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Poincaré duality is an old and fundamental result dating from the very birth of Topology
in [P]. In modern terminology, this result asserts for a compact, oriented m-manifold M
that the mapping

D : Hk(M,Z) −→ Hm−k(M,Z) = Hm−k(M) (0.1)

defined by the cap product with the fundamental class [M ] of M is an isomorphism of
finitely generated abelian groups.

This duality is manifest in many ways in geometry. Locally it corresponds to the duality
of forms and currents in the theory of de Rham. It appears in Hodge theory via the *-
operator on harmonic forms. In Poincaré’s original work it can be described via barycentric
subdivision and dual cell complexes. It is interesting to note that each of these geometric
formulations ignore torsion.

In recent years, we have investigated topological abelian groups of algebraic cycles on
a complex projective variety X . We have introduced a companion, contravariant con-
struction of algebraic cocycles. A somewhat unexpected development in this study is the
appearance of a graphing construction

Γalg :Mor(X,SP d(Ps)) −→ Zn(X × P
s), n = dimCX, d > 0

where SP d(Ps) denotes the d-fold symmetric power of the complex projective space P
s.

This construction determines a weak homotopy equivalence (“algebraic duality”)

Dalg : Zs(X) −→ Zn−s(X)

between corresponding topological abelian groups of cocycles and cycles whenever X is
smooth (see [L2] for an overview of these matters and related results). The fact that this
duality plays a role in understanding motivic cohomology (cf. [F-V]) suggests that our
approach to duality might be applicable in other contexts as well.

In this paper, we establish that our algebro-geometric duality map Dalg relating alge-
braic cocycles to algebraic cycles on a projective algebraic variety can be extended using
geometric measure theory to give a new formulation (whose justification requires one of
the many existing proofs of Poincaré duality) of the integral Poincaré duality isomorphism
for a compact, oriented manifold. We suggest that our topological graphing construction
Γtop sending a multi-valued Lipschitz map to its graph offers a new geometric perspective
on the fundamental map (0.1).
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In §1, we quickly review relevant concepts from geometric measure theory. We then show
that the Dold-Thom isomorphism of algebraic topology and the Almgren isomorphism of
geometric measure theory are compatible, each relating homotopy groups of a topological
group of 0-cycles to homology. We then begin our investigation of MapLip(A, SP

d(B))
which serves as our gemetric measure-theoretic model of “cocyles on A with values in B.”

Proceeding by analogy with a construction for algebraic varieties given in [F-M], we
establish a set theoretic graphing construction for Lipschitz maps in Theorem 2.4. We
proceed to then prove that this graphing construction induces Poincaré duality. Theo-
rem 3.6 verifies that our graphing construction determines a well defined and continuous
graphing function Γtop with values in integral cycles (in the sense of geometric measure
theory).

Using the Dold-Thom theorem, we represent a cohomology class α ∈ Hk(A,Z) as a
multi-valued map from A to the sphere Sk. For single-valued maps fα : M → Sk from an
oriented closed d-manifold M to the k-sphere Sk, it is classical that the Poincaré dual of
α is represented by the oriented, codimension-k submanifold f−1

α (y0) where y0 is a regular
value of fα. Our multi-valued analogue of this observation, Theorem 5.3, can be viewed
as asserting that the duality map (0.1) is given as the map on connected components of
the composition

MapLip(M,SP∞(Sk))
Γtop

−−−→ Zm(M × Sk) −→ Zm−k(M) (0.2)

where the second map is given by slicing integral cycles as discussed in §4.
Our main theorem, Theorem 5.4, asserts that the composition (0.2) is a weak homotopy

equivalence whose associated isomorphism on homotopy groups πj can also be identified

with the duality isomorphism D : Hk−j(M ; Z)
≃
−→ Hm−k+j(M). Heuristically, this is

suggested by the observation that cap product is represented (for real cohomology and
homology) by the map which sends a differential k-form ω to the (m − k)-current on M
given by δ 7→

∫
M
δ∧ω. The insufficiency of this heuristic argument is that the cap product

we must consider is that defined on simplicial integral cochains on A and not on differential
forms. One easy consequence of our main theorem is the fact that the algebro-geometric
duality map Dalg of [F-L2] is fully compatible with Poincare duality.

We point out that in the case of manifolds P. Gajer has introduced an inverse construc-
tion to our graphing construction [G].

We express our gratitude to Christian Haesemeyer for numerous helpful discussions.
During the many years this paper has been in preparation to complete, both authors have
benefited from the hospitality of IHES.

§1. Geometric-measure-theoretic spaces of cycles and cocycles

In this first section, we quickly review various concepts arising in geometric measure
theory. We then introduce the space MapLip(A, SP

d(B)) as a measure-theoretic analogue

of the space of algebraic cocycles Mor(X,SP d(Y )) first studied in [F-L1]. We recall that
for any topological space B and any positive integer d, SP d(B) = B×d/Σd denotes the
d-fold symmetric power of B. These spaces play a fundamental role in the Dold-Thom
formulation of homology [D-T], and the spaces MapLip(A, SP d(B)) will play a similar role
for cohomology. Our aim here is to express Poincaré duality in this context.



GRAPH MAPPINGS AND POINCARÉ DUALITY 3

Suppose now that A is a compact polyhedron, i.e., a topological space admitting a
finite triangulation by closed simplices. Let A ⊂ R

N be an embedding which is linear
on the simplices (e.g., the obvious one when N = the number of vertices). So embedded
A admits a tubular neighborhood U ⊃ A with a Lipschitz retraction ρ : U → A. Let
Ek(U) denote the space of smooth differential k-forms on U with the C∞-topology. The
(pointwise) comass norm of a form ω ∈ Ek(U), ‖ω‖, is the supremum over the points x
in the support of ω of the value of ω applied to elements ξ = ξ1 ∧ · · · ∧ ξk ∈ Λk(Tx(U))
with |ξ| ≤ 1.

The topological dual space of Ek(U) is the space of k-dimensional currents with
compact support in U . For any such current T there is defined a mass norm

Mass(T ) = sup {|T (ω)| : ω ∈ Ek(U) with ‖ω‖ ≤ 1}.

Important subsets of k-currents in U are the Lipschitz polyhedral k-chains and the
rectifiable k-currents, those which lie in the mass closure of the set of Lipschitz poly-
hedral k-chains. Important also are the integral k-currents (rectifiable k-currents with
rectifiable boundaries), and integral k-cycles (integral k-currents with 0 boundary). The
reader is referred to [Fe] for the relevant foundations. On these spaces one also has the
flat norm defined by

(1.0.1) ‖T‖♭ ≡ inf{Mass(S) + Mass(R) : T = R+ ∂S and R, S are rectifiable }

We denote by
Rk(A) ⊃ Ik(A) ⊃ Zk(A)

the topological abelian groups of rectifiable k-currents, integral k-currents, and integral
k-cycles respectively which are supported on A, provided with the flat norm topology. We
shall also have occasion to consider the connected component of the identity Zk(A)o in
the group Zk(A).

Lemma 1.1. The groups Rk(A), Ik(A) and Zk(A) depend only on the PL-structure of
A. In particular they are independent of the chosen embedding of A into euclidean space.

Proof. This assertion follows straightforwardly from elementary geometric measure theory
[Fe]. �

If Z is a topological group, we shall use the notation Zo to denote the connected
component of the identity of Z.

The following theorem of F. Almgren [A], extends to positive dimensional cycles the
famous theorem of A. Dold and R. Thom [D-T].

Theorem 1.2. [A]. Let A ⊂ R
N be a compact, local Lipschitz neighborhood retract.

For any non-negative integer j there is an isomorphism (natural with respect to Lipschitz
maps)

A : πjZk(A)
≃
−→ Hk+j(A).

Moreover, if B ⊂ A is a closed subspace which is also a local Lipschitz neighborhood
retract, then there is a natural isomorphism

A : πj{Zk(A,B)/Ik(B)}
≃
−→ Hk+j(A,B)
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where Zk(A,B) denotes the integral k-currents on A whose boundary has support in B
and Ik(B) denotes the integral k-currents on B.

Finally, if j > 0 or if Hk−1(B)→ Hk−1(A) is injective, then the preceding isomorphism
induces an isomorphism

A : πj{Zk(A)/Zk(B)}
≃
−→ Hk+j(A,B).

Proof. The first two statements are precisely the main results of [A]. To obtain the third,
observe that the evident embedding of topological groups

Zk(A)/Zk(B) ⊂ Zk(A,B)/Ik(B)

has quotient equal to the discrete group ker{Hk−1(B)→ Hk−1(A)}. Consequently,
(Zk(A,B)/Ik(B))o ⊂ Zk(A)/Zk(B). �

It is a “folk theorem” that the Dold-Thom and Almgren isomorphisms are compatible
(cf. [Li2]). The following proposition establishes this compatibility.

Proposition 1.3. Let X be a finite complex, let
∐

d≥0 SP
d(X) denote the free abelian

topological monoid on the points of X , and let Z0(X) be the näıve group completion of∐
d≥0 SP

d(X), the free abelian topological group on the points of X . Then the natural

embedding iX : Z0(X)→ Z0(X) induces an isomorphism on homotopy groups. Moreover,
the composition

A ◦ (iX)∗ : π∗(Z0(X))→ π∗(Z0(X))→ H∗(X)

equals the isomorphism of Dold and Thom [D-T].

Proof. The fact that (iX)∗ is an isomorphism can be seen by observing that the topology
of Z0(X) is the compactly generated topology associated to Z0(X). Alternatively, this
follows from the fact that A ◦ (iX)∗ is the Dold-Thom isomorphism, which we now verify.

We see by inspection that Z0(−) converts disjoint unions of finite complexes to products
of topological abelian groups. Almgren’s theorem tells us that the canonical map pA,B :
Z0(X) ≃ Z0(A)×Z0(B) associated to a decomposition X = A

∐
B is a weak equivalence.

Moreover, such a decomposition X = A
∐
B identifies

pA,B ◦ iX : Z0(A)× Z0(B) = Z0(X)→ Z0(X)→ Z0(A)×Z0(B)

with the product iA× iB . Consequently, to prove that iX is a weak equivalence, it suffices
to consider the case in which X is connected.

We recall that the Almgren isomorphism is natural in X : given some some f : Sm →
Z0(X), one chooses a suitable polyhedral model of the m-cube with m-simplices σi and
a choice of map of chain complexes φ : (Im, ∂Im) → (I∗(X), 0) associated to f , and one
sends f to the homology class of φ∗(

∑
i σi). Almgren characterizes φ (depending upon f)

up to chain homotopy by certain properties. The point is that this construction is natural
in X (although Im requires subdivision, so for a different X one might need to replace Im

by a complex involving a finer subdivision).
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Consider the natural diagram

πm(X) −−−−→ πm(Z0(X)) −−−−→ Hm(X)
y

x

πm(Z0(X)) −−−−→ Hm(I∗(X))
=

−−−−→ Hm(I∗(X))

whose top row is the Hurewicz homomorphism in terms of the Dold-Thom isomorphism
(the upper right arrow), whose left vertical map is induced by the continuous map X →
Z0(X), whose right vertical map is the natural identification, and whose bottom row is
the Almgren isomorphism.

Essentially by inspection, this diagram is a commutative diagram of isomorphisms in
the special case that X = Sm. By naturality, this tells us that the diagram commutes for
all X . Consequently, A ◦ (iX)∗ coincides with the Dold-Thom isomorphism on the image
of the Hurewicz homomorphism.

Heuristically, we apply this argument with X replaced by Z0(X). Since the latter is
infinite dimensional, we apply it instead to the symmetric powers SP d(X) for each d > 0,
thereby concluding the commutativity of the square
(1.3.1)

πm(SP∞(X)) −−−−→ πm(colimZ0(SP
d(X))) −−−−→ Hm(SP∞(X))

y
x

πm(colimZ0(SP
d(X))) −−−−→ Hm(I∗(SP

∞(X))) −−−−→ Hm(I∗(SP
∞(X)))

Finally, we apply the canonical retractionH∗(SP
∞(X))→ H∗(X), characterized by the

fact that it restricts to the identity on the image of H∗(X)→ H∗(SP
∞(X)) and is induced

by a homomorphism of simplicial abelian groups (e.g., Z(Sing.(Z(X)) → Sing.(Z(X))).
We conclude by observing that composition of this retraction with the top row of (1.3.1)
equals the Dold-Thom map, whereas composition of the retraction with the bottom row
and right vertical map of (1.3.1) equals A. �

We propose that the geometric measure-theoretic analogue of an algebraic cocycle on
X with values in Y , introduced in [F-L1], is a Lipschitz map from a compact polyhe-
dron A to some symmetric power SP d(B) of a compact polyhedron B. We denote by
MapLip(A, SP d(B)) the set of such maps provided with the topology of uniform conver-

gence with bounded Lipschitz constant. In other words, the sequence {fn} ⊂ MapLip(A, SP
d(B))

converges to f if and only if

‖fn − f‖∞ 7→ 0 & ∃K such that Lipfn ≤ K for all n.

Proposition 1.4. Let A ⊂ R
N be a compact Lipschitz neighborhood retract and B a

connected compact polyhedron. Then for any d > 0 the continuous inclusion of mapping
spaces

MapLip(A, SP d(B)) −→Mapcont(A, SP
d(B)) (1.4.1)
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is a weak homotopy equivalence.

Proof. Choose open neighborhoods A ⊂ U of A ⊂ R
N and SP d(B) ⊂ V of SP d(B) ⊂ R

M

with Lipschitz neighborhood retractions ρA : U → A, ρB : V → SP d(B). Let A ⊂ U1 ⊂ U
be a compact neighborhood of A. Given any continuous map f : A → SP d(B), we can

approximate f◦ρA : U → A→ SP d(B) ⊂ V by a smooth map f̃ : U → V whose restriction

f̃
∣∣
U1

can be made arbitrarily close to (f ◦ρA)
∣∣
U1

; in particular, f̃
∣∣
U1

is homotopic to f ◦ρA.

(This is achieved by convolution of f ◦ ρA with an approximate identity of U1; cf. [Fe,
4.1.2].) Then

ρB ◦ f̃
∣∣
A

: A ⊂ U → V → SP d(B)

is a Lipschitz map homotopic to f . Thus, (1.4.1) induces a surjection on connected com-
ponents.

If f : A → SP d(B) is itself a Lipschitz map, then so is f ◦ ρA and the homotopy

F : A × I → B relating f and ρB ◦ f̃
∣∣
A

is also Lipschitz (assuming that f̃ is sufficiently

close to f ◦ ρA). Hence, if two Lipschitz maps f, g : A → SP d(B) are homotopic, the
preceding process applied to this homotopy determines a Lipschitz homotopy relating f, g
and thus a path from f to g in MapLip(A, SP d(B)). In other words, (1.4.1) also induces
an injection on connected components.

Fix some Lipschitz map f : A → SP d(B) and consider the restriction of (1.4.1) to
connected components containing f :

MapLip(A, SP d(B))f ⊂ Mapcont(A, SP
d(B))f (1.4.1)f .

For some j > 0, we consider a pointed map F : Sj → Mapcont(A, SP
d(B))f . Let G :

Sj ×A→ SP d(B) denote the adjoint of F ; in particular, the restriction of G to {∞}×A
equals f . Arguing as above with A replaced by A′ = Sj × A, we obtain a Euclidean
neighborhood A′ ⊂ U ′ with Lipschitz deformation retraction ρA′ : U ′ → A′ together
with a compact neighborhood A′ ⊂ U ′

1 ⊂ U ′. Once again, we may find smooth maps

G̃ : U ′ → V whose restrictions to U ′
1 can be made arbitrarily close to the restriction

of G ◦ ρA′ : U ′ → A × Sj → SP d(B) ⊂ V . Thus, ρB ◦ G̃
∣∣
Sj×A

: Sj × A → SP d(B)

is a Lipschitz map homotopic to G. Moreover, as argued above, the homotopy relating
ρB ◦ G̃

∣∣
Sj×A

and G can be taken to be Lipschitz when restricted to {∞} × A × I. Thus,

we can modify the homotopy to yield a homotopy H : Sj × A × I → SP d(B) relating G
to a Lipschitz map G′ with the property that each restriction H

∣∣
∞×A×{t}

equals f . So

constructed, G′ corresponds to F ′ : Sj →MapLip(A, SP d(B)) homotopic via a base-point
preserving homotopy to F . We have therefore proved that (1.4.1)f induces a surjection on
homotopy groups.

The proof that (1.4.1)f induces an injection on homotopy groups is obtained by mod-
ifying the proof of surjectivity given immediately above as in the proof of injectivity on
connected components. �

Corollary 1.5. Let A ⊂ R
N be a compact Lipschitz neighborhood retract and B a

connected compact polyhedron with chosen non-degenerate base point. Then the inclusion
of mapping spaces with the compact-open topology

colimdMapLip(A, SP d(B)) ⊂ Mapcont(A,Z0(B)o) (1.5.1)
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is a weak homotopy equivalence.

Proof. Because (directed) colimits commute with taking homotopy groups, we conclude
that the colimit with respect to d of (1.4.1),

colimdMapLip(A, SP d(B))→ colimdMapcont(A, SP
d(B)),

is a weak equivalence. On the other hand, the connectivity of SP d(B) → SP∞(B) in-
creases as d increases [Mi], and by [D-T] the map SP∞(B)→ Z0(B)o is a weak equivalence.
Since any map from a compact space A′ to SP∞(B) has image in some SP d(B), we con-
clude that the composition

colimdMapcont(A, SP
d(B))→Mapcont(A, SP

∞(B))→Mapcont(A,Z0(B)o)

is a weak equivalence. Thus, the corollary follows by applying the observation that the
topology on Z0(X) is the compactly generated topology associated to Z0(X). �

§2. Construction of graphs

In this section, we present our construction of the graph Γ(f) of a Lipschitz map f :
A→ B between compact polyhedra.

In order to ultimately apply our duality results in algebraic geometry, we want to
consider objects somewhat more general than manifolds. The following is our working
definition of a compact oriented pseudo-manifold. This class of objects includes compact
oriented manifolds and complex projective varieties.

Definition 2.1. Let A be a compact connected polyhedron. A is said to be a compact

pseudo-manifold of dimension m if A admits a triangulation T satisfying:

(1) Every simplex of T is contained in the closure of some m-simplex τ ∈ T (m).
(2) For some smooth closed manifold M equipped with a smooth triangulation, there

exists a polyhedral map p : M → A restricting to a homeomorphism M −M ′ →
A− skm−2A, where M ′ ⊂M is a subcomplex of dimension ≤ m− 2.

If A is a compact pseudo-manifold provided with a fundamental class [A] ∈ Hm(A,Z)
such that p : M → A can be chosen as above with M oriented and p∗([M ]) = [A], then we
say that A is a compact oriented pseudo-manifold

Note. We will assume that A has been provided with a piecewise smooth Riemannian
metric compatible with the triangulation T (e.g., a piecewise flat metric), so that one may
discuss Lipschitz functions on A. This class of Lipschitz functions is independent of the
particular choice of metric.

The following important theorem, which we shall often apply without explicit reference,
provides a method of constructing currents on open subsets of Euclidean space with given
support.
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Theorem 2.2. (Kirszbraun’s theorem; cf. [Fe;2.10.43]) Let S ⊂ R
m be an arbitrary subset

of R
m and consider f : S → R

n, a Lipschitz map with Lipschitz constant K. Then there
exists an extension f̃ : R

m → R
n which is also a Lipschitz map with Lipschitz constant K.

We shall call such an f̃ as in Theorem 2.2 a Kirszbraun extension of f .
Using the Kirszbraun’s theorem, we define push-forwards of basic currents via Lipschitz

maps.

Lemma 2.3. Let E ⊂ R
m be a Borel set with compact closure, and let χE denote the

characteristic function of E. Then the current [E] = χE [Rm] (where R
m is given its

standard orientation) defined by

[E](ω) =

∫

Rm

χEω

for smooth m-forms ω is a rectifiable m-current in R
m. Furthermore, if f : E → R

n is

a Lipschitz mapping, then the rectifiable m-current f∗[E]
def
= f̃∗[E] is independent of the

choice of the Kirszbraun extension f̃ : R
m → R

n of f .

Proof. We see that [E] is rectifiable as follows. There exists a family of bounded open
sets Uk containing E with µ(Uk −E) < 1/k where µ denotes Lebesgue measure. Choose a
triangulation of Uk and a finite union ofm-simplices Pk ⊂ Uk with µ(Uk−Pk) < 1/k. Then
µ(Pk∆E) < 2/k where Pk∆E = (Pk −E)∪ (E − Pk). Since Mass([E]− [Pk]) ≤ µ(Pk∆E)
we see that [E] lies in the mass closure of the Lipschitz polyhedralm-chains and is therefore
rectifiable by definition.

The independence of the current f∗[E] from the choice of Lipschitz extension f̃ is proved
in [Fe, 4.1.15]. �

The following theorem provides the construction of our topological graphing. We leave
to the next section the verification that this graphing construction (at least upon restric-
tion to a dense open subset of MapLip(A, SP d(B))) takes values in integral cycles and is
continuous.

Theorem 2.4. Let A be a compact oriented pseudo-manifold of dimension m, let B be
a compact polyhedron, and let d > 0 be a positive integer. Then there is a well defined
set-theoretic function

Γ : MapLip(A, SP d(B)) −→ Rm(A×B)

sending a Lipschitz map f : A → SP d(B) to its “graph” Γ(f) as a rectifiable current on
A×B.

Proof. Choose a triangulation T of SP d(B), compatible with the singular stratification,
and lift T via the projection π : B×d → SP d(B) to an invariant triangulation of B×d.

Given f ∈ MapLip(A, SP
d(B)), consider a k-simplex ∆ of SP d(B). Let ∆̃ be a k-simplex

of B×d with π(∆̃) = ∆. Then lifting and projecting

∆̃ ⊂ B×d pi
−→ B

f̃ ր ↓

f−1(∆) −→
f

∆
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gives Lipschitz maps fi,∆ ≡ pi◦f̃ on f−1(∆). Up to reordering these maps are independent

of the choice of ∆̃ above ∆. If ∆ is a face of ∆′, then the functions {fj,∆′} restrict to give
the functions {fj,∆} on f−1(∆) ⊂ f−1(∆′).

We now decompose A into a finite disjoint union of Borel sets

A =
∐

∆∈T

A∆

where A∆ = f−1(∆o), ∆o = ∆ − ∂∆ and where ∆ ranges over all the simplices of T .
(This gives a decomposition of the current [A] =

∑
∆[A∆].) For each ∆ ∈ T we define the

rectifiable m-current Γ∆ on A×B by

Γ∆
def
=

d∑

i=1

graph(fi,∆)
def
=

d∑

i=1

(Fi,∆)∗[A∆]

where Fi,∆ : A∆ → A×B is given by

Fi,∆(x) = (x, fi,∆(x)) .

Observe that (Fi,∆)∗[A∆] is a rectifiable current on A × B by Lemma 2.3, and therefore
the sum:

Γ(f)
def
=

∑

∆∈T

Γ∆,

is a well-defined m-dimensional rectifiable current. Furthermore, by [Fe, 4.1.14] we see
that for each ∆

Mass((Fi,∆)∗[A∆]) ≤ (LipFi,∆)mµ(A∆) ≤ d(1 + Lipf)mµ(A∆).

where µ denotes Hausdorff measure in dimension m. Consequently we have

Mass(Γ(f)) ≤ d(1 + Lipf)mvol(A) (2.4.1)

�

Remark 2.5. In the special case of simplicial maps, the graphing construction can be
done much more transparently. Suppose f : A→ SP d(B) is a simplicial map with respect
to triangulations of A and B as above. Let T j(A) denote the set of oriented j-simplices
of A. For each m-simplex D ∈ T m(A) there is a simplex ∆ in B with f(D) ⊂ ∆, and we
can construct maps fi : D → B, 1 ≤ i ≤ d, by lifting and projecting as we did above. Let
ΓD denote the sum of the graphs of these mappings. Then

Γ(f) =
∑

D∈T m(A)

ΓD.
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In this case one sees that

∂Γ(f) =
∑

D∈T m(A)

ΓD

∣∣
∂D

= 0

where cancellation occurs on the codimension-one faces as usual because A is an oriented
pseudo-manifold.

For a general Lipschitz map f : A→ SP d(B), the graph cannot be re-expressed in these
simplicial terms and the computation of ∂Γ(f) is more complicated.

§3. Γtop : MapLip(A, SP d(B)) → Zm(A × B)

Throughout this section A and B shall denote compact pseudo-manifolds of dimensions
m and n respectively with A oriented. We let A0 ⊂ A be a closed subset, and A′ ⊂ A
the open complement of A0. Beginning with the set function Γ : MapLip(A′, SP d(B)) →

Rm(A×B) of Theorem 2.4, we construct a continuous map Γtop : MapLip(A′, SP d(B))→
Zm(A × B,A0 × B) leading to a continuous group homomorphism MapLip(A′,Z0(B))→
Zm(A × B,A0 × B). Our program is to show that Γ is continuous and takes values in
integral cycles when restricted to the dense subset of “good” maps in MapLip(A, SP d(B)).

We first make explicit some of the geometric terminology we use in our analysis of the
graphing construction.

The singular set Σ ⊂ SP d(B) consists of those d-tuples of points of B with at least

one repetition. A map f̃ : R
m → R

n which is C1 in a neighborhood of some x ∈ R
m

is said to be transverse to an open k-simplex ∆ of R
n if df̃∗−1(T∆,f̃(y)) ⊂ TRm,x has

codimension n− k.
By choosing a PL tubular neighborhood of SP d(B) for some PL-embedding SP d(B) ⊂

R
N , we easily verify the following lemma.

Lemma 3.1. Choose a triangulation of SP d(B) such that the singular set Σ is a sub-
complex and let SP d(B) ⊂ R

N be some PL-embedding. Then there exist a compact
neighborhood U of SP d(B) in R

N , a Lipschitz retraction

π : U −→ SP d(B),

and a finite triangulation of U with SP d(B) as a subcomplex such that π−1(Σ) is a
subcomplex of codimension ≥ 1.

We introduce a condition on Lipschitz maps f : A → SP d(B) which insures that Γ(f)
is ∂-closed.

Definition 3.2. Suppose A is a compact pseudo-manifold with a given triangulation T
as in Definition 2.1. A Lipschitz map f : A → SP d(B) is called good if f is of the form

f = π ◦ f̃ for some Lipschitz retraction π : U → SP d(B) of a compact neighborhood U of

SP d(B) satisfying the conditions of Lemma 3.1 and some f̃ : A→ U whose restriction to
every simplex in A is smooth and transverse to every open simplex of π−1(Σ) ⊂ U .

We now proceed to analyze the construction Γ of Theorem 2.2 when applied to good
Lipschitz maps f .
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Proposition 3.3. Let f : A → SP d(B) be a good Lipschitz map. Then the graph
Γ(f) ∈ Rm(A×B) (as constructed in Theorem 2.4) is ∂-closed.

Proof. We first assume that A is smooth, so that M = A. Recall that SP d(B)− Σ is the
configuration space of sets of d mutually distinct points in B. Let G ⊂ (SP d(B)−Σ)×B
be the tautological graph over SP d(B)− Σ. The projection pr : SP d(B)×B → SP d(B)

restricts to a covering map G
pr
−→ SP d(B)− Σ. Consider the fibre product

f∗G −−−−→ G

pr′
y

ypr

A− f−1(Σ)
f

−−−−→ SP d(B)− Σ

Then pr′ is also a covering map.
Observe that the closed subset f∗G ⊂ (A − f−1(Σ)) × B determines an m-current

Γ(f)o = [f∗G] on (A − f−1(Σ)) × B which is given locally as the graph of a Lipschitz
function over the base A−f−1(Σ). Since the fundamental class [A] is a ∂-closed m-current
on A, [A − f−1(Σ)] is a ∂-closed m-current on A − f−1(Σ) and thus Γ(f)o s a ∂-closed
m-current on (A − f−1(Σ)) × B. By inspection, we see that the restriction of Γ(f) to
(A− f−1(Σ))×B equals Γ(f)o. Thus we have proved that

supp {∂Γ(f)} ⊂ f−1(Σ)×B.

Since f is good we have a lifting f̃ : A → U which is transverse to π−1(Σ). This

implies that the pre-image f̃−1(π−1(∆)) for any simplex ∆ of Σ is a compact submanifold
with corners of codimension ≥ 1 in A, and thus so is f−1(Σ). Let R be the set of regular
codimension-1 manifold points of f−1(Σ). We will show that ∂Γ(f) = 0 across (R∩A)×B.

Fix x ∈ R and choose coordinates ξ = (ξ1, . . . , ξm), ‖ξ‖ < 1, on a neighborhood D of
x such that ξ(x) = 0 and ξ(R) is the hyperplane ξm = 0. Now the map f has d distinct
branches

{f+
1 , . . . , f

+
d } over the set D+ = {ξ : ‖ξ‖ < 1 and ξm > 0}

{f−
1 , . . . , f

−
d } over the set D− = {ξ : ‖ξ‖ < 1 and ξm < 0}.

Each of the functions f+
j has a Lipschitz extension to the closed half ball D+ = {ξ :

‖ξ‖ < 1 and ξn ≥ 0}, and similarly each f−
j has a Lipschitz extension to D−. To see this,

note first that since f is Lipschitz on all of A, each branch of f over any subset of A is
also Lipschitz with the same Lipschitz constant. Hence the functions

f+
j,ǫ(ξ

′)
def
= f+

j (ξ′, ǫ) where ξ′ = (ξ1, ..., ξn−1)

are Lipschitz with a uniform Lipschitz constant, say K, and these functions satisfy

‖f+
j,ǫ − f

+
j,ǫ′‖∞ < K|ǫ− ǫ′|.
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From this it follows that each f+
j has a Lipschitz extension to D+. (The argument for f−

j

is identical.) It then follows by continuity that

f = {f+
1 , . . . , f

+
d } = {f−

1 , . . . , f
−
d } on D+ ∩D− = {(ξ′, 0) : ‖ξ′‖ < 1}

def
= H (3.3.1)

Now to show that ∂Γ(f) = 0 in D×B, we must show that Γ(f)(dβ) = 0 for all smooth
(n− 1)-forms β with compact support in D ×B. Let β be such a form and note that

Γ(f)(dβ) =
d∑

j=1

∫

D+

f+∗
j dβ +

d∑

j=1

∫

D−

f−∗
j dβ

=
d∑

j=1

∫

H

f+∗
j β −

d∑

j=1

∫

H

f−∗
j β

= 0

(3.3.2)

by (3.3.1). Passage to the second line of (3.3.2) amounts to the assertion that the boundary
of the current defined by the graph of a Lipschitz function φ on a domain Ω with smooth
boundary is the graph of φ restricted to ∂Ω. Otherwise said: if Φ(x) = (x, φ(x)) is the
graphing map, then ∂Φ∗Ω = Φ∗∂Ω, an elementary fact from Geometric Measure Theory.

We have now proven that the support of ∂Γ(f) is contained in the graph of f restricted
to a finite union of submanifolds of codimension ≥ 2 in A. The (n−1)-dimensional integral
geometric measure of this set is zero, and ∂Γ(f) is a (n − 1)-dimensional flat current. It
therefore follows from [Fe, 4.1.20] that ∂Γ(f) = 0 as claimed.

Suppose now that A is not smooth. Then the argument above proves that the support
of ∂Γ(f ◦p) is contained in the graph of f ◦p restricted to M −M ′ ⊃M −p−1(skm−2A) ≃
A−skm−2A, a subcomplex of dimension ≤ m−2. It therefore follows as in the preceeding
paragraph that ∂Γ(f) = p∗(∂Γ(f ◦ p)) = 0. �

Our next task is to verify that any Lipschitz map f : A→ SP d(B) can be approximated

by good Lipschitz maps f ′ = f̃ ◦ π.

Lemma 3.4. Let U be a compact neighborhood of SP d(B) with retraction π : U →
SP d(B) chosen as in Lemma 3.1 and equipped with a triangulation such that π−1(Σ) is a
subcomplex of codimension ≥ 1. Given a Lipschitz map f : A→ SP d(B) and ǫ > 0, there

exists a good Lipschitz map f ′ = π ◦ f̃ : A→ U such that
(i) ‖f ′ − f‖∞ < ǫ,
(ii) Lip(f ′) ≤ (1 + ǫ)Lip(f).

Proof. Let A ⊂ R
M be a Lipschitz topological embedding which is a smooth immersion

on Areg and restricts to a smooth map on each m-simplex of some triangulation of A.
Extend f to a neighborhood V of A using Kirszbraun’s Theorem. Construct a smooth
map g : V → R

M satisfying (i) and (ii) by the standard technique of convolution with
an approximate identity (see [Ho, Chp 1]). Now by standard transversality theory (cf.
[A-R], [Hi]), g can be approximated arbitrarily closely in C1-norm by a smooth map whose
restriction to every open simplex in A is transversal to every open simplex in π−1(Σ). �

The next proposition verifies the key step in the proof of the continuity of Γ by relating
the distance between good maps from A to SP d(B) to the distance between their graphs.
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Proposition 3.5. Suppose f0 6= f1 : A → SP d(B) are good Lipschitz maps with
Lip(f0), Lip(f1) ≤ K. Then

‖Γ(f1)− Γ(f0)‖♭ < (1 + cK)m‖f1 − f0‖∞. (3.5.1)

where c is a constant depending only on the geometry of SP d(B).

Proof. As argued in the proof of Lemma 3.4, choose good maps f ′
i = π◦f̃i with ‖fi−f

′
i‖∞ <

‖f1 − f0‖∞ and f̃i : A→ U transverse to π−1(Σ). Consider the homotopy

h̃(x, t) = (1− ϕ(t))f̃0(x) + ϕ(t)f̃1(x)

where ϕ : [0, 1]→ [0, 1] is a smooth function with ϕ(x) = 0 for x ≤ 1
8 , ϕ(x) = 1 for x ≥ 7

8 ,

and 0 ≤ ϕ′ ≤ 2. By transversality theory we perturb h̃ : A× I → U , keeping it fixed near
0 and 1, so that it becomes transverse to π−1(Σ). This can be done arbitrarily closely in

the C1-norm. We now define h = π ◦ h̃ and note that Lip(h) ≤ cK, where c depends only
on the Lipschitz constant of π : U → SP d(B) and the tolerance of approximation chosen
for the perturbation.

If H(x, t) = (x, t, h(x, t)) is the graphing map, then one sees that the map Λm+1H∗ on
m+ 1-currents induced by H satisfies

‖Λm+1H∗‖ < (1 + cK)m‖f1 − f0‖∞.

Combining this with the arguments of [Fe, 4.1.14] and the proof of Theorem 2.4 gives us
that Mass(Γ(h)) < (1 + cK)m‖f1 − f0‖∞.

The arguments for Proposition 3.3 now prove that ∂Γ(h) = 0 over A × (0, 1). Fur-
thermore, from the constancy of ϕ near the boundary of A × [0, 1] one sees directly that
∂Γ(h) = Γ(f1)−Γ(f0). Using the definition of ‖−‖♭ (cf. (1.0.1)), we conclude (3.5.1). �

Although the graphing construction Γ of Theorem 2.4 is not continuous on all Lipschitz
maps A → SP d(B), we show in the following theorem how to modify this construction
to provide a continuous topological graphing map which agrees with Γ on good Lipschitz
maps.

Theorem 3.6. Let A,B be compact pseudo-manifolds of dimension m and n respectively
with A oriented. There is a well-defined, continuous “ topological graphing map”

Γtop : MapLip(A, SP d(B)) −→ Zm(A×B)

which coincides with the graph mapping Γ of Theorem 2.2 on the dense subset of good
Lipschitz maps.

If B is connected and provided with a choice of non-degenerate base point b ∈ B, then
Γtop naturally extends to

colimdMapLip(A, SP d(B))→ Zm(A×B)/Zm(A× {b}),

thereby determining a weak homotopy class of maps

Γtop : Mapcont(A,Z0(B)o)→ Zm(A×B)/Zm(A× {b}).
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Proof. By Lemma 3.4, every f ∈ MapLip(A, SP d(B)) is the uniform limit of a sequence

{fk}
∞
k=1 ⊂ MapLip(A, SP d(B)) of good Lipschitz maps with uniformly bounded Lipschitz

norm. From (2.4.1) we know that Mass(Γ(fk)) of such a sequence {fk}
∞
k=1 is uniformly

bounded. By Proposition 3.5, if {fk}
∞
k=1 ⊂ MapLip(A, SP d(B)) is a Cauchy sequence with

uniformly bounded Lipschitz constant and if each fk is good, then there is a constant K
such that for all k, ℓ,

‖Γ(fk)− Γ(fℓ)‖♭ ≤ K‖fk − fℓ‖∞.

Thus, {Γ(fk)}∞k=1 is a Cauchy sequence in Im(A×B). Now by [Fe;4.2.16] and [Fe;4.2.17]
any sequence {Γk}

∞
k=1 of integral m-currents on the compact polyhedron A × B which

is Cauchy in the flat norm and for which Mass(Γk) + Mass(∂Γk) is uniformly bounded
converges in Im(A×B) to an integral m-current on A×B.

By Proposition 3.3, we have ∂Γ(fk) = 0 for all k. Since the subgroup Zm(A × B) ⊂
Im(A × B) of integral cycles is closed because ∂ is continuous on currents, the Cauchy
sequence {Γ(fk)}∞k=1 converges to an integral cycle Γtop(f) on A×B.

Consequently, we have extended f 7→ Γ(f) from the dense set of good maps to a
continuous mapping

Γtop : MapLip(A, SP d(B)) −→ Zm(A×B)

as claimed.
If B is connected and provided with a non-degenerate base point b ∈ B, then the

maps Γtop on MapLip(A, SP d(B)) for varying d are compatible when projected to Zm(A×
B)/Zm(A×{b}) and thereby determine the indicated map on colimits. Corollary 1.5 thus
implies that Γtop determines the weak homotopy class of maps

Γtop : Mapcont(A,Z0(B)o)→ Zm(A×B)/Zm(A× {b}). �

§4. Slicing integral currents

Having constructed the topological graphing map

Γtop : MapLip(A,Z0(S
n)) −→ Zm(A× Sn),

we construct in this section a densely defined continuous “slicing map”

Zm(A× Sn) −→ Zm−n(A)

whose composition with Γtop will yield our topological duality map Dtop. This slicing is
achieved by the Federer technique of slicing currents, which we now review.

Let N be a smooth n-manifold and y ∈ N some chosen point. Choose local coordinates
(ζ1, . . . , ζn) around y (with y corresponding to 0) and let

ωy,1 = φ(|ζ|)dζ1 ∧ · · · ∧ dζn,

where φ : R→ R is smooth, constant and positive near 0, supp(φ) ⊂ [−1, 1], and
∫

N
ωy,1 =

1. Set
ωy,ǫ = ρ∗ǫ−1ωy,1, (4.0)

where ρt : R
n → R

n is scalar multiplication by t.
The following theorem recalls some basic properties of Federer’s slicing theory, special-

ized to the case of products.
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Theorem 4.1. [Fe, 4.3] Let A be a compact oriented pseudo-manifold and N a smooth,
closed manifold of dimension n. Suppose T ∈ Im(A×N) is an integral current of dimension
m ≥ n. Then for almost all y ∈ N the limit

sly(T ) = lim
ǫ→0+

T ∧ pr∗N (ωy,ǫ)

exists in the flat topology. Furthermore, sly(T ) is an integral current of dimension m− n
on A×N and

(4.1.1) ∂sly(T ) = sly(∂T ).

Note. We recall that for a smooth n-form ω, the current T ∧ ω is defined on a smooth
(m− n)-form δ by (T ∧ ω)(δ) = T (ω ∧ δ).

Let prA : A×N → A denote the projection map, and for y, T as above set

Sly(T ) ≡ (prA)∗(sly(T )).

Then by Theorem 4.1 we have that

(4.1.2) Sly(T ) ∈ Im−n(A) and ∂Sly(T ) = Sly(∂T ).

Moreover, for any R ∈ I(A) and any y ∈ N ,

(4.1.3) Sly(R× [N ]) = R.

As a consequence of Theorem 4.1, we conclude that Federer slicing determines a map
on integral homology. We recall (cf. [Fe, 4.4.1]) that the integral cohomology of A can be
computed as the homology of the chain complex of integral currents on A,

Hi(A; Z) = Hi(I∗(A)), i ≥ 0.

Corollary 4.2. Suppose T ∈ Im(A × N) and ∂T = 0 (i.e., T ∈ Zm(A × N)). Then
for almost all y ∈ N the class of Sly(T ) in Hm−n(I∗(A)) ∼= Hm−n(A; Z) is independent
of y and depends only on the homology class of T . Thus slicing induces a well-defined
homomorphism

Sl : Hm(A×N ; Z) → Hm−n(A; Z)

left inverse to external multiplication by the fundamental class [N ] ∈ Hn(N ; Z). Further-
more, for any chosen base point y0 ∈ N this map factors naturally through a homomor-
phism

(4.2.1) Sl : Hm(A×N,A× {y0}; Z) → Hm−n(A; Z).

Proof. If T = ∂S where S is rectifiable, then Sly(T ) = ∂(Sly(S)) for almost all y by
(4.1.1). Hence, [Sly(T )] ∈ Hm−n(A; Z) depends only on the class [T ] ∈ Hm(A×N ; Z).
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To prove that Sly(T ) is homologous to Sly′(T ) for almost all y, y′ ∈ N , we work locally
on N and assume that y and y′ lie in a small coordinate ball B. Let F : N × [0, 1] → N

be an isotopy supported in B with F0 = Id and with F1(y) = y′. Extend F trivially to F̃ :
A×N × [0, 1]→ A×N . Applying [Fe, 4.3.9] gives a current R with ∂R = sly(T )−sly′(T ).
Thus, the class of sly(T ) is independent of y ∈ N . The fact that Federer slicing is left
inverse to external multiplication by [N ] is immediate from (4.1.3).

For the final assertion, observe for any integral current T with support in A×{y0} that
the slice sly(T ) = 0 for all y 6= y0. Hence, our construction can be carried out on the
relative chain complex I∗(A×N)/I∗(A× {y0})

In the next Proposition we explicitly compute sly(T )(Γtop(f)) for suitably chosen rep-
resentatives f : A→ SP d(N) of π0Mapcont(A, SP

d(N)) and points y ∈ N regular for the
lifts fτ,1, . . . , fτ,k(τ) : τ → N of the restrictions f

∣∣
τ
.

We say that a smooth map g : ∆m → ∆n between closed simplices has y ∈ interior(∆n)
as a regular value if y is a regular value of f

∣∣
D

for every open face D (of dimension ≤ m)
of ∆.

Under this hypothesis either g−1(y) = ∅ or g−1(y) is a smooth submanifold of codimension-
n in ∆m which meets every face of ∂∆m transversely. In this latter case there is also a
closed disk neighborhood y ∈ Dn ⊂ interior(∆n) and a diffeomorphism

g−1(Dn) ∼= g−1(y)×Dm (4.2.2)

with respect to which the restriction of g becomes projection onto the second factor.

Proposition 4.3. Let A be a compact oriented pseudo-manifold of dimension m and N
a smooth closed oriented manifold of dimension n. Let f : A → SP d(N) be a Lipschitz
map such that A, SP d(N), and N admit triangulations T , R, and S respectively with the
following properties:

(1) R is subordinate to the singular stratification of SP d(N);

(2) if R̃ denotes the equivariant triangulation of N×d induced by R on SP d(N), then

the projections pri of each closed simplex in R̃ are subcomplexes of N ;
(3) for any open n-simplex δ ∈ S(n), almost every point of δ is a regular value for

every fτ,i, where ×ifτ,i : τ → N×d denotes the lifting of f restricted to an open
simplex τ ∈ T .

Then for almost every point y of an open n-simplex δ ∈ S(n), sly(Γ(f)) is well defined and

Sly(Γ(f)) =
∑

τ∈T (m)

k(τ)∑

i=1

dτ
i · [f

−1
τ,i (y)], (4.3.1)

where [f−1
i,τ (y)] is the integral (m − n)-current on τ ⊂ A associated to the submanifold

f−1
i,τ (y) oriented by the orientations of A and N and {dτ

1 , . . . , d
τ
k(τ)} are the multiplicities

associated to the open stratum of SP d(N) containing f(τ).

Proof. To verify (4.3.1), we must show

lim
ǫ→0

Γ(f)(pr∗Aψ ∧ pr∗N (ωy,ǫ)) =
∑

τ∈T (m)

k(τ)∑

i=1

dτ
i

∫

[f−1

τ,i
(y)]

ψ (4.3.2)



GRAPH MAPPINGS AND POINCARÉ DUALITY 17

for all smooth (m− n)-forms ψ on A. In view of the definition of Γ(f) (cf. Theorem 2.4),
it suffices to verify for all differential (m − n)-forms ψ, all simplices τ ∈ T (m), and all i
the equality

lim
ǫ→0

G(fτ,i)(ψ ∧ pr∗N (ωy,ǫ)) =

∫

[f−1

τ,i
(y)]

ψ. (4.3.3)

where G(f) denotes the usual graph of a smooth map f .

By assumption almost every point y in an n-simplex δ of N is a regular value for all
maps fτ,i. Choosing such a y and applying the local product structure (4.2.2), one easily
establishes (4.3.3). �

Proposition 4.4. Let A be a compact oriented pseudo-manifold of dimension m and N
a smooth closed manifold of dimension n ≤ m. Then every homotopy class of continu-
ous maps from A to SP d(N) contains a representative f : A → SP d(N) which admits
triangulations satisfying the conditions of Proposition 4.3.

Moreover, if A = X , N = Y are complex projective algebraic varieties of dimension d, e
respectively with Y and if f : X → Y is a morphism, then fan : Xan → SP d(Y an) admits
such a triangulation.

Note. Here and below the superscript “an” denotes the underlying analytic structure of
the algebraic object.

Proof. Choose a triangulation of SP d(N) subordinate to the singular stratification, thereby
determining a Σd-invariant triangulation of N×d (so that the projection π : N×d →
SP d(N) restricts to a homeomorphism on every open simplex of N×d). Choose a tri-
angulation of N with the property that images pri(σ) of all closed simplices σ of N×d

(with respect to the just constructed Σd-invariant triangulation of N×d) are subcomplexes
of N for each projection pri : N×d → N . Thus, conditions 1.) and 2.) of Proposition
4.3 are satisfied. Observe that if y ∈ N is an interior point of any n-simplex of N so
triangulated, then

y /∈
d⋃

i=1

pri(skn−1(N
×d)) (4.4.1)

where skn−1(−) denotes the (n− 1)-skeleton functor.

Let g : A→ SP d(N) be a Lipschitz map. Then by standard techniques we can choose
a triangulation of A and an approximation f of g which is a simplicial mapping. In
particular f is homotopic to g, and for each simplex τ in A, f restricts to be a smooth
mapping f : τ → ∆n for some n-simplex ∆n of N . Assertion (3) now follows from Sard’s
Theorem.

If f : X → Y is a smooth morphism, then f is smooth when restricted to some Zariski
open subset of X . If we choose the triangulations as above with the additional conditions
that the triangulations of X, Y are such that the singular loci are subcomplexes, then once
again almost every interior point y ∈ Y of a 2e-simplex of N is a regular value for each
fτ,i for each 2d-simplex τ of X and each i, 1 ≤ i ≤ d. �
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§5. Poincaré duality

In this section, we verify that Γtop of Theorem 3.6 induces the usual Poincaré duality
map (i.e., cap product with the fundamental class) for closed, oriented pseudo-manifolds
of dimension m. This identification is achieved by first giving a concrete realization of the
equivalence Hn(A,Z) ≃ π0Mapcont(A,Z0(S

n)o) in terms of “integral” differential forms on
SP d(Sn) constructed in Proposition 5.1. Using an explicit cocycle to represent a class in
Hn(A,Z), we then verify that the cap product of this cocycle with the fundamental class
of A yields a cycle homologous to the integral cycle obtained in Proposition 4.3 as the
slice of the topological graph of the map given by this concrete realization. This verifies
that π0 applied to our topological duality map Dtop (i.e., topological graphing followed by
current slicing) is the Poincaré duality map defined as cap product with the fundamental
class. The general case of identifying the map on πj induced by Dtop is then proved using
a formal dimension-shifting argument.

We begin with a brief discussion of de Rham theory on a finite simplicial complex S.
By a differential k-form on S we mean an assignment of a smooth k-form ϕσ ∈ E

k(σ) on
each closed simplex σ in S with the property that whenever τ ⊂ σ is a face of σ, one has
ϕσ

∣∣
τ

= ϕτ . Under the de Rham differential, the space of such forms becomes a complex

which computes the real cohomology of |S|. (See [G-M] for example.)

If ϕ is a closed k-form on S with the property that
∫

σ
ϕ ∈ Z for every closed k-simplex

in S, then ϕ defines an integral simplicial cocycle on S and thereby determines a class
[ϕ] ∈ Hk(|S|,Z).

Proposition 5.1. Choose a triangulationR of SP d(Sn) subordinate to the singular strat-

ification and let R̃ denote the associated triangulation of (Sn)×d; choose a triangulation S
of Sn so that pri for each i, 1 ≤ i ≤ d, applied to each closed simplex of R̃ is a subcomplex
of S. Let y ∈ Sn be a point of some open n-simplex of S, so that y satisfies (4.4.1). Finally,
choose ǫ > 0 such that

supp(ωy,ǫ) ∩
d⋃

i=1

pri(skn−1((S
n)×d)) = ∅, (5.1.1)

where ωy,ǫ is given by (4.0). Then for all ǫ sufficiently small, there exists a closed differential
n-form Ωy,ǫ on the triangulationR of SP d(Sn), uniquely determined by the condition that

π∗(Ωy,ǫ) =

d∑

i=1

pr∗i (ωy,ǫ), (5.1.2)

where π : (Sn)×d → SP d(Sn) is the quotient map and pri : (Sn)×d → Sn are the
projections.

This form Ωy,ǫ is compactly supported in the complement of the (n− 1)-skeleton, and
satisfies

∫
σ

Ωy,ǫ ∈ Z for all n-simplices σ. Thus, as above, Ωy,ǫ represents an integral

simplicial cocycle on SP d(Sn) with respect to the triangulation R.
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Moreover, if j : Sn → SP d(Sn) is the map sending v ∈ Sn to (v, y, . . . , y) ∈ SP d(Sn)
and if j∗[S

n] denotes the integral n-current on SP d(Sn) given as the image of the funda-
mental class of Sn, then

j∗[S
n](Ωy,ǫ) =

∫

Sn

j∗(Ωy,ǫ) = 1.

Proof. For each open simplex σ of SP d(Sn), π−1(σ) is the disjoint union of some number
(between 1 and d!) of open simplices σ̃ ⊂ (Sn)×d each mapping homeomorphically to σ.

Thus, (5.1.2) necessarily characterizes Ωy,ǫ. On the other hand, since
∑d

i=1 pr∗i (ωy,ǫ) is
Σd-equivariant, we may define Ωy,ǫ satisfying (5.1.2) on an open simplex σ of SP d(Sn) by
setting

(Ωy,ǫ)
∣∣
σ
≡

(
d∑

i=1

pr∗i (ωy,ǫ)

)∣∣∣∣
σ̃

where σ̃ is any open simplex of (Sn)×d mapping homeomorphically onto an open simplex

σ of SP d(Sn). Since
∑d

i=1 pr∗i (ωy,ǫ) is a closed n-form on (Sn)×d, it is easily checked that
Ωy,ǫ is d-closed.

Observe that (5.1.1) implies that the restriction of Ωy,ǫ to any closed n-simplex σ has
support in σ. Therefore,

Ωy,ǫ(σ) =
d∑

i=1

∫

σ̃

pr∗i (ωy,ǫ) =
d∑

i=1

deg(pri

∣∣
σ̃
) ·

∫

Sn

ωy,ǫ ∈ Z

where deg(pri

∣∣
σ̃
) is the degree of the map from (σ̃, σ̃ − σ̃) to (Sn, Sn − supp(ωy,ǫ)) given

by the restriction of pri.
Finally,

Ωy,ǫ(j∗[S
n]) =

∫

[(Sn,y,y,... ,y)]

d∑

i=1

pr∗i (ωy,ǫ) =

∫

Sn

ωy,ǫ = 1.

�

Proposition 5.1 enables us to give an explicit representation of integral cohomology
classes as pull-backs of the integral form Ωy,ǫ.

Proposition 5.2. Let A be a compact oriented pseudo-manifold of dimension m. Then
the natural identification of Hn−j(A,Z) with homotopy classes of maps into the Eilenberg-
MacLane space K(Z, n),

θ : πjMapcont(A,Z0(S
n)o)

≃
−→ Hn−j(A,Z), (5.2.1)

can be realized as follows. Choose triangulations R,S of SP d(n), Sn respectively; choose
ǫ > 0 so that (5.1.1) is satisfied. For γ ∈ πjMapcont(A,Z0(S

n)o), choose a triangulation of
Sj × A and a simplicial map g : Sj × A→ Sj ∧ A→ SP d(Sn) representing γ. Then θ(γ)
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equals the Künneth projection Hn(A × Sj,Z) → Hn−j(A,Z) applied to the cohomology
class of the simplicial integral cocycle g∗(Ωy,ǫ) on A× Sj ,

Proof. Using the simplicial approximation thoerem, we see that any element γ ∈
πjMapcont(A,Z0(S

n)o) can be represented by a simplicial map f : A × Sj → SP d(Sn)
for d sufficiently large (which sends the wedge A ∨ Sj to the base point of Sn). The iden-
tification of (5.2.1) is given by restricting the fundamental class ιn ∈ H

n(K(Z, n),Z) =
Hn(SP∞(Sn),Z) to Hn(SP d(Sn),Z), then applying f∗ : Hn(SP d(Sn),Z) → Hn(A ×
Sj ,Z), and finally applying the Künneth theorem.

Since the natural maps Hn(SP∞(Sn),Z) → Hn(SP d(Sn),Z) → Hn(Sn,Z) are iso-
morphisms (cf. [Mi]), we conclude using Proposition 5.1 that the restriction of ιn to
Hn(SP d(Sn),Z) equals the cohomology class of the simplicial integral cocycle Ωy,ǫ on
SP d(Sn). Since g is simplicial, g∗(Ωy,ǫ) takes integral values on n-simplices of A× Sj (as
argued for Ωy,ǫ in the proof of Proposition 5.1) and thus has cohomology class equal to
the pull-back via g∗ of the cohomology class of Ωy,ǫ. �

As we see below, Propositions 4.3 and 5.2 enable us to identify A ◦ Γtop on
π0Mapcont(A,Z0(S

n)o).

Theorem 5.3. Let A be a compact oriented pseudo-manifold of dimension m. Then the
following diagram commutes

π0Mapcont(A,Z0(S
n)o)

Γtop

−−−−→ π0Zm(A× Sn)/Zm(A× {∞})

θ

y A

y

Hn(A,Z) Hm(A× Sn, A× {∞}; Z)

=

y
ySl

Hn(A,Z)
∩[A]
−−−−→ Hm−n(A,Z),

(5.3.1)

where θ is the isomorphism of Proposition 5.2, A is the Almgren isomorphism of Theorem
1.2, and Sl is the homomorphism of Corollary 4.2 associated to Federer slicing of currents
(which is an isomorphism in this special case for which N is a sphere).

Proof. We restrict attention to a given homotopy class of maps from A to SP d(Sn) rep-
resenting a class in π0Mapcont(A,Z0(S

n)o). Choose a triangulation S of SP d(Sn) subor-
dinate to the singular stratification and a triangulation T of A as in Proposition 4.3. Let
f : A→ SP d(Sn) be a simplicial representative of our homotopy class. Let U be a trian-
gulation of Sn such that each projection pri maps simplices of Sn×d (with triangulation
induced by S) to subcomplexes of U . Replacing these triangulations by their barycentric
subdivisions if necessary, we may assume that there is a closed n-simplex σ ⊂ Sn with both
barycenter z and last indexed vertex y regular values. Choose ǫ > 0 so that the support
of ωz,ǫ ⊂ σ.

If f is a suitable simplicial representative of a class in π0Mapcont(A,Z0(S
n)o), then

f∗(Ωz,ǫ) represents the cohomology class θ(f). Observe that for any (closed) n-simplex µ
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of T
∫

µ

f∗(Ωz,ǫ) =

k(µ)∑

i=1

dµ
i ·

∫

µ

f∗
µ,i(ωz,ǫ).

We choose an ordering on the vertices of A and employ the classical combinatorial formu-
lation of cap product (cf. [H-Y]),

f∗(Ωz,ǫ) ∩ [A] =
∑

τ∈T (m)

{∫

τf

f∗(Ωz,ǫ)

}
· τ b

which equals

(5.3.2)
∑

τ∈T (m)

k(τ)∑

i=1

dτ
i ·

{∫

τf

f∗
τ,i(ωz,ǫ)

}
· τ b

where τf , τb are the front n-face, back (m− n)-face of τ .

By construction, f−1
τ,i (y) is a (m−n)-subcomplex of τ and f∗

τ,i(ωz,ǫ) is a non-vanishing n-
form on τf if and only if τf projects onto σ which is the case if and only if τ projects onto σ

and τb is a top dimensional simplex of f−1
τ,i (y). Replacing f by its barycentric subdivision

if necessary so that the vertex y is regular and is the barycenter of a top dimensional
simplex of a triangulation U of Sn as above, we may arrange that the condition that τ b is
a top dimensional simplex of f−1

τ,i (y) implies τ projects onto σ. In other words,

∫

τf

f∗
τ,i(ωy,ǫ) = 1 ⇐⇒ fτ,i(τf ) = σ ⇐⇒ τ b is an m− n-simplex of f−1

τ,i (y)

and
∫

τf
f∗

τ,i(ωy,ǫ) equals 0 otherwise.

In other words, the simplicial chain (5.3.2) equals the integral current Sly(Γ(f)) of
(4.3.1).

Recall that the Almgren isomorphism restricted to connected components of spaces of
integral cycles A : π0Zm(A×Sn) ≃ Hm(A×Sn; Z) is given by the natural identification of
themth homology group of the complex I∗(A×S

n) with the homology groupHm(A×Sn; Z)
as constructed by Federer in [Fe] and used in Corollary 4.2. Thus, Corollary 4.2 together
with Proposition 4.4 (which gives us (4.3.1)) implies that

θ([f ]) ∩ [A] = f∗(Ωx,ǫ) ∩ [A] = (Sl ◦ A)(Γtop(f)).

This establishes the commutativity of (5.3.1). �

Theorem 5.3 leads us to the general identification (i.e., on all homotopy groups) of Γtop
∗

with the Poincaré duality map.
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Theorem 5.4. Let A be a compact oriented pseudo-manifold of dimension m. Then for
any j, 0 ≤ j ≤ n, the following diagram commutes

πjMapcont(A,Z0(S
n)o)

Γtop
∗−−−−→ πjZm(A× Sn)/Zm(A× {∞})

θ

y A

y

Hn−j(A,Z) Hm+j(A× S
n, A× {∞}; Z)

=

y
ySl

Hn−j(A,Z)
∩[A]
−−−−→ Hm−n+j(A,Z),

(5.4.1)

where θ is the isomorphism of Proposition 5.2, A is the Almgren isomorphism of Theorem
1.2, and Sl is the homomorphism of Corollary 4.2 associated to Federer slicing of currents.

Proof. We proceed by induction on j: for each j ≥ 0, we establish the commutativity of
(5.4.1) for all n ≥ 0. (In the degenerate case n = 0, we set Z0(S

0)o equal to Z with the
discrete topology.) The case j = 0 is the conclusion of Theorem 5.3; for j > 0, the case
n = 0 is immediate.

Consider the commutative diagram for some n > 0:

Mapcont(A,Z0(S
n−1)o)

Γtop

−−−−→ Zm(A× Sn−1)/Zm(A× {∞})
y

y

Mapcont(A,Z0(D
n)o)

Γtop

−−−−→ Zm(A×Dn)/Zm(A× {∞})
y

y

Mapcont(A,Z0(S
n)o)

Γtop

−−−−→ Zm(A× Sn)/Zm(A× {∞}),

(5.4.2)

where Sn−1 ⊂ Dn ⊂ Sn is the inclusion of the n − 1-sphere as the boundary of the
closed n-disk which is then collapsed to become the base point of Sn. The Dold-Thom
Theorem [D-T] enables us to conclude that the triple Z0(S

n−1)o → Z0(D
n)o → Z0(S

n)o

is a fibration sequence (cf. [F-G]), so that the left vertical row of (5.4.2) is also a fibration
sequence. Moreover, Theorem 1.2 implies that the right vertical row of (5.4.2) is also a
fibration sequence. Observe that Mapcont(A,Z0(D

n)o) is contractible, whereas Zm(A ×
Dn)/Zm(A× {∞}) is contractible by Theorem 1.2.

Consequently, the naturality of the boundary map in the long exact homotopy sequence
for a fibration sequence implies the commutativity of the square

πjMapcont(A,Z0(S
n)o) −−−−→ πjZm(A× Sn)/Zm(A× {∞})

∂

y
y∂

πj−1Mapcont(A,Z0(S
n−1)o) −−−−→ πj−1Zm(A× Sn−1)/Zm(A× {∞})

whose vertical maps are isomorphisms.
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Thus, induction on j will complete the proof of the theorem once we verify that

θ ◦ ∂ = θ : πjMapcont(A,Z0(S
n)o) −→ Hn−j(A,Z) (5.4.3)

and

Sl ◦ A ◦ ∂ = Sl ◦ A : πj{Zm(A× Sn)/Zm(A× {∞})} −→ Hm−n+j(A) (5.4.4)

We easily verify the commutativity of the square

πjMapcont(A,Z0(S
n)o)

≃
←−−−− πj−1Mapcont(A,Zo(S

n−1)o)

θ

y
yθ

Hn−j(A,Z)
=

←−−−− Hn−j(A,Z)

where the upper horizontal arrow is induced by the equivalence Z0(S
n−1) → ΩZ0(S

n)
associated to ΣSn−1 ≃ Sn. Since this upper horizontal arrow is the inverse of ∂, we
conclude the commutativity of (5.4.3).

To prove the commutativity of (5.4.4), we consider the following diagram:

πjZm(A× Sn)/Zm(A× {∞})
∂

−−−−→ πj−1Zm(A× Sn−1)/Zm(A× {∞})
y

y

πjZm(A ∧ Sn)
Σ

←−−−− πj−1Zm(A ∧ Sn−1)

A

y A

y

Hm+j(Σ
nA)

Σ
←−−−− Hm+j−1(Σ

n−1A)

(Σn)−1

y (Σn−1)−1

y

Hm−n+j(A)
=

−−−−→ Hm−n+j(A)

(5.4.5).

We verify that the composition of maps in the left (respectively, right) column of (5.4.5)
equals Sl◦A by using the property that Sl is left inverse to (−)×[Sn]) (resp., (−)×[Sn−1])).
Thus it suffices to verify the commutativity of (5.4.5).

The upper and lower squares of (5.4.5) are seen to commute by inspection.
Recall [A;3.2] A : πiZm(X) → Hm+i(X) is constructed by associating to a homotopy

class of maps f : (Ii, ∂Ii) → Zm(X) a map of chain complexes f∗ : C∗(I
i, ∂Ii) → I∗(X)

which raises degree by m, where C∗(I
i, ∂Ii) is the cellular chain complex of a suitable

subdivision of (Ii, ∂Ii) and I∗(X) is the chain complex of (discrete groups of) integral
currents. Then the homotopy class of f is sent to f∗([I

i, ∂Ii]). Given α ∈ πj−1(Zm(A ∧
Sn−1)) represented by f : (Ij−1, ∂Ij−1)→ A ∧ Sn−1, we realize Σα ∈ πj(Zm(A ∧ Sn)) as
the homotopy class of the map Σf which makes the following square commute

(Ij−1, ∂Ij−1)× (I, ∂I)
f∧i
−−−−→ Zm(A ∧ Sn−1) ∧ Z0(S

1)
y

y

(Ij, ∂Ij)
Σf
−−−−→ Zm(A ∧ Sn)

(5.4.6)
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whose vertical maps are induced by taking products. This commutative diagram deter-
mines a commutative square of chain complexes (whose horizontal maps have degree m)

C∗(I
j−1, ∂Ij−1)⊗ C∗(I, ∂I)

f∗⊗i
−−−−→ I∗(A ∧ S

n−1)⊗ I∗(S
1)

y
y

C∗(I
j, ∂Ij)

(Σf)∗
−−−−→ I∗(A ∧ S

n)

(5.4.7)

The commutativity of (5.4.6) and (5.4.7) implies the commutativity of the middle square
of (5.4.5), thus completing the proof of the theorem. �

§6. Compatibility with the algebro-geometric duality map.

In this section we briefly discuss the duality map between algebraic cycles and algebraic
cocycles established in [F-L2]. We then use the results above to prove that algebraic duality
is naturally compatible with Poincaré duality with respect to the natural transformation
from the algebraic theory to standard integral homology and cohomology.

Definition 6.1. [F-G], [Li1] Let X be a complex projective algebraic variety. For non-
negative integers r and d, let Cr,d(X) denote the Chow variety of effective r-cycles of degree
d on X . We denote by

Cr(X) ≡
∐

d≥0

Cr,d(X)

the Chow monoid of effective r-cycles on X , topologized using the analytic topology of the
complex projective algebraic varieties Cr,d(X) and given the monoid structure determined
by addition of cycles. We denote by

Zr(X) ≡ {Cr(X)}+

the topological abelian group defined as the näıve group completion of the topological
monoid Cr(X), so that the topology is that of a quotient of Cr(X)×2.

In particular, C0(X) =
∐

d≥0 SP
d(X) and the underlying set of Z0(X) is the free abelian

group on the points of X .

We recall that any complex projective algebraic variety X admits a triangulation pro-
viding X with the structure of a finite simplicial complex; moreover, this triangulation can
be chosen so that a finite number of specified closed subvarieties of X are subcomplexes
[H]. The resulting PL-structure is unique [SY].

Lemma 6.2. If X is a projective algebraic variety, then there is a natural (continuous)
embedding Zr(X) ⊂ Z2r(X).

Proof. This follows from Lemma 1.1 and the results in [H] and [SY] mentioned above. �
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Remark 6.3. As shown in [F-M], the composition

Zr(X) −→ π0Zr(X) −→ π0Z2r(X)
DT
−−→ H2r(X)

is the classical cycle map sending an r-cycle ζ on X to its cycle class [ζ] ∈ H2r(X), where
the right-most map denotes the Dold-Thom isomorphism.

We recall the definition of algebraic cocycles introduced in [F-L1] and simplified in [F].

Definition 6.4. [F-L1, 3.1], [F, 1.5] Let X be a complex, normal, projective algebraic
variety and Y a projective variety. The monoid of effective algebraic cocycles on X
with values in Y is defined to be the topological abelian submonoid of the monoid (with
the compact-open topology) of continuous maps from X to some SP d(Y ) consisting of
morphisms f : X → SP d(Y ),

∐

d≥0

Mor(X,SP d(Y )) ⊂
∐

d≥0

Mapcont(X,SP
d(Y )).

We define
Mor(X,Z0(Y )) ≡ {

∐

d≥0

Mor(X,SP d(Y ))}+

to be the näıve group completion of this topological monoid.
For any positive integer s, we define the topological abelian group of codimension s

cocycles on X as the quotient

Mor(X,Z0(A
s)) ≡Mor(X,Z0(P

s))/Mor(X,Z0(P
s−1))

with the quotient topology.

Proposition 6.5. [F-L2] Let X, Y be complex projective varieties with X normal of
dimension n. Then for any d > 0 there is a natural algebraic continuous map

Γalg :Mor(X,SP d(Y )) −→ Cn(X × Y ).

Proposition 6.5 was established using an abstract construction which applies in situ-
ations more general than that considered above. In the following remark, we give an
equivalent, but more explicit construction of Γ(f).

Remark 6.6. [F-M] The map Γalg has the following concrete realization. Let Γ0,d(Y ) ⊂
SP d(Y ) × Y denote the incidence correspondence consisting of pairs (σ, y) with y ∈ σ.
Then

p : Γ0,d(Y )→ SP d(Y )

is a “finite weighted map” in the sense of [F-M]: each point of Γ0,d(Y ) is provided with
a positive integral weighting such that the sums of weights in any fibre of p equals d.
Moreover, SP d(Y ) has a “singular stratification” by Zariski closed subvarieties so that the
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set of weights above points of SP d(Y ) is constant on open strata. Observe that a map from
some T into such an open stratum associated to the positive weights d1, . . . , dk determines
k maps T → Y with disjoint graphs, each with well defined multiplicity equal to one of
the di (these maps are determined by the d projections Γ0,d(Y )→ Y ).

Since X is irreducible, any morphism f : X → SP d(Y ) has the property that for
some Zariski dense open subset U ⊂ X the restriction f

∣∣
U

: U → SP d(Y ) has image

in some open stratum of the singular stratification (whose Zariski closure is the smallest
closed stratum containing the image of the generic point of X). Thus, if d1, . . . , dk are
the positive integral weights associated to this stratum, then we can associate to f

∣∣
U

the
morphisms f1, . . . , fk : U → Y with disjoint graphs and associated multiplicity d1, . . . , dk.
Then

Γalg(f) =

k∑

i=1

diΓ(fi)

where Γ(fi) is the Zariski closure in X × Y of the graph of fi in U × Y .
Furthermore, if we consider some closed stratum W ⊂ SP d(Y ) associated to the

multiplicity e1, . . . , er in the closure of the stratum with multiplicity d1, . . . , dk and if
Z ⊂ f−1(W ) is an irreducible component with open dense subset V ⊂ Z (thereby locally
closed in X), then the behaviour with respect to specialization of the equidimensional cycle
Γalg(f) above the normal variety X implies that

Γalg(f)
∣∣
Z

=
r∑

j=1

eiΓ(f
∣∣
W,j

)

where fV has associated morphisms fW,1 . . . , fW,r : V → Y .

Proposition 6.7. If X and Y are complex projective varieties, then the restriction to
Mor(X,SP d(Y )) of the graphing construction Γ of Theorem 2.4 equals Γalg.

Proof. If f : X → SP d(Y ) is a morphism of complex projective varieties and if X1 ⊂ X
is a Zariski open subset mapping to some open stratum V ⊂ SP d(Y ) of the singular

stratification of SP d(Y ) with weights d1, . . . , dk, then the graph of f
∣∣an

X1
as a rectifiable

current as constructed in Remark 6.6 equals
∑k

i=1 diΓ(fi)
an. Applying the arguments

given for Theorem 2.4 to the restriction of f above open strata V ⊂ SP d(Y ), we conclude
that Γ(fan) as defined in Theorem 2.4 equals (Γalg(f))an, where Γalg(f) is constructed in
Remark 6.6. �

As shown in the corollary below, Γtop of Theorem 3.6, when applied to an algebraic
morphism of complex projective algebraic varieties, agrees with Γalg .

Corollary 6.8. With hypotheses and notation as in Theorem 3.6, let f : A → SP d(B)
be a Lipschitz map with the property that Γ(f) is ∂-closed. Then Γtop(f) = Γ(f). In
particular, if f can be given the structure of a map of simplicial complexes or is an algebraic
morphism of complex projective algebraic varieties, then Γtop(f) = Γ(f).
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Consequently, if X is a normal complex projective variety of dimension n, then for each
d > 0 we have a natural commutative square

Mor(X,SP d(Pt))an Γalg

−−−−→ Cn(X × P
t)an

y
y

MapLip(X,SP d(Pt))
Γtop

−−−−→ Z2n(X × P
t).

(6.8.1)

Proof. Let f be the uniform limit of the sequence {fk}
∞
k=1 ⊂ MapLip(A, SP d(B)) of good

Lipschitz maps with Lipschitz norm uniformly bounded by a constant K. Arguing as in
the proof of Proposition 3.5 with f, fk replacing f0, f1, we obtain Lipschitz maps hk :
A× I → SP d(B) such that

∂Γ(hk) = Γ(f)− Γ(fk) and Mass(Γ(hk)) < (1 + cK)m‖‖f − fk‖∞

where c is a fixed constant. Hence,

Γtop(f)
def
= lim−→

k

Γ(fk) = Γ(f).

The commutativiy of (6.8.1) now follows immediately from the equality Γ(f) = Γtop(f)
and Proposition 6.7. �

As a corollary of Theorem 5.4, we conclude the following compatibility of Dalg
∗ and cap

product with the fundamental class.

Corollary 6.9. Let X be a projective, normal variety of pure (complex) dimension m
and let t be a positive integer ≤ m. Then the following square commutes

πjZ
t(X) = LtH2t−j(X)

Dalg
∗−−−−→ Lm−tH2m−2t+j(X) = πjZm−t(X)

Φ∗

y
yΦ∗

πjMapLip(X,Z(S2t)o) = H2t−j(X ; Z)
∩[X]
−−−−→ H2m−2t+j(X) = πjZ2m−2t(X

an),

(6.9.1)

where the vertcial maps are induced by the inclusions

Mor(X,Z0(A
t))→MapLip(X,Z0(S

t)o), Zm−t(X)→ Z2m−2t(X
an).

If X is smooth, then in particular the duality isomorphism Dalg
∗ of [F-L2] is compatible

with the classical Poincaré duality isomorphism.

Proof. We identify Z0(A
t) with Z0(P

t)/Z0(P
t−1) and we identify SP d(S2t) with

SP d((Pt)an/(Pt−1)an). It suffices to observe that Corollary 6.8 verifies the commutativity
for each d > 0 of the square (natural with respect to both d and t)

Mor(X,SP d(Pt))
Γalg

−−−−→ Zm(X × P
t)

y
y

MapLip(X
an, SP d(Pt)an)

Γtop

−−−−→ Z2m(Xan × (Pt)an).

�
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