fx 2 X : k�

x

k 5 sg

for all s > 0.

There is a 
ompanion result when V is a real oriented bundle of rank 2m with

an orthogonal 
onne
tion D, and an atomi
 se
tion �. We �x any � as above and

introdu
e a smooth family of orthogonal 
onne
tions de�ned on a se
tion � 2 �(V )

by

(3.10)

�!

D

s

� = D� � �

s

< �; � >

j�j

2

D�+ �

s

< D�; � >

j�j

2

�

where �

s

= �(j�j

2

=s

2

) as above. Let

�!

R

s

= (

�!

D

s

)

2

, and 
onsider the family of


losed 2m-forms

(3.11) �

R

s

def

= Pf

�

�

1

2�

�!

R

s

�

where Pf(A) denotes the PfaÆan of a skew-symmetri
 matrix A. We also de�ne

transgression forms

(3.12) �

R

s

=

�

�1

2�

�

m

1

Z

s

Pf(

_

�!

D

t

;

�!

R

t

)dt

where

Pf(A ; B) =

d

dt

Pf(B + tA)

�

�

t=0

:

These forms satisfy the equation

d�

R

s

= �(R

V

)� �

R

s

for s > 0

where �(R

V

) = Pf

�

�

1

2�

R

V

�

is the Chern-Euler form of the 
onne
tion D.
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Theorem 3.13. ([HL

2

℄) Let � be an atomi
 se
tion of the oriented bundle V with

orthogonal 
onne
tion D as above. Then the limit �

R

= lim

s!0

�

R

s

exists in L

1

lo


(X)

and is independent of the 
hoi
e of approximation mode. It satis�es the 
urrent

equation

(3.14) �(R

V

)�Div(�) = d�

R

:

In parti
ular, the L

1

lo


-forms �

R

s

= �

R

� �

R

s

satisfy

(3.15) �

R

s

� Div(�) = d�

R

s

on X and have the property that

(3.16) lim

s!0

�

R

s

= 0 and lim

s!1

�

R

s

= �

R

in L

1

lo


(X).

We will 
all �

R

s

the Euler family asso
iated to D, � and �.

The results above enhan
e the fundamental work of of [Ch℄ and [ChB℄, [ChB

2

℄

where the potentials � and �

s

were introdu
ed in the spe
ial 
ase of the tautalogi
al

se
tion over the total spa
e of V . In this universal 
ase our family �

s

(and �

R

s

)

provide families of 
anoni
al Thom forms for s > 0 whi
h 
onverge to the zero

se
tion as s ! 0. See Appendix C for simple expli
it formulas for �

s

, �

s

, �, �

R

s

,

�

R

s

, and �

R

taken from [HL

2

℄.
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x4. Thom-Porteous families (
omplex 
ase).

In this se
tion we generalize the results of x3 to arbitrary degenera
y 
urrents.

Let us �x smooth 
omplex ve
tor bundles E ! X and F ! X equipped with


onne
tions D

E

and D

F

and with hermitian metri
s (not ne
essarily related to the


onne
tions). We suppose that rank(E) = m and rank(F ) = n and we assume that

X is oriented.

In terms of the given 
onne
tions we shall derive 
hara
teristi
 forms whi
h are


ohomologous to the degenera
y 
urrents (
f. [T℄[P℄[M1℄[R℄). To do this we must

introdu
e the Shur polynomials. Suppose

� = 1 + �

1

+ �

2

+ � � �

is a di�erential form on X where ea
h �

k

is homogeneous of degree 2k. Then for

non-negative integers a and b we de�ne the Shur polynomial in � by

(4.1) �

(b)

a

(�) = det

��

�

a�i+j

��

1�i�b

1�j�b

i.e., �

(b)

a

(�) is the homogeneous form given by the determinant of the b� b matrix

whose (i; j)

th

entry is �

a�i+j

. These polynomials satisfy the fundamental identity

(
f. [Fu, pg. 264℄)

(4.2) �

(b)

a

(�) = (�1)

ab

�

(a)

b

(�

�1

)

where �

�1

is de�ned by the relation � � �

�1

= 1, and also the identity

(4.3) �

(b)

a

(�) = (�1)

ab

�

(b)

a

(

~

�)

where

~

�

def

= 1� �

1

+ �

2

� �

3

+ � � � .

Consider now the total Chern form of the 
onne
tion D

F

given by


(R

F

) = det

�

I +

i

2�

R

F

�

= 1 + 


1

(R

F

) + � � �+ 


n

(R

F

)

where R

F

= (D

F

)

2

. The form 
(R

E

) is de�ned similarly, and there is the inverse

form 
(R

E

)

�1

determined by 
(R

E

)
(R

E

)

�1

= 1. The Thom-Porteous form of

type (a; b) is then de�ned to be the form

�

(b)

a

f
(R

F

)
(R

E

)

�1

g:

We 
onsider now a smooth bundle map

� : E �! F

and we �x an approximation mode � as in x3. Let k be an integer with 0 � k <

minfm;ng and set N = 2(m� k)(n� k). Then we have the following.
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Theorem 4.4. Suppose that � is k-atomi
. Then there exist a 
anoni
al smooth

family of smooth N -forms TP

s

and a smooth family of L

1

lo


(N � 1)-forms S

s

on X,

for 0 < s 51, su
h that

(4.5) TP

s

� D

k

(�) = dS

s

for all s, and

lim

s!0

S

s

= 0

in L

1

lo


. Furthermore, the transgression form S = S

1

is independent of the 
hoi
e

of approximation mode � and satis�es the 
urrent equation

(4.6) �

(m�k)

n�k

f
(R

F

)
(R

E

)

�1

g � D

k

(�) = dS:

Proof. Consider the (atomi
) se
tion �̂ of the bundle H

def

= Hom(U; �

�

F ) intro-

du
ed in x2. The metri
s and 
onne
tions on E and F indu
e a natural metri
 and


onne
tion on H. Thus, using �, we 
an de�ne a Poin
ar�e-Lelong family of smooth

2(m � k)n-forms �

s

and 
anoni
al L

1

lo


-forms �

s

asso
iated to �̂. They satisfy the

equation

(4.7) �

s

� Div(�̂) = d�

s

for all 0 < s 51. Applying �

�

to (4.7) gives the equation

(4.8) TP

s

� D

k

(�) = dS

s

where TP

s

def

= �

�

�

s

(
alled the Thom-Porteous family) and S

s

def

= �

�

�

s

are the

smooth and L

1

lo


forms respe
tively obtained by integration over the �bre of the

smooth bundle � : G

r

(E) ! X. From 3.6 we know that � = �

1

satis�es the

equation

(4.9) 


M

(R

H

)�Div(�̂) = d�

on G

r

(E), where M = (m� k)n. Therefore, applying �

�

to (4.9) gives the formula

(4.10) �

�




M

(R

H

)� D

k

(�) = dS

on X, where S = �

�

�

1

= �

�

�.

It remains to 
ompute �

�




M

(R

H

). To begin we re
all from Appendix A that the

Shur polynomials are exa
tly what is needed to 
ompute the top Chern form of a

tensor produ
t 
onne
tion su
h as that on H = U

�


 �

�

F . The formula is

(4.11) 


M

(R

H

) = �

(m�k)

n

f�

�


(R

F

) � 
(R

U

)

�1

g:

We now re
all the splitting

(4.12) �

�

E = U � U

?

:
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There are two 
onne
tions on �

�

E: the indu
ed one �

�

D

E

, and the dire
t sum


onne
tion D

U

�D

U

?

indu
ed from �

�

D

E

by proje
tion onto the fa
tors in (4.12).

Taking the 
anoni
al 
onvex family of 
onne
tions joining these two and using the

standard transgression formula [HL

2

, I.1.19℄ gives an equation of smooth forms


(R

U

)
(R

U

?

) = �

�


(R

E

) + d�

on G

r

(E). This 
an be rewritten as


(R

U

)

�1

= �

�


(R

E

)

�1

� 
(R

U

?

) + d�

0

where �

0

= 
(R

U

)

�1

�

�


(R

E

)

�1

�. Plugging this into (4.9) gives the formula

(4.13) 


M

(R

H

) = �

(m�k)

n

n

�

�

�


(R

F

)
(R

E

)

�1

�


(R

U

?

)

o

+ d�

00

for a smooth form �

00

on G

r

(E).

We now observe that 
(R

U

?

) is of the form


(R

U

?

) = 1 + 


1

(R

U

?

) + � � �+ 


k

(R

U

?

):

Furthermore, the �bre dimension of � is 2(m�k)k, and so �

�

has the property that

�

�

f(�

�

�) g = �(�

�

 

0

)

for smooth forms � on X and  on G

r

(E), where  

0

is the homogeneous 
omponent

of  of degree 2(m� k)k. Consequently, applying �

�

to (4.13) gives

(4.14) �

�




M

(R

H

) = �

(m�k)

n�k

f
(R

F

)
(R

E

)

�1

g�

�

(


k

(R

U

?

)

(m�k)

) + dS

0

where S

0

= �

�

�

00

is a smooth form on X. To see this observe that the only (m�k)-

fold produ
t of Chern 
lasses of U

?

whi
h has degree 2(m�k)k is 


k

(U)

m�k

. Hen
e

all other terms in the determinant 
an be dropped when integrating over the �bre.

Now �

�




k

(R

U

?

)

m�k

is a 
losed 0-form, i.e., a 
onstant. This 
onstant is determined

by the topologi
al 
lass whi
h is 
omputed in Proposition B.1 of Appendix B. We

prove there that

�

�

(


k

(U

?

)

m�k

) = 1:

Hen
e, we have that

�

�




M

(R

H

) = �

(m�k)

n�k

f
(R

F

)
(R

E

)

�1

g+ dS

0

:

Repla
ing S

s

by S

s

�

�

s

1+s

�

S

0

and TP

s

by TP

s

�

�

s

1+s

�

dS

0

in equation (4.8) now

gives the result. �
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Remark 4.15 The adjoint problem. Let � : E �! F be as above and 
onsider

the adjoint mapping

�

�

: E

�

�! F

�

of the dual bundles. If �

�

is k-atomi
, the degenera
y 
urrent D

k

(�

�

) is de�ned

and Theorem 4.4 applies. In this 
ase equation (4.6) be
omes

(4.16) �

(n�k)

m�k

f
(R

E

�

)
(R

F

�

)

�1

g � D

k

(�

�

) = dS:

We note from the Shur relations (4.2) and (4.3) and the fa
t that 
(E

�

) = ~
(E) =

1� 


1

(E) + 


2

(E)� : : : , that

�

(n�k)

m�k

f
(R

E

�

)
(R

F

�

)

�1

g = (�1)

d

�

(n�k)

m�k

f
(R

E

)
(R

F

)

�1

g = �

(m�k)

n�k

f
(R

F

)
(R

E

)

�1

g

where d = (m � k)(n� k). Hen
e the left hand sides of (4.6) and (4.16) 
oin
ide.

Furthermore one 
an show that

supp D

k

(�

�

) = supp D

k

(�);

and that for generi
 maps

(4.17) D

k

(�

�

) = D

k

(�):

One 
onje
tures that (4.17) holds for general k-atomi
 bundle maps.

Remark 4.18. Holomorphi
 Case. In the spe
ial 
ase where X, E, F and

� are all holomorphi
 and where the D

E

and D

F

are 
anoni
al hermitian 
onne
-

tions, equation (4.7) and therefore also its push-forward (4.8) 
an be written as

�

�

�-equations, that is, the right hand sides 
an be repla
ed by a �

�

�T where T is a


urrent of bidegree q; q for appropriate q. Consequently in this 
ase Theorem 4.4

has �

�

�-re�nement.
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x5. Thom-Porteous families (real 
ase).

In this se
tion we shall establish the analogue of Theorem 4.2 for morphisms

� : E ! F of real ve
tor bundles. To state the result in its proper generality we

need some preliminary dis
ussion.

Throughout this se
tion X will be an oriented manifold and E ! X and F ! X

will be smooth, real ve
tor bundles furnished with orthogonal 
onne
tions D

E

and

D

F

respe
tively. We assume rankE = m and rankF = n and we �x an integer k

with 0 � k < minfm;ng. We do not assume that E and F are orientable. There

are two 
ases of interest.

Case I. The integers m = 2m

0

, n = 2n

0

, and k = 2k

0

are all even.

Case II. The integers m = 2m

0

+ 1, n = 2n

0

+ 1 and k = 2k

0

+ 1 are all odd.

To state the theorem we need to 
onsider the Shur polynomials of Pontrjagin

forms. Suppose

� = 1 + �

1

+ �

2

+ � � �

is a di�erential form on X where ea
h �

k

is homogeneous of degree 4k. Then for a,

b = 0 we de�ne

(5.1)

e

�

(b)

a

(�) = det

��

�

a�i+j

��

1�i�b

1�j�b

:

Asso
iated to the 
onne
tion D

F

is the total Pontrjagin form

p(R

F

) = 1 + p

1

(R

F

) + � � �+ p

n

0

(R

F

);

where p(A) = det

�

I +

1

4�

2

A

2

�

. The form p(R

E

) is given similarly, and we de-

�ne the Thom-Porteous form of type (a; b) in the Pontrjagin 
lasses to be the

homogeneous form

e

�

(b)

a

fp(R

F

)p(R

E

)

�1

g:

We now 
onsider a smooth bundle map

� : E �! F;

and we �x an approximation mode � as in x3.

Theorem 5.2. Let E, F and k be as above (either Case I or Case II), and suppose

that � is k-atomi
. Let N = (m � k)(n � k) = 4(m

0

� k

0

)(n

0

� k

0

). Then there

exists a 
anoni
al smooth family of smooth N -forms TP

s

, s > 0, and a smooth

family of L

1

lo


(N � 1)-forms S

s

on X, for 0 < s 51 su
h that

(5.3) TP

s

� D

k

(�) = dS

s

for all s, and

lim

s!0

S

s

= 0

in L

1

lo


. Furthermore, the transgression form S = S

1

is independent of approxima-

tion mode and satis�es the equation

(5.4)

e

�

(m

0

�k

0

)

n

0

�k

0

fp(R

F

)p(R

E

)

�1

g � D

k

(�) = dS

of 
urrents on X.
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Proof. Let � : G

r

(E)! X be the �bre bundle whose �bre at x is the Grassman-

nian of unoriented r-planes in E

x

, where

r = m� k = 2(m

0

� k

0

) = 2r

0

:

Let U ! G

r

(E) be the tautologi
al r-plane bundle, and let �̂ be the se
tion of

H = Hom(U; �

�

F )

�

=

U

�


 F

de�ned as in (2.4). By assumption �̂ is atomi
. At this point our dis
ussion breaks

into the two 
ases above.

We begin with Case I. Here both the bundle Hom(U; �

�

F ) and the maninfold

G

r

(E) are oriented. Using the approximation mode we 
an de�ne the Euler family

of smooth forms �

R

s

and the L

1

lo


-forms �

R

s

asso
iated to �̂ as in Theorem 3.11.

They satisfy the equation

(5.5) �

R

s

� Div(�̂) = d�

R

s

on G

r

(E) for all 0 < s 51. Applying �

�

to (5.5) gives the equation

(5.6) TP

s

� D

k

(�) = dS

s

where TP

s

def

= �

�

�

R

s

(
alled the Thom-Porteous family) and S

s

def

= �

�

�

R

s

are

smooth and L

1

lo


forms respe
tively on X. From 3.11 we know that �

R

= �

R

1

satis�es the equation

(5.7) �(R

H

)�Div(�̂) = d�

R

on G

r

(E) where H = Hom(U; �

�

F ), and where �(R

H

) = Pf

�

�

1

2�

R

H

�

is the

Chern-Euler 
lass of H. Applying �

�

in (5.7) gives the equation

(5.8) �

�

�(R

H

)� D

k

(�) = dS

on X, where S = �

�

�.

It remains to 
ompute �

�

�(R

H

). To begin we re
all from Theorem A.17 in

Appendix A the formula

(5.9) �(R

H

) =

e

�

(m

0

�k

0

)

n

0

f�

�

p(R

F

) � p(R

U

)

�1

g:

Transgressing between the pullba
k 
onne
tion and its proje
tion onto the splitting

�

�

E = U � U

?

gives the equation

(5.10) p(R

U

)p(R

U

?

) = �

�

p(R

E

) + d�

19



whi
h 
an be rewritten as

(5.11) p(R

U

)

�1

= �

�

p(R

E

)

�1

p(R

U

?

) + d�

0

:

Plugging this into (5.9) gives the formula

(5.12) �(R

H

) =

e

�

(m

0

�k

0

)

n

0

n

�

�

�

p(R

F

)p(R

E

)

�1

�

p(R

U

?

)

o

+ d�

00

of smooth forms on G

r

(E). Arguing exa
tly as in the proof of Theorem 4.2, we

now see that

(5.13) �

�

�(R

H

) =

e

�

(m

0

�k

0

)

n

0

�k

0

�

p(R

F

)p(R

E

)

�1

	

�

�

�

p

k

0

(R

U

?

)

m

0

�k

0

�

+ dS

0

where S

0

= �

�

�

00

is a smooth form on X.

The term �

�

p

k

0

(R

U

?

)

m

0

�k

0

is a d-
losed 0-form, i.e., a 
onstant. In Proposition

B.5 of Appendix B it is proved that

(5.14) �

�

p

k

0

(U

?

)

m

0

�k

0

= 1;

and so this 
onstant is 1. Repla
ing S

s

by S

s

�

s

1+s

S

0

and TP

s

by TP

s

�

s

1+s

dS

0

in

equation (5.6) now 
ompletes the proof for Case I.

The argument for Case II is highly analogous. The main di�eren
e 
omes from

the fa
t that while X is oriented, G

r

(E) is not be
ause the �bre of � is not ori-

entable. Consequently, when passing through the proof, one must keep in mind

the following points. Let O denote the orientation bundle for the manifold G

r

(E).

Tensoring the exterior powers of the 
otangent bundle of G

r

(E) by the real line

bundle O yields bundles whose se
tions are 
alled twisted di�erential forms.

A. Currents of dimension k on the d dimensional manifold G

r

(E) in
lude

twisted forms of degree d�k whi
h 
an be allowed to have L

1

lo



oeÆ
ients.

B. Twisted forms with L

1

lo



oeÆ
ients 
an be integrated over the �bre and

this 
orresponds to 
urrent push forward �

�

.

C. �(R

U

) is a twisted form on G

r

(E).

The main 
al
ulational di�eren
e in the argument is that equation (5.9) must be

repla
ed by

(5.15) �(R

H

) = (�1)

(n

0

+1)r

0

�(R

U

)

e

�

(m

0

�k

0

)

n

0

f�

�

p(R

F

) � p(R

U

)

�1

g

whi
h is proved in Theorem A.20 in Appendix A, and (5.14) is repla
ed by

(5.16) �

�

f�(U)p

m

0

(U

?

)

m

0

�k

0

g = 1;

whi
h is proved in Proposition B.11 of Appendix B. �

The formulas whi
h appear in Theorem 5.2 were 
omputed at the 
ohomology

level by R. Ma
Pherson in his Harvard University Thesis in 1970 (
f. [M1℄[M2℄).
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Remark 5.17 The adjoint problem. Let � : E �! F be as above and 
onsider

the adjoint mapping

�

�

: E

�

�! F

�

of the dual bundles. If �

�

is k-atomi
, the degenera
y 
urrent D

k

(�

�

) is de�ned

and Theorem 5.2 applies. In this 
ase equation (5.4) be
omes

(5.18)

e

�

(n

0

�k

0

)

m

0

�k

0

fp(R

E

)p(R

F

)

�1

g � D

k

(�

�

) = dS:

From (4.2) we see that

e

�

(n

0

�k

0

)

m

0

�k

0

fp(R

E

)p(R

F

)

�1

g = (�1)

d

e

�

(m

0

�k

0

)

n

0

�k

0

fp(R

F

)p(R

E

)

�1

g

where d = (m

0

� k

0

)(n

0

� k

0

). It 
an be shown that supp D

k

(�

�

) = supp D

k

(�)

and that for generi
 maps

(5.19) D

k

(�

�

) = (�1)

d

D

k

(�):

One 
onje
tures that (5.19) holds for general k-atomi
 bundle maps.

Remark 5.20. A version of Theorem 5.2 holds for any pair of bundles E and F

whenever k = 0, provided that E

�


F = Hom(E;F ) is oriented or, more generally,

that w

1

(E

�


F ) = w

1

(X). In this version the 
hara
teristi
 form in equation (5.4)

is just the Euler form of �(E

�


 F ) and D

k

(�) is just the divisor of � 
onsidered

as a se
tion of Hom(E;F ). This result is merely an instan
e of the general results

dis
ussed in x3.
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x6. Chara
teristi
 forms and the degenera
ies of k-frame �elds.

Among the 
lassi
al theorems in topology are those whi
h relate the 
hara
-

teristi
 
lasses of a bundle to the singularities of �elds of k-frames in the bundle.

We shall derive su
h formulas, at the level of forms and 
urrents, as dire
t 
onse-

quen
es of the general theory. The results generalize the 
lassi
al Chern formula




n

(F ) = Div(�)+ dT and our families (
f. x2) to all Chern and Pontryagin 
lasses.

Let F ! X be a smooth 
omplex ve
tor bundle of rank n with 
onne
tion D

F

over an oriented manifold X, and 
onsider a set of k+1 
ross-se
tions �

0

; : : : ; �

k

2

�(F ) where k < n. This is equivalent to a bundle map

� : C

k+1

�! F

from the trivial bundle C

k+1

given by setting �

x

(t

0

; : : : ; t

k

) = �t

i

�

i

(x) for x 2 X.

We shall say that this frame �eld (�

0

; : : : ; �

k

) has a good dependen
y lo
us if

the map � is k-atomi
. In this 
ase we 
an de�ne the linear dependen
y 
urrent

(6.1) LD (�

0

; : : : ; �

k

)

def

= D

k

(�):

Theorem 6.2. Let F ! X be a 
omplex ve
tor bundle with 
onne
tion over an

oriented manifold, and suppose that �

0

; : : : ; �

k

2 �(F ) are k + 1 smooth se
tions

with a good dependen
y lo
us. Then there exists an L

1

lo


-form S on X su
h that

(6.3) 


n�k

(R

F

) = LD (�

0

; : : : ; �

k

) + dS

where n = rank(F ). Furthermore, there exist smooth families of smooth forms TP

s

and L

1

lo


-forms S

s

, 0 < s 51, with TP

1

= 


n�k

(R

F

) and S

1

= S, su
h that

(6.4) TP

s

= LD (�

0

; : : : ; �

k

) + dS

s

and lim

s!0

S

s

= 0 in L

1

lo


.

Proof. We endow the trivialized bundle C

k+1

over X with the 
anoni
al metri


and 
at 
onne
tion. We introdu
e on F a smooth hermitian metri
 (not ne
essarily

related to D

F

), and we 
hoose an approximation mode �. In terms of this data,

Theorem 4.4 provides the families TP

s

and S

s

for the 
urrent D

k

(�). Formula (4.6)

translates dire
tly into (6.3) above. �

Note. In algebrai
 geometry these linear dependen
y 
lasses are used to de�ne the

Chern 
lasses in the Chow ring of a smooth variety (
f. [Fu℄).

Theorem 6.2 gives a dire
t proof of the basi
 fa
t that if �

0

; : : : ; �

k

are lin-

early dependent on a small set, i.e., one of dimension < n � k, and if they vanish

algebrai
ally as in Theorem 1.11 (1), then [


n�k

℄ = 0 in H

2(n�k)

(X).
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Theorem 6.2 
an be generalized to higher dependen
ies. Fix integers ` > 0 and

k with 0 � k < rank(F ), and 
onsider k + ` smooth 
ross-se
tions �

1

; : : : ; �

k+`

2

�(F ). They give rise to bundle map

� : C

k+`

�! F

as above. We say that the frame �eld � = (�

1

; : : : ; �

k+`

) has a good `-dependen
y

lo
us if � is k-atomi
. In this 
ase we de�ne the `-dependen
y 
urrent

(6.5) LD

`

(�) = D

k

(�)

whi
h measures in a rigorous way the set of points x where at least ` of the ve
tors

�

1

(x); : : : ; �

k+`

(x) be
ome linearly dependent on the remaining ones.

Theorem 6.6. Let F be as above and suppose � = (�

1

; : : : ; �

k+`

) are k+` se
tions

of F with a good `-dependen
y lo
us. Then there is an L

1

lo


-form S on X su
h that

(6.7) det

`�`

��




n�k�i+j

(R

F

)

��

= LD

`

(�) + dS:

Furthermore there exist families TP

s

and S

s

, 0 < s 51, with properties analogous

to those in Theorem 6.2.

Proof. One applies Theorem 4.4 as in the proof above. �

Of 
ourse one retrieves Theorem 6.2 from 6.6 as the spe
ial 
ase where ` = 1.

At the other extreme we 
an take k = 0. Note that LD

`

(�

1

; : : : ; �

`

) measures

the simultaneous vanishing of ` generi
 se
tions of F . Here we get the predi
table

formula

(6.8) 


n

(R

F

)

`

= LD

`

(�

1

; : : : ; �

`

) + dS:

There are 
orresponding theorems in the real 
ase. Let F ! X be a smooth

real ve
tor bundle of rankn with orthogonal 
onne
tion D

F

. Consider smooth


ross-se
tions �

1

; : : : ; �

k+`

2 �(F ) where 0 5 k < n and ` is even. We say that

� = (�

1

; : : : ; �

k+`

) has a good `-dependen
y lo
us if the bundle map

� : R

k+`

�! F

given by �

x

(t

1

; : : : ; t

k+`

) = �t

i

�

i

(x) is k-atomi
. In this 
ase we de�ne the `-

dependen
y 
urrent

LD

`

(�) = D

k

(�):

Sin
e ` = 2`

0

is even, there are two 
ases to 
onsider:

Case I. n = 2n

0

and k = 2k

0

Case II. n = 2n

0

+ 1 and k = 2k

0

+ 1

for integers n

0

, k

0

= 0. In Case II we assume F to be orientable.
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Theorem 6.9. Let F and � be as above (either Case I or Case II) and suppose

that � has a good `-dependen
y lo
us. Then there is an L

1

lo


-form S on X su
h

that

(6.10) det

`

0

�`

0

��

p

n

0

�k

0

�i+j

(R

F

)

��

= LD

`

(�) + dS:

Furthermore there exist families TP

s

and S

s

, 0 < s � 1, with properties analogous

to those in Theorem 6.2.

Proof. Introdu
e the 
anoni
al 
at orthogonal 
onne
tion on the trivialized bundle

R

k+`

and apply Theorem 5.2. �

Setting `

0

= 1 gives the following analogue of the formula in Theorem 6.2:

(6.11) p

n

0

�k

0

(R

F

) = LD

2

(�

1

; : : : ; �

k+2

) + dS

where k = 2k

0

or 2k

0

+1 depending on whi
h of the Cases I or II we are 
onsidering.

If we set k

0

= 0, we obtain

(6.12) p

n

0

(R

F

)

`

0

= LD

2`

0

(�

1

; : : : ; �

2`

0

) + dS

where LD

2`

0

(�

1

; : : : ; �

2`

0

) is measuring the simultaneous vanishing of the 2`

0

se
-

tions.

Theorem 6.9 has some interesting appli
ations in the next se
tion.
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x7. Singularities of proje
tions.

Let X be a smooth oriented m-manifold with an immersion

j : X # R

N

into eu
lidean N -spa
e. Fix an integer n < N and 
onsider the set of linear maps

from R

N

to R

n

. Ea
h P 2 Hom(R

N

;R

n

) restri
ts to give a smooth mapping

b

P = P Æ j : X �! R

n

:

We are interested in studying the singularities of these proje
tions. In parti
ular

for �xed k < minfm;ng and generi
 P we want to understand the lo
us where the

di�erential

d

b

P : TX �! R

n

has rank 5 k.

The proje
tion P is 
alled k-atomi
 on X if the bundle map d

b

P is k-atomi
,

and under this hypotheses one 
an de�ne the k

th

degenera
y 
urrent of the

proje
tion P on X to be

D

k

(P )

def

= D

k

(d

b

P ):

Theorem 7.1. Let j : X # R

N

be a C

1

immersion of a smooth oriented m-

manifold into eu
lidean spa
e. Fix integers k and n with k < minfm;ng and with

k � m � n (mod 2). Then for almost all P 2 Hom(R

N

;R

n

) the proje
tion P is k-

atomi
 on X and the following holds. There is a 
anoni
al L

1

lo


-form S = S(P; k; n)

su
h that

(7.2) det

`

0

�`

0

��

p

m

0

�k

0

�i+j

(X)

��

= D

k

(P ) + dS

where m

0

= [m=2℄, n

0

= [n=2℄, k

0

= [k=2℄, `

0

= n

0

� k

0

, and where

p(R

X

) = 1 + p

1

(R

X

) + p

2

(R

X

) + � � �

is the total Pontrjagin form of X for its indu
ed riemannian 
onne
tion. Further-

more, there are smooth families of smooth forms TP

s

and L

1

lo


-forms S

s

, 0 < s 51,

with TP

1

=

e

�

(n

0

�k

0

)

m

0

�k

0

fp(R

X

)g and S

1

= S, su
h that

(7.3) TP

s

= D

k

(P ) + dS

s

and lim

s!0

S

s

= 0 in L

1

lo


.

In parti
ular, if n

0

= k

0

+ 1 then there is a 
anoni
al 
ohomology

(7.4) p

m

0

�k

0

(R

X

) = D

k

(P ) + dS

between the (m

0

� k

0

)

th

Pontrjagin form and the 
urrent whi
h measures where

the di�erential of the proje
tion

b

P : X ! R

k+2

drops rank by 2.
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Proof. To prove that P is k-atomi
 for almost all P we mimi
k the proof of

Proposition 2.10. Set W = Hom(R

N

;R

n

) and let � : G

r

(R

n

) ! X be the bundle

proje
tion and U ! G

r

(R

n

) the tautologi
al r-plane bundle, where r = n � k.

Then there is a C

1

map

(7.5) W �G

r

(R

n

) = W �G

r

(R

n

)�X

	

�! Hom(U; �

�

TX)

(into the total spa
e of the bundle Hom(U; �

�

TX) over G

r

(R

n

)) given by

	(P;U; x) =

e

P

�

�

�

�

�

U

where

e

P = P

�

�

�

�

T

x

X

:

We 
laim that 	 is transversal to the zero se
tion of this bundle. To see this

suppose that 	(P;U; x) = 0 and let Q

0

2 Hom(U; T

x

X) be given. Extend Q

0

to

Q 2 Hom(R

n

;R

N

) by de�ning Q to be zero on U

?

. Consider the 
urve

P

t

= P + tQ

�

in W:

Then

d

dt

	(P

t

; U; x)

�

�

�

�

t=0

=

�

Q

�

�

�

T

x

X

�

�

�

�

�

�

U

= Q

�

�

�

�

U

= Q

0

:

Hen
e d	, restri
ted to W

�

=

T

p

W � T

(P;U;x)

(W � G

r

(R

n

) � X), maps onto the

�bre of Hom(U; �

�

TX) and is therefore transversal to the zero-se
tion as 
laimed.

It now follows from Sard's Theorem for Families ([HL

1

℄) that for almost all

P 2 W the restri
tion of 	 to fPg � G

r

(R

m

) is transversal to the zero se
tion

of Hom(U; �

�

TX). All su
h P are k-atomi
. This proves the �rst assertion of

the theorem. The remaining assertions are straightforward 
onsequen
es of Theo-

rem 6.9 applied to d

b

P : TX �! R

n

where TX 
arries the riemannian 
onne
tion

for the metri
 indu
ed by j and where R

n


arries the 
anoni
al 
at orthogonal


onne
tion. �
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x8. Singularities of maps.

We shall now 
onsiderably generalize the results of the last se
tion. Let X and

Y be smooth riemannian manifolds of dimensions m and n respe
tively (where Y

need not be orientable) and 
onsider a smooth mapping

f : X �! Y:

Fix an integer k < minfm;ng and assume that m � n � k (mod 2). Then the map

f is said to be k-atomi
 if the di�erential

df : TX �! f

�

TY

is k-atomi
. Arguing as in se
tions 2 and 7, one 
an show that generi
 smooth maps

have this property. Whenever f is k- atomi
, we 
an de�ne its k

th

degenera
y


urrent D

k

(f)

def

= D

k

(df).

Theorem 8.1. Let f : X ! Y , m, n and k be as above, and suppose that f is

k-atomi
. Set m

0

= [m=2℄, n

0

= [n=2℄ and k

0

= [k=2℄. Then there is a 
anoni
al

L

1

lo


-form S on X su
h that

(8.2)

e

�

(m

0

�k

0

)

n

0

�k

0

�

f

�

p(R

Y

)=p(R

X

)

	

= D

k

(f) + dS

where

p(R

X

) = 1+p

1

(R

X

)+p

2

(R

X

)+ � � � and p(R

Y

) = 1+p

1

(R

Y

)+p

2

(R

Y

)+ � � �

are the total Pontrjagin forms in the riemannian 
urvatures of X and Y . Further-

more there are smooth families of smooth forms TP

s

and L

1

lo


-forms S

s

, 0 < s 51,

with TP

1

= �

(m

0

�k

0

)

n

0

�k

0

ff

�

p(R

Y

)=p(R

X

)g and S

1

= S, su
h that

TP

s

= D

k

(f) + dS

s

and lim

s!0

S

s

= 0 in L

1

lo


.

Proof. This is a straightforward appli
ation of Theorem 5.2. �

An interesting spe
ial 
ase o

urs when dimX = dimY = 4 and k = 2. Here

(8.2) has the form

(8.3) f

�

p

1

(Y )� p

1

(X) = �n

i

x

i

+ dS

where D

2

(f) = �n

i

x

i

is a dis
rete sum of points with integer 
oeÆ
ients. Let

N

f

= �n

j

denote the total 2-degenera
y number of f .

This yields a 4-dimensional analogue of the 
lassi
al Riemann-Hurwitz Theorem

[M1℄, [M2℄, [R℄.

Corollary 8.4. Suppose that f : X ! Y is a smooth map between 
ompa
t

oriented 4-manifolds with isolated points of 2-degenera
y. Then

M

f

p

Y

� p

X

= N

f

where p

X

and p

Y

are the �rst Pontrjagin numbers of the manifolds X and Y

respe
tively, M

f

is the degree of the map f , and N

f

is the total 2-degenera
y

number of f .

In his thesis [S℄ Robert Stingley gives reinterpretations of N

f

and methods of


omputing it in terms of the lo
al geometry of the map f .
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x9. Milnor 
urrents.

There is a 
omplete analogue of the formulas of x8 for the 
omplex 
ase. Su
h

results are not new; they 
an be dedu
ed from work by Fulton, Bismut, Gillet and

Soul�e. However we add them here for interest, and remark that the holomorphi


assumptions here 
an be 
onsiderably relaxed to statements about smooth almost


omplex manifolds.

Let X and Y be 
omplex manifolds of dimensions m and n respe
tively, and


onsider a holomorphi
 map

f : X �! Y:

Introdu
e 
omplex 
onne
tions and hermitian metri
s on X and Y . Fix k <

minfm;ng. We say that f is k-atomi
 if


odim

C

fx 2 X : rank(df

x

) 5 kg = (m� k)(n� k):

By 1.10 and 2.7 this hypothesis implies the existen
e of the k

th

degenera
y 
ur-

rent D

k

(f)

def

= D

k

(df).

Theorem 9.1. Let f : X ! Y be a holomorphi
 k-atomi
 map as above. Then

there exists a 
anoni
al L

1

lo


-form S on X su
h that

(9.2) �

(m�k)

n�k

ff

�


(Y )=
(X)g = D

k

(f) + dS

where d = (m � k)(n � k) and where 
(X) = det(1 + (i=2�)R

X

) and 
(Y ) =

det(1 + (i=2�)R

Y

) are the total Chern forms of X and Y in their given 
onne
-

tions. Furthermore, there are smooth families TP

s

, �

s

, 0 < s 5 1 with properties

analogous to those in 8.1.

Proof. This is a dire
t 
onsequen
e of Theorem 4.4 and (4.2). �

Remark. When X and Y are given the 
anoni
al hermitian 
onne
tions asso
iated

to the metri
s, the term dR in formula (9.2) 
an be repla
ed by �

�

�T as noted in

Remark 4.18.

An interesting 
ase o

urs when X and Y are 
ompa
t, dimY = n = 1, and

k = 0. Then f is a map to a 
omplex 
urve, and it will be 0-atomi
 i� it has

isolated singular points, say x

1

; : : : ; x

`

2 X. We de�ne the Milnor 
urrent to be

M (f)

def

= D

k

(f) =

`

X

i=1

m

i

[x

i

℄

where the integers m

i

are the lo
al Milnor numbers

m

i

= dim

n

O

x

i

.D

�f

�t

1

; : : : ;

�f

�t

m

Eo

:

Equation (9.2) has the form

(9.3) (�1)

m

f


m

(R

X

)� 


m�1

(R

X

)f

�




1

(R

Y

)g = M (f) + dS:
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When n = 1 this equation integrates to give the 
lassi
al Riemann-Hurwitz For-

mula.

Another interesting 
ase arises when X � P

N

is a proje
tive m-manifold and

f : X ! P

m

is given by linear proje
tion P

N

� P

N�m�1

! P

m

, where X \

P

N�m�1

= ; (Noether normalization). Let ! be the K�ahler form of the metri


indu
ed on X. Then (9.2) implies formulas of the following type. If f is (m � k)-

atomi
 for k

2

5 m, then

(9.4) �

(k)

k

f
(X)(1 + !)

�(m+1)

g = (�1)

k

2

D

m�k

(f) + dS

k

for an L

1

lo


-form S

k

. Every su
h f is (m � 1)-atomi
, and D

m�1

(f) = B (f) is the

bran
hing divisor of f . This gives the formula:

(9.5) (m+ 1)! � 


1

(X) = B (f) � dS:

For example if X is a 
urve of degree d and genus g, then (9.5) implies that 2(d+

g � 1) = jB j = the total order of bran
hing of f .

There are of 
ourse many many su
h formulas 
oming from methods of enumer-

ative geometry.
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x10. CR-singularities.

The methods introdu
ed above yield some interesting results in CR geometry.

Consider an immersion

f : X # Z

of a real manifold X into a 
omplex manifold Z, where

m = dim

R

(X) � n = dim

C

(Z):

Then the di�erential df : TX ! f

�

TZ extends to a 
omplex bundle map

(10.1) df

C

: TX 


R

C �! f

�

TZ:

De�nition 10.2. Assume that the bundle map df

C

is k-atomi
 where 0 � k < n,

and let r = n� k. Then we de�ne the r

th


omplex tangen
y 
urrent of f to be

C r

r

(f) = D

k

(df

C

):

Roughly speaking this 
urrent 
orresponds to the lo
us of points x where f

�

T

x

X


ontains a 
omplex subspa
e having r \ex
ess" dimensions, i.e., more 
omplex tan-

gen
y (by r) than expe
ted. Spe
i�
ally we have:

Lemma 10.3. The support of C r

r

(f) satis�es

supp C r

r

(f) j fx 2 X : dim

C

(T

x

X \ JT

x

X) = m� n+ rg

where J denotes the almost 
omplex stru
ture of Z (and where for notational


onvenien
e we have identi�ed T

x

X with f

�

T

x

X).

Proof. By (2.7) we have supp C r

r

(f) � fx 2 X : rank(df

C

) 5 kg. Note that at

x 2 X,

ker(df

C

) = fV + iW : V;W 2 T

x

X and V + JW = 0g

= fV + iJV : V; JV 2 T

x

Xg

= [(T

x

X \ JT

x

X)
C℄

0;1

:

Sin
e rank(df

C

) = m � dim

C

ker(df

C

) we have rank(df

C

) 5 k i� dim

C

(T

x

X \

JT

x

X) = m� k = m� n+ r. �

We now suppose that X 
arries a riemannian metri
 and that Z 
arries a her-

mitian metri
 and a 
omplex 
onne
tion. De�ne 
(Z) as in (9.1) and set

~p(X) = 1� p

1

(R

X

) + p

2

(R

X

)� � � �+ (�1)

[m=4℄

p

[m=4℄

(R

X

)

and

~
(Z) = 1� 


1

(R

Z

) + 


2

(R

Z

)� � � �+ (�1)

n




n

(R

Z

)

where p

i

(R

X

) and 


i

(R

Z

) are the i

th

Pontrjagin and Chern forms of X and Z

respe
tively.
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Theorem 10.4. Let f : X ! Z be an immersion of a real m-manifold into a


omplex n-manifold with n 5 m as above, and assume that df

C

is (n� r)-atomi


where 0 < r 5 n. Then there is a 
anoni
al L

1

lo


form S on X su
h that

(10.5) �

(r)

m�n+r

f~p(X)=f

�

~
(Z)g = �

(m�n+r)

r

ff

�


(Z)=~p(X)g

= C r

r

(f) + dR:

Furthermore there are smooth families TP

s

, S

s

0 < s 51 as in Theorems 6.2, 8.1,

9.1 et
.

Note 10.6. The term on the left is 
omputed by writing ~p(X)=f

�

~
(Z) = 1 + �

1

+

�

2

+ � � � , where �

i

is a 2i-form, and then applying formula (4.1).

Note 10.7. In Theorem 10.4 it suÆ
es that Z be an almost 
omplex manifold.

Furthermore f need not be an immersion; but in this 
ase Lemma 10.3 does not

apply.

Proof of Theorem 10.4. Apply Theorem 4.4 to the bundle map df

C

and note

that


(R

T

�

X
C

) = 
(R

TX
C

) = ~p(X):

This establishes the se
ond equality in (10.5). The �rst equality is a dire
t 
onse-

quen
e of the Shur relations (4.2) and (4.3). �

Consider for example the 
ase where Z = C

n

and r = 1. This gives the following.

Corollary 10.8. Let f : X # C

k+1

be an immersion of a smooth m-manifold

with the property that df

C

is k- atomi
. Suppose m � k = 2` > 0. Then there is

an L

1

lo


-form S on X with

C r

1

(f) = (�1)

`

p

`

(X) + dS:

Example 10.9. Suppose X

4

is a smooth 4-manifold and

f : X

4

# C

3

an immersion as above. Then we have that

p

1

(X) = �n

i

x

i

+ dS

where x

1

; : : : ; x

N

are the points of 
omplex tangen
y of the immersion and where

n

1

; : : : ; n

N

are integers 
omputed from the lo
al CR geometry of f .
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Example 10.10. Consider the 
ase where m = n. Let

f : X

n

# Z

n

be an immersion of a real n-manifold into a 
omplex n-manifold. If df

C

is (n� r)-

atomi
, we have

C r

r

(f) = �

(r)

r

f~p(X)=~
(Z)g+ dS

(where ~
(Z) is assumed to be pulled ba
k via f to X). When r = 1 we have

C r

1

(f) = 


1

(Z) + dS:

When r = 2, a 
al
ulation yields

C r

2

(f) = �

(2)

2


(Z)� p

1

(Z)p

1

(X) + p

1

(X)

2

+ dS:

Example 10.11. Consider an immersion

f : S

m

# Z

and give S

m

the standard Riemannian 
onne
tion for whi
h p(S

m

) � 1. Then if

df

C

is (n� r)-atomi
 we have

C r

r

(f) = �

(m�n+r)

r

f
(Z)g+ dS:

One 
ase of interest is where m = n = 2r

2

. Then we have

C r

r

(f) =

�

�

�

�

�

�

�

�




r

(Z) 


r+1

(Z) � � � 


2r

(Z)




r�1

(Z) 


r

(Z)

.

.

.




1

(Z) 


r

(Z)

�

�

�

�

�

�

�

�

+ dS:

There is a 
ounterpart to all of the dis
ussion above for the 
ase where m 5 n.

Theorem 10.12. Let f : X # Z be an immersion of a real m-manifold into a


omplex n-manifold where m 5 n. Assume that the map df

C

of (10.1) is (m� r)-

atomi
. For given 
onne
tions and metri
s onX and Z as above, there is a 
anoni
al

L

1

lo


-form S su
h that

(10.13) C r

r

(f)

def

= D

m�r

(df

C

) = �

(r)

(n�m+r)

f
(Z)=~p(X)g � dS

with approximating families TP

s

and S

s

as in (10.4).
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The proof of Lemma 10.3 shows that in this 
ase

supp C r

r

(f) � fx 2 X : dim

C

(T

x

X \ JT

x

X) = rg:

Remark 10.14. Note that if f : X # Z is a totally real immersion, then Theo-

rem 10.12 implies that

(10.15) �

(r)

n�m+r

f
(Z)=~p(X)g = 0 in H

�

(X)

for all r > 0. However in this 
ase TZ

�

�

X

= (TX � C ) � � where � is a 
omplex

bundle of dimension n�m. Hen
e, on X we have


(Z) = 
(TX � C )
(�) = ~p(X)
(�)

and so


(Z)=~p(X) = 
(�) = 1 + 


1

(�) + � � �+ 


n�m

(�)

and (10.15) follows trivially.

On the other hand if f is Lagrangian (in the sense that f

�

T

x

X)?J(f

�

T

x

X) for all

x), then for a natural 
hoi
e of 
onne
tions onX and Z one has �

(r)

n�m+r

f
(Z)=~p(X)g �

0 on X, and via (10.15) a se
ondary invariant [T ℄ 2 H

odd

(X;R) is de�ned.

Some of the results in this se
tion are related to work of Lai [Lai℄, Webster

[W1,2,3℄, and Wolfson [Wo℄.

33



x11. Invariants for pairs of 
omplex stru
tures.

In this se
tion we shall introdu
e 
hara
teristi
 invariants whi
h measure the

relative singularities of a pair of 
omplex stru
tures. Consider a real C

1

ve
tor

bundle E ! X of rank 2n, and suppose that J

1

and J

2

are smooth almost 
omplex

stru
tures on E. These stru
tures indu
e de
ompositions

(11.1) E 


R

C = E

1;0

1

� E

0;1

1

= E

1;0

2

� E

0;1

2

into the �i eigenspa
es of J

1

and J

2

respe
tively. (E

1;0

k

is the +i eigenspa
e.)

Consider the bundle map � given by the 
omposition

E

1;0

1

,! E 


R

C� E

0;1

2

Lemma 11.2. At ea
h x 2 X, there is an isomorphism

ker�

x

�

=

fV 2 E

x

: J

1

V = J

2

V g

= the maximal subspa
e of E

x

whi
h is simultaneously

J

1

and J

2


omplex.

Proof. Note that E

1;0

1

= fV � iJ

1

V : V 2 E

x

g. Now for V 2 E

x

, we have

v

def

= V � iJ

1

V 2 ker�() �

1;0

2

(v) = 0

() v + iJ

2

v = V � iJ

1

V + iJ

2

(V � iJ

1

V ) = 0

() J

2

V = J

1

V: �

De�nition 11.3. Fix r, 1 � r � n. The stru
tures J

1

, J

2

will be 
alled r-

transversal if the bundle map � is (n � r)-atomi
. Under this hypothesis we

de�ne the r

th


oin
iden
e 
urrent of the pair J

1

, J

2

to be

Q

r

(J

1

; J

2

) = D

n�r

(�):

From 11.2 and 2.7 we have that

suppQ

r

(J

1

; J

2

) j fx 2 X : J

1

= J

2

on a subspa
e W � E

x

with dimW = rg:

Theorem 11.4. Suppose J

1

and J

2

are r- transversal. Then given 
omplex 
on-

ne
tions on E

1

� (E; J

1

) and E

2

� (E; J

2

), there exists an L

1

lo


-form S su
h that

Q

r

(J

1

; J

2

) = �

(r)

r


(E

2

�E

1

) + dS

where 
(E

2

� E

1

) = 
(R

E

2

)
(R

E

1

)

�1

. Furthermore, there are smooth families TP

s

and S

s

, 0 < s 51 as in 6.2, 8.1, 9.1.
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Proof. Apply Theorem 4.4. �

Example 11.5. Fix E

1

= X�C

n

= (X�R

2n

; J

0

). The produ
t bundle with the


anoni
al 
at 
onne
tion, and 
onsider E

2

= (X � R

2n

; J) where J is any other

almost 
omplex stru
ture on this trivialized R

2n

-bundle. For those J whi
h are

r-transversal to the given 
at stru
ture we have

Q

r

(J)

def

= Q

r

(J

0

; J) = �

(r)

r


(R

J

) + dS

r

where 
(R

J

) are the Chern forms of a J -
omplex 
onne
tion. For example,

Q

1

(J) = 


1

(R

J

) + dR

1

Q

2

(J) = det

�




2




3




1




2

�

+ dR

2

= 


2

2

� 


1




3

+ dT

2

Q

3

(J) = det

0

�




3




4




5




2




3




4




1




2




3

1

A

+ dR

3

:

Note. There are 
ohomology relations


(E)
(E) = 1 and 


n

(E) = 0

on any 
omplex bundle whi
h is trivial as a real bundle. Nevertheless, E may still

be non-trivial as a 
omplex bundle. Consider for example the 
omplex line bundle

L! S

1

� S

1

of Chern 
lass 2, and set E = L�C. Then




1

(E) = 


1

(L) = 2

and so E is non-trivial. However E is trivial as an R

4

-bundle. To see this note

�rst that the 
lassifying map S

1

� S

1

�! BU

2

�! BSO

4


an be lifted to a map

S

1

� S

1

�! BSpin

4

sin
e the only obstru
tion to this lifting is w

2

(E) = 


1

(E)

(mod 2) = 0. However, BSpin

4

is 3-
onne
ted, so this lift, and therefore also the

map to BSO

4

, are 
ontra
tible.

Example 11.6. (Di�eomorphisms) Let f : X ! X be a di�eomorphism of an

almost 
omplex manifold with almost 
omplex stru
ture J . For generi
 f , the

stru
tures J and f

�

J will be r-transversal for all r, and so given a J -
ompatible


onne
tion r on X, we 
an take the f

�

J -
ompatible 
onne
tion f

�

r and obtain

L

1

lo


-forms S

r

with

Q

r;J

(f)

def

= Q

r

(J; f

�

J) = �

(r)

r

ff

�


(R

J

)=
(R

J

)g+ dS

r

:
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x12. Invariants for plane �elds and foliations.

This dis
ussion given in x10 for mappings 
an be applied to plane �elds, and in

parti
ular to foliations. Even more generally suppose F ! X is a smooth 
omplex

ve
tor bundle of 
omplex dimension n, and 
onsider a real sub-bundle

j : P ,! F

of (real) dimension m. Then there is a natural extension of j to a 
omplex bundle

map

(12.1) j

C

: P 


R

C �! F:

Fix an integer r, with 0 < r 5 minfm;ng, and set k = minfm;ng� r. We say that

P has good 
omplex r-tangen
ies if j

C

is k-atomi
. Under this hypotheses the


omplex tangen
y 
urrent

(12.2) C r

r

(P )

def

= D

k

(j

C

)

is de�ned. In analogy with 10.3 and (10.12) we have

supp C r

r

(P ) � fx 2 X : dim

C

(P

x

\ J

x

P

x

) = r +maxf0;m� ngg:

This is the subset of X where the dimension of the maximal 
omplex subspa
e of

P is greater by at least r than the \expe
ted" or \generi
" dimension.

Theorem 12.3. Let j : P ,! F be a real m-dimensional subbundle with good


omplex r-tangen
ies in a 
omplex n-dimensional bundle F . Let P be equipped

with a real 
onne
tion and metri
, and let F be given a 
omplex 
onne
tion and

hermitian metri
. (No relation among the four is assumed.)

Then there is a 
anoni
ally de�ned L

1

lo


-form S on X su
h that

(12.4) C r

r

(P ) =

(

�

(r)

m�n+r

f~p(P )=~
(F )g+ dS; when m = n

�

(r)

n�m+r

f
(F )=~p(P )g+ dS; when m 5 n

where 
(F ), ~
(F ) and ~p(P ) are de�ned as in x10. Furthermore there are approxi-

mating families �

s

, S

s

, 0 < s 51, as in previous theorems.

Note. The equations in (12.4) 
an be rewritten by using the elementary Shur

relations (4.2) and (4.3). In parti
ular, with k = minfm;ng � r, we have

�

(m�k)

n�k

f
(F )=~p(P )g = �

(n�k)

m�k

f~p(P )=~
(F )g:

Example 12.5. (Plane �elds and foliations). A 
ase of geometri
 interest o

urs

when

j : P ,! TZ

is a real m-plane �eld on an almost 
omplex manifold Z. This arises for example

when P is the tangent plane �eld TF of an m-dimensional foliation F of Z. In this


ase the 
urrents C r

r

(F) � C r

r

(TF) 
orrespond to the ex
ess 
omplex tangen
ies

of the foliation. The formulas in (12.4) give 
ohomologi
al obstru
tions to �nding an

isotopy of F to a foliation without 
omplex tangen
ies of dimension r+maxf0;m�

ng.
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x13. Higher self-interse
tions of plane �elds and invariants for pairs of

foliations.

Let F ! X be a smooth bundle of rank n and 
onsider two subbundles

A

i

,! F and B

j

,! F

of ranks a and b respe
tively. We assume all bundles to be simultaneous real or

simultaneously 
omplex. From this data we get a bundle map

A

�

�! F=B

given by restri
ting the proje
tion � : F ! F=B to A. Note that

ker�

x

= A

x

\ B

x

whose \expe
ted" or \generi
" dimension is

e = maxfa+ b� n; 0g:

Fix integers r > 0 and k � 0 with e+r = a�k, or equivalently r+k = minfa; n�bg.

Note that rank(�

x

) = a� dim(A

x

\B

x

) � k if and only if dim(A

x

\B

x

) � a� k =

e + r. We say that A and B make good r-
onta
t if � is k-atomi
. Under this

assumption we de�ne the r-
onta
t 
urrent

C t

r

(A;B) = D

k

(�)

and note that

supp C t

r

(A;B) � fx 2 X : dim(A

x

\ B

x

) = e+ rg:

This 
urrent measures the 
onta
t degenera
ies of rank r, i.e., the set where Ameets

B in at least r dimensions more than expe
ted. Setting e

�

= maxfn � (a + b); 0g

and applying xx4 and 5 give the following.

Theorem 13.1. Suppose A, B and F are 
omplex and that F is provided with a


omplex 
onne
tion and metri
. If A and B make good r-
onta
t, then there is a


anoni
al L

1

lo


-form T su
h that

C t

r

(A;B) = �

(e+r)

e

�

+r

f
(R

F

)=
(R

A

)
(R

B

)g+ dS:

Theorem 13.2. Suppose A, B and F are real bundles of rank 2a

0

, 2b

0

and 2n

0

respe
tively and let e = 2e

0

, e

�

= 2e

�

0

. Suppose F is provided with an orthogonal


onne
tion. Then if A and B make good r-
onta
t where r = 2r

0

is even, there is

a 
anoni
al L

1

lo


-form S su
h that

C t

r

(A;B) =

e

�

(e

0

+r

0

)

e

�

0

+r

0

fp(R

F

)=p(R

A

)p(R

B

)g+ dS:
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Remark 13.3. One 
ould equivalently formulate the problem by 
onsidering the

adjoint map �

�

: (F=B)

�

! A

�

. Note that at x 2 X, we have

ker(�

�

x

) = A

?

x

\ B

?

x

whose expe
ted dimension is

e

�

= maxfn� (a+ b); 0g:

Applying 4.4 gives us \dual" formulas whi
h are equivalent to those of 13.1 and

13.2. To see this, observe that by the Shur relations (4.3) and (4.2) we have

�

(e+r)

e

�

+r

f
(R

F

)=
(R

A

)
(R

B

)g = �

(e

�

+r)

e+r

f
(R

A

�

)
(R

B

�

)=
(R

F

�

)g

and

e

�

(e

0

+r

0

)

e

�

0

+r

0

fp(R

F

)=p(R

A

)p(R

B

)g =

e

�

(e

�

0

+r

0

)

e

0

+r

0

fp(R

A

)p(R

B

)=p(R

F

)g:

Example 13.4. (Higher self interse
tion 
lasses). Given A � F as above

one 
an take B to be a generi
 displa
ement of A (whi
h will be r-atomi
 for all

relevant r) and 
ompute the \higher self interse
tions" of the plane �eld. Consider

for example the 
omplex line �eld � � TP

3

on 
omplex proje
tive 3-spa
e whi
h

is tangent to the �bres of the twistor map P

3

! S

4

. Now we have 
(�) = 1 + 2!

where ! 2 H

2

(P

3

;Z)

�

=

Z is the 
anoni
al generator. The self-interse
tion 
lass


oming from taking A = B = �, F = TP

3

and r = 1 in 13.1 is

�

(1)

2

f
(TP

3

)=
(�)

2

g = �

(1)

2

f(1 + !)

4

=(1 + 2!)

2

g = 2!

2

:

This implies that a generi
 deformation of � (as a smooth 
omplex subbundle) in

TP

3

will 
oin
ide with � along a 
y
le in P

3

whi
h represents the homology 
lass

2[P

1

℄ 2 H

2

(P

3

; Z)

�

=

Z.

There are analogous 
omplex line �elds � on every P

2n+1

C

tangent to the �bres

of the bundle � : P

2n+1

C

! P

n

H

. Here the generi
 self-interse
tion lo
us satis�es

C t

1

(�) = �

(1)

2n

f(1 + !)

2n+2

=(1 + 2!)

2

g+ dS = (n+ 1)!

2n

+ dS:

Example 13.5. (Relative foliation 
y
les). Suppose we are given two foliations

F and F

0

of dimensions 2a

0

and 2b

0

respe
tively in a Riemannian manifold of

dimension 2n

0

. Then we 
an apply 13.2 to A = TF and B = TF

0

to produ
e


anoni
al 
ohomologies between the 
urrent of (e + r)-dimensional 
onta
t points

of F and F

0

, i.e., between

C t

r

(F ;F

0

)

def

= C t

r

(TF ; TF

0

);

and the 
hara
teristi
 forms de�ned in 13.2.
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APPENDIX A Orientations and tensor produ
ts

In this appendix we dis
uss questions of orientations and 
hara
teristi
 
lasses

of tensor produ
t bundles. We begin with some elementary de�nitions. Let V ! Y

be a real ve
tor bundle of rank n over a manifold Y . By de�nition there is an open


overing U = fU

�

g

�2A

of Y and lo
al trivializations

f

�

: V

�

�

�

�

U

�

�

�! U

�

�R

n

:

The 
ompositions give transition fun
tions

g

��

: U

�

\ U

�

�! GL

n

(R)

by setting g

��

(x) = f

�

Æ f

�1

�

(x; �). They have the property that g

��

(x) = g

��

(x)

�1

and satisfy the 
o
y
le 
ondition

(A.1) g

��

g

�


g


�

� 1 on U

�

\ U

�

\ U




:

In terms of this data we de�ne a

^

Ce
h 1-
o
y
le fw

��

g on the 
over U by setting

w

��

def

= sgnfdet(g

��

)g : U

�

\ U

�

�! f1;�1g

�

=

Z

2

:

From (A.1) we see that w

��

satis�es the 
o
y
le 
ondition

(A.2) w

��

w

�


w


�

� 1 in U

�

\ U

�

\ U




and therefore determines a 
lass

w

1

(V ) 2 H

1

(Y ; Z

2

)

whi
h 
an be shown to be independent of the 
hoi
e of lo
al trivializations for V .

It is 
alled the �rst Stiefel-Whitney 
lass of V . Note that the 
o
y
le w

��

,


onsidered as transition fun
tions on U , determines a two-fold 
overing (i.e., a Z

2

-

bundle) over Y , 
alled the orientation bundle Or(V ) of V . One 
an naturally

identity the �bre of Or(V ) at x with the two possible orientations of V

x

. If Y is a


onne
ted manifold then Cov

2

(Y )

�

=

Hom(�

1

Y;Z

2

)

�

=

H

1

(Y ;Z

2

) (where Cov

2

(Y )

denotes the equivalen
e 
lasses of 2-fold 
overings of Y ). This gives an equivalent

de�nition of w

1

(V ) and shows that

(A.3) V is orientable () w

1

(V ) = 0:

Proposition A.4. Let U ! Y and F ! Y be real ve
tor bundles with rank(U) =

m and rank(F ) = n, and set H = Hom(U; F ) = U

�


 F . Then

(A.5) w

1

(H) = nw

1

(U) +mw

1

(F ):
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Proof. Let A : R

m

! R

m

and B : R

n

! R

n

be linear maps, and 
onsider

A
B : R

nm

! R

nm

. Then

det(A
 B) = (detA)

n

(detB)

m

:

Now let fa

��

g and fb

��

g be transition fun
tions for U and F respe
tively over an

open 
overing U of Y . Then H has transition fun
tions h

��

= a

�

��


 b

��

, and so

det(h

��

) = det(a

�

��

)

n

det(b

��

)

m

= det(a

��

)

n

det(b

��

)

m

:

Hen
e,

sgn(deth

��

) = (sgn det a

��

)

n

(sgn det b

��

)

m

:

Rewriting this additively gives the result. �

Corollary A.6. The bundle H = Hom(U; F ) is orientable if any one of the follow-

ing 
onditions holds:

(i) rankU and rankF are both even.

(ii) F is orientable and rankF is even.

(iii) U is orientable and rankU is even.

Corollary A.7. Suppose that rankF is odd and that either F is orientable or

rankU is even. Then

w

1

(H) = w

1

(U):

Let G

r

(R

m

) denote the Grassmannian of (unoriented) r- planes in R

m

, and

let U �! G

r

(R

m

) denote the tautologi
al r-plane bundle. There is a natural

embedding U ,! R

m

into the trivialized m-plane bundle, and this gives a splitting

R

m

= U � U

?

:

Corollary A.8. If r and m are both even, then G

r

(R

m

) is orientable.

Proof. Apply A.6, part (i), to TG

r

(R

m

) = Hom(U;U

?

). �

Consider a smooth real ve
tor bundle E ! X of rank m, and let � : G

r

(E)! X

be the Grassmann bundle whose �bre at x 2 X 
onsists of all (unoriented) r-

planes in E

x

. Let U ! G

r

(E) be the tautologi
al r-plane bundle with 
anoni
al

embedding U ,! �

�

E. After a 
hoi
e of metri
 in E we have a splitting

�

�

E = U � U

?

and there is a bundle equivalen
e

(A.9) TG

r

(E)

�

=

�

�

TX � Hom(U;U

?

):
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Corollary A.10. Suppose X is orientable. If r and m are even, then G

r

(E) is

orientable. If r is even and m is odd, then

w

1

(U) = w

1

(G

r

(E)):

Proof. By A.9 and Proposition A.4 we have

w

1

(G

r

(E)) = �

�

w

1

(X) + w

1

(U

�


 U

?

) = (m� r)w

1

(U) + rw

1

(U

?

): �

We now 
onsider integration over the �bres of �. To begin re
all that an r-

form twisted by the orientation bundle on a manifold Y is a se
tion of the

bundle �

r

T

�

Y 


Z

2

Or(Y ) where Or(Y ) = Or(TY ), and where Z

2

= f1;�1g a
ts

multipli
atively. A density on Y is a d-form twisted by Or(Y ) where d = dim(Y ).

Densities with 
ompa
t support 
an be integrated over Y (
f [St℄).

Proposition A.11. Let X, G

r

(E) and U be as in Corollary A.10, and assume that

r is even and m is odd. Then for any orthogonal 
onne
tion on U with 
urvature

R

U

, the Euler form of U on G

r

(E)

�(R

U

) = Pfa�

�

�

1

2�

R

U

�

is an r-form twisted by the orientation bundle of G

r

(E). For any q-form ! on

G

r

(E) the produ
t ! ^ �(R

U

) 
an be integrated over the �bres of � : G

r

(E)! X,

yielding a smooth form on X.

Proof. Let r = 2r

0

. For a skew-symmetri
 transformation A : R

r

! R

r

we have

the equation

(A.12)

�

1

2

e

t

Ae

�

r

0

= r

0

! Pfa�(A)e

1

^ � � � ^ e

r

in ^

r

R

r

, where e

1

; : : : ; e

r

denotes any orthonormal basis of R

r

, and where e

t

Ae =

�A

ij

e

i

^ e

j

. The left hand side of (A.12) is independent of orientation. Hen
e from

(A.12) we see that the PfaÆan of R

U

is twisted by Or(U). However, from (A.9)

we have

Or(G

r

(E)) = �

�

Or(X)
Or(U

�


 U

?

) = Or(U

�

) = Or(U)

under our assumption that X is orientable and r is even. Now any Or(G

r

(E))-

twisted form � on G

r

(E) (for example, �(R

U

)^!) de�nes a 
urrent on G

r

(E) and

hen
e 
an be pushed forward by � as a 
urrent toX. To see this push forward is well

de�ned let � be a form with 
ompa
t support on X of degree d

0

= dim(G

r

(E))�

deg�. Then

[�

�

�℄(�) =

Z

G

r

(E)

� ^ �

�

�

whi
h is well-de�ned sin
e �^�

�

� is a density on G

r

(E). Finally sin
e � is smooth

this push forward 
an be 
omputed using �bre integration yielding a smooth un-

twisted form on X, sin
e X is oriented. �
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We have observed above that if U and F are real ve
tor bundles of even rank,

then U

�


 F is orientable. However, it remains to 
hoose a 
anoni
al orientation.

Convention A.13. Let V andW be �nite dimensional ve
tor spa
es with ordered

bases (e

1

; : : : ; e

m

) and (f

1

; : : : ; f

n

) respe
tively. Then the 
anoni
al orientation

on V 
W with respe
t to these bases is given by

(e

1


 f

1

; e

2


 f

1

; : : : ; e

m


 f

1

; e

1


 f

2

; : : : ; e

m


 f

2

; : : : ; e

m


 f

n

):

This depends only on the orientations of V and W determined by (e

1

; : : : ; e

m

) and

(f

1

; : : : ; f

m

). If n is even, it is independent of the orientation of V (and if m is even

it is independent of the orientation of W ). If n � m � 0 (mod 2), it is independent

of the orientations of both V and W .

Remark A.14. Given an inner produ
t on V there are natural isomorphisms V 


W

�

=

V

�


W = Hom(V;W ) whi
h transfer the 
anoni
al orientation to Hom(V;W )

(independently of the 
hoi
e of inner produ
t).

Suppose dim

R

(V ) = dim

R

(W ) = 2 and both are oriented and equipped with

inner produ
ts so that V

�

=

W

�

=

C . Then we have a natural splitting

(A.15) Hom

R

(V;W ) = Hom

C

(V;W )�Hom

C

(V;W )

given by writing

A =

1

2

(A� J

W

AJ

V

) +

1

2

(A+ J

W

AJ

V

)

where J

V

, J

W

are the 
omplex stru
tures 
orresponding to the orientations on V

and W .

Lemma A.16. The 
anoni
al orientation on Hom

R

(V;W ) is opposite to the one


orresponding to the 
omplex stru
ture indu
ed via (A.15).

Proof. Let (v

1

; v

2

), (w

1

; w

2

) be oriented bases for V and W , and let h

ij

= v

�

j

�w

i

1 � i, j � 2 be the 
orresponding basis of H = Hom

R

(V;W ). Then Hom

C

(V;W )

has an oriented basis (�

1

; �

2

) where �

1

= h

11

+ h

22

and �

2

= J(�

1

) = �

1

Æ J

V

=

h

21

�h

12

. Similarly Hom(V;W ) has basis �

0

1

= h

11

�h

22

and �

0

2

= J(�

0

1

) = �

0

1

ÆJ

V

=

�h

21

� h

12

. Taking the wedge produ
t over R gives

�

1

^ �

2

^ �

3

^ �

4

= (h

11

+ h

22

) ^ (h

21

� h

12

) ^ (h

11

� h

22

) ^ (�h

21

� h

12

)

= �4h

11

^ h

21

^ h

12

^ h

22

: �

We shall now 
ompute the Euler form of the bundle Hom(U; F ) over a manifold

Y . In pra
ti
e we will set Y = G

r

(E) and take U to be the tautologi
al bundle.
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Theorem A.17. Let U ! Y and F ! Y be smooth ve
tor bundles with orthog-

onal 
onne
tions. Give H

def

= Hom(U; F ) the indu
ed tensor produ
t 
onne
tion.

Suppose

rank(U) = 2r

0

and rank(F ) = 2n

0

for integers r

0

, n

0

> 0. Then the Euler form of H for its 
anoni
al orientation is

given by

(A.18) �(R

H

) =

e

�

(r

0

)

n

0

fp(R

F

)p(R

U

)

�1

g

where

e

�

(b)

a

is the Shur polynomial introdu
ed in x5.

Proof. We begin by proving equation A.18 at the 
ohomology level. Consider �rst

the 
ase where dimU = dimF = 2 and both U and F are oriented. Set

a = �(U) = 


1

(U) and b = �(F ) = 


1

(F )

in H

2

(Y ;R). Then from the equation

Hom

R

(U; F ) = Hom

C

(U; F )�Hom

C

(U; F )

and Lemma A.16 we get

�(H) = ��(U

�




C

F )�(U

�




C

F )

= �(b� a)(�b� a)

= b

2

� a

2

= p

1

(F )� p

1

(U):

Suppose now that U and F are oriented and apply the Splitting Prin
iple to write

them formally as

U = U

1

� � � � � U

r

0

and F = F

1

� � � � � U

n

0

where U

i

and F

j

are oriented 2-plane bundles. We formally set

a

i

= �(U

i

) and b

j

= �(F

j

)

for all i, j. Then

Hom(U; F ) =

n

0

M

j=1

r

0

M

i=1

Hom(U

i

; F

j

)

and so

(A.19) �(Hom(U; F )) =

n

0

Y

j=1

r

0

Y

i=1

(b

2

j

� a

2

i

) =

e

�

(r

0

)

n

0

f1 + �

1

+ �

2

+ � � � g
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where �

k

2 H

4k

(Y ;R) is de�ned by

p(F )

p(U)

=

n

0

Q

j=1

(1 + b

2

j

)

r

0

Q

i=1

(1 + a

2

i

)

= 1 + �

1

+ �

2

+ � � � :

See [Fu, page 419℄ for the se
ond equality in (A.19). This establishes formula (A.18)

at the 
ohomology level when U and F are orientable.

To establish the formula at the level of forms we re
all that by [NR℄ any k-plane

bundle with 
onne
tion over a manifold Y is indu
ed from the universal bundle

U

k

with its 
onne
tion over G

k

(R

N

), for N suÆ
iently large, by a smooth map

f : Y ! G

k

(R

N

). Suppose now that f : Y ! G

2r

0

(R

N

) and g : Y ! G

2n

0

(R

N

)


lassify U and F with their 
onne
tions, i.e., f

�

(U

�

2r

0

)

�

=

U

�

and g

�

(U

2n

0

)

�

=

F .

Then f � g : Y ! G

2r

0

(R

N

)�G

2n

0

(R

N

) has the property that

(f � g)

�

(U

�

2r

0


U

2n

0

)

�

=

U

�


 F

as bundles with 
onne
tion. Consequently if formula (A.18) holds for U

�

2r

0


U

2n

0

,

it holds in general, sin
e

�

�

R

U

�


F

�

= (f � g)

�

�

�

R

U

�

2r

0


U

2n

0

�

= (f � g)

�

�

(r

0

)

n

0

�

p(R

U

2n

0

)p(R

U

2r

0

)

�1

	

=

e

�

(r

0

)

n

0

�

p(R

F

)p(R

U

)

�1

	

:

Hen
e it suÆ
es to prove (A.18) in the universal 
ase. However, here (A.18) is a 
on-

sequen
e of the 
ohomology 
al
ulation. To see this note that both �(R

U

�

2r

0


U

2n

0

)

and

e

�

(r

0

)

n

0

fp(R

U

2n

0

)p(R

U

2r

0

)

�1

g are invariant under the full isometry group of

G

2r

0

(R

N

) � G

2n

0

(R

N

) and are therefore harmoni
 by a standard result in the

theory of symmetri
 spa
es.

When U and F are possibly non-orientable we pass to the 2-fold or 4-fold 
overing

where they are orientable. The equation of forms (A.18) is invariant under the


overing group and therefore des
ends to Y . �

Theorem A.20. Let U , F and H = Hom(U; F ) be as in Theorem A.17 ex
ept

that

rank(U) = 2r

0

and rank(F ) = 2n

0

+ 1

for integers r

0

, n

0

> 0. Then the 
anoni
al orientation gives an isomorphism

Or(H)

�

=

Or(U), and the Or(H)-twisted Euler form of H is equal to the following

Or(U)-twisted form

(A.21) �(R

H

) = �(R

U

)

e

�

(r

0

)

n

0

�

p(R

F

)p(R

U

)

�1

	

:
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Proof. Note that by Proposition A.4 we have w

1

(H) = w

1

(U), and so Or(H)

�

=

Or(U) under the identi�
ation Cov

2

(Y )

�

=

H

1

(Y ;Z

2

). We lift to the 2-fold 
overing

of Y where H and U are orientable and establish (A.21) there. Sin
e both sides of

(A.21) transform by �1 under the (non-trivial) de
k-transformation, the result will

follow.

We assume therefore that U is orientable. We may assume also that F is ori-

entable sin
e if not we pass to a 2-fold 
overing where it is, and then observe that

the equation is invariant, as in the proof of A.17. The proof now pro
eeds as before.

We apply the Splitting Prin
iple and formally write

U = U

1

� � � � � U

r

0

and F = F

1

� � � � � F

n

0

�R

where U

i

, F

j

are oriented 2-plane bundles with a

i

= �(U

i

) and b

j

= �(F

j

). Then

H = U

�


 F = U

�

�

n

0

M

j=0

r

0

M

i=0

U

�

i


 F

j

and so

�(H) = �(U)

n

0

Y

j=1

r

0

Y

i=1

(b

2

j

� a

2

i

) = �(U)�

(r

0

)

n

0

fp(F )p(U)

�1

g:

As above, this 
ohomology formula implies the formula at the level of forms via

[NR℄ and the uniqueness of invariant forms in the 
ohomology of G

2r

0

(R

N

) �

G

2n

0

(R

N

). �

We 
on
lude this se
tion by presenting the analogue of the last two theorems for

the 
omplex 
ase.

Theorem A.22. Let U ! Y and F ! Y be smooth 
omplex ve
tor bundles with


omplex 
onne
tions and with

rank(U) = r and rank(F ) = n:

Give H = Hom(U; F ) = U

�

� F the indu
ed tensor produ
t 
onne
tion. Then the

top Chern form of H is given by

(A.23) 


nr

(R

H

) = �

(r)

n

f
(R

F

)
(R

U

)

�1

g

where 
(R) = det

�

1 +

i

2�

R

�

denotes the top Chern form of the 
onne
tion.

Proof. At the 
ohomology level this result is well known (
f. [Fu, 14.4.12℄), and

one 
an dedu
e the formula at the level of forms by passing to the 
lassifying spa
es

as in the proof of A.17. �
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Alternatively one 
an prove (A.23) dire
tly by establishing the following matrix

identity. Let M

k�k

denote the ve
tor spa
e of 
omplex k � k matri
es. For any


ommutative ring R with unit, and for integers a, b > 0, let

(A.24) �

(a)

b

: R[[t℄℄ �! R

be the fun
tion given by

�

(a)

b

0

�

X

k�0

r

k

t

k

1

A

= det

a�a

��

r

b�i+j

��

where

��

r

b�i+j

��

is the a� a matrix whose (i; j)

th

entry is r

b�i+j

when r� i+ j = 0

and 0 otherwise.

Lemma A.25. For A 2M

a�a

and B 2M

b�b

, 
onsider the matrixA�1

b

�1

a

�B 2

M

ab�ab

. Then

det fA� 1

b

� 1

a

� Bg = �

(a)

b

�

det(1

b

+ tB) det(1

a

+ tA)

�1

	

:

Proof. It suÆ
es to restri
t attention to the Zariski open dense subset of di-

agonalizable matri
es (A;B) in M

a�a

� M

b�b

. Thus we may assume that A =

diag(x

1

; : : : ; x

a

) and B = diag(y

1

; : : : ; y

b

). The lemma is now an immediate 
onse-

quen
e of the following.

Fa
t A.26. ([Fu, page 419℄) In the polynomial ring R = C [x

1

; : : : ; x

a

; y

1

; : : : ; y

b

℄

in (a+ b) indeterminants, one has the identity

b

Y

j=1

a

Y

i=1

(y

j

� x

i

) = �

(a)

b

8

>

>

>

<

>

>

>

:

b

Q

j=1

(1 + ty

j

)

a

Q

i=1

(1 + tx

i

)

9

>

>

>

=

>

>

>

;

:

Note. Using A.26 one 
an give alternative proofs of Propositions A.17 and A.20

above.

46



APPENDIX B Integration over the �bres in G

r

(E)

In this appendix we establish the topologi
al formulas required to 
omplete the


omputations in xx4 and 5.

Proposition B.1. Let E ! X be a smooth hermitian ve
tor bundle of rankm.

Consider the Grassmann bundle � : G

r

(E)! X of r-planes in E, where 0 < r < m,

and let U ! G

r

(E) be the tautologi
al 
omplex r-plane bundle. Write

�

�

E = U � U

?

;

and let 


m�r

(U

?

) be the top Chern 
lass of U

?

. Then under the Gysin map

�

�

: H

2r(m�r)

(G

r

(E))! H

0

(X) we have

(B.2) �

�

�




m�r

(U

?

)

r

	

= 1:

Proof. It suÆ
es to prove (B.2) in the 
ase that X is a point, i.e., to prove that

(B.3)







m�r

(U

?

)

r

; G

r

(C

m

)

�

= 1:

To see this we 
onsider the Poin
ar�e dual of 


m�r

(U

?

) i.e., the divisor Div(�

v

)

of an atomi
 se
tion �

v

2 �(U

?

) de�ned by �xing a ve
tor v 2 C

m

and setting

�

v

(U) = �

U

?(v)

at U 2 G

r

(C

m

) where �

U

?
: C

m

= U � U

?

! U

?

is orthogonal proje
tion. Now

�

v

vanishes non-degenerately and

Div(�

v

) = fU 2 G

r

(C

m

) : v 2 Ug:

We now 
hoose r ve
tors v

1

; : : : ; v

r

2 C

m

whi
h are linearly independent. Then

these divisors meet transversely and

Div(�

v

1

) \ � � � \Div(�

v

r

) = fU 2 G

r

(C

m

) : v

1

; : : : ; v

r

2 Ug(B.4)

= fspan(v

1

; : : : ; v

r

)g :

Under Poin
ar�e duality 
up produ
t followed by evaluation on the fundamental


lass be
omes interse
tion produ
t. Hen
e, (B.4) ) (B.3). �

Proposition B.5. Let E ! X be a smooth riemannian ve
tor bundle of rankm.

Consider the Grassmann bundle � : G

r

(E)! X of r-planes in E, where 0 < r < m,

and let U ! G

r

(E) be the tautologi
al real r-plane bundle. Suppose

r = 2r

0

and m = 2m

0

for positive integers r

0

and m

0

. Write

�

�

E = U � U

?

and let p

m

0

�r

0

(U

?

) be the top Pontrjagin 
lass of U

?

. Then under the Gysin map

�

�

: H

4r

0

(m

0

�r

0

)

(G

2r

0

(E))! H

0

(X) we have

(B.6) �

�

�

p

m

0

�r

0

(U

?

)

r

0

	

= 1:
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Proof. It suÆ
es to 
onsider the 
ase where X is a point, i.e., it suÆ
es to prove

that

(B.7)




p

m

0

�r

0

(U

?

)

r

0

; G

2r

0

(R

2m

0

)

�

= 1:

To do this we lift to the Grassmannian

e

G

2r

0

(R

2m

0

) of oriented 2r

0

-planes with

tautologi
al bundle

e

U, and prove that

(B.8)

D

p

m

0

�r

0

(

e

U

?

)

r

0

;

e

G

2r

0

(R

2m

0

)

E

= 2:

Sin
e

e

G

2r

0

(R

2m

0

)! G

2r

0

(R

2m

0

) is a 2-sheeted 
overing whose de
k transformation

preserves the orientation of

e

G

2r

0

(R

2m

0

) and the 
lass p

m

0

�r

0

(

e

U

?

), we see that (B.8)

) (B.7).

To prove (B.8) we �rst establish the following.

Lemma B.9.

p

m

0

�r

0

(

e

U

?

) = �(

e

U

?

)

2

:

Proof. We apply the Splitting Prin
iple and write

e

U

?

formally as a dire
t sum of

oriented 2-plane bundles

(B.10)

e

U

?

= U

1

� � � � � U

k

0

where k

0

= m

0

� r

0

, and set a

j

= �(U

j

). Then by de�nition

p

k

0

(

e

U

?

) = �

k

0

(a

2

1

; : : : ; a

2

k

0

)

= a

2

1

� � �a

2

k

0

= (a

1

� � �a

k

0

)

2

= �(

e

U

?

)

2

: �

We now pro
eed as in the proof of (B.1). The Poin
ar�e dual of �(

e

U

?

) is repre-

sented by the divisor of the atomi
 se
tion �

v

2 �(

e

U

?

) de�ned by �xing a ve
tor

v 2 R

2m

0

and setting

�

v

(

e

U) = �

e

U

?

(v)

at

e

U 2

e

G

2r

0

(R

2m

0

) where �

e

U

?

: R

2m

0

=

e

U �

e

U

?

!

e

U

?

is orthogonal proje
tion.

In fa
t �

v

vanishes non-degenerately and

Div(�

v

) = f

e

U 2

e

G

2r

0

(R

2m

0

) : v 2

e

Ug:

We 
hoose 2r

0

linearly independent ve
tors v

1

; : : : ; v

2r

0

2 R

2m

0

. Then the oriented

submanifolds Div(�

v

j

) meet transversely and

Div(�

v

1

) \ � � � \ Div(�

v

2r

0

) =

n

e

U 2

e

G

2r

0

(R

2m

0

) : v

1

; : : : ; v

2r

0

2

e

U

o

�

=

fv

1

^ � � � ^ v

2r

0

; �v

1

^ � � � ^ v

2r

0

g ;
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i.e., this interse
tion 
onsists exa
tly of the two points 
orresponding to the plane

spanfv

1

; : : : ; v

2r

0

g with its two possible orientations. Using invarian
e under the

de
k transformation group and a lo
al 
al
ulation one 
on
ludes that

D

p

m

0

�r

0

(

e

U

?

)

r

0

;

e

G

2r

0

(R

2m

0

)

E

=

D

�(

e

U

?

)

r

0

;

e

G

2r

0

(R

2m

0

)

E

= #fDiv(�

v

1

) \ � � � \Div(�

v

2r

0

)g

= 2:

This establishes (B.8) and proves (B.5). �

We now re
all that if r is even and m is odd, then G

r

(R

m

) is non-orientable

and Or(G

r

(R

m

)) = Or(U). More generally if E ! X is a oriented bundle of odd

rank over an oriented manifold, and if r is even, then G

r

(E) is non-orientable and

Or(G

r

(E)) = Or(U), where U is the tautologi
al bundle as above. As seen in

(A.11), integration over the �bre gives a Gysin map �

�

: H

k

(G

r

(E); Or(U)) !

H

k�r(m�r)

(X;R) where H

k

(G

r

(E);Or(U)) denotes the 
ohomology of Or(U)-

twisted forms, i.e., 
ohomology with 
oeÆ
ients in the lo
al system Or(U). As

seen also in (A.11), �(U)^
 is an Or(U)-twisted 
lass for any 
 2 H

�

(G

r

(E);R).

Proposition B.11. Let E ! X be an oriented riemannian bundle of rankm over

an oriented manifold. Let G

r

(E), U and U

?

be as in Proposition B.5, but assume

that

r = 2r

0

and m = 2m

0

+ 1

for positive integers r

0

andm

0

. Then under the Gysin map �

�

: H

r(m�r)

(G

r

(E);Or(U))!

H

0

(X;R) we have

(B.12) �

�

�

�(U)p

m

0

�r

0

(U

?

)

r

0

	

= 1:

Proof. It suÆ
es to 
onsider the 
ase where X is a point. Fix v

0

2 R

m

and let �

be the 
ross-se
tion of U given by

�(U) = �

U

(v

0

)

where �

U

: R

m

= U � U

?

! U is orthogonal proje
tion. Now the Poin
ar�e dual

of �(U) is represented by the oriented 
y
le

Div(�) = The Grassmannian of r-planes in v

?

0

�

=

G

2r

0

(R

2m

0

):

By the standard formula for the Poin
ar�e dual we have




�(U)p

m

0

(U

?

)

r

0

; G

r

(R

m

)

�

=




p

m

0

(U

?

)

r

0

; �(U) \G

r

(R

m

)

�

=




p

m

0

(U

?

)

r

0

; Poin
ar�e dual of �(U)

�

=




p

m

0

(U

?

)

r

0

; G

2r

0

(R

2m

0

)

�

= 1

where the last equality 
omes from (B.5). �
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APPENDIX C Expli
it formulae

Here we 
olle
t together expli
it algebrai
 expressions for the various forms o
-


uring in the equations of Se
tion 3. These expli
it expressions are taken from

[HL

2

℄. Suppose that V is either a 
omplex ve
tor bundle of 
omplex rank n or

a real ve
tor bundle of even rank 2n whi
h is oriented. Equip V with an inner

produ
t h ; i

V

and a 
onne
tion D

V

. The equations are:




n

(


V

)� �

s

= d�

s

Complex Case:

�

s

� [X℄ = dr

s




n

(


V

)� [X℄ = d�:

�(


V

)� �

s

= d�

s

Real Case:

�

s

� [X℄ = dr

s

�(


V

)� [X℄ = d�:

In both 
ases �

s

and r

s

are related by

r

s

= � � �

s

and

lim

s!0

r

s

= 0 lim

s!1

�

s

= 0;

in L

1

lo


(V ). These are 
urrent equations on the total spa
e of V with X � V the

zero se
tion. Alternatively, given a smooth atomi
 se
tion � : X ! V they 
an be

pulled ba
k to equations on X. The atomi
 hypothesis ensures that the L

1

lo


(V )

form � pulls ba
k to an L

1

lo


(X) form on X, as well as ensuring that Div(�) is the

appropriate repla
ement for [X℄.

In order to des
ribe the global L

1

lo


forms �

s

, �

s

, and � expli
itely the following

notation is useful. Let e

1

; : : : ; e

n

denote a lo
al frame for V and let e denote

the 
olumn with i

th

entry e

i

. Then a se
tion � 
an be written as � = ue with

u = (u

1

; : : : ; u

n

). The equation D

V

e = !

V

e de�nes the lo
al gauge !

V

as an n� n

matrix of one forms. The 
urvature operator R

V

= D

2

V

has matrix form 


V

=

d!

V

�!

V

^!

V

. Sin
e D

V

� = (du+ u!

V

)e, it is 
onvenient to let Du � du+ u!

V

,

so that D

V

� = (Du)e. Let h

V

� (he

i

; e

j

i

V

) denote the metri
 matrix, and let

u

�

� h

V

�u

t

so that j�j

2

= uh

V

�u

t

= uu

�

. (We will also �nd it 
onvenient to let juj

2

denote j�j

2

= uu

�

rather than u�u

t

.) Also, let

Du

�

= du

�

� !

V

u

�

:

Just as Du is the matrix form of D

V

�, this formula is the matrix form of D�

�

where �

�

is the adjoint of � thought of as a bundle map from the trivial bundle C

to V .
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In the real 
ase we only 
onsider oriented orthonormal frames e and hen
e h

V

= 1

(the identity matrix) so that u

�

= u

t

, j�j

2

= uu

t

= juj

2

, and Du

t

= du

t

�!

V

u

t

. As

before �(t) : [0;1℄! [0; 1℄ determines the approximation mode. For brevity let

�

s

� �

�

juj

2

s

2

�

:

In the 
omplex 
ase, 
onsider the dual frame e

�

= (e

�

1

; : : : ; e

�

n

), together with

the frame e, as elements of the grassmann algebra ^(V

�

� V ). Let �(e) � e

�

1

^ e

1

^

� � � ^ e

�

n

^ e

n

denote the volume form. Then for any matrix A, the determinant


an be 
omputed from

1

n!

(e

�

Ae) = (detA)�(e):

Consequently, the equation

det(A ; B)�(e) =

1

(n� 1)!

(e

�

Ae)(e

�

Ae)

n�1


an be used to 
ompute

det(A ; B) �

d

dt

det(B + tA)

�

�

t=0

:

Complex Case:

�

s

=

�

i

2�

�

n

(1� �

s

) det

�




V

� �

s

Du

�

Du

juj

2

�

+

�

i

2�

�

n

�

�

s

(1� �

s

)� �

0

s

juj

2

s

2

�

djuj

2

juj

2

det

�

u

�

Du

juj

2

; 


V

� �

s

Du

�

Du

juj

2

�

:

�

s

�(e) = �

1

n!

�

i

2�

�

n

e

�

u

�

Due

juj

2

(e

�




V

e� �

s

e

�

Du

�

Du

juj

2

e)

n

� (e

�




F

e)

n

e

�

Du

�

Du

juj

2

e

�� = �

1

n!

�

i

2�

�

n

e

�

u

�

Due

juj

2

(e

�




V

e� e

�

Du

�

Du

juj

2

e)

n

� (e

�




V

e)

n

e

�

Du

�

Du

juj

2

e

The 
hoi
e �(t) � t=1+ t is referred to as the algebrai
 approximation mode.

(See [HL

2

℄ and [Z℄) for motivation for this 
hoi
e). Note that � is independent of

the 
hoi
e of approximation mode �.

Complex Case with Algebrai
 Approximation Mode:

�

s

=

�

i

2�

�

n

s

2

juj

2

+ s

2

det

�




V

�

Du

�

Du

juj

2

+ s

2

�

;

or equivalently,

�

s

� =

1

n!

�

i

2�

�

n

s

2

juj

2

+s

2

�

e

�




V

e�

e

�

Du

�

Due

juj

2

+ s

2

�

n

:

�

s

� = �

1

n!

�

i

2�

�

n

e

�

u

�

Due

�

e

�




V

e�

e

�

Du

�

Due

juj

2

+s

2

�

n

� (e

�




V

e)

n

e

�

Du

�

Due

:

Now we 
onsider the real 
ase. The real rank of V is assumed to be even (= 2n).
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Real Case: Suppose A is a skew 2n � 2n matrix. Let e

1

; : : : ; e

2n

denote an

oriented orthonormal (lo
al) frame for V and let � � e

1

^� � �^ e

2n

2 �

2n

V denote

the unit volume element. Re
all the de�nition of the pfaÆan of A

Pf(A)� =

1

n!

�

1

2

e

t

Ae

�

n

:

Sin
e V is oriented the unit volume form � for V is globally de�ned, and hen
e Pf(A)

is globally de�ned independently of the 
hoi
e of oriented orthonormal frame e.

�

s

� =

1

n!

�

�1

4�

�

n

(1� �

s

)

�

e

t




V

e� 2�

s

�

1�

�

s

2

�

(Due)

2

juj

2

�

n

+

2

(n�1)!

�

�1

4�

�

n

 

�

s

(1��

s

)

�

1�

�

s

2

�

��

0

s

juj

2

s

2

!

djuj

2

juj

2

(ue)(Due)

juj

2

�

e

t




V

e�2�

s

�

1�

�

s

2

�

(Due)

2

juj

2

�

n�1

:

�

s

� =

2

(n�1)!

�

�1

4�

�

n

(ue)(Due)

juj

2

�

s

Z

0

�

e

t




V

e� 2x

�

1�

x

2

�

(Due)

2

juj

2

�

n�1

dx:

The 
hoi
e �(t) = 1�

1

p

1+t

is referred to as the real algebrai
 approximation

mode (See [HL

2

℄).

Real Case with Algebrai
 Approximation Mode:

�

s

� =

1

n!

�

�1

4�

�

n

s

p

juj

2

+ s

2

�

e

t




V

e�

(Due)

2

juj

2

+ s

2

�

n

:

�� =

1

�

n

n�1

X

p=0

(�1)

n�p

p!

(n�p�1)!(2p+1)!2

2n�2p�1

(ue)(Due)

2p+1

juj

2p+2

(e

t




V

e)

n�p�1

:

Thus the part of � of top degree 2n� 1 in the 1-forms du

1

; : : : ; du

2n

is

�

2n�1

= vol(S

2n�1

)

�1

�(u)

where

�(u) �

2n

X

k=1

(�1)

k�1

u

k

du

1

^ � � � ^




du

k

^ � � � ^ du

2n

juj

2n

denotes the solid angle kernel on R

2n

.

Remark. These expli
it formula have two di�erent interpretations. First they

de�ne forms on the total spa
e of the bundle V . In this 
ase u � u

1

; : : : ; u

n

is the

�ber variable. Se
ond they de�ne forms on X where u � (u

1

; : : : ; u

n

) is the n-tuple

of C

1

fun
tions on X representing the given atomi
 se
tion � in the frame e.
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