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Abstract.

Equivariant versions of the Suspension Theorem [L1] for algebraic cy-
cles on projective varieties are proved. Let G be a finite group, V a pro-
jective G-module, and X C P¢ (V') an invariant subvariety. Consider
the algebraic join 2.0 X = X#P¢(Vp) of X with the regular repre-
sentation Vy = C& of G. The main result asserts that algebraic sus-
pension induces a G-homotopy equivalence Z%(X) — Z%(LV° X)
of topological groups of algebraic cycles of codimension-s for all § <
dim X — e(X) where e(X) is the maximal dimension of g-fixed point
sets in XIVOX for g # 1. This leads to a Stability Theorem for equiv-
ariant algebraic suspension. The methods also yield a Quaternionic
Suspension Theorem for cycles in P¢ (H™) under the antiholomorphic
involution corresponding to scalar multiplication by the quaternion j.
From this the homotopy type of spaces of quaternionic cycles is com-
pletely determined.
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§1. Introduction. In 1989 a Suspension Theorem for algebraic cycles on complex pro-
jective varieties was formulated and proved in [L;]. This result proved to be the key to the
development of an interesting theory for varieties. It also led to some new constructions
and results in algebraic topology. (See [Ly] for a survey.) The point of this paper is to
enunciate and prove an Algebraic Suspension Theorem in the presence of symmetry. The
result is substantially more difficult than the non-equivariant analogue in [L;]. It is also
not universally valid; there are delicate necessary conditions involving the dimension of the
cycles and the geometry of the action. However, the theorem yields a stable result which
is foundational for building equivariant theories based on cycles and for applications to
algebraic topology.

The methods also yield a quaternionic suspension theorem which is of independent
geometric interest.

The first steps towards equivariant theories based on algebraic cycles were taken in [LM; |
where algebraic suspension was shown to be a homotopy equivalence after localizing away
from the order of the group (i.e., after inverting all primes which divide the order of G).
Such localization was necessary as shown by example. In this form the suspension has
substantial content. However, in the world of finite groups, inverting the primes dividing
|G| often kills the interesting invariants of G, and it would be quite useful if one could
show that some form of suspension for algebraic cycles was a full G-homotopy equivalence.

Such a theorem is the main result of this paper. We show that the suspension of algebraic
cycles by the regular representation of G is a full G-homotopy equivalence provided
that the dimension of the cycles is sufficiently large with respect to the dimension of the
g-fixed point set for each g # 1 in G. In particular, if G acts freely, then suspension to the
regular representation is a G- homotopy equivalence for cycles of any dimension > 0. This
result is sharp as shown by many examples (in §4). It also leads to a basic stability result.

We shall now be more explicit. Fix a finite group G' and a finite dimensional complex
G-module V, and consider a G-invariant algebraic subvariety X C P(V). For each s <
dim(X), let Z%(X) denote the free abelian group generated by the irreducible subvarieties
of codimension-s in X. This group carries a natural topology (cf. [L;], [Lis]), and G acts
naturally on Z°(X) by continuous group automorphisms.

We now let V denote the regular representation of G, and we define the Vy-suspension
of X to be the G-invariant subset Y0 X = X#P(Vy) C P(V @ V,) consisting of the
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union of all lines joining X to P(Vp) in P(V @ V,). (Here # denotes the algebraic join,
[L1], [H]). Suspension extends naturally to algebraic cycles on X and defines a continuous
G-equivariant homomorphism

e 20(X) — 2727 X)
Our first main results are the following. Consider the numerical invariants

eo(X) = gergﬁ){cl} dim X9 and e(X) = gergéi{il} dim (ZVOX)Q

of the action of G on X, where X9 &' {reX : g(x)=1x}.

Theorem A. (The Equivariant Suspension Theorem) If s < dim X — e(X), then
suspension to the regular representation

V2 (X) — Z°(PVX)

is a G-homotopy equivalence.

Theorem B. (Stability) Let ¢ > 1 be the smallest prime divisor of |G|. Then the
suspension homomorphisms

bAG
Zs(szOX) AN ZS(Z(m_l—l)VOX)

are G-homotopy equivalences for all non-negative integers m such that

m > i (s 4 eo(X) — dim X ) + 2

Our last set of results concerns “quaternionic subvarieties”. Let H denote the quaternions
with standard basis {1, 4, j, k}, and write HH = C®Cj where C = spang {1, ¢}. Multiplication
on the left by 5 in H" induces a complex antilinear map j : H* — H" with j2 = —Id.
This induces an antiholomorphic involution

j:Pc(H*) — Pc(H")

which is fixed-point free (and which is covered by an antilinear map of O(1) whose square
is -Id). For each s < 2n — 1 the map j induces an involution

o0 Z2°(Pc(H")) — 2°(Pc (H"))

whose fixed-points Z7(n) can be considered the “quaternionic cycles” of codimension-s.
The quotient group Z(n) = Z§(n)/(1 + 7,)Z°(Pc (H")) by the j,-averaged cycles, can
be considered the group of “irreducible quaternionic cycles” of codimension-s. It is a
topological 2-torsion group. When the cycle-dimension is 1 for example, this group is the
7/2Z~vector space generated by the irreducible j, -invariant curves, which are, in a sense,
the non-orientable projective algebraic curves.
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Theorem C. (The Quaternionic Suspension Theorem) For each s < 2n — 1 the
j.-equivariant map

L8 Z°(Pe(HY) — Z°(Pc(H')
given by suspension to H, is a (Z/27)-homotopy equivalence. It induces homotopy equiv-
alences

Y9 . 25 (n) — Zi(n+1) and Y7 : ZZ(n) — ZZ(n+1).

There is also a theorem for quaternionic suspension of Z*(P¢ (H™ @ C)). These results
allow a determination of the homotopy type of Zj and ZNIfﬂ The spaces Zj fit in a
surprizing and beautiful way with the classical theory of representations and characteristic
classes.

Using results in this paper the authors have succeeded in calculating the coefficients of
the new equivariant cohomology theories established in [LLM;]. The results also play a
role in defining cohomology operations on the morphic cohomology groups introduced in
[FL].

Since writing this paper the authors have learned of independent results of Jacob Mostovoy
on quaternion cycles. Among other things he has obtained Theorem 6.4 over the rationals.

§2. Suspension to the regular representation. Consider a finite group G of order
v, and let V be a finite dimensional G-module. Then G acts naturally on the projective
space P(V'), and for each p > 0, G also acts by automorphisms on the topological monoid
Cp(P(V)) of effective p-cycles on P(V'). Hence it also acts by automorphisms on the naive
topological group completion Z,(P(V)).

Let Vj = C - G denote the regular representation of G. There is a continuous G-
equivariant homomorphism

LV Z,(P(V)) — Zpiy(P(V & Vo))

given by associating to a cycle ¢ in P(V) its algebraic suspension ¥.Vo(c) = c#P(Vp). This
map is always a homotopy equivalence (cf. [L;]). However, it is far from being a G-
homotopy equivalence in general. This is discussed in detail in §4. The main result of this
section asserts that if the dimension p is large enough that every (p+ 1)-cycle in P(V & V)
is forced to meet the subset P(V @ V)fee Where G acts freely, then ¥.V° is a G-homotopy
equivalence.

This produces the “stable” result that after sufficiently many iterations, the maps Y.
become G-homotopy equivalences.

Before stating the main result we examine the condition referred to above. Note that
P(V & Vo)free = P(V @ Vi) — X where

Y= {zePVael) : G, #{1}}
= {zeP(VaeVy) : d9€G,g#1 and gz =z}

= U Pvewy
geG—{1}



where X9 denotes the fixed-point set of g on X.

Definition 2.1. Let I'¢ denote the set of conjucagy classes of subgroups of G. Given
a finite dimensional G-module V, let dy : I'¢ — Z denote the (equivariant) dimension
function of P(V) defined as dy ([H]) = dimc P(V)¥, where [H] denotes the conjugacy
class of the subgroup H, and the dimension of an algebraic subset is defined to be the
maximal dimension of its irreducible components. We then define

def
2.1.1 V)= V) = d HY).
(2.1.1) eV)=ea(V) & max - dvey,((H)

In the following technical result we use the same letter W to denote both a G-module
W and its restriction Res$ (W) to a subgorup H < G.
Lemma 2.2. The function e(V) has the following properties.

(1) If H < G, then e (V) < eg(V).

(2)

e(V) = max dim{IF’(V ® Vo)g},

where P(V & V)9 denotes the set of points fixed by g € G. Furthermore, one just
needs to maximize over those points g € G of prime order.
(3) If G is abelian, then
e(V) =max dim(V,)
peG

where G denotes the character group of G and where V, C V is the simultaneous
eigenspace with character p. If, in addition, G is cyclic of prime order then

e(V)= dim{P(V)9} +1 for any g # 1.
(4) For any G let q be the smallest prime divisor of v = |G|. Then
e(V) > %{dimV +9}—-1
and for all m > 0,

e(Veomly) < dimV+2I(m+1)-1

Proof. Statement (1) is obvious. Given subgroup H < G and h € H, let < h > denote
the subgroup generated by h. Then P(V & Vp)? Cc P(V @ V)<"> = P(V & Vp)?, and the

first assertion of (2) follows. Note that since dimP(V @ V;)9 < P(V & Vo)gk for any k, it
suffices to maximize over elements g of prime order in G.

For (3) recall that Vo = €D, ¢, where £, is the 1-dimensional eigenspace with character
p. Then for any g # 1 we have

P(V S VO)g = H P((V S Vo)p) = H P(Vp @ éﬂ)7
pea pea



and (3) follows immediately from assertion (2).
To prove (4), consider g € G of prime order gq. Then we have

pve) = ] P(Ve), ]_[P(Vea 14,)

p€Z/q p€Z/q

from which the first assertion of (4) follows directly. For the second we note that

P(V & (m+1)Vp)? H ]P’(V ® (m + )78)
peL]q

and

< di X
oraRiaxX  max dim (V ® (m+ 1) 554p ) < dmV+(m+1)] =

We would like to point out that one can also give the following interpretation to the
dimension functions that we considered, based on the previous lemma. Let yy denote the
character of V', and for any subgroup H < G, let H denote the collection of equivalence
classes of 1-dimensional representations of H, identifiable with the “character group” of
H, consisting of all group homomorphisms H — C*. Then

P(V)" =P(Resf (V)" = [] P(Res§(V),).

peEH

On the other hand, dimRes%(V), = (XResg(V) \ Xp)H’ where (-|-);; denotes the usual
inner product for class functions on H. Hence, Frobenius reciprocity

(XResg(V) | Xp)H = (XV | XIndICfI(p))G
implies that
e(V) = max{(xv | x¢)q + [G : H] | £ monomial induced by H }.

Recall that a G-module ¢ is said to be monomial if it has the form & = Ind$(p), where p
is a 1-dimensional H-module for some subgroup H < G.

2.3. Equivariant Algebraic Suspension Theorem I (Suspension to the regular
representation). Let G be a finite group of order v and denote by Vi = C the regular
representation of G. Let V be any finite dimensional complex G-module. Then for each
p > e(V) the suspension homomorphism

LY Z,P(V) — Zpi(P(V © W)

is a G-homotopy equivalence.



Proof. Consider the open G-invariant submonoid

TCpiy & {ceCpiy(P(Va V) : dim(lc|NP(V)=p}

of effective cycles of dimension p ++ which meet P(V') in proper dimension, and let ZCp.,
denote its naive topological group completion. Algebraic suspension gives an equivariant
embedding
Vi
L7O:C(P(V)) = TCpiqy

which extends to an injective homomorphism
L Z,(P(V)) = TZpiy

of group completions. The theorem is a consequence of the following two assertions.

Assertion 1. The image ¥.V° [Z,(P(V))] is a G-equivariant deformation retract of 7 Z, .
(This assertion holds for any p > 0.)

Assertion 2. The inclusion j : T 2,1, C Zp14(P(V @ V})) is a G-homotopy equivalence.

Proof of Assertion 1. This is a straightforward application of pulling to the normal
cone. Consider the continuous family of G-equivariant automorphsims

o, :PVaeVy) — PVeW) for 0 <t < o0

defined by setting ®;([v : vp]) = [tv : vg] for v € V and vy € V. This induces a family of
G-equivariant continuous monoid automorphisms

(1), : Cppy P(VEVG) — Cppy (P(VEW)) for 0 <t < o0.

When restricted to 7Cpy~, this family extends continuously to ¢ = 0. (See [L1], [FLg], or

[Fu] for example.) When restricted to the image ¥V Z, et LV [Z,(P(V))], this family is
the identity for all £ > 0. One checks directly (cf. [L;], [FLg]) that Image (®¢), = £V Z,
for all ¢. Thus the restriction of (®;), to 7Cp4~ gives an equivariant deformation retraction
down to Y.V° Z,,. Since each (®;), for ¢ > 0 is a monoid homomorphism, this family extends
to the group completions to give the desired result.

Proof of Assertion 2. This is based on the following Proposition. We abbreviate
notation by setting Cpy, = Cpy~(P(V @ Vp)).

Proposition 2.4. Let X C Cpy, be any compact subset. Then for all integers d suffi-
ciently large, there exists a continuous family U, : C,;, — Cpy, of G-equivariant continu-
ous monoid homomorphisms defined for 0 <t < 1 with the property that

(1) ¥y =d7-1d, and

(2) \Ift(X) C TCP+’Y for all t > 0.



Proof. We enlarge our G-space to V & Vy @ Vi with V & V;; embedded as the first two
factors. Consider the invariant subspaces

VE)ICVO@VO and VOHCVO@‘/O
where Vj is the diagonal and Vj' = {0} x Vj. Let
T P(VeVoe V) —P(Vy) — P(Vael)

be the equivariant projection with vertex V.
For each positive integer d > 0 let Divy denote the space of effective divisors of degree
donP(V &V, @ Vp), and consider the subset U C Divy of those divisors D for which

(2.4.1) () 9ID| p NB(V5) = 0.
geG

Let U!] C Divg be defined similarly with V{ replaced by V', and set Uy = U, N U .

Lemma 2.5. The set Uy is Zariski open and non-empty.

Proof. A straightforward argument (cf. [H]) shows that the set where (2.4.1) fails is
Zariski closed. Thus U, is Zariski open, and by the same reasoning so is U;. Thus Uy is
Zariski open. To see that it is non-empty we consider the linear divisor

(2.5.1) AZdvee@DC g
9#1

and observe that
NyAl=d Vel =
g€eG

We now observe that for D € Uy the intersection () g| D| has proper dimension by (2.4.1),
for otherwise it would meet P(V}j). Consequently, the intersection product

D £ ] 4.0
geG

is well-defined and continuous on Uy (cf. [Fu]). Furthermore, for cycles ¢ on P(V & V),
consider the suspension ¥:Yo' (c) = c#P(VY) in P(V & Vo & Vo).

Lemma 2.6. The intersection product Y.V (c¢) @ D is well-defined and continuous on
Cp(V &) %) X Uy.



Proof. By [Fu] it suffices to show that for any subvariety Y C C,(V @ Vj), the intersection
Y% (Y) N |D| has proper dimension. For this it suffices to show that if Y is a point y, then
this intersection is finite. However, this last assertion is obvious since $:%o' (y) is a linear

subspace of dimension v, and ¥Y (y) N |D| is a subvariety which misses the hyperplane
P(). m

To each divisor D € U; we now construct a continuous, G-equivariant monoid endomor-
phism

Up : Cpny(P(V B Vo)) — Cppry(P(V B V)

by setting

(2.6.1) Up(e) = = {Z)VOH(C) .D}.

By Lemma 2.6 these endomorphisms depend continuously on D € Uy and for D = A
(defined in (2.4.1)) we have

(2.6.2) Ua(e) =d,y-c

Given a subvariety Y C P(V @ V;) we have Up(Y)NP(V) = 7'{L% (V) e D} N P(V).
From this we see that Up(Y) meets P(V') properly if

Y € (@) @) ng(y)
meets D properly. Now projection from V' induces an equivariant isomorphism
F:P(VaVy) = ()" (B(V)) —PVel)

and Y = F~1(Y). Thus given Y we have

By € (Dety : Up(Y) ¢ TCpir}

(2.6.3) = {Dely : Yp(Y) does not meet P(V) properly}
= {D €U : D does not meet Y properly}.

We note that by the upper-semicontinuity of dimension, the subset By is Zariski closed.

Lemma 2.7. Let Y C P(V & V) be an irreducible subvariety of dimension p + -y. Then
the function

f(d) = codim(By) in Uy

satisfies limg_, oo f(d) = o0.



Proof. We adopt the following notational conventions. Given any subvariety Z C PM and
any point z € Z we denote by Z, the germ of Z at z. We also denote by Oz , the local ring
of germs at z of functions regular in a neighborhood of z on Z, and by mz , the maximal
ideal in Oz ,. For convenience we shall drop the reference to Z when Z =P(V @V, & V)).

We shall use the last characterization of By in (2.6.3). Fix a regular point y € Y. We
say that D € Uy is bad at y if dim(|D|N ?)y > p, and we denote by B, the subset of all
such divisors. Note that B, is a constructible subset of the linear subspace

Divy, & {DeDivy : gye DV geG}.

Note that Divg, = P(Mg,) where

def

Mgy {c €0O(d) : o(gy) =0Vg € G}

Suppose now that y € P(V @ Vj)sree- Write G = {g;}]_; with g; = 1. Then the elements
y; =gi(y), j =1,...,7 are mutually distinct.

Sublemma 2.8. Fix an integer £ > 0 and let y1,...,y, be distinct points in PM =
P(V & V@ V). Then the map

O(d) — (O, /miiY) x -+ x (O, /mi1)

defined by sending o to the classes of its germs ([oy,], - . ., [0y, ]), is surjective for all d > d,
where dy depends only on £, v and M. Hence, the map

p
Mgy — (my, /mitt) x - x (myy/m§j1>

is also surjective.

Proof. By general position we may choose an affine chart CM C PM with coordinates
(C1,.-.,Cn) having the following properties:

(1) {y1,..,yy} C CM,
(2) y’)’ = Oa
3) {v1,-yyy—1}N{¢: =0} =0 fori=1,..,M.

We want to show that there exists an integer d, such that

Py, : ClCla of {p(¢) e C[(] : degp <d} — H (oyi/mg;i—l)

=1

is surjective for all d > d.,. We proceed by induction. The statement is clear for v = 1
Assume it is proved for v — 1, and let K4 = ker(p,_1,4). We want to find d, > dy_1 so
that p: Kg — (’)O/mffrl is surjective for all d > d,,.
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For any multi-index o with || > ¢ we have P; ,(() def ((—wi)*=0in Oy, /mfF! and so

Y
Pd:efHPi,a(i) € Ky

=2

for any such choice of «a(2), ..., a(y) with |«(2)| + -+ + |a(v)| < d,—1. Choose one such P
and note that P(0) # 0 by our assumption (3).

Set Ky = span{¢*P(¢) : |a| < £} = C[(]¢- P(¢), and note that K, ¢ K,. Furthermore,
the map p: K, — O /m§ is evidently surjective. Thus, dy =dy—1 + £ will work. m

Sublemma 2.9. Let Z be a germ of a subvariety of PM at a point z. Fix a function
f € mz . and consider the (germ of the) subvariety Y = Z N {f = 0} at z. Then for any

£ > 0 the ring Oy, z/m”1 depends only on the class of f in Oy z/tne"'1

Proof. Note that Oy, /m£+1 is just the quotient of Oz ,/ m”l by the principal ideal (f).
]

We now begin our main estimate of the codimension of By. To begin we fix ¢ and
consider the composition

v
Ma,y —5 H (myi/mgjl)

=1

DXPgs XPgs X - XpgX
S (m~ /m”l) X +ee X (m~ /m“l)
Y,y Y,y

which we denote by p; X --- X p,, and where d > d,.
Let K1 = ker(p;1). By the surjectivity of p; from Sublemma 2.8 we have

codimk; = (p+’z+€> -1

We now fix f € Mgy, with f < pi(f) # 0. Set Ay < pr'(f) = f + Ki.
(This is an affine space which we consider to be a vector space with f as its origin.)

Set ¥, = Y N {f = 0} and consider the composition

N (17 N 241
As ¢ N mg /m v, ng,y/m%,y
where 7 is the natural projection. Denote this composition by ps ¢. Now by 2.9, this map
depends only on the class f. By 2.8, the map p, restricted to Ky is surjective, and
hence the linear map ps ¢ is also surjective.
Let ICa ¢ = ker(pa,¢). By the surjectivity of p; ¢ we have

-1
codimKy ¢ in Ay ¢ > (17—}_7z +£) -1

If the germ 172 at y is reducible, we can apply the above construction to each of its
irreducible components Y5 ,. This will give us a finite number of “bad” linear subspaces
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K2,q,f, each satisfying the codimension condition above. To keep the exposition simpler,
we proceed as though the varieties were irreducible at each stage. Redoing the argument by
looking at these distinct components at each stage does not change the proof qualitatively
and the details are left to the reader.

We now fix f € Mg, with fi < pi(f) # 0 and fo < pys(f) # 0. Set Ag; <
(p1 X pz,f)_l(ﬁ, fg) =f+ Koy (ThlS is an affine space which we consider to be a vector
space with f as its origin.) Set Y3 = Yo N {gif =0} = Y n{f =0} N {gif = 0}, and
consider the composition

As ¢ SN m; /meJty1 SN m;s,y/m%:y
where 7 is the natural prOJectlon Denote this composition by p3 r. Now by 2.9, this map

depends only on the classes f1 and fg By 2.8, the map ps restricted to the dernel of
(p1,p2) is surjective. Hence the linear map ps, ¢ is also surjective.
Let k3,5 = ker(ps ). By the surjectivity of p3 ; we have

-2
codimKs3 ¢ in A3 ¢ > (p-}-’yg +£) -1

We now consider f € Mg, with fi = py(f) # 0, fa = pas(f) # 0 and fa=pss(f) #0,
and proceed as above. We repeat this process inductively up to the ' stage. where for

fe Mg, having f; #0,..., fy_1 # 0 we construct the spaces K., s C A, ; with

codim/C, rin A, r > <p+2+g> -1

The main observation now is the following. Set

def

B, {f e Mgy : D meets Y improperly at y, where D = Div(f)}.

Then we have
B, ¢ Kiwu |J Keyu | Ksyu...
fEK FEK1UK ¢

and the codimension estimates above show that

(2.9.1) codim(B,) in My, > (p +2 * 5) —1

Suppose now that we have a divisor D € By. By definition (2.6.3) this means that
dimY N |D| > p+ 1. Therefore, by our assumption that p > e(V'), there exists a point

y € Y N|D| such that Gy, = {1} (i.e., the orbit of y must have y distinct points). Then we
must have D € B,. It follows that

By C U By
P(VOVY)treeNY
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and so

1 ~ 1
codim(By) > (p+£+£) —1—dimY = <p+€+£) -p—v-—1,

for d > dy. In particular, given any M > 0, one can find £ such that (pﬁ%) —p—y—1>M
and hence, for d > dy one has f(d) = codim(By) > M, proving Lemma 2.7. m
We now conclude the proof of Proposition 2.4. Given a cycle c =) . n;Y; € Cpiy we set

B. € | By,

and observe that Lemma 2.7 holds with By replaced by B.. Now in Proposition 2.4 it will
suffice to let X be a finite union of components of Cp . For such X

Bx € | B.
ceX

is a constructible subset of Divg with codim(Bx) > f(d) — dim X. Hence,
(2.9.2) codim(Bx) >> 0

for all d sufficiently large. For any such d consider the family of lines LA in the projective
space Divg which pass through the point A (cf. (2.5.1)). For amost all lines £ € La, the
intersection £N By is finite (in fact, consists only of {A}) by (2.9.2). For any such £, there
exists D € £ such that Dy = (1 —t)A +tD ¢ Bx for all 0 < ¢t < 1. The family ¥, = ¥p,
has the desired property. This proves Proposition 2.4 m

To prove Assertion 2 we employ the fact that an equivariant map ¥ : A — B between
G-CW-complexes is a G- homotopy equivalence if U restricts to an ordinary homotopy

equivalence of fixed-point sets
v AR - BH

for all subgroups H < G. (See [tD, p. 107]).

Fix H < G. Let us abbreviate notation by letting C,,. 4 denote the cycles of degree d
in Cpy~, and setting Z,1, = Zp1y(P(VO Vo @ W) and TZp1y = T Zp11(P(V @ Vo @ W),
etc..

We want to prove that the homomorphism

. H H
Je (T Zp4q)" — (Zpty)
induced by the inclusion j is an isomorphism for all £ > 0.

Fix k and suppose that f : S¥ — (Zp+7)H is a continuous map. Then, there is a
D > 0 such that f(S*) C Z}ﬂ-’y,SD’ where Z,., <p is the image of the compact set
I, +s<D Cptvy,r X Cpiry,s under the canonical projection 7 : Cpiy X Cpiy — Zpi. Denote

X =11, <pCp+tr,r and let T, Zpt1y — Zpi~ be the extension of the monoid morphism
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W : Cpyny — Cpiry from Proposition 2.4 to a G-equivariant group homomorphism. Then
the composition ¥y o f gives a homotopy F; : S* — (Z,4)¥ satisfying

Fo=d-f and F(8%) c(TZ,.)" vi>o,

where d is as in Proposition 2.4.
This proves that for any element o € 7 (Zp+7)H, we have d"a € Image(j,) for all d

sufficiently large. If we choose d1, dy relatively prime, then d7, dJ are relatively prime, and

this proves that « € Image(j,). Thus j, is surjective.

Consider now a continuous map f : D¥*1 —s (2,,.)" such that f(OD**1) C (T Z,4,)".
Using Proposition 2.4 and the same argument as above one finds dy such that for each
d > dy there is a homotopy F, : D**1 — (2,,,)" with

Fo=d"-f and  F(D*Y) c (T2, VE>0.

This proves that for any element 8 € g (TZP_M)H with 7,0 = 0, there exists dyp such
that d78 = 0 for all d > dy. Choosing di, ds relatively prime as above shows that g = 0.
Thus 7, is injective. This completes the proof of Assertion 2. Assertions 1 and 2 clearly
imply the theorem. m

§3. Some immediate consequences. Let G be a finite group of order + and let V
be a finite dimensional G-module. Denote by Vj the regular representation of G. Then
beginning with any p < dimV — 1 we have a sequence of G-equivariant homomorphisms

z Vo Vo Vo

(3.0.1) Z,(P(V)) —— Zpsr(P(V @ Vo)) —— Zpsay(B(V & 2Vp)) — ...

given by algebraic suspension to V. We shall see in the next section that these homo-
morphisms are definitely not G-equivalences in general. However, Lemma 2.2 (3) and the
Theorem 2.3 immediately imply the following.

Theorem 3.1. (The Stability Theorem) Let q be the smallest prime divisor of v = |G]|.
Then the homomorphism

ZVO : ZP-I-m’Y(]P(V S me)) — Zp—i—(m—i—l)'y(P(V S (m + 1)VO))

is a G-homotopy equivalence for all

For groups of prime order Lemma 2.2(2) and Theorem 2.3 give a more refined result.
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Theorem 3.2. Let G = Z/q where q is prime. Then
LR Z,B(V)) — Zpig(B(V @ V)

is a G-homotopy equivalence for allp > max o dim V,. In particular, Y.Vo gives the series
of G-homotopy equivalences

Z,(P(kVD)) — Zprq(P((k + )V0)) —— Zpyag(P((k +2)Vo)) —> ...

whenever p > k.

§4. Important examples. At first glance the hypothesis that p > e(V') in Theorem 2.3
seems awkward and technical since the function e(V') is not easy to compute in general.
However there is very good evidence to indicate that this hypothesis is sharp.

Certainly without the hypothesis the proof fails. When p < e(V), cycles can be
“trapped” in fixed-point sets of subgroups of G so that no equivariant move will displace
them to be “transversal”. Furthermore, calculations show that often when this hypothesis
fails, such cycles cannot in any way be equivariantly displaced. In such cases ¥:'° is not a
G-equivalence, and these cycles are contributing to new elements in 79 Z%. We summarize
some of these calculations here.

Let G be a abelian of order v and for m > 0, k > 0, set Z(m, k) def Zpy(P(E+m)V)).
Consider the sequence of G-equivariant suspension maps

208 28 zan 28 zek B8 z@ k) I8

By Theorem 2.3 these maps become G-equivalences starting with the first Z(m, k) where
m(y — 1) > k. However, these maps are certainly not G-equivalences at the outset. This
is seen already at the level of 7

In [LLM,] direct calculations of mo(Z(m, k)¢) were carried out, and in particular, the
following was established.

Fact 1. The inclusions P(kVp) C P((k + 1)Vp) induce isomorphisms

def = =]

Pe = m0(200,1)%) = m(2(0,2)%) = m0(2(0,3)%) = ...

and Pg = Z&® ﬁG where ]3G is a torsion group of rank < . In particular, for prime integers
a, N
Payqzy = (Z/qZ)%71

Fact 2. The inclusion-suspension maps
o= mo(2(k,2k)F) = mo(Z2(k+1,2(k+1))°) = m(2(k+2,2(k+2)%) < ...
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are injective and not surjective for all k. Set Q¢ def limy,_, oo o (Z(k, 2k)G). Then Q¢ can
be written as the localization of a graded ring

Qe = H'(G)m

where H* is a functor on abelian groups with the following properites:
(1) H* = Z and H' & G.
(2) H(G1&G2) = H'(G1) @ H'(G2)
(3) If G is cyclic of prime order ¢, then there is a natural isomorphism

H*(G) = H*(G; 7)

with cohomology with coefficients in the trivial G-module Z.

and where M is the multiplicative system generated by 1+ z for x € H}(G) & G.

Note that Q¢ embeds in the completion H* (@) of H*(G) with repsect to the aumentation
ideal.

Clearly Pg and Qg are radically different. Pg is a finitely generated abelian group and
Q¢ is a ring which is infinitely generated additively. When G = Z/qZ for ¢ prime, there is
a short exact sequence

0—>Z—>Qg—>ég—>0

where _
Qe = (Z/9Z)[7](114)-

At intermediate stages there is a short exact sequence
0 — Z — m(Z(k,2k)%) — Q¥ — 0
and an additive isomorphism
QW = (2/q7)[z,7)/ (1 +2)*, 1+ 2", 1 +2)(1+7) — 1)

Another set of examples comes from of divisors. Suppose G is abelian and let V be a com-
plex G-module of dimension n+1. Then it can be shown that Z,,_1(P(V)), = li_r>nd Divy =

li_I)ndIP’(SdV) where SV is the d*® symmetric tensor power of V and Z,,_1(P(V)), denote

the divisors of degree zero in P(V'). As in the proof of 2.2 we see that #(moP(S¢V)%) is
exactly the number of distinct characters of G which appear in the representation S¢V .

If G = Z/qZ and V is non-trivial, then all characters occur in SV for d > 2q. To see
this note that if S¢V has characters a and b, then S?V has all characters na + mb for
non-negative integers n, m with n +m = d. One can solve the system

na +mb = ¢(mod q)
n+m = d(mod q)
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for all ¢, and for d large we can solve the second equation in positive integers. Therefore
if V has at least two distinct characters, then 79 2,_;(P(V))¢ = Z/qZ. Thus if V is the
trivial 2-dimensional module, we have

{0} = Won(IP(V))G ;g_Vo> 10 Z¢(P(V & V()))G = 7Z/qZL.

More generally one has mo 2, 1,1 (P(V&V,))® 2 G, but m02n1~—1(P(V))¢ # Gifsay V is
a representation of a non-trivial quotient. These examples show again that our hypothesis
p > e(V) in Theorem 2.3 is sharp.

§5. Equivariant suspension for varieties. The proof of Theorem 2.3 goes through
without change if one replaces P(V') with a G-invariant subvariety of P(V).

Theorem 5.1. Let G be a finite group and V a finite-dimensional complex G-module.
Suppose that X C P(V) is a G-invariant algebraic subvariety, and set

def

e(X) = max dim (ZJVOX)g

geG
g#{1}

Let Vy denote the regular representation of Vy and v = dimVy = |G|. Then for any
p > e(X), the suspension homomorphism

Z)VO 1 Zp(X) — Zp+'¥(ZVOX)
is a G-homotopy equivalence.

Note 5.2. In Theorem 5.1 we can take dim() = —oco. That is, if G acts freely on X,
then the equivariant suspension theorem holds for all p > 0. One needs only to check the
case p = 0. The proof goes through here because the action of G on P(V & V() is free

outside P(Vj) and the subvarietes Y N D never meet P(V{) because D is chosen so that
DNP(Vy) =0.

Proof of Theorem B. The Stability Theorem B stated in the introduction is proved as
follows. There are two G-equivariant projections

T:PX —P(Vp) =X and 7 :¥VX - X = P(W).

If v € Yo X is fixed by g € G and if v ¢ P(Vp) U X, then both m(v) and 7’(v) are also g-
fixed and belong to the same g-character spaces of V& V. We estimate e(X) by observing
that

dim (" Xx)? < max dim (X9 = dimX9+12

where V,, denotes the subspace of V with g-character p. Therefore,
dim (Z)(m-l-l)VoX)g < dim X9 + (m+1)y
= q 9
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from which it follows that
e(ZmVOX) < BO(X) + @

Theorem B now follows from Theorem A, which is equivalent to Theorem 5.1 above.

§6. The quaternionic suspension theorem. The proof of Theorem 2.3 given above
carries over with no essential change to prove a “quaternionic suspension theorem”. The
algebraic subvarieties if P¢ (H") which are invariant under the involution induced by mul-
tiplication by j, have interesting geometric structure and arise naturally for example in
certain twistor constructions. Families of such j-invariant cycles also play an interesting
role in topology. For example, using them one can make quaternionic analogues of the
constructions in [BLLMM] concerning the total Chern and Stiefel- Whitney classes. A key
to computing the topological structure of these spaces are Theorems 6.3 and 6.5 below.
These applications are carried out in [LLMs].

Let H denote the quaternions with standard basis 1,4, j, k, and let C2 =, H be the
canonical isomorphism which associates to a pair (u,v) the quaternion u + vj. For any n
this gives a canonical complex isomorphism

o

c?r = H".

Under this identification left scalar multiplication by j in H" becomes the complex-antilinear
map

- m2n 2n

j:C" — C

with j2 = —Id, given in coordinates (u,v) = (U1, ..., Up, V1, ---, V) by
j(u,v) = (—v,).
This induces a fixed-point free, antiholomorphic map

6.0.1 j:pin-l _, pin—i
C C

with 52 =Id. There is a natural fibration IP’?C"’_l — Pﬁ_l whose fibres are j-invariant
projective lines, and on these lines j is linearly equivalent to the antipodal map.

The involution j carries algebraic subvarieties of I[”é"_1 to themselves and induces a
continuous, antiholomorphic involution

Js 3Cp,d(]}%n_1) — Cp,d(Pg:n_l)

for all p and d. This involution is additive on the monoid C, (IF’?C"_I) =11, Cp’d(IP’?C"_l) and
extends to a continuous involutive automorphism

Jut Zp(BET) — Zp(PTT).
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There is a j-equivariant algebraic suspension homomorphism
(6.0.2) L0 ZPETY — Zppa(PETY)

defined as follows. Write H'*! = H" @ H and set PZ""" = P¢ (H* @ {0}), Pc(H) =
P({0} @ H). Then given a p-cycle c on P2"~", we set

L% (c) = c#Pc (H).

If V C P2 ! is an irreducible subvariety with homogeneous cone v U{£: £eV} CH,
then the homogeneous cone of ¥ (V) in H**? is just

o~

YEV)=VoH c H"®H

From this one sees that ¥ commutes with j,. Our first main result is the following

Theorem 6.1. For all p and n with 0 < p < 2n — 1, the algebraic suspension map
ZH : Zp(Pén_l) — Zp+2(IP’é"+1),

as a map of Z/2Z-spaces under the action of j, is a Z/2Z-homotopy equivalence.

Elorollary 6.2. Let ZEH (n) C Zp(]P’?C”_l) denote the j -fixed point set, i.e., the group of
J4-invariant algebraic p-cycles. Then the algebraic suspension homomorphism

Y2 (n) — Z,(n+1)
is a homotopy equivalence.

Proof. The proof of 6.1 follows exactly the arguments given for the proof of Theorem 2.3.
Certain homomorphisms of local rings which were complex linear are complex antilinear in
this case. However, all dimension estimates go through without change. Since the action
of G = Z/2Z on PZ"~ " is free, there are no restrictions on the dimension p. Details are left
to the reader. m

In analogy with [Lam] and [LM3] we now consider the “Galois quotient”

ZEm) = ZE(n)/Ap(n)

p

of the j,-fixed cycles by the subgroup Ay(n) def (1+7,)Zp(P2"1) of j,- averaged ones.

Note that this is the (topological) 2-torsion group generated by the irreducible quaternionic
subvarieties of dimension p. For p = 1 these subvarieties can be thought of as the “non-
orientable algebraic curves”.
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Corollary 6.3. For all p,n with 0 < p < 2n — 1 the algebraic suspension homomorphism
2 (n) — Z .+ 1)
is a homotopy equivalence.

Proof. This is a direct consequence of the following two statements
(1) ¥ : Ay(n) — Api2(n+1) is a homotopy equivalence.
(2) Ap(n) — Zgﬂ (n) — Zgﬂ (n) is a quasi-fibration sequence.

To establish (1), one checks that the arguments for Theorem 2.3 can be carried through for
the subgroup Ap(n). Statement (2) follows from [LLM;,83.4] and [M], once one identifies

ngﬁ (n) with the homotopy quotient B(Z;?I (n), Ap(n),*). =

It is useful, in light of Theorem 6.1, to introduce the following notation. Let Zf(n)
denote the j,-fixed cycles of complex codimension ¢ in PZ"~", and let Zv]fﬂ (n) denote its
analogue for the quotient. (Thus Z(n) = Z5,_,_,(n).) The corollaries above assert that
the homotopy type of these spaces depends on g but not on n, so we abreviate the notation
to 2% and Z1.

Theorem 6.4. For all integers q > 0 there are a homotopy equivalences:

q q
zZitt = [ K (z,4) x [[ K (2/22,4i + 1) and

i=0 i=0
ZA%QH >~ pt
Proof. By Corollary 6.2 there are homotopy equivalences
B = ZFEET) and B = ZFEETY/(1+7)ZEE).

Now j acts freely on Péq"'l. Hence the group of j,-fixed 0-cycles coincides with the group
of averaged 0-cycles and is homeomorphic to Zo(P2I""/Z,). By [DT] we have that

T 2o(PE ) 2y) = H,(PY)Z,,2)

and these latter groups are easily computed from the Serre spectral sequence. m

§7. Quaternionic suspension for varieties. As noted in §5, the arguments given for
cycles in projective space carry over to cycles in any invariant subvariety. This gives us a
the following general version of Theorem 6.1.
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Theorem 7.1. Let X C ]P’g:"_l be an algebraic subvariety which is invariant under the
involution j. (Such subvarieties can be thought of as “quaternionic”.) Then for all p with
0 < p < dim X, the quaternionic algebraic suspension homomorphism

82 (X) — Zpa(PRX),

as a map of Z/2Z-spaces under the action of j, is a Z/2Z-homotopy equivalence.
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