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Abstrat. In this paper a fundamental duality is established between

algebrai oyles and algebrai yles on a smooth projetive vari-

ety. A map is onstruted between these spaes and shown to be a

weak homotopy equivalene. The proof makes use of a new Chow

moving lemma for families. If X is a smooth projetive variety of

ndimension n, the duality map indues isomorphisms L

s

H

k

(X) !

L

n�s

H

2n�k

(X) for 2s � k, whih arry over via natural transforma-

tions to the Poinar�e duality isomorphism H

k

(X;Z)! H

2n�k

(X;Z).

The most general duality result asserts that for smooth projetive vari-

eties X and Y the natural graphing homomorphism sending algebrai

oyles on X with values in Y to algebrai yles on the produt

X � Y is a weak homotopy equivalene. The main results have a wide

variety of appliations. Among these is the determination of the ho-

motopy type of ertain algebrai mapping omplexes. It also inludes

a determination of the group of algebrai s-oyles modulo algebrai

equivalene on a smooth projetive variety.
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Introdution

In [FL

1

℄, the authors introdued the notion of an e�etive algebrai oyle on an alge-

brai variety X with values in a variety Y , and developed a \bivariant morphi ohomology

theory" based on suh objets. The theory was shown to have a number of intriguing prop-

erties, inluding Chern lasses for algebrai bundles, operations, ring struture, and natural

transformations to singular ohomology over Z. The fundamental objets of the theory

are simply families of algebrai yles on Y parametrized by X. More preisely they are

de�ned as morphisms from X to the Chow varieties of r-yles on Y and an be repre-

sented as yles on the produt X � Y whih are equidimensional over X. Suh oyles

form a topologial abelian monoid, denoted Mor(X; C

r

(Y )), and the morphi ohomology

groups are de�ned to be the homotopy groups of its group ompletion Mor(X;Z

r

(Y )).

This stands in analogy with (and, in fat, reovers by letting X = a point) the homology

groups introdued and studied in [F

1

℄, [L℄, and elsewhere.

When Y = A

n

, the theory is of strit ohomology type. It has a natural up produt

given by the pointwise join of yles, and a natural transformation (of ring funtors) to

H

�

(X; Z).

The main point of this paper is to establish a duality theorem between algebrai yles

and algebrai oyles. The fundamental result (Theorem 3.3) states that if X and Y are

smooth and projetive, then the graphing map

Mor(X; C

r

(Y )) ,! Z

m+r

(X � Y )

whih sends Y -valued oyles on X to yles on X � Y is a homotopy equivalene.

(Here m = dim(X)). Stated in terms of homotopy groups this theorem asserts that

the morphi ohomology groups of X with values in Y are isomorphi to the L-homology

groups of X � Y . This duality theorem was not forseen when we �rst formulated the

onept of an algebrai oyle and it represents a non-trivial result for algebrai yles. In

partiular, omputations of yle spaes provide omputations of mapping spaes onsisting

of algebrai morphisms.
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The duality theorem also holds when Y = A

n

and thereby gives a duality isomorphism

D : L

s

H

k

(X)

�

=

�! L

m�s

H

2m�k

(X)

between the morphi ohomology and the L-homology of any smooth, m-dimensional pro-

jetive variety X. It is shown that this map has a number of interesting properties. The

most ompelling property is the ompatibility of D with the Poinar�e duality map PD. It

is shown in x5 that there is a ommutative diagram

L

s

H

k

(X)

D

���! L

m�s

H

2m�k

(X)

�

?

?

?

y

?

?

?

y

�

H

k

(X;Z)

PD

���! H

2m�k

(X;Z)

where the maps � are the natural transformations. It is also shown that on smooth varieties

D intertwines the up produt on L

�

H

�

(X) with the intersetion produt on L

�

H

�

(X)

that was established in [FG℄.

The map D has ertain basi properties. It is ompatible with morphisms, and for

smooth varieties it intertwines ertain Gysin maps. It is also ompatible with the s-

operations of [FM℄ whih at on both theories. This shows that for smooth varieties

Poinar�e duality preserves the �ltrations indued by these operations on singular theory

(with Z-oeÆients) [FM℄, [FL

1

℄.

The basi results have a wide range of appliations. For example it is shown that

for generalized ag manifolds X;Y (smooth varieties with ell deompositions) there is an

isomorphism

�

�

Mor(X;Z

r

(Y ))

�

=

H

2(m+r)+�

(X � Y ; Z):

where m = dim(X). Furthermore, for any smooth m- dimensional variety X there are

natural isomorphisms

Mor(X;Z

0

(P

s

))=falgebrai equivaleneg

�

=

A

m�s

(X)�A

m�s�1

(X)� � � � � A

0

(X)

where A

r

(X) denotes the group of algebrai r-yles modulo algebrai equivalene on X,

and where t � m. One also shows that for a smooth variety X, the spae of parametrized

rational urves on Z

r

(X) is weakly homotopy equivalent to Z

r

(X)�Z

r+1

(X).

The proof of the main theorem (3.3) is based on a Moving Lemma for Families of

Cyles of Bounded Degree established in [FL

2

℄.

In this paper we have introdued the notation Mor(X; C

r

(Y )) for the topologial

monoid of Y -valued oyles of relative dimension r on X. This notation emphasizes the

nature of oyles as mappings and di�ers from the notation in [FL

1

℄. Furthermore, in

the theory of oyles developed in [FL

1

℄ we used the homotopy-theoreti group omple-

tion Z

m+r

(X; Y ) � 
BMor(X; C

r

(Y )) of the monoid to de�ne the morphi ohomology

groups. In this paper we shall use instead the newer "tehnology" of na��ve topologial group
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ompletions as introdued in [Li

2

℄ and formulated in [FG℄. These na��ve group ompletions

have diretly aessible geometri properties and work better in many irumstanes.

The two group ompletions give equivalent theories, for there is a natural weak homo-

topy equivalene 
BMor(X; C

r

(Y ))

�

=

Mor(X;Z

r

(Y )) established in Appendix T. There

we revisit the theory of tratable monoids and tratable ations, introdued in [FG℄, in

order to provide the topologial formalities needed to work with na��ve group ompletions

of oyle spaes. In partiular, we isolate the speial topologial property of varieties

whih we use: any losed, onstrutible embedding is a o�bration.

In Appendix C we prove that for any normal quasi-projetive varietyX and any proje-

tive variety Y , the topology indued on Mor(X; C

r

(Y )) by the embedding Mor(X; C

r

(Y ))

! C

r

(X � Y ) is exatly the topology of uniform onvergene with bounded degree on

ompat subsets. If X is projetive, then it is exatly the ompat-open topology.

The results of this paper basially onern projetive varieties. The authors made

e�orts to extend the methods to quasi-projetive varieties with mixed suess. We �nally

realized that a more sophistiated approah is required to appropriately realize funtori-

ality, duality, and other desired properties for the topologial abelian groups of oyles

on quasi-projetive varieties. Suh an approah an be found in [F

2

℄. A more abstrat

treatment of duality for varieties over more general �elds is given in [FV℄.

It is assumed throughout the main body of this paper that X and Y are projetive

varieties over C and that X is normal.

x0. Conventions and terminology.

By a projetive algebrai variety X we shall mean a redued, irreduible sheme

over C whih admits a Zariski losed embedding in some (omplex) projetive spae P

N

.

Thus, X is the zero lous in P

N

of a �nite olletion of homogeneous polynomials, and

the irreduibility ondition is the ondition that X is not a non-trivial union of two suh

zero loi. By a losed subvariety W � X we shall mean a Zariski losed subset with its

struture of a redued C-sheme (but whih is not neessarily irreduible). Unless expliit

mention to the ontrary, we shall view loally losed algebrai subsets of projetive spaes

with their analyti topology.

Throughout this paper we retain the onvention that X;Y are projetive algebrai

varieties of dimensions m;n respetively and that X is normal. Also throughout, r and

t shall denote non-negative integers with r � n and t � m. We reall that an r-yle

on Y is a formal integer ombination Z =

P

n

i

W

i

, where eah W

i

� Y is an irreduible

subvariety of dimension r in Y . Suh an r-yle is said to be e�etive if eah n

i

is positive.

We denote by jZj the support of Z =

P

n

i

W

i

, de�ned as the union jZj = [

i

W

i

� Y .

Our study involves the onsideration of Chow varieties (see, for example, [S℄). For

eah set of non-negative integers r � N and d, there is Zariski losed subset

C

r;d

(P

N

) � P

M

where M = M

r;d;N

, whose points are in natural 1-1 orrespondene with e�etive r-

yles of degree d on P

N

. For any algebrai subset Y � P

N

, the set of those e�etive
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r-yles of degree d on P

N

with support on Y orrespond to a Zariski losed subset

C

r;d

(Y ) � C

r;d

(P

N

). Although there is not a \universal yle" above C

r;d

(Y ), there

does exists the inidene orrespondene I

r;d

(Y ) � C

r;d

(Y )� Y , the Zariski losed subset

onsisting of pairs (Z; y) with y 2 jZj. With the analyti topology on eah C

r;d

(Y ) the

Chow monoid

C

r

(Y )

def

=

a

d

C

r;d

(Y )

of e�etive r-yles on Y is an abelian topologial monoid whose algebrai (and, hene,

topologial) struture is independent of the hoie of projetive embedding Y � P

N

[B℄.

In this paper, we frequently work with homomorphisms of topologial abelian groups

whih are weak homotopy equivalenes. At times, we have need to invert suh maps: we

de�ne a weak homotopy inverse of a weak homotopy equivalene f : S ! T to be a map

g : T

0

! S

0

whih is a homotopy inverse on the CW-approximation of f . At other times,

we deal with diagrams of suh maps whih \weakly homotopy ommute"; in other words,

ompositions of maps in the diagram with same soure and target have the property that

they indue homotopi maps on CW-approximations. The reader omfortable with derived

ategories will reognize that these somewhat lumsy onventions would be avoided if we

were to replae these topologial abelian groups by their assoiated hain omplexes and

replae homomorphisms whih are weak homotopy equivalenes by quasi- isomorphisms.

x1. Coyles on Projetive Varieties.

In this setion we rework the de�nition of the spae of algebrai oyles on a pro-

jetive variety. We retain the de�nition from [FL

1

℄ of the monoid of e�etive oyles,

but replae the formal onstrution of the homtopy-theoreti group ompletion with the

more aessible onstrution of the na��ve group ompletion. One satisfying aspet of the

latter is that the na��ve group ompletion of the topologial monoid of e�etive oyles

is a topologial abelian group whose points are in one-to-one orrespondene with formal

di�erenes of e�etive oyles.

We reall that the na��ve group ompletion M

+

of an abelian topologial monoid

M with the anellation property is the topologial quotient of M �M by the equivalene

relation: (m

1

;m

2

) � (n

1

; n

2

) i� m

1

+ n

2

= m

2

+ n

1

.

De�nition 1.1. By the topologial monoid of e�etive algebrai oyles of relative

dimension r on X with values in Y we mean the abelian monoid

Mor(X; C

r

(Y )) (1:1:1)

of morphisms from X to the Chow monoid C

r

(Y ) provided with the ompat open topol-

ogy. We de�ne the topologial abelian group of all suh oyles to be the na��ve group

ompletion of Mor(X; C

r

(Y )),

Mor(X;Z

r

(Y ))

def

= [Mor(X; C

r

(Y ))℄

+

: (1:1:2)
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A ase of fundamental importane is where Y is essentially the quasi-projetive variety

A

n

. This is de�ned as follows. By the monoid of e�etive algebrai oyles of

odimension-t on X we mean the topologial quotient monoid

C

t

(X)

def

= Mor(X; C

0

(P

t

))=Mor(X; C

0

(P

t�1

)): (1:1:3)

Its na��ve group ompletion

Z

t

(X)

def

= [C

t

(X)℄

+

def

= Mor(X;Z

0

(A

t

)): (1:1:4)

is the topologial group of all algebrai oyles of odimension-t on X.

As observed in [FL

1

℄,Mor(X;Z

r

(Y )) enjoys various funtoriality properties. Compo-

sition with a morphism f : X

0

! X determines a ontinuous homomorphism

f

�

:Mor(X;Z

r

(Y )) �! Mor(X

0

;Z

r

(Y )):

Push-forward of yles via a morphism g : Y ! Y

0

determines g

�

: C

r

(Y ) ! C

r

(Y

0

) and

thus

g

�

:Mor(X;Z

r

(Y )) �! Mor(X;Z

r

(Y

0

)):

Similarly, if g :

~

Y �! Y is at of relative dimension k, then at pull-bak determines

g

�

: C

r

(Y )! C

r+k

(

~

Y ) and thus

g

�

:Mor(X;Z

r

(Y )) ! Mor(X;Z

r+k

(

~

Y ))

(denoted by g

!

in [FL

1

℄).

Sine X is assumed to be normal, there is an alternative, equivalent de�nition of the

spae of algebrai oyles. We denote by

C

r

(Y )(X) � C

r+m

(X � Y )

the topologial submonoid of those e�etive yles on X � Y whih are equidi-

mensional of relative dimension r over X. In [F

1

℄ it was shown that any morphism

 : X ! C

r

(Y ) has a naturally assoiated graph G( ) 2 C

r

(Y )(X), and in [FL

1

℄ we

showed that for normal varieties X this map G : Mor(X; C

r

(Y )) ! C

r

(Y )(X) is a

bijetion. In Appendix C we establish the following.

Theorem 1.2. The graphing onstrution

G :Mor(X; C

r

(Y )) �! C

r

(Y )(X)

is a homeomorphism.

This alternative formulation of Mor(X; C

r

(Y )) beomes the de�nition of the monoid

of e�etive oyles in the more general ontext of [F

2

℄.
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Consideration of na��ve group ompletions is rare in algebrai topology beause spaes

onstruted as quotients with the quotient topology typially have inaessible algebrai

invariants. The usual method of \group ompleting" a topologial monoid M is to take

the loop spae of the lassifying spae ofM , 
B[M ℄, whose algebrai invariants are losely

related to those of M (f. [M-S℄). In Appendix T, we demonstrate that C

r

(Y )(X) is a

tratable monoid in the sense of [FG℄ whih by Theorem 1.2 implies the following.

Proposition 1.3. There is a natural weak homotopy equivalene


B[Mor(X; C

r

(Y ))℄

�

=

�! Mor(X;Z

r

(Y ))

(i.e., natural up to weak homotopy). Moreover, if Y

1

� Y is a losed subvariety, then

the following triple is a �bration sequene (i.e., it determines a long exat sequene in

homotopy groups):

Mor(X;Z

r

(Y

1

)) ! Mor(X;Z

r

(Y )) ! [Mor(X; C

r

(Y ))=Mor(X; C

r

(Y

1

))℄

+

:

We reall that the monoid of e�etive k-yles on the quasi-projetive variety X �A

t

is de�ned to be the quotient monoid

C

k

(X �A

t

)

def

= C

k

(X �P

t

)=C

k

(X �P

t�1

);

where P

t�1

� P

t

is the linear embedding of a \hyperplane at1". Beause C

0

(P

t�1

)(X) �

C

m

(X �P

t�1

) is obtained by intersetion with the Zariski losed subset C

m

(X �P

t�1

) �

C

m

(X �P

t

), we onlude easily that

C

t

(X)

�

=

C

0

(P

t

)(X)=C

0

(P

t�1

)(X) ,! C

m

(X �A

t

) (1:3:3)

is a ontinuous injetive mapping. (The reader is autioned that (1.3.3) is not a topologial

embedding however. See Example C.7 in Appendix C.)

As an immediate orollary of the preeding results, we onlude that our de�nitions

of spaes of oyles agree up to homotopy with those of [FL

1

℄.

Corollary 1.4. There are natural weak homotopy equivalenes:


BMor(X; C

r

(Y ))

�

=

�! Mor(X;Z

r

(Y ));

hty�b

n

BMor(X; C

0

(P

t�1

))! BMor(X; C

0

(P

t

))

o

�

=

�! Z

t

(X):

The fundamental result (f. [L℄) about spaes of algebrai yles is the Algebrai

Suspension Theorem whih asserts that the algebrai suspension map

�= : C

r;d

(Y ) �! C

r+1;d

(�= Y )
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indues a homotopy equivalene on homtopy-theoreti group ompletions of Chow monoids,

�= : 
B[C

r

(Y )℄

�

=

�! 
B[C

r+1

(�= Y )℄:

Sine the natural map 
B[C

r

(Y )℄! Z

r

(Y ) is a weak equivalene (f. [Li

2

℄, [FG℄, or Corol-

lary T.5 of Appendix T), this implies that �= also indues a weak homotopy equivalene

�= : Z

r

(Y ) �! Z

r+1

(�= Y ):

In [FL

1

;3.3℄, the algebrai suspension theorem was extended to equidimensional y-

les by replaing �= with the relative analogue �=

X

. Thus, the equivalene of na��ve and

homotopy-theoreti group ompletions provides as above the following suspension isomor-

phism for oyle spaes.

Proposition 1.5. Composition of oyles with �= : C

r

(Y ) �! C

r+1

(�= Y ) indues a weak

homotopy equivalene

�=

X

:Mor(X;Z

r

(Y )) �! Mor(X;Z

r+1

(�= Y )):

x2. Duality Map

This setion introdues our duality map from spaes of oyles to spaes of yles

and veri�es that this map is ompatible with various onstrutions. On e�etive oyles,

this map is merely the inlusion of (1.1.1). On the na��ve group ompletions, the map is

that indued by (1.1.1). We point out that although it is injetive and ontinuous, our

duality map is not a topologial embedding. (See examples at the end of Appendix C.)

De�nition 2.1. The duality map

D :Mor(X;Z

r

(Y )) �! Z

r+m

(X � Y ) (2:1:1)

is the ontinuous injetive homomorphism of topologial abelian groups indued by the

graphing onstrution:

Mor(X; C

r

(Y ))

G

�! C

r

(Y )(X) � C

r+m

(X � Y ): (2:1:2)

of Theorem 1.2. Similarly for Y = A

n

the duality map

D : Z

t

(X) �! Z

m�t

(X) (2:1:3)

is de�ned to be the omposition of the map on na��ve group ompletions indued by (1.3.3)

and the inverse of the natural homotopy equivalene Z

m�t

(X)! Z

m

(X �A

t

) (f. [FG℄).
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In the following proposition, we verify that the duality map D of (2.1.1) is natural

with respet to funtorial onstrutions on yles and oyles.

Proposition 2.2. If f : Y ! Y

0

is a morphism of projetive algebrai varieties, then f

�

�ts in the following ommutative square

Mor(X;Z

r

(Y ))

D

���! Z

r+m

(X � Y )

f

�

?

?

?

y

?

?

?

y

(1� f)

�

Mor(X;Z

r

(Y

0

))

D

���! Z

r+m

(X � Y

0

):

(2:2:1)

If g :

~

Y ! Y is a at map of projetive varieties of relative dimension k, then g

�

�ts

in the following ommutative square

Mor(X;Z

r

(Y ))

D

���! Z

r+m

(X � Y )

g

�

?

?

?

y

?

?

?

y

(1� g)

�

Mor(X;Z

r+k

(

~

Y ))

D

���! Z

r+m+k

(X �

~

Y ):

(2:2:2)

If h :

~

X ! X is a at morphism of relative dimension e, then h

�

�ts in the following

ommutative square

Mor(X;Z

r

(Y ))

D

���! Z

r+m

(X � Y )

h

�

?

?

?

y

?

?

?

y

(h� 1)

�

Mor(

~

X;Z

r

(Y ))

D

���! Z

r+m+e

(

~

X � Y ):

(2:2:3)

If i : X

0

! X is a regular losed embedding of odimension , then i

�

�ts in the

following weakly homotopy ommutative square

Mor(X;Z

r

(Y ))

D

���! Z

r+m

(X � Y )

i

�

?

?

?

y

?

?

?

y

(i� 1)

!

Mor(X

0

;Z

r

(Y ))

D

���! Z

r+m�

(X

0

� Y );

(2:2:4)

where (1� i)

!

is the Gysin map of [FG℄.

Proof. To prove the ommutativity of (2.2.1), it suÆes to verify the following: if G =

G( ) � X � Y is the graph of  : X ! C

r

(Y ), then (1 � f)

�

(G) equals the graph
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G

0

= G(f Æ  ) of f Æ  . This is veri�ed by observing that (1 � f)

�

(G) and G

0

are equal

when restrited to Spe(K)� Y

0

, where � : Spe(K) ! X is the generi point, and both

are given as the losures in X � Y

0

of these restritions.

The ommutativity of (2.2.2) follows by observing that g

�

on Mor(X; C

r

(Y )) equals

the restrition to C

r

(Y )(X) � C

r+m

(X � Y ) of (1 � g)

�

. This is veri�ed as in the proof

of the ommutativity of (2.2.1) by observing that g

�

Æ  : X ! C

r

(Y ) ! C

r+k

(

~

Y ) has

graph whose restrition to Spe(K) �

~

Y equals the restrition of (1 � g)

�

(G( )), where

� : Spe(K)! X is the generi point.

To verify the ommutativity of (2.2.3), we must show that (h�1)

�

(G( )) = G( Æh) for

a morphism  : X ! C

r

(Y ). One again, this is veri�ed by observing that the restritions

of these yles to Spe(

~

K)� Y are equal, where ~� : Spe(

~

K)!

~

X is the generi point.

As veri�ed in [FG;3.4℄, the Gysin map

(i� 1)

!

: C

r+m

(X � Y ) �! C

r+m�

(X

0

� Y )

an be represented by intersetion (in the sense of [Fu℄) with X

0

� Y on the submonoid

C

r+m

(X � Y ;X

0

� Y ) of those yles whih meet X

0

� Y properly. Clearly, C

r

(Y )(X) �

C

r+m

(X�Y ;X

0

�Y ). On the other hand, the homomorphism i

�

: C

r

(Y )(X)! C

r

(Y )(X

0

)

given by intersetion with X

0

� Y is identi�ed in [FM

1

;3.2℄ with i

�

: Mor(X; C

r

(Y )) !

Mor(X

0

; C

r

(Y )) given by omposition with i.

We state without proof the following analogue of Proposition 2.2 for the duality map

D of (2.1.3). This analogue follows easily from the naturality of the onstrutions involved

in (2.2.3) and (2.2.4).

Proposition 2.3. If h :

~

X ! X is a at morphism of relative dimension e, then the

following square ommutes

Z

t

(X)

D

���! Z

m�t

(X)

h

�

?

?

?

y

?

?

?

y

(h� 1)

�

Z

t

(

~

X)

D

���! Z

m+e�t

(

~

X):

(2:3:1)

If i : X

0

! X is a regular losed immersion of odimension , then the following square is

weakly homotopy ommutative

Z

t

(X)

D

���! Z

m�t

(X)

i

�

?

?

?

y

?

?

?

y

(i� 1)

!

Z

t

(X

0

)

D

���! Z

m�t�

(X

0

):

(2:3:2)

We next proeed to exhibit a Gysin morphism on oyles with respet to a regular

embedding � : Y

0

! Y . Essentially, we show that the Gysin map onstruted in [FG℄ on

10



yle spaes for a regular embedding restrits to a map on oyle spaes. To arry out

this argument, we use the formulation of e�etive oyles as graphs from Theorem 1.2,

and appeal to a variant of our duality theorem (namely, Corollary 3.6 of the next setion).

For this we introdue the submonoid

C

r

(Y ;Y

0

)(X) � C

r

(Y )(X) (2:3:3)

of those e�etive oyles whih interset X � Y

0

properly, where we have assumed r �

odimY

0

. It an be veri�ed that (2.3.3) is a onstrutible embedding by applying the upper

semi-ontinuity of the �bres of the projetion

I \ [C

r

(Y )(X)� (X � Y

0

)℄ �! C

r

(Y )(X)

where I � C

r+m

(X � Y )� (X � Y ) is the inidene orrespondene. (However, this basi

fat is not used in the proof below). We set

Z

r

(Y ;Y

0

)(X)

def

= [C

r

(Y ;Y

0

)(X)℄

+

: (2:3:4)

Our appeal to duality in proving Proposition 2.4 explains the smoothness hypotheses.

The result may hold in greater generality. However, one should note that the map �

!

is not

given by a simple omposition of the Gysin map Z

r

(Y )! Z

r�e

(Y

0

) with oyles.

Proposition 2.4. Assume that X;Y are smooth and onsider a regular (Zariski) losed

embedding � : Y

0

! Y of odimension e where e � r. Then there is a natural weak

homotopy lass of maps

�

!

:Mor(X;Z

r

(Y )) �! Mor(X;Z

r�e

(Y

0

))

whih �ts in the following weakly homotopy ommutative diagram

Mor(X;Z

r

(Y ))

D

���! Z

r+m

(X � Y )

�

!

?

?

?

y

?

?

?

y

(1� �)

!

Mor(X;Z

r�e

(Y

0

))

D

���! Z

r+m�e

(X � Y

0

):

(2:4:1)

Proof. By Theorem 1.2 we may replae Mor(X;Z

r

(Y )) by the na��ve group ompletion

Z

r

(Y )(X) of the topologial monoid C

r

(Y )(X). By Corollary 3.6 there is a weak homotopy

equivalene

j : Z

r

(Y ;Y

0

)(X)

�

=

�! Z

r

(Y )(X): (2:4:2)

We de�ne the Gysin map �

!

to be the omposition

�

!

: Z

r

(Y )(X)

�

=

�! Z

r

(Y ;Y

0

)(X) �! Z

r�e

(Y

0

)(X)

11



where the �rst map is the weak homotopy inverse of (2.4.2), and the seond is the na��ve

group ompletion of the map C

r

(Y ;Y

0

)(X) ! C

r�e

(Y

0

)(X) given by intersetion with

X�Y

0

. So de�ned �

!

�ts in the weakly homotopy ommutative square (2.4.1) by [FG;3.4℄.

In [FM

1

℄, a basi operation s : 
B[C

r

(X)℄ ^ S

2

! 
B[C

r�1

(X)℄ was introdued and

studied. (Here S

2

denotes the 2-sphere, the underlying topologial spae of P

1

.) This

s-map was originally de�ned using the algebrai suspension theorem and the join mapping

# : C

r

(X)� C

0

(P

1

) �! C

r+1

(X#P

1

):

In [FG℄, this operation was extended to an operation s : Z

r

(U) ^ S

2

! Z

r�1

(U) for

yles on a quasi-projetive variety U and was shown to be independent of the projetive

embedding. (A fat not previously known even for X projetive). In the formulation of

[FG;2.6℄, the join mapping is replaed by the produt mapping

� : C

r

(X)� C

0

(P

1

) �! C

r

(X �P

1

) (2:5:0)

sending a pair (Z; p) to Z � fpg, and the algebrai suspension theorem is replaed by the

Gysin map Z

r

(X �P

1

)! Z

r�1

(X).

In the following proposition, we verify that the duality map is natural with respet to

this s-map. Sine our proof one again uses duality, we require that Y and X be smooth.

Proposition 2.5. Assume that X;Y be are smooth. The s-map determines a weak

homotopy lass of maps

s :Mor(X;Z

r

(Y )) ^ S

2

�! Mor(X;Z

r�1

(Y )) (2:5:1)

whih �ts in the following weakly homotopy ommutative square:

Mor(X;Z

r

(Y )) ^ S

2

D^1

����! Z

r+m

(X � Y ) ^ S

2

s

?

?

?

y

?

?

?

y

s

Mor(X;Z

r�1

(Y ))

D

����! Z

r+m�1

(X � Y ):

(2:5:2)

Proof. As in the proof of Proposition 2.4, we replae Mor(X;Z

r

(Y )) by Z

r

(Y )(X). We

onsider the following ommutative diagram

Z

r

(Y )(X)� Z

0

(P

1

)

�

�! Z

r

(Y �P

1

)(X)

j

 � Z

r

(Y �P

1

;Y � f1g)(X)

D � 1

?

?

?

y

D

?

?

?

y

D

?

?

?

y

(2:5:3)

Z

r+m

(X � Y )�Z

0

(P

1

)

�

�! Z

r+m

(X � Y �P

1

)

j

 � Z

r+m

(X � Y �P

1

;X � Y � f1g)

12



where by Corollary 3.6 the maps j are weak homotopy equivalenes. We now onsider the

ommutative diagram

Z

r

(Y �P

1

;Y � f1g)(X)

�

����! Z

r�1

(Y )(X)

D

?

?

?

y

?

?

?

y

D

Z

r+m

(X � Y �P

1

;X � Y � f1g)

�

����! Z

r+m�1

(X � Y )

(2:5:4)

where the map � of the upper row denotes intersetion with Y � f1g, and the map �

of the lower row denotes intersetion with X � Y � f1g. We de�ne s : Z

r

(Y )(X) ^

S

2

�! Z

r�1

(Y )(X) to be the omposition of the maps in the upper rows of (2.5.3) and

(2.5.4) (with j replaed by its weak homotopy inverse) restrited to Z

r

(Y )(X)^S

2

, where

S

2

' P

1

! Z

0

(P

1

) is de�ned to be the pointed map sending p 2 P

1

to p�f1g 2 Z

0

(P

1

).

The omposition of the maps in the lower rows of the diagrams (again with j replaed by

its weak homotopy inverse), when restrited to Z

r+m

(X � Y ) ^ S

2

, gives the s-map by

[FG;2.6℄. The weak homotopy ommutativity of (2.5.2) now follows.

Proposition 2.5 admits the following analogue for oyle spaes.

Proposition 2.6. If X is smooth, then there is a natural weak homotopy lass of maps

s : Z

t

(X) ^ S

2

�! Z

t+1

(X) (2:6:1)

whih �ts in the following weakly homotopy ommutative square

Z

t

(X) ^ S

2

D^1

���! Z

m�t

(X) ^ S

2

s

?

?

?

y

?

?

?

y

s

Z

t+1

(X)

D

���! Z

m�t�1

(X):

(2:6:2)

Proof. To de�ne the map (2.6.1) we onsider the upper rows of (2.5.3) and (2.5.4) with

r = 1 and Y = P

t

. We restrit this row to e�etive yles, and map it, via the linear

inlusion P

t

� P

t+1

, to the analogous row with r = 1 and Y = P

t+1

. Applying algebrai

suspension (f. 1.5) and the taking quotients, we obtain the hain of maps

C

t

(X)� C

0

(P

1

)

�=�1

���!

�

C

1

(P

t+1

)(X)=C

1

(P

t

)(X)

�

� C

0

(P

1

)

�

���! C

1

(P

t+1

�P

1

)(X)=C

1

(P

t

�P

1

)(X)

j

 ���

C

1

(P

t+1

�P

1

;P

t+1

�1)(X)=C

1

(P

t

�P

1

;P

t

�1)(X)

�

���! Z

t+1

(X):

13



Taking na��ve group ompletions and replaing j by its weak homotopy inverse, we obtain

a hain of maps from Z

t

(X)�Z

0

(P

1

) to Z

t+1

(X) whih determines s.

The strit naturality of the ommutative diagrams (2.5.3) and (2.5.4) with respet to

the linear embedding of a hyperplane P

t

� P

t+1

enables us to onlude the weak homotopy

ommuativity of (2.6.2) as in the proof of Proposition 2.5.

We onlude this setion with a veri�ation that the join produt on oyle spaes

de�ned in [FL

1

;6.2℄:

#

X

: Z

0

(P

t

)(X)�Z

0

(P

u

)(X) �! Z

1

(P

t+u+1

)(X) ' Z

0

(P

t+u

)(X) (2:7:0)

and the intersetion produt on yle spaes de�ned in [FG;3.5℄ intertwine with the duality

map.

Proposition 2.7. If X is smooth and if t and u are non-negative integers with t+u � m,

then the join pairing of (2.7.0) �ts in a homotopy ommutative diagram

Z

0

(P

t

)(X)� Z

0

(P

u

)(X) ���! Z

t

(X)� Z

u

(X)

D�D

���! Z

m�t

(X)� Z

m�u

(X)

#

X

?

?

?

y

?

?

?

y

�

Z

0

(P

t+u

)(X) ���! Z

t+u

(X)

D

���! Z

m�t�u

(X)

(2:7:1)

where the left horizontal arrows are the de�ning projetions and where (�) � (�) denotes

the intersetion produt on yle spaes.

Proof. LetW � P

t

�P

u

�P

t+u+1

denote the subvariety onsisting of those triples (a; b; )

with the property that  lies on the line from a to b, where P

t

;P

u

� P

t+u+1

are embedded

linearly and disjointly. Thus, � : W ! P

t

� P

u

is the projetive bundle of the 2-plane

bundle pr

�

1

(O

P

t

(1))
 pr

�

2

(O

P

u

(1)) over P

t

� P

u

. Now #

X

fators as the omposition of

the maps

Z

0

(P

t

)(X)� Z

0

(P

u

)(X)

�

�! Z

0

(P

t

�P

u

)(X �X)

�

�

X

�! Z

0

(P

t

�P

u

)(X) (2:7:2)

with the maps

Z

0

(P

t

�P

u

)(X)

�

�

�! Z

1

(W )(X)

p

�

�! Z

1

(P

t+u+1

)(X)

i

!

�! Z

0

(P

t+u

)(X) (2:7:3)

where � sends a pair of 0-yles to their produt, i

!

is the Gysin map of Proposition 2.4,

�

X

: X ! X �X denotes the diagonal, � : W ! P

t

� P

u

and p : W ! P

t+u+1

are the

projetions, and i : P

t+u

! P

t+u+1

is a linear embedding.
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We set (2.7.2) as the top row of the following diagram (whose Gysin maps are well

de�ned up to weak homotopy)

Z

0

(P

t

)(X)� Z

0

(P

u

)(X)

�

�! Z

0

(P

t

�P

u

)(X

2

)

�

�

X

�! Z

0

(P

t

�P

u

)(X)

D �D

?

?

?

y

D

?

?

?

y

?

?

?

y

D

Z

m

(X �P

t

)� Z

m

(X �P

u

)

�

�! Z

2m

(X

2

�P

t

�P

u

)

(�

X

�1)

!

�! Z

m

(X �P

t

�P

u

)

i

!

t

� i

!

u

?

?

?

y

i

!

t+u

?

?

?

y

?

?

?

y

i

!

t+u

Z

m�t

(X)� Z

m�u

(X)

�

�! Z

2m�t�u

(X

2

)

�

!

X

�! Z

m�t�u

(X):

(2:7:4)

The bottom row of this diagram de�nes � : Z

m�t

(X)� Z

m�u

(X) �! Z

m�t�u

(X). Now

the upper left square of this diagram ommutes by inspetion; the upper right square is

weakly homotopy ommutative as in (2.2.4); the lower left square is weakly homotopy

ommutative sine i

!

t

: Z

m

(X�P

t

)! Z

m�t

(X) is the right weak homotopy inverse of pr

�

1

(f. Proposition 5.5); and the lower right square is weakly homotopy ommutative by the

ommutativity property of the Gysin map proved in [FG;3.4℄. The square

Z

0

(P

t

)(X)

D

����! Z

m

(X �P

t

)

pr

?

?

?

y

?

?

?

y

i

!

Z

t

(X)

D

����! Z

m�t

(X)

weakly homotopy ommutes sine we an arrange for X � X � P

t

to miss X � P

t�1

�

X �P

t

. We therefore onlude that the analogue of (2.7.1) with #

X

replaed by �

!

X

Æ �

of (2.7.2) is weakly homotopy ommutative.

To omplete the proof, we use the fat that #

X

is obtained from �

!

X

Æ � of (2.7.2)

by omposing with the maps of (2.7.3). The hain of maps of (2.7.3) is mapped with the

duality map D to the following hain:

Z

m

(X�P

t

�P

u

)

�

�

�! Z

m+1

(X�W )

p

�

�! Z

m+1

(X�P

t+u+1

)

i

!

�! Z

m

(X�P

t+u

): (2:7:5)

Eah of the terms of this hain maps to Z

m�t�u

(X) via a Gysin map assoiated to the

inlusion of X into the produt ourring in that term. Using [FG;3.4℄ (whih establishes

the naturality and ommutativity of the Gysin maps) or Proposition 5.5 below, we easily

verify the maps of (2.7.5) �t in weakly homotopy ommutative triangles over Z

m�t�u

(X).

In other words, we an extend (2.7.4) to the right in suh a way that the diagram remains

weakly homotopy ommutative, the upper row represents the join produt, and the bottom

row represents the intersetion produt.
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Remark. As shown in [FL

1

℄, the join produt indues a well de�ned pairing on homotopy

groups (i.e., morphi ohomology groups) �

i

(Z

t

(X))
�

j

(Z

u

(X))! �

i+j

(Z

t+u

(X)). This

implies that (2.7.1) establishes that the duality map interwines the join produt on morphi

ohomology groups with the intersetion produt on L-homology groups. In Corollary 3.4,

we make this intertwining expliit.

x3. Duality Theorems

In this setion, we present our duality theorem (Theorem 3.3) and some of its imme-

diate onsequenes. We begin by de�ning a topologial onept whih will be appliable

in our study of maps of na��ve group ompletions of abelian topologial monoids.

De�nition 3.1. A �ltration of a topologial spae T by a sequene of subspaes T

0

�

T

1

� � � � � T

j

� � � � is said to be a good �ltration if whenever f : K ! T is a ontinuous

map from a ompat spae K, there exists some e � 0 suh that f(K) � T

e

. A �ltration-

preserving ontinuous map f : T

0

! T of spaes with good �ltrations is said to be a very

weak deformation retrat provided that for eah e � 0 there exist maps

�

0

e

: T

0

e

� I �! T

0

; �

e

: T

e

� I �! T ; �

e

: T

e

�! T

0

whose restritions �

0

e

�

�

T

0

e

�f0g

and �

e

�

�

T

e

�f0g

are the natural inlusions, and whih �t in the

following ommuative diagrams

T

0

e

� I

�

0

e

���! T

0

T

0

e

� f1g � T

0

e

� I

�

0

e

���! T

0

f

e

� Id

?

?

?

y

?

?

?

y

f f

e

?

?

?

y

�

e

%

?

?

?

y

f

T

e

� I

�

e

���! T T

e

� f1g � T

e

� I

�

e

���! T:

The next lemma extends the elementary result that a deformation retrat is a homo-

topy equivalene.

Lemma 3.2. Let f : T

0

! T be a very weak deformation retrat of spaes with good

�ltrations. Then f is a weak homotopy equivalene.

Proof. Let � : S

m

! T be a ontinuous map. Then there exists e > 0 suh that

�(S

m

) � T

e

. Apply the homotopy �

t

(�) � �

e

(�(�); t) and note that �

1

lifts over f (via �

e

)

to a map �

0

1

: S

m

! T

0

e

. This proves surjetivity.

Suppose �

0

: S

k

! T

0

is a map suh that � � f Æ �

0

extends to a map � : D

k+1

! T

with image in T

e

for some e. Consider the homotopy �

0

t

(�) = �

0

e

(�

0

(�); t) for 0 � t � 1.

When t = 1, we have the ommutative diagram

S

k

� f1g

�

0

�f1g

�! T

0

e

� f1g �! T

0

\

?

?

y

�%

?

?

y

D

k+1

� f1g

��f1g

�! T

e

� f1g �! T
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whih shows that �

0

is homotopi to zero. This proves injetivity.

We now apply Lemma 3.2 in onjuntion with the \Moving Lemma for Cyles of

Bounded Degree" [FL

2

℄ to prove our main theorem whih asserts the equivalene of spaes

of oyles and yles on smooth varieties.

Theorem 3.3. (The Duality Theorem) Consider smooth projetive varieties X;Y of

dimensions m;n respetively and let r � n; t � m be non- negative integers. Then the

duality maps (2.1.1) and (2.1.3)

D :Mor(X;Z

r

(Y )) �! Z

r+m

(X � Y )

D : Z

t

(X) �! Z

m�t

(X)

are weak homotopy equivalenes.

Proof. By Theorem 1.2 we may replae Mor(X;Z

r

(Y )) by Z

r

(Y )(X), and we reall that

D is indued by the topologial embedding j : C

r

(Y )(X) ,! C

r

m

(X � Y ). Let

� : C

r+m

(X � Y )� C

r+m

(X � Y ) �! Z

r+m

(X � Y )

�

0

: C

r

(Y )(X)� C

r

(Y )(X) �! Z

r

(Y )(X)

denote the anonial projetion maps. Then the �ltration fK

e

g

1

e=0

of Z

r+m

(X�Y ) given

by setting

K

e

� �

8

<

:

a

d+d

0

�e

C

r+m;d

(X � Y )� C

r+m;d

0

(X � Y )

9

=

;

is a good �ltration. (See [Li

1

℄ for example.) Consider the indued �ltration fK

0

e

g

1

e=0

of

Z

r

(Y )(X):

K

0

e

� �

0

8

<

:

a

d+d

0

�e

C

r;d

(Y )(X)� C

r;d

0

(Y )(X)

9

=

;

where C

r;d

(Y )(X)

def

= C

r+m;d

(X � Y ) \ C

r

(Y )(X). We laim this is also a good �ltration.

Indeed, if K is ompat and f : K ! Z

r

(Y )(X) is ontinuous, then sine fK

e

g

1

e=0

is

good, there exists an e suh that (D Æ f)(K) � K

e

. Sine D is injetive, this implies that

f(K) � K

0

e

. Hene, fK

0

e

g

1

e=0

is also a good �ltration and D is a �ltration-preserving map.

We now apply our Moving Lemma for Cyles of Bounded Degree, whih is proved

in [FL

2

℄ and summarized in Appendix M, to show that for all e suÆiently large we an

move the family K

e

so that every yle in K

e

meets every �bre fxg � Y � X � Y of the

projetion in proper dimension, i.e., so that every yle in K

e

beomes a oyle over X.

Indeed let e be any integer � the (ommon) degrees of the fxg � Y , x 2 X, for some

projetive embedding of X � Y . Let

e

	 : C

r+m

(X � Y )�O �! C

r+m

(X � Y )� C

r+m

(X � Y )
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be the map guarenteed by Theorem M.1. By property (d) of Theorem M.1 and the fat

that deg(fxg � Y ) � e for all x 2 X, we see that we have

e

	(C

r+m

(X � Y )� f�g) � C

r

(Y )(X)� C

r

(Y )(X)

for all � 6= 0 in O. In partiular, the restrition of

e

	 to C

r

(Y )(X) � O determines a

ontinuous map

e

	

0

: C

r

(Y )(X)�O �! C

r

(Y )(X)� C

r

(Y )(X):

Let

	 : Z

r+m

(X � Y )�O �! Z

r+m

(X � Y ) ; 	

0

: Z

r

(Y )(X)�O �! Z

r

(Y )(X)

be the maps de�ned by linear extension of the maps � Æ

e

	 and �

0

Æ

e

	

0

respetively. Note

that the fat that � Æ

e

	 (and therefore also �

0

Æ

e

	

0

) is a monoid homomorphism on eah

C

r+m

(X � Y )� f�g, and therefore extends by linearity to Z

r+m

(X � Y )� f�g, is part of

the assertion of Theorem M.1.

We now hoose a smooth embedding I � O with endpoints 0 and 1, and we de�ne

�

e

: K

e

� I �! Z

r+m

(X � Y ) ; �

0

e

: K

0

e

� I �! Z

r

(Y )(X)

by restrition of 	 and 	

0

respetively. One heks immediately that these maps satisfy

the onditions of De�nition 4.1, namely: �

0

e

overs �

e

with respet to D; (�

e

)

�

�

K

e

�f0g

and

(�

0

e

)

�

�

K

0

e

�f0g

are the natural inlusions; and (�

e

)

�

�

K

e

�f�g

lifts to Z

r

(Y )(X) for any � 6= 0.

Thus, Lemma 3.2 implies that D : Mor(X;Z

r

(Y )) ! Z

r+m

(X � Y ) is a weak homtopy

equivalene.

We observe that D determines a map of �bration sequenes (f. Proposition 1.3):

Z

0

(P

t�1

)(X) �! Z

0

(P

t

)(X) �! Z

t

(X)

D

?

?

y

D

?

?

y

D

?

?

y

Z

m

(X �P

t�1

) �! Z

m

(X �P

t

) �! Z

m

(X �A

t

):

(3:3:1)

The preeding argument together with the 5-Lemma implies that the right vertial

arrow is a weak homotopy equivalene. Thus, D : Z

t

(X) ! Z

m�t

(X), de�ned as the

omposition of this map and the weak homotopy equivalene Z

m�t

(X)! Z

m

(X�A

t

), is

also a weak homotopy equivalene.

We reall that the homotopy groups of Z

t

(X) and Z

r

(X) are alled \morphi oho-

mology groups" and \L-homology groups" respetively. These are indexed as follows:

L

t

H

k

(X)

def

= �

2t�k

(Z

t

(X)) ; L

r

H

k

(X)

def

= �

k�2r

(Z

r

(X)):

Using this notation, we re-state the seond assertion of Theorem 3.3 and the remark

following Proposition 2.7.
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Corollary 3.4. The duality map D : Z

t

(X)! Z

m�t

(X) of (2.1.2) indues isomorphisms

L

t

H

k

(X)

D

�

=

L

m�t

H

2m�k

(X):

Moreover, these isomorphisms �t in the following ommutative square

L

t

H

k

(X)
 L

u

H

`

(X)

D
D

����! L

m�t

H

2m�k

(X)
 L

m�u

H

2m�`

(X)

#

X

?

?

?

y

?

?

?

y

�

L

t+u

H

k+`

(X)

D

����! L

m�t�u

H

2m�k�`

(X)

Using Theorem 3.3 we now de�ne a Gysin map for oyle spaes ompatible with the

duality map. We an view this as a supplement to Propositions 2.2 and 2.3.

Proposition 3.5. Assume thatX and Y are smooth. Consider a regular losed embedding

i : X

0

� X of odimension . Then there exists a weak homotopy lass of maps (a Gysin

map)

i

!

:Mor(X

0

;Z

r+

(Y )) �! Mor(X;Z

r

(Y )) (3:5:1)

whih �ts in the following weakly homotopy ommutative square

Mor(X

0

;Z

r+

(Y ))

i

!

���! Mor(X;Z

r

(Y ))

D

?

?

?

y

?

?

?

y

D

Z

r+m

(X

0

� Y )

i

�

���! Z

r+m

(X � Y ):

(3:5:2)

Moreover, there exists a weak homotopy lass of maps

i

!

: Z

t�

(X

0

) �! Z

t

(X) (3:5:3)

whih �ts in the following weakly homotopy ommutative square

Z

t�

(X

0

)

i

!

���! Z

t

(X)

D

?

?

?

y

?

?

?

y

D

Z

m�t

(X

0

)

i

�

���! Z

m�t

(X):

(3:5:4)
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Proof. Using Theorem 3.3, we de�ne i

!

as follows:

i

!

def

= D

�1

Æ i

�

Æ D: (3:5:5)

So de�ned, i

!

�ts in weakly homotopy ommutative diagrams (3.5.2) and (3.5.3).

In onstruting the Gysin map �

!

of Proposition 2.4, we required the following variant

of Theorem 3.3.

Corollary 3.6 Assume that X and Y are smooth, and let Y

0

� Y is a losed subvariety

of odimension � r. Then the na��ve group ompletion

Z

r

(Y ;Y

0

)(X) �! Z

r

(Y )(X)

of the embedding C

r

(Y ;Y

0

)(X) � C

r

(Y )(X) of (2.3.3) is a weak homotopy equivalene.

Proof. The Moving Lemma (Theorem M.1) enables one to move all e�etive yles of

degree � e in C

r+m

(X � Y ) so that the resulting yles properly interset all e�etive

yles of degree � e and of dimension � n � r. We apply this result to move e�etive

yles in C

r+m

(X�Y ) with respet to the yles x�Y ;x 2 X and the yle X�Y

0

. Thus,

the proof of Theorem 3.3 applies with only notational hanges to prove that

Z

r

(Y ;Y

0

)(X) �! Z

r+m

(X � Y )

is a weak homotopy equivalene. Combining this fat with Theorem 3.3 implies the orol-

lary.

x4. Compatibility with Poinar�e Duality

The purpose of this setion is to prove that the duality isomorphism D of Corollary

3.4 is ompatible with Poinar�e duality. This gives some justi�ation for our view that D

is a natural duality for yles. It also leads to some interesting appliations.

We begin by realling the natural transformations � : L

r

H

k

(X) ! H

k

(X;Z) and

� : L

t

H

k

(X) ! H

k

(X;Z) introdued in [FM

1

℄ and [FL

1

℄ respetively. Let s : Z

r

(X) ^

S

2

! Z

r�1

(X) be the s- operation disussed prior to Proposition 2.5. This indues a

map s : �

j

Z

r

(X) ! �

j+2

Z

r�1

(X). Beginning with �

k�2r

Z

r

(X) � L

r

H

k

(X) we iterate

this map r-times and then apply the Dold-Thom isomorphism � : �

k

Z

0

(X)

�

=

�! H

k

(X;Z).

This gives the following.

De�nition 4.1 The natural transformation

� : L

r

H

k

(X) �! H

k

(X;Z)

is de�ned by setting � = � Æ s

r

.
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We reall that Z

t

(X)

def

= Mor(X;Z

0

(A

t

)) is the na��ve group ompletion of the monoid

Mor(X; C

0

(P

t

))=Mor(X; C

0

(P

t�1

)) whih admits an evident ontinuous homomorphism

Mor(X; C

0

(P

t

))=Mor(X; C

0

(P

t�1

)) �! Map(X;Z

0

(A

t

)). (Here Map(A;B) denotes the

ontinuous maps with the ompat-open topology.) Group ompleting this homomorphism

gives a ontinuous homomorphism

� :Mor(X;Z

0

(A

t

)) �! Map(X;Z

0

(A

t

)): (4:1:1)

By the Dold-Thom Theorem there is natural homotopy equivalene Z

0

(A

t

)

�

=

K(Z; 2t).

De�nition 4.2 The natural transformation

� : L

t

H

k

(X) �! H

k

(X;Z)

is de�ned by applying the map (4.1.1) to the homotopy groups �

2t�k

and then using the

natural isomorphism �

2t�k

Map(X;K(Z; 2t))

�

=

H

k

(X;Z).

For the proof of Theorem 4.4 below we shall need the following speial ase of the

\Kroneker pairing" indued by the slant produt onstrution

Mor(X; C

r

(Y ))� C

p

(X) �! C

r+p

(Y ) (4:2:1)

given in [FL

1

;7.2℄.

Proposition 4.3. When r = p = 0, the slant produt (4.2.1) is given by sending the

pair (f;

P

x

i

) 2 Mor(X;SP

d

(Y )) � SP

e

(X)) to

P

f(x

i

) 2 SP

de

(Y ). By speializing to

Y = P

t

, this indues a slant produt (or \Kroneker") pairing

�

i

Mor(X;Z

0

(A

t

))
 �

2t�i

Z

0

(X)

n

�! �

2t

Z

0

(A

t

)

�

=

Z:

Proof. The asserted identi�ation of the speial ase of the slant produt de�ned in

[FL

1

;7.2℄ for e�etive oyles and yles is immediate from the de�nitions. This learly

de�nes a pairing

[Mor(X; C

0

(P

t

))=Mor(X; C

0

(P

t�1

))℄� C

0

(X) �! C

0

(P

t

)=C

0

(P

t�1

)

def

= C

0

(A

t

): (4:3:1)

The map on homotopy groups of the na��ve group ompletion of this latter map is the

asserted slant produt pairing.

The following theorem demonstrates that the natural transformations above intertwine

the duality map D with the Poinar�e Duality map.
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Theorem 4.4. IfX is smooth, then the duality isomorphismD : L

t

H

k

(X)! L

m�t

H

2m�k

(X)

of Corollary 3.4 �ts in the following ommutative square

L

t

H

k

(X)

D

���! L

m�t

H

2m�k

(X)

�

?

?

y

?

?

y

� Æ s

m�t

H

k

(X;Z)

P

���! H

2m�k

(X;Z)

(4:4:1)

where P is the Poinar�e Duality map sending � 2 H

k

(X;Z) to � \ [X℄ 2 H

2m�k

(X;Z).

Proof. In [FL

1

;5.2℄, we showed that the omposition

� Æ s

m�t

: L

t

H

k

(X) �! L

m

H

k

(X) �! H

k

(X;Z)

equals �. Thus, Proposition 2.6 redues us to the speial ase t = m. The ommutativity

of (4.4.1) for the speial ase t = m is equivalent to the ommutativity of the assoiated

squares

L

m

H

k

(X;F )

D

���! L

0

H

2m�k

(X;F )

�

?

?

y

?

?

y

�

H

k

(X;F )

P

���! H

2m�k

(X;F )

(4:4:1)

F

as F ranges eah of the prime �eldsQ;Z=`Z. Sine the evaluation and intersetion produts

H

k

(X;F )
H

k

(X;F )

h;i

�! H

0

(X;F ) ; H

2m�k

(X;F )
H

k

(X;F )

�

�! H

0

(X;F )

are perfet pairings, to prove the ommutativity of (4:4:1)

F

it suÆes to prove that

h�(�); i = �(D(�))� 

for all � 2 L

m

H

k

(X;F ), and all  2 H

k

(X;F ). (Reall that h�; i = (� \ [X℄) � 

for � 2 H

k

(X;F ).) To prove this equality, it suÆes to prove the ommutativity of the

following diagram:

H

k

(X;F )
H

k

(X;F )

h;i

����! H

0

(X;F )

�
 �

x

?

?

?

x

?

?

?

�

�1

�

2m�k

(Mor(X;Z

0

(A

m

)); F )
 �

k

(Z

0

(X); F )

n

����! �

2m

(Z

0

(A

m

); F )

D 
 pr

�

1

?

?

?

y

?

?

?

y

=

�

2m�k

(Z

m

(X �A

m

); F )
 �

k

(Z

m

(X �A

m

); F ))

pr

2�

Æ�

����! �

2m

(Z

0

(A

m

); F )

pr

�

1

Æ �

�1


 pr

�

1

Æ �

�1

x

?

?

?

x

?

?

?

�

H

2m�k

(X;F )
H

k

(X;F )

�

����! H

0

(X;F )

(4:4:2)
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where n is the map in homotopy with F -oeÆients indued by the na��ve group om-

pletion of (4.3.1) and � is the natural isomorphism

� = pr

2�

Æ pr

�

1

: �

0

(Z

0

(X); F ) �! �

2m

(Z

m

(X �A

m

); F ) �! �

2m

(Z

0

(A

m

); F ):

The ommutativity of the upper square of (4.4.2) follows immediately from the ob-

servation that the evaluation produt h; i : H

k

(X;F ) 
 H

k

(X;F ) ! H

0

(X;F ) an be

represented as the pairing on homotopy groups indued by the map

Map(X;Z

0

(A

m

))� Z

0

(X)

n

�! Z

0

(A

m

)

sending (f;

P

x

i

) to

P

f(x

i

). (See [FL

1

, x8℄ for example.)

To verify the ommutativity of the middle square of (4.4.2), it suÆes to establish the

homotopy ommutativity of the square

Mor(X;Z

0

(A

m

))� Z

0

(X)

n

����! Z

0

(A

m

)

D � pr

�

1

?

?

y

?

?

y

=

Z

m

(X �A

m

)�Z

m

(X �A

m

)

pr

2�

Æ�

����! Z

0

(A

m

)

: (4:4:3)

Observe that for any f : X ! C

0

(P

m

) and

P

x

i

2 SP

d

(X), the yles D(f) and pr

�

1

(

P

x

i

)

interset properly in X �P

m

and

pr

2�

h

D(f) � pr

�

1

(

X

x

i

)

i

=

X

f(x

i

):

Thus, the homotopy ommutativity of (4.4.3) follows from the result proved in [FG;3.5.a℄

asserting that the intersetion produt on yle spaes for the smooth variety X � A

m

an be represented by the usual intersetion produt when restrited to the na��ve group

ompletions of pairs of yle spaes onsisting of yles whih interset properly.

Finally, to prove the ommutativity of the bottom square of (4.4.2), we laim that it

suÆes to prove the ommutativity of the following diagram

H

2m�k

(X;F )
H

k

(X;F )

(pr

�

1

)


2

�! H

BM

4m�k

(X �A

m

; F )
H

BM

2m+k

(X �A

m

; F )

�

?

?

y

?

?

y

�

H

2m

(X �X;F )

(pr

1

�pr

1

)

�

����! H

BM

6m

((X �A

m

)

2

; F )

�

!

?

?

y

?

?

y

�

!

H

0

(X;F )

pr

�

1

����! H

BM

2m

(X �A

m

; F )

=

?

?

y

?

?

y

pr

2�

H

0

(X;F )

�

����! H

BM

2m

(A

m

; F )

(4:4:4)
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whereH

BM

�

(V ) of a quasi-projetive variety V is the Borel-Moore homology of V . To verify

this redution, �rst reall that the Dold-Thom isomorphism extends to quasi-projetive

varieties � : �

�

Z

0

(V )

'

! H

BM

�

(V ). Thus, the omposition of the maps in the right olumn

an be identi�ed with the map pr

2�

Æ� of (4.4.2) using the naturality of � and the homotopy

invariane of Lawson homology. On the other hand, the omposition of the maps in the

left olumn of (4.4.4) is the ap produt pairing, so that it does indeed suÆe to prove the

ommutativity of (4.4.4).

The evident intertwining of the external produt � and the at pull-bak pr

�

1

implies

the ommutativity of the top square of (4.4.4). As shown for example in [FG;3.4.d℄, the

Gysin maps and at pull- baks also suitably intertwine, thereby implying the ommuta-

tivity of the middle square of (4.4.4). The bottom square ommutes by the de�nition of �.

Remark 4.5. In [FL

1

℄ we introdued the groups

L

t

H

k

(X; Y )

def

= �

2t�k

Mor(X;Z

n�t

Y )

for 0 � k � 2t. When X and Y are smooth, our Duality Theorem 3.3 gives isomorphisms

D : L

t

H

k

(X; Y )

�

=

�! L

(n+m)�t

H

2(n+m)�k

(X � Y ):

Now for smooth X and Y there is a diagram

L

t

H

k

(X; Y )

D

���! L

(n+m)�t

H

2(n+m)�k

(X � Y )

�

?

?

y

?

?

y

�

M

j�i=2n�k

H

i

(X;H

j

(Y ;Z))

P

���! H

2(n+m)�k

(X � Y ;Z)

where the maps � are natural transformations (f. [FL

1

℄, [FM

1

℄), and where P is the

Poinar�e duality map

M

j�i=2n�k

H

i

(X;H

j

(Y ;Z))

P

�!

M

j+i=2(n+m)�k

H

i

(X;H

j

(Y ;Z))

�

=

H

2(n+m)�k

(X � Y ;Z):

It is natural to suppose that this diagram ommutes.
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x5. Appliations

The duality theorems have a variety of onsequenes, some of whih we now present.

Throughout this setionX and Y will be smooth projetive varieties of dimensionsm and n

respetively. We �x a positive integer r � m and set q = m�r. We reall for emphasis that

Mor(X;Z

r

(Y )) is simply the Grothendiek group of the monoid of morphismsX �! C

r

(Y )

furnished with the ompat-open topology. We also reall the de�nition of the morphi

ohomology groups

L

q

H

k

(X; Y ) = �

2q�k

Mor(X;Z

r

(Y )):

5.A Algebrai Coyles modulo Algebrai Equivalene. We reall the basi iso-

morphism (f. [F

1

;1.8℄)

L

p

H

2p

(X) = A

p

(X)

def

= falgebrai p�yles on Xg=falgebrai equivaleneg:

where A

p

(X) is the Chow group of algebrai p-yles on X modulo algebrai equivalene.

There is an analogous interpretation of the group L

q

H

2q

(X; Y ) = �

0

Mor(X;Z

r

(Y )). Eah

element of Mor(X;Z

r

(Y )) an be written as a di�erene f � g where f; g : X ! C

r

(Y )

are algebrai families of e�etive yles on Y parameterized by X. Two suh pairs (f; g),

(f

0

; g

0

) determine the same element if there are morphisms h; h

0

with (f + h; g + h) =

(f

0

+h

0

; g

0

+h

0

). The pairs (f; g) , (f

0

; g

0

) are algebraially equivalent inMor(X;Z

r

(Y ))

if there exist h; h

0

and an algebrai urve joining (f + h; g + h) to (f

0

+ h

0

; g

0

+ h

0

) in

Mor(X; C

r

(Y )) � Mor(X; C

r

(Y )). We have a similar desription of �

0

Mor(X;Z

r

(Y )),

exept that the ondition is that two pairs an be onneted (after translation) by a real

urve. Sine Mor(X; C

r

(Y )) is a ountable disjoint union of quasi-projetive varieties (see

[FL

1

℄), two points in Mor(X; C

r

(Y ))

2

an be joined by a real urve if and only if they an

be joined by an algebrai urve. This shows that

L

q

H

2q

(X; Y )

�

=

falgebrai q�oyles on X with values in Y g=f algebrai equivaleneg

= Mor(X;Z

r

(Y ))=falgebrai equivaleneg

The Duality Theorem 3.3 now provides the following non- obvious isomorphism.

Theorem 5.1. Let X be a smooth projetive variety of dimension m and q a non-negative

integer with q � m. Then there are natural isomorphisms

Mor(X;Z

0

(P

q

))

falgebrai equivaleneg

�

=

A

m�q

(X)�A

m�q�1

(X)� � � � � A

0

(X)

and

�

0

Mor(X;Z

0

(A

q

))

�

=

A

m�q

(X):

Proof. The seond isomorphism is obtained immediately by applying �

0

to the seond

homotopy equivalene of Theorem 3.3. The �rst isomorphism follows similarly by using

the projetive bundle theorem in L-homology proved in [FG;2.5℄ together with the �rst

homotopy equivalene of Theorem 3.3.
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5.B Flag manifolds Reall that a variety Y is said to have a ell deompositon if

there is a �ltration of Y by subvarieties ; = Y

�1

� Y

0

� Y

1

� � � � � Y

k

= Y suh that

Y

j

� Y

j�1

=

`

i

A

N

j

for eah j. Suh varieties inlude all homogeneous varieties, and in

partiular all generalized ag manifolds suh as projetive spaes, Grassmannians, et. We

reall from the work of Lima-Filho [Li

1

℄ that for any suh Y the natural inlusion

Z

r

(Y ) � J

2r

(Y )

into the topologial group of integral yles of (real) dimension 2r on Y , is a homotopy

equivalene. In partiular, there is a homotopy equivalene

Z

r

(Y )

�

=

Y

j

K(H

2r+j

(Y ;Z); j) (5:2:0)

As a result of duality there is the following ohomologial version of these results

Theorem 5.2. If X and Y are smooth projetive varieties with ell deompositions, then

there is an isomorphism

�

�

Mor(X;Z

r

(Y ))

�

=

H

2(m+r)+�

(X � Y ; Z): (5:2:1)

Furthermore, the inlusion

Mor(X;Z

0

(A

q

)) �! Map(X;Z

0

(A

q

)) (5:2:2)

is a weak homotopy equivalene.

Proof. The �rst statement follows immediately from the Duality Theorem 3.3 and (5.2.0).

The seond statement is equivalent to the assertion that the natural transformation

� : L

q

H

k

(X)

�

=

�! H

k

(X;Z)

is an isomorphism for all q; k with 2q � k. Now in [Li

1

℄ it is proved that the natural

transformation � Æ s

m�q

: L

m�q

H

2m�k

(X)! H

2m�k

(X;Z) is an isomorphism for all q; k

with 2(m� q) � 2m� k. Together with (4.4.1) this proves the result.

Remark. If the general ompatibility with Poinar�e duality onjetured in 4.5 above holds,

then Theorem 5.2 extends to the assertion that when X and Y have ell deompositions,

the inlusion

Mor(X;Z

r

(Y )) �! Map(X;Z

r

(Y ))

is a homotopy equivalene.

5.C Theorems of Segal-type Duality tells us something about rational families of yles

on a smooth variety.
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Theorem 5.3. Let Y be a smooth projetive variety of dimension n. Then for eah pair

of non-negative integers r; k with r + k � n there is a weak homotopy equivalene

Mor(P

k

;Z

r

(Y ))

�

=

Z

r

(Y )�Z

r+1

(Y )� � � � � Z

r+k

(Y )

Proof. By Theorem 3.3 we have Mor(P

k

;Z

r

(Y ))

w:h:e:

�

=

Z

k+r

(P

k

� Y ), and from [FG;2.5℄

we know that there is a weak homotopy equivalene Z

k+r

(P

k

� Y )

�

=

Z

r

(Y )�Z

r+1

(Y )�

� � � � Z

r+k

(Y )

Setting k = 1 gives the following.

Corollary 5.4. The spae of parameterized rational urves on Z

r

(Y ) is weakly homotopy

equivalent to Z

r

(Y )� Z

r+1

(Y ).

A basi result of Graeme Segal [Se℄ states that the natural embedding

Mor

d

(P

1

; P

1

) � Map

d

(P

1

;P

1

)

of the spae of morphisms of degree d into the spae of ontinuous maps of degree d (with

the ompat-open topology) is 2d- onneted. In partiular, Segal asserts that

lim

d!1

Mor

d

(P

1

; P

1

) � lim

d!1

Map

d

(P

1

; P

1

)

is a weak homotopy equivalene. Subsequent work [CCMM℄ has identi�ed the stable

homotopy type (stable in the sense of spetra, not in the sense of inreasing degree) of

Mor

d

(P

1

; P

n

). Setting X = P

1

and using the identi�ation SP

n

(P

1

)

�

=

P

n

, one onludes

as a speial ase of Corollary 5.4 in onjuntion with Theorem 4.4 that

lim

�!

n;d

Mor

d

(P

1

;P

n

)) � lim

�!

n;d

Map

d

(P

1

;P

n

):

is a weak homotopy equivalene. For this reason we all the results of this setion \theorems

of Segal-type".

5.D Inverse to Gysin Maps In this setion we present a onsequene of the Moving

Lemma M.1 whih underpins the Duality Theorem. This result has proved useful in our

early disussion (e.g., in the proof of Proposition 2.7).

Proposition 5.5. Let p : P ! Y be a at map of relative dimension  between smooth

projetive varieties with setion s : Y ! P . Then

s

!

Æ p

�

: Z

r

(Y ) �! Z

r+

(P ) �! Z

r

(Y )

is a weak homotopy equivalene.
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Proof. Let C

r+

(Y ;P ) � C

r+

(Y ) denote the submonoid of those e�etive r+ -yles on

P whih meet s(Y ) � P properly. By Corollary 3.6 (or, more diretly, by its proof), we

onlude that the map on na��ve group ompletions

Z

r+

(Y ;P ) �! Z

r+

(P )

is a weak homotopy equivalene. On the other hand, [FG;3.4℄ asserts that the Gysin

map s

!

when restrited to Z

r+

(Y ;P ) is represented by intersetion with s(Y ). Clearly,

intersetion of a yle p

�

(Z) with s(Y ) is merely the yle Z for any r-yle Z on Y .

5.E A Dold-Thom Theorem and a fundamental lass for morphi ohomology

The lassial Dold-Thom Theorem [DT℄ establishes an equivalene of funtors whih in

our ontext an be written as

L

0

H

k

(X)

�

=

H

k

(X; Z) for 0 � k � 2m:

By the Theorems 3.3 and 4.4 this implies the following result in ohomology.

Theorem 5.6 For any smooth projetive variety X of dimension m there are natural

ismorphisms

L

m

H

k

(X)

�

=

H

k

(X; Z) for 0 � k � 2m:

The lassial Dold-Thom isomorphism is onventionally written as the isomorphism

�

�

Z

0

(X)

�

=

H

�

(X; Z);

In analogy, the \morphi ohomology version" above an be rewritten as

�

�

Mor(X;Z

0

(A

m

))

�

=

H

2m��

(X; Z):

As a orollary of Theorem 5.6 in the speial ase k = 2m, we obtain a \Noether

normalization of virtual degree 1" giving a well-de�ned fundamental lass in the morphi

ohomology of X.

Corollary 5.7. Let f; g : X ! SP

d

(P

m

) determine [f � g℄ 2 �

0

Mor(X;Z(A

m

)) orre-

sponding to the fundamental lass �

X

2 H

2m

(X;Z) under the isomorphism of Theorem

5.6. Let �

2m

2 H

2m

(Z

0

(A

m

);Z) denote the anonial lass. Then

f

�

(�

2m

)� g

�

(�

2m

) = �

X

2 H

2m

(X):

Proof. The identi�ation of �

0

Map(X;Z

0

(A

m

)) with H

2m

(X;Z) is ahieved by sending

� : X ! Z

0

(A

m

) to �

�

(�

2m

).
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5.F Filtrations in Cohomology Reall that L

q

H

k

(X) = �

2q�k

Mor(X;Z

0

(A

q

)) is

de�ned for all q > 0, and there are ommutative triangles

L

q

H

�

(X)

& �

s

?

?

y

H

�

(X;Z)

% �

L

q+1

H

�

(X)

where � denotes the natural transformation and s is the operation from [FL

1

℄ disussed

in x2. It is natural to ask at what point the images of these maps stabilize. As we verify

in the following theorem, a strong form of stabilization is valid when X is smooth.

Theorem 5.8. Let X be a smooth projetive variety. Then for any q � m,

s : L

q

H

�

(X) �! L

q+1

H

�

(X)

is an isomorphism.

Proof. We interpret the s-map via the following diagram

Mor(X;Z

0

(A

q

)) ^ S

2

s

���! Mor(X;Z

0

(A

q+1

))

D � i

?

?

y

?

?

y

D

Z

m

(X �A

q

)�Z

0

(A

1

)

�

���! Z

m

(X �A

q+1

)

pr

�

� 1

x

?

?

x

?

?

pr

�

Z

0

(X �A

q�m

)�Z

0

(A

1

)

�

���! Z

0

(X �A

q+1�m

)

where i : S

2

�! Z

0

(A

m

) is given by S

2

�

=

P

1

�! Z

0

(P

1

) �! Z

0

(A

1

) sending p 2 S

2

to

p � f1g. Sine the map on homotopy indued by the bottom horizontal arrow is simply

the Thom isomorphism assoiated to the trivial rank-1 bundle over X�A

q�m

, we onlude

that s is a weak homotopy equivalene.

In [FM

1

℄, [FM

2

℄, a \topologial �ltration on homology"

T

r

H

k

(X;Z)

def

= image f� Æ s

r

: L

r

H

k

(X) �! H

k

(X;Z)g

(dereasing with respet to r) was introdued and shown to have a number of interesting

properties. In [FL

1

℄, we onsidered the ohomologial analogue:

T

q

H

k

(X;Z)

def

= image

�

� : L

q

H

k

(X) �! H

k

(X;Z)

	

:
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Our �nal theorem asserts that for X smooth this ohomologial analogue is exatly the

Poinar�e dual of the topologial �ltration on homology. The \proof" of this theorem

onsists in observing that Theorem 5.9 is merely a restatement of Theorem 4.4.

Theorem 5.9. If X is smooth, then the Poinar�e duality map P : H

k

(X;Z) �!

H

2m�k

(X;Z) indues isomorphisms

P : T

q

H

k

(X;Z)

�

=

�! T

m�q

H

2m�q

(X;Z)

of the topologial �ltrations in all degrees.

5.G. Adjointness within the Kroneker pairing. We shall now prove that under

the duality isomorphism the Kroneker pairing is equivalent to the intersetion pairing.

This establishes the degeneray of the Kroneker pairing in some ases.

We reall that in [FG℄ an intersetion produt Z

p

(X) 
 Z

q

(X)

�

�! Z

p+q�n

(X) was

de�ned for smooth n- dimensional varieties X, when p + q � n � 0. This produt has

the property that when restrited to pairs of yles whih meet in proper dimension, it is

homotopi to the standard intersetion of yles (as in [Fu℄). One heks that this pairing is

ompatible with the equivalenes Z

p

(X)

�

=

�! Z

p+1

(X�A

1

) and thereby indues a pairing

L

p

H

k

(X)
 L

q

H

`

(X)

�

=

�! L

p+q�n

H

k+`�2n

(X)

for k+` � 2n, where for negative integers �r one de�nes L

�r

H

m

(X) = L

0

H

m+2r

(X�A

r

)

�

=

H

m

(X; Z).

Theorem 5.10. Let X be a smooth projetive variety of dimension m, and �x integers

p; k; q with 2p � k � 2q. Consider on X the Kroneker pairing

� : L

q

H

k

(X)
 L

p

H

k

(X) �! Z

introdued in [FL

1

℄, and the intersetion pairing

� : L

m�q

H

2m�k

(X)
 L

p

H

k

(X) �! Z

established in [FG℄. Then

�('; ) = D' � 

for all ' 2 L

q

H

k

(X) and  2 L

p

H

k

(X).

Proof. Consider the diagram

Mor(X;Z

0

(A

q

)) ^ Z

p

(X)

�

����! Z

p

(A

q

)

D ^ �=

q

?

?

y

Z

m

(X �A

q

) ^ Z

p+q

(X �A

q

) k

�

?

?

y

Z

p

(X �A

q

)

(pr

2

)

�

����! Z

p

(A

q

):

(5:10:1)
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where the map � is given by graphing the oyle over the yle and then pushing into

A

q

. One veri�es diretly that � oinides with the Kroneker map de�ned in [FL

1

, x7℄.

If we assume for the moment that � is the standard intersetion produt de�ned only on

the subset of pairs of yles whih meet properly, then the diagram (5.10.1) ommutes on

the nose. It therefore follows from [FG;3.5℄ that this diagram ommutes up to homotopy.

Taking homotopy groups \�

2q�k


 �

k�2p

" yields a ommutative diagram

L

q

H

k

(X)
 L

p

H

k

(X)

�

����! Z

D 
 Id

?

?

y

L

m�q

H

2m�k

(X)
 L

p

H

k

(X) k

�

?

?

y

L

q�p

H

0

(X)

�

=

����! Z:

Now the intersetion pairing � above fators through the topologial intersetion prod-

ut �

top

, i.e., there is a fatoring of � of the form

L

m�q

H

2m�k

(X)
 L

p

H

k

(X)

�
�

�! H

2m�2p

(X; Z)
H

2p

(X; Z)

�

top

�! Z

where � is the natural transformation as above. For example when 2p = k = 2q we have

A

m�p


A

p

�
�

�! H

2m�k

(X; Z)
H

k

(X; Z)

�

top

�! Z;

and there are many well-known ases where the kernel of � has large rank, i.e., where

homologial equivalene does not imply algebrai equivalene. It follows that the pairing

A

m�p


A

p

�

�! Z

is degenerate in suh ases (numerial equivalene does not imply algebrai eqivalene).

By Theroem 5.10 the Kroneker pairing is also degenerate over Q in suh ases.
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Appendix C. Coyles and the ompat- open topology.

In this appendix, we orret the mistaken disussion given in [FL

1

;1.5℄ of the rela-

tionship between the ompat-open topology on the monoid Mor(U; C

r

(Y )) for a quasi-

projetive variety U and the topology indued by the embedding

G :Mor(U; C

r

(Y )) �! C

r+m

(U � Y )

def

= C

r+m

(X � Y )=C

r+m

(X

1

� Y ) (C:1:0)

via the graphing map. When U is projetive, these topologies oinide. However, if U is

not projetive, then the topology indued by G is equivalent to the topology of uniform

onvergene on ompata with uniformly bounded degree. In [FL

1

℄ the added ondi-

tion of uniformly bounded degree was overlooked. We present here a thorough disussion

of these topologies.

Throughout this appendix, U shall denote a quasi-projetive variety of dimension m,

X � U will denote a projetive losure with Zariski losed omplement X

1

� X, Y will

denote a projetive variety of dimension n, and r will be a non-negative integer � n.

We reall that the graphing onstrution (C.1.0) is always injetive. We de�ne

C

r

(Y )(U) to be the topologial submonoid of C

r+m

(U � Y ) given as the image of G.

Proposition C.1. The inverse of the graphing onstrution

G

�1

: C

r

(Y )(U) �! Mor(U; C

r

(Y ))

is ontinuous, where Mor(U; C

r

(Y )), onsidered as a spae of ontinuous maps from U to

C

r

(Y ), is given the ompat-open topology.

Proof. It will suÆe to onstrut an evaluation mapping

� : C

r

(Y )(U)� U �! C

r

(Y ) (C:1:1)

and establish that it is ontinuous (sine, by a standard lemma, the ontinuity of (C.1.1)

implies that the adjoint mapping is ontinuous into the ompat-open topology.) When Y

and U are smooth, we de�ne the evaluation map � using intersetion of yles: �(f; u) =

�(f) � (fug � Y ). The ontinuity of � in this ase follows from the ontinuity of the

intersetion produt proved in [Fu℄ for families of yles whih meet in proper dimension.

When U is smooth but Y is not neessarily smooth, we onsider a projetive embedding

Y � P

N

and replae Y by P

N

(i.e., we now write f(u) = �(f) � (fug � P

N

) where the

intersetion takes plae in U �P

N

).

If U is not smooth, we onsider a resolution of singularities � :

e

U ! U and let

e� : C

r

(Y )(

e

U) �

e

U �! C

r

(Y ) be the evaluation map (C.1.1). Note that omposition of

morphisms � : U ! C

r

(Y ) with � indues an injetive map

�

�

: C

r

(Y )(U) ,! C

r

(Y )(

e

U):

The omposition e� Æ (�

�

� 1) : C

r

(Y )(U) �

e

U ! C

r

(Y ) desends to � as in (C.1.1), sine

e�(G(� Æ �); eu) = fug � (� Æ �)(eu).
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We now prove the ontinuity of �, assuming for the moment that we have shown that

�

�

is ontinuous. Let a

n

! a be a onvergent sequene in C

r

(Y )(U) � U . Choose fea

n

g

in C

r

(Y )(U) �

e

U with (Id � �)(ea

n

) = a

n

. Sine Id � � is proper, for every subsequene

of fa

n

g there is a sub-subsequene of fea

n

g suh that ea

n

! ea upstairs, and so �(a

n

) =

e�((Id� �)(ea

n

))! e�((Id� �)(ea)) = �(a). This proves the ontinuity of �.

It remains to prove that �

�

is ontinuous. Let X be a ompati�ation of U , and set

X

1

= X � U . Let

e

X �

e

U be a ompati�ation of

e

U suh that � :

e

U ! U admits an

extension � :

e

X ! X. Consider a subset A � C

m+r

(U�Y ) = C

m+r

(X�Y )=C

m+r

(X

1

�Y )

whih lies in the image of C

m+r;�d

(X�Y ), the ompat spae of e�etive (m+r)-yles of

degree � d on X�Y (for some projetive embedding of X�Y ). Let B � C

r+m;�d

(X�Y )

denote the onstrutible subset of those e�etive r + m-yles eah omponent of whih

when restrited to U�Y is equidimensional over U . As argued in [FG;1-6℄ using noetherian

indution and generi atness of families, B � (��Id)

�

(C

r

m

;�e

(

e

X�Y )) for some suÆiently

large e. (Any algebrai family of subshemes on X � Y parametrized by some variety C

is generially at over C, and the losure in

e

X � Y of the intersetion of the family with

Reg(U)� Y is also generially at over C.)

The ontinuity of �

�

is now proved as follows. Consider a onvergent sequene �(f

n

)!

�(f) in C

r

(Y )(U). By the paragraph above, the yles �

�

(�(f

n

)) = �(

e

f

n

) and �

�

(�(f)) =

�(

e

f) (where

e

f

n

= f

n

Æ � and

e

f

n

= f Æ �) have losures of uniformly bounded degree in

e

X � Y . Furthermore, we see that �(

e

f

n

) ! �(

e

f) over Reg(U) � Y sine � � Id is an

isomorphism there. By ompatness, every subsequene of �(

e

f

n

) has a sub-subsequene

whih onverges to an e�etive yle, say �, on

e

U�Y . From the onvergene on Reg(U)�Y

we see that � = �(

e

f) + 

0

for some e�etive yle 

0

supported on �

�1

Sing(U)� Y . We

shall show that j

0

j � j�(

e

f)j and therefore 

0

= 0 beause dimfj�(

e

f)j\�

�1

Sing(U)�Y g �

m + r � 1. If x 2 j

0

j, then there exist x

n

2 j�(

e

f

n

)j suh that x

n

! x in

e

U � Y . Then

(� � Id)(x

n

) ! (� � Id)(x) and so (� � Id)(x) 2 j�(f)j by Proposition C.2 below. This

implies that x 2 j�(

e

f)j as laimed.

Proposition C.2. Let fW

n

g be a sequene of e�etive r-yles on Y whih onverge in

C

r

(Y ) to some r-yle W . Consider a sequene of points fy

n

g with y

n

2 jW

n

j and assume

that this sequene onverges to some point y 2 Y . Then y 2 jW j.

Proof. We assume that Y is provided with the metri indued from an embedding into

some projetive spae. A basi result in the theory of positive urrents (f. [H℄) states that

Mass

�

W

n

�

�

B

�

(z

0

)

�

� 

2r

�

2r

for all w 2W

n

and all � > 0, where 

2r

> 0 is a onstant depending only upon r and where

B

�

(z

0

) is the open �-ball entered at z

0

.

Fix some � > 0. Set q = �!

r

=r! where ! is the restrition of the Kahler form of

projetive spae to Y and where � denotes the harateristi funtion of the ball B

2�

(z).

Then for all n suÆiently large that y

n

2 B

�

(y) we have



2r

�

2r

�

Z

W

n

q �!

Z

W

q � Mass(W \ B

2�

(y)):
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Hene, y 2 jW j as asserted.

We denote by Map(U; C

r

(Y )) the spae of ontinuous maps f : U ! C

r

(Y ) equipped

with the ompat-open topology, i.e., the topology of uniform onvergene on ompat

subsets.

Theorem C.3 The topology on C

r

(Y )(U) is haraterized by the following property: a

sequene ff

i

: i 2 Ng � C

r

(Y )(U) onverges for this topology if and only if

(i) ff

i

: i 2 Ng onverges when viewed in Map(U; C

r

(Y )).

(ii) The assoiated sequene fZ

i

: i 2 Ng � C

r

(Y )(U) of graphs has the property that for

some Zariski loally losed embedding U �Y � P

N

, there is a positive integer E suh

that eah Z

i

has losure

�

Z

i

� P

N

of degree � E.

We all this topology on C

r

(Y )(U) inherited from that of C

r

(Y )(U) the topology of

onvergene with bounded degree.

Proof. Proposition C.1 implies that onvergene of ff

i

: i 2 Ng � C

r

(Y )(U) implies (i).

Reall from [Li

1

℄ that C

r+m

(U � Y ) has the ompatly generated topology assoiated to

the inreasing �ltration

: : : � C

r+m;�d

(U � Y ) � : : : � C

r+m;�d+1

(U � Y ) � : : :C

r+m

(U � Y );

where

C

r+m;�d

(U � Y )

def

= image

�

a

e�d

C

r+m;e

(X � Y ) �! C

r+m

(U � Y )

�

:

If the sequene of graphs fZ

i

: i 2 Ng assoiated to ff

i

: i 2 Ng onverges to Z, then the

subset fZ

i

: i 2 Ng [ fZg is ompat and therefore lies in some C

r+m;�d

(U � Y ). This

immediately implies onvergent ondition (ii).

Conversely, assume ff

i

: i 2 Ng satis�es ondition (i) and that its assoiated sequene

of graphs fZ

i

: i 2 Ng satis�es onditions (ii). Let g : U ! C

r

(Y ) with graph Z

g

denote

the limit in Map(U; C

r

(Y )) of ff

i

: i 2 Ng. Let

�

Z

i

denote the losure of Z

i

in X � Y .

By hypothesis (ii), any subsequene of f

�

Z

i

: i 2 Ng admits a onvergent subsequene

f

�

Z

j

: j 2 M � Ng � C

r+m

(X � Y ). Let

�

Z 2 C

r+m

(X � Y ) denote the limit of suh a

onvergent sequene. It suÆes to prove that the restrition Z of

�

Z to U � Y has support

ontained in the support of Z

g

, for then Proposition C.1 implies that Z = Z

g

.

Consider an arbitrary point (x; y) 2 jZj � U � Y . The onvergene of f

�

Z

j

g to Z

implies that for every � > 0 there exists some N

�

suh that jZ

j

j \ B

�

(x; y) 6= ; whenever

j � N

�

. Hene, there exists a sequene of points (x

j

; y

j

) 2 jZ

j

j onverging to (x; y). In

partiular, the sequene fy

j

2 jf

j

(x

j

)jg onverges to y. By hoosing j suÆiently large,

we may assume that the x

j

's lie in some ompat ball entered about x in U . Beause

ff

j

g onverges to g on ompat subsets of U , we onlude that ff

j

(x

j

)g onverges to g(x).

Proposition C.2 thus implies that y 2 jg(x)j as required.

As we make expliit in Theorem C.4, the ondition of bounded degree is redundant if

the domain U equals X (i.e., is projetive).
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Theorem C.4. The graphing onstrution

G :Mor(X; C

r

(Y )) �! C

r

(Y )(U)

is a homeomorphism.

Proof. By Theorem C.3, it suÆes to show the following: for any onvergent seqene ff

n

g

in Mor(X; C

r

(Y )), the assoiated sequene of graphs fZ

n

g has bounded degree. For this,

it suÆes to prove that homology lasses [Z

n

℄ 2 H

2m+2r

(X � Y ) are independent of n for

n suÆiently large. (Namely, the homology lass [Z℄ determines the multi-degree of Z

n

whih in turn determines the degree of Z

n

.) This is implied by the assertion that the maps

f

n

are all homotopi for n suÆiently large, for a homotopy between f

n

; f

m

determines an

integral urrent on X � Y � I with restritions to Z

n

; Z

m

.

The fat that f

n

's are homotopi for all suÆiently large n is a onsequene of the

following elementary lemma.

Lemma C.5 Let P be a polyhedron. Then there exists an � > 0 suh that whenever

f; g : A! P are ontinuous and satisfy

kf � gk

1

< �

then f is homotopi to g.

Proof. We embed P � R

N

and assume without loss of generality that the metri on P is

the one indued from this embedding. Let W � P be a neighborhood of P in R

N

with a

retration r : W ! P . Then there exists � > 0 suh that for all x; y 2 P with d(x; y) < �,

the line segment xy � W . Hene, if kf � gk

1

< � then f

t

(x) = (1 � t)f(x) + tg(x) is a

homotopy from f to g in W and r Æ f

t

gives the desired homotopy in P .

We onlude with two important examples whih illustrate the subtleties of the topol-

ogy on oyle spaes.

Example C.6 The injetive ontinuous map D : Mor(X;Z

r

(Y )) ! Z

m+r

(X � Y )

given by group ompletion of the graphing map, is not a topologial embedding. To see

this, let X = Y = P

1

, and for eah integer n > 0 let �

n

2Mor(P

1

; C

0

(P

1

)) de�ned by the

mapping

y = x=n

in aÆne oordinates. Then the sequene of oyles �

n

def

= D(�

n+1

��

n

) onverges to 0 in

Z

1

(P

1

�P

1

). This is lear sine D(�

n

) onverges to the e�etive yle P

1

�f0g+f1g�P

1

.

However, the sequene �

n

does not onverge to 0 in Z

1

(P

1

� P

1

). This is seen as

follows. Let M = Mor(P

1

; C

0

(P

1

)) and let � � M � M denote the diagonal. Then

by de�nition �

n

�! 0 in Mor(P

1

;Z

0

(P

1

)) i� for every M -saturated open neighborhood

U of � there is an N to that (�

n+1

;�

n

) 2 U for all n � N . Now let U = M �M �

f(�

n+1

;�

n

)g

1

n=1

and observe that U is a saturated open neighborhood of �. (It is open

beause the limiting yle (; ) with  = P

1

� f0g+ f1g �P

1

is not in �.)
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Example C.7 The injetive ontinuous map G : Mor(X; C

0

(A

q

)) ! C

m

(X � A

q

) given

by the graphing map, is not a topologial embedding. To see this, onsider the sequene

of mappings  

n

2Mor(P

1

;P

2

) �Mor(P

1

; C

0

(P

2

)) given in homogeneous oordinates by

 

n

([x : y℄) = [x :

1

n

y :

1

n

2

y℄; with graphs

�

n

= G( 

n

) = f([x : y℄; [x :

1

n

y :

1

n

2

y℄) 2 P

1

�P

2

: x; y 2 Cg:

We take the distinguished line P

1

� P

2

to be P

1

= f[z : w : 0℄g. Then one veri�es that

�

n

�! P

1

� [1 : 0 : 0℄+[0 : 1℄�P

1

as yles in P

1

�P

2

. Hene, the sequene �

n

onverges

to \0" in C

1

(P

1

�A

2

) � C

1

(P

1

�P

2

)=C

1

(P

1

�P

1

), however, it does not onverge at all in

Mor(P

1

; C

0

(A

2

)) �Mor(P

1

; C

0

(P

2

))=Mor(P

1

; C

0

(P

1

)).

Appendix M. The Moving Lemma for Families.

For the onveniene of the reader we present here the statement of the Moving Lemma

for Families of Cyles of Bounded Degree proved in [FL

2

℄. The main result there is sub-

stantially more general. We quote here the form of the theorem whih is needed for the

duality theorems of x3. It an be found in [FL

2

; 3.2 and 3.3℄

Theorem M.1. Let X � P

n

C

be a omplex projetive variety of dimension m. Let r; s; e

be non-negative integers with r + s � m. Then there exists a Zariski open neighborhood

O of f0; 1g in C, and a ontinuous algebrai map

e

	 : C

s

(X)�O �! C

s

(X)

�2

whih has the property that � Æ

e

	 indues by linearity a ontinuous map

	 : Z

s

(X)�O �! Z

s

(X)

satisfying the following. Set  

�

j = 	

�

�

Z

s

(X)�f�g

for � 2 O.

(a)  

0

= Id:

(b) For any Z 2 Z

s

(X), the restrition

	

�

�

fZg�O

: fZg � O �! Z

s

(X);

determines a rational equivalene between Z and  

1

(Z).

() For any � 2 O,  

�

is a ontinuous group homomorphism.

(d) For any Z 2 Z

s;�e

(X), any Y 2 Z

r

0

;�e

(X); r

0

� r and any � 6= 0 in O, eah

omponent of exess dimension (i.e., > r

0

+ s�m) of the intersetion

jY j \ j 

�

(Z)j

is ontained in the singular lous of X.
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Appendix T. Tratable monoids.

We reall that a subset C of a variety V is said to be onstrutible if C is a �nite union

of subsets C

i

� V eah of whih is loally losed in V with respet to the Zariski topology.

Sine any loally losed subset C

i

� V has the property that its losure (with respet to

the analyti topology) is Zariski losed in V (f. [Sh℄), the losure of a onstrutible subset

C � V is also Zariski losed in V . If T � V is onstrutible, then a subset S � T is

said to be a onstrutible embedding if S � V is a onstrutible subset. If S � T is

a onstrutible embedding of onstrutible subsets, then the losure of S in T is \Zariski

losed" in the sense that S equals the intersetion of T with some Zariski losed subset of

the ambient variety V .

The following lemma isolates the speial property we use of the topology of algebrai

varieties. The proof of this lemma relies on the existene of relative triangulations for

semi-algebrai subsets (more general than onstrutible subsets) proved by Hironaka in

[H℄.

Lemma T.1 Any losed, onstrutible embedding S � T of onstrutible spaes is a

o�bration.

Proof. Let

�

S �

�

T denote the losure of S � T for some projetive embedding of T � P

N

.

Note that S =

�

S \ T . By Hironaka's relative triangulation theorem [H℄, there is a (�nite)

semi-algebrai triangulation of

�

T so that

�

S and

�

T � T are subomplexes, and thus T and

S are unions of some open simplies. We onstrut a deformation retration r

t

; 0 � t � 1

of a neighborhood

e

U of

�

S in

�

T onto

�

S with the property that r

t

maps eah open simplex

of the triangulation into itself for all t.

Namely, for some maximal (losed) simplex � of

�

T , onsider �

def

= � \

�

S. Write � as

a union of (losed) faes, � = [

i

F

i

, and de�ne �

�

= \

i

F

�

i

, where F

�

i

is the open star in

the �rst baryentri subdivision of � of the dual fae F

_

i

. Then � � �

�

admits a linear

retration to � whih restrits naturally to a linear retration of (�� �

�

) \ � to � \

�

S, for

any fae � � �. We take

e

U \ � � � � �

�

to be some � -neighborhood of � � �.

We thus obtain a deformation retration of a neighborhood U of S in T onto S by

taking the restrition of r

t

to U

def

=

e

U \ T .

We reall from [FG℄ the following useful notion of a tratable ation of a monoid M

on a spae T and of a tratable monoid.

De�nition T.2. The ation of an abelian topologial monoid on a topologial spae T is

said to be tratable if T is the topologial union of inlusions

; = T

�1

� T

0

� T

1

� : : :

suh that for eah n > 0 T

n�1

� T

n

�ts into a push-out square of M -equivariant maps

(with R

0

empty)

R

n

�M ���! S

n

�M

?

?

y

?

?

y

T

n�1

���! T

n

(T:1:1)
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whose upper horizontal arrow is indued by a o�bration R

n

� S

n

of Hausdor� spaes.

The monoid M itself is said to be tratable if the diagonal ation of M on M �M is

tratable.

If S =

`

d

S

d

is a ountable disjoint union of onstrutible spaes, we shall all S

a generalized onstrutible spae. If i : S � T is a ountable disjoint union of

onstrutible embeddings i

d

: S

d

� T

d

, we shall say that i : S � T is a onstrutible

embedding.

The following proposition is a simple modi�ation of the proofs of tratability given

in [FG;1.3℄.

Proposition T.3. Consider a submonoid E

r

� C

r+m

(X � Y )

def

= C

r

whose embedding

is a onstrutible embedding of generalized onstrutible spaes. Then E

r

is a tratable

monoid.

Let F

r

� E

r

be a submonoid with the property that eah F

r;d

def

= F

r

\C

r;d

is a Zariski

losed subset of E

r;d

def

= E

r

\ C

r;d

, where C

r;d

def

= C

r+m;d

(X � Y ). Then E

r

is tratable as a

F

r

-spae and the quotient monoid E

r

=F

r

is also a tratable monoid.

Proof. Set M = C

r+m

and M(d) = C

r+m;d

. Let T denote M �M and set

T

n

=

2

4

[

�(a;b)�n

M(a)�M(b)

3

5

�M

where � : N�N! N is a suitable bijetion. Set

S

n

=M(a

n

)�M(b

n

); �(a

n

; b

n

) = n

and de�ne R

n

� S

n

by

R

n

= image

(

[

>0

M(a

n

� )�M(b

n

� )�M() ! M(a

n

)�M(b

n

)

)

:

These spaes �t into a push-out diagram

R

n

�M ���! S

n

�M

?

?

y

?

?

y

T

n�1

���! T

n

(T:3:1)

This is preisely the set-up of [FG;1.3.i℄, establishing that C

r+m

is tratable.

We now restrit the above piture to the submonoid E

r

. Set M

0

= E

r

and T

0

=

M

0

�M

0

. For eah d, let M

0

(d) =M

0

\M(d) and de�ne the �ltration T

0

n

of T

0

by

T

0

n

def

=

2

4

[

�(a;b)�n

M

0

(a)�M

0

(b)

3

5

�M

0

:
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We set S

0

n

= S

n

\ (M

0

�M

0

) =M

0

(a

n

)�M

0

(b

n

) and R

0

n

= R

n

\ (M

0

�M

0

) and observe

that (1.2.2) restrits to a push-out diagram

R

0

n

�M

0

���! S

0

n

�M

0

?

?

y

?

?

y

T

0

n�1

���! T

0

n

:

Lemma T.1 implies that eah R

0

n

� S

0

n

is a o�bration, for R

0

n

is a losed onstrutible

subset of S

0

n

. Thus, M

0

= E

r

is a tratable monoid.

To verify that E

r

is tratable as an F

r

-spae, we proeed exatly as in [FG;1.3.ii℄,

replaing C

r

(Y ) and C

r

(X) in that proof by F

r

and E

r

and appealing one again to Lemma

T.1 to verify the o�bration ondition. Namely, beause eah multipliation map C

r;n�

�

C

r;

! C

r;n

is proper, so is its restrition E

r;n�

� E

r;

! C

r;n

. Thus, the image of eah

E

r;n�

� F

r;

in E

r;n

is losed and onstrutible, thereby implying that

image f[

>0

E

r;n�

�F

r;

! E

r;n

g � E

r;n

is a o�bration by Lemma T.1. This is preisely the o�bration ondition neessary for

that proof.

The same hanges, this time to [FG;1.3.iii℄, imply that E

r

=F

r

is also a tratable

monoid.

Corollary T.4. If E

r

� C

r

(X�Y ) is a submonoid whose embedding is onstrutible, then

the natural homotopy lass of maps of H-spaes

[E

r

℄

+

�! 
B[E

r

℄

is a weak homotopy equivalene, where [E

r

℄

+

is the naive group ompletion of the abelian

topologial monoid E

r

and B[E

r

℄ is its lassifying spae.

In partiular, there is a natural weak homotopy equivalene

Z

r

(Y )(X) �! 
B[C

r

(Y )(X)℄;

where Z

r

(Y )(X)

def

= [C

r

(Y )(X)℄

+

.

Proof. In [FG;1.4℄, it is shown for any abelian tratable monoid M with the anlellation

property that

[Sing:(M)℄

+

= Sing:(M �M)=Sing:(M) �! Sing:(M

+

)

is a weak homotopy equivalene, where Sing:(�) denotes the funtor sending a spae to

its singular omplex. On the other hand, by a theorem of D. Quillen (f. [FM

1

;AppQ℄),

[Sing:(M)℄

+

is homotopy equivalent to the homotopy-theoreti group ompletion of the

simpliial monoid Sing:(M).
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