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Abstract. In this paper a fundamental duality is established between
algebraic cocycles and algebraic cycles on a smooth projective vari-
ety. A map is constructed between these spaces and shown to be a
weak homotopy equivalence. The proof makes use of a new Chow
moving lemma for families. If X is a smooth projective variety of
ndimension n, the duality map induces isomorphisms L*H*(X) —
Ly,_sHop_(X) for 2s < k, which carry over via natural transforma-
tions to the Poincaré duality isomorphism H*(X;Z) — Ho,_1(X;Z).
The most general duality result asserts that for smooth projective vari-
eties X and Y the natural graphing homomorphism sending algebraic
cocycles on X with values in Y to algebraic cycles on the product
X xY is a weak homotopy equivalence. The main results have a wide
variety of applications. Among these is the determination of the ho-
motopy type of certain algebraic mapping complexes. It also includes
a determination of the group of algebraic s-cocycles modulo algebraic
equivalence on a smooth projective variety.
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Introduction

In [FL;], the authors introduced the notion of an effective algebraic cocycle on an alge-
braic variety X with values in a variety Y, and developed a “bivariant morphic cohomology
theory” based on such objects. The theory was shown to have a number of intriguing prop-
erties, including Chern classes for algebraic bundles, operations, ring structure, and natural
transformations to singular cohomology over Z. The fundamental objects of the theory
are simply families of algebraic cycles on Y parametrized by X. More precisely they are
defined as morphisms from X to the Chow varieties of r-cycles on Y and can be repre-
sented as cycles on the product X x Y which are equidimensional over X. Such cocycles
form a topological abelian monoid, denoted Mor(X,C,(Y)), and the morphic cohomology
groups are defined to be the homotopy groups of its group completion Mor(X, Z,.(Y)).
This stands in analogy with (and, in fact, recovers by letting X = a point) the homology
groups introduced and studied in [Fy], [L], and elsewhere.

When Y = A", the theory is of strict cohomology type. It has a natural cup product
given by the pointwise join of cycles, and a natural transformation (of ring functors) to
H*(X; Z).

The main point of this paper is to establish a duality theorem between algebraic cycles
and algebraic cocycles. The fundamental result (Theorem 3.3) states that if X and Y are
smooth and projective, then the graphing map

Mor(X,Cr(Y)) — Zpar (X xXY)

which sends Y-valued cocycles on X to cycles on X X Y is a homotopy equivalence.
(Here m = dim(X)). Stated in terms of homotopy groups this theorem asserts that
the morphic cohomology groups of X with values in Y are isomorphic to the L-homology
groups of X x Y. This duality theorem was not forseen when we first formulated the
concept of an algebraic cocycle and it represents a non-trivial result for algebraic cycles. In
particular, computations of cycle spaces provide computations of mapping spaces consisting
of algebraic morphisms.



The duality theorem also holds when Y = A™ and thereby gives a duality isomorphism
D:L°H*(X) =5 Ly sHom_1(X)

between the morphic cohomology and the L-homology of any smooth, m-dimensional pro-
jective variety X. It is shown that this map has a number of interesting properties. The
most compelling property is the compatibility of D with the Poincaré duality map PD. It
is shown in §5 that there is a commutative diagram

D
L*HY(X) —— Lpy_sHopm_1(X)

o l J o
HMX;Z) —2s  Hamn(X;Z)

where the maps ® are the natural transformations. It is also shown that on smooth varieties
D intertwines the cup product on L*H*(X) with the intersection product on L,H,.(X)
that was established in [FG].

The map D has certain basic properties. It is compatible with morphisms, and for
smooth varieties it intertwines certain Gysin maps. It is also compatible with the s-
operations of [FM] which act on both theories. This shows that for smooth varieties
Poincaré duality preserves the filtrations induced by these operations on singular theory
(with Z-coefficients) [FM], [FL;].

The basic results have a wide range of applications. For example it is shown that
for generalized flag manifolds X, Y (smooth varieties with cell decompositions) there is an
isomorphism

W*EI.RO'C(X, ZT(Y)) = H2(m+T)+*(X xY; Z)

where m = dim(X). Furthermore, for any smooth m- dimensional variety X there are
natural isomorphisms

Mor(X, Z9(P?))/{algebraic equivalence} = A,,_s(X) x Ap_s—1(X) x -+ x Ap(X)

where A,.(X) denotes the group of algebraic r-cycles modulo algebraic equivalence on X,
and where ¢ < m. One also shows that for a smooth variety X, the space of parametrized
rational curves on Z,.(X) is weakly homotopy equivalent to Z,(X) x Z,41(X).

The proof of the main theorem (3.3) is based on a Moving Lemma for Families of
Cycles of Bounded Degree established in [FLs].

In this paper we have introduced the notation 9Mor(X,C,.(Y)) for the topological
monoid of Y-valued cocycles of relative dimension r on X. This notation emphasizes the
nature of cocycles as mappings and differs from the notation in [FL;|. Furthermore, in
the theory of cocycles developed in [FL;] we used the homotopy-theoretic group comple-
tion Z,,4,(X; Y) = QBMor(X,C,-(Y)) of the monoid to define the morphic cohomology
groups. In this paper we shall use instead the newer ”technology” of naive topological group
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completions as introduced in [Liz| and formulated in [FG|. These naive group completions
have directly accessible geometric properties and work better in many circumstances.

The two group completions give equivalent theories, for there is a natural weak homo-
topy equivalence QBMor(X,C,.(Y)) = Mor(X, Z,.(Y)) established in Appendix T. There
we revisit the theory of tractable monoids and tractable actions, introduced in [FG], in
order to provide the topological formalities needed to work with naive group completions
of cocycle spaces. In particular, we isolate the special topological property of varieties
which we use: any closed, constructible embedding is a cofibration.

In Appendix C we prove that for any normal quasi-projective variety X and any projec-
tive variety Y, the topology induced on Mor(X,C,(Y)) by the embedding Mor(X,C,(Y))
— C(X xY) is exactly the topology of uniform convergence with bounded degree on
compact subsets. If X is projective, then it is exactly the compact-open topology.

The results of this paper basically concern projective varieties. The authors made
efforts to extend the methods to quasi-projective varieties with mixed success. We finally
realized that a more sophisticated approach is required to appropriately realize functori-
ality, duality, and other desired properties for the topological abelian groups of cocycles
on quasi-projective varieties. Such an approach can be found in [F3]. A more abstract
treatment of duality for varieties over more general fields is given in [FV].

It is assumed throughout the main body of this paper that X and Y are projective
varieties over C and that X is normal.

§0. Conventions and terminology.

By a projective algebraic variety X we shall mean a reduced, irreducible scheme
over C which admits a Zariski closed embedding in some (complex) projective space P¥.
Thus, X is the zero locus in P of a finite collection of homogeneous polynomials, and
the irreducibility condition is the condition that X is not a non-trivial union of two such
zero loci. By a closed subvariety W C X we shall mean a Zariski closed subset with its
structure of a reduced C-scheme (but which is not necessarily irreducible). Unless explicit
mention to the contrary, we shall view locally closed algebraic subsets of projective spaces
with their analytic topology.

Throughout this paper we retain the convention that X,Y are projective algebraic
varieties of dimensions m,n respectively and that X is normal. Also throughout, r and
t shall denote non-negative integers with » < n and ¢ < m. We recall that an r-cycle
on Y is a formal integer combination Z = > n;W;, where each W; C Y is an irreducible
subvariety of dimension r in Y. Such an r-cycle is said to be effective if each n; is positive.
We denote by |Z| the support of Z = > n;W;, defined as the union |Z| =U;,W; C Y.

Our study involves the consideration of Chow varieties (see, for example, [S]). For
each set of non-negative integers » < N and d, there is Zariski closed subset

Cr,d(PN) C pM

where M = M, 4 n, whose points are in natural 1-1 correspondence with effective r-
cycles of degree d on PY. For any algebraic subset Y C P, the set of those effective
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r-cycles of degree d on PY with support on Y correspond to a Zariski closed subset
Cra(Y) C Cpq(PYN). Although there is not a “universal cycle” above C, 4(Y), there
does exists the incidence correspondence Z, 4(Y) C C, 4(Y) x Y, the Zariski closed subset
consisting of pairs (Z,y) with y € |Z|. With the analytic topology on each C, 4(Y) the

Chow monoid ot
C(Y) = J[Cray)
d

of effective r-cycles on Y is an abelian topological monoid whose algebraic (and, hence,
topological) structure is independent of the choice of projective embedding Y ¢ PV [B].
In this paper, we frequently work with homomorphisms of topological abelian groups
which are weak homotopy equivalences. At times, we have need to invert such maps: we
define a weak homotopy inverse of a weak homotopy equivalence f : S — T to be a map
g : T" — S’ which is a homotopy inverse on the CW-approximation of f. At other times,
we deal with diagrams of such maps which “weakly homotopy commute”; in other words,
compositions of maps in the diagram with same source and target have the property that
they induce homotopic maps on CW-approximations. The reader comfortable with derived
categories will recognize that these somewhat clumsy conventions would be avoided if we
were to replace these topological abelian groups by their associated chain complexes and
replace homomorphisms which are weak homotopy equivalences by quasi- isomorphisms.

§1. Cocycles on Projective Varieties.

In this section we rework the definition of the space of algebraic cocycles on a pro-
jective variety. We retain the definition from [FL;] of the monoid of effective cocycles,
but replace the formal construction of the homtopy-theoretic group completion with the
more accessible construction of the naive group completion. One satisfying aspect of the
latter is that the naive group completion of the topological monoid of effective cocycles
is a topological abelian group whose points are in one-to-one correspondence with formal
differences of effective cocycles.

We recall that the naive group completion M ™ of an abelian topological monoid
M with the cancellation property is the topological quotient of M x M by the equivalence
relation: (my,mg) ~ (n1,n9) iff my + ny = mg + ny.

Definition 1.1. By the topological monoid of effective algebraic cocyles of relative
dimension 7 on X with values in Y we mean the abelian monoid

Mor(X, Cr(Y)) (1.1.1)

of morphisms from X to the Chow monoid C,.(Y) provided with the compact open topol-
ogy. We define the topological abelian group of all such cocycles to be the naive group
completion of Mor(X,C,(Y)),

Mor(X, Z,(Y)) € [Mor(X,C (V)] (1.1.2)



A case of fundamental importance is where Y is essentially the quasi-projective variety
A"™. This is defined as follows. By the monoid of effective algebraic cocycles of
codimension-t on X we mean the topological quotient monoid

cHX) € Mor(X,Co(P?))/Mor(X, Co(PIY)). (1.1.3)
Its naive group completion
ZHX) ¥ et € Mor(X, Z(AY)). (1.1.4)

is the topological group of all algebraic cocycles of codimension-t on X.

As observed in [FL4], Mor(X, Z,.(Y)) enjoys various functoriality properties. Compo-
sition with a morphism f : X’ — X determines a continuous homomorphism

£ Mor(X, Z,(Y)) — Mor(X, Z,(Y)).

Push-forward of cycles via a morphism g : Y — Y’ determines g, : C,.(Y) — C,.(Y’) and
thus
gs : Mor(X, Z,.(Y)) — Mor(X, Z.(Y")).

Similarly, if g : Y — Y is flat of relative dimension k, then flat pull-back determines
g* :Cp(Y) = Cryr(Y) and thus

g* : Mor(X, Z.(Y)) — Mor(X, Zx(Y))

(denoted by ¢' in [FL,]).
Since X is assumed to be normal, there is an alternative, equivalent definition of the
space of algebraic cocycles. We denote by

Co(Y)(X) C Crpm(X X Y)

the topological submonoid of those effective cycles on X x Y which are equidi-
mensional of relative dimension 7 over X. In [F;] it was shown that any morphism
¢ : X — C.(Y) has a naturally associated graph G(¢) € C.(Y)(X), and in [FL;] we
showed that for normal varieties X this map G : Mor(X,C.(Y)) — C(Y)(X) is a
bijection. In Appendix C we establish the following.

Theorem 1.2. The graphing construction
G:Mor(X,C.(Y)) — Co(Y)(X)
is a homeomorphism.

This alternative formulation of 9Mor(X,C,(Y)) becomes the definition of the monoid
of effective cocycles in the more general context of [Fa.
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Consideration of naive group completions is rare in algebraic topology because spaces
constructed as quotients with the quotient topology typically have inaccessible algebraic
invariants. The usual method of “group completing” a topological monoid M is to take
the loop space of the classifying space of M, QB[M], whose algebraic invariants are closely
related to those of M (cf. [M-S]). In Appendix T, we demonstrate that C.(Y)(X) is a
tractable monoid in the sense of [FG] which by Theorem 1.2 implies the following.

Proposition 1.3. There is a natural weak homotopy equivalence

o

QB[Mor(X, Co(Y))] — Mor(X, Z,(V))

(i.e., natural up to weak homotopy). Moreover, if Yo, C Y is a closed subvariety, then
the following triple is a fibration sequence (i.e., it determines a long exact sequence in
homotopy groups):

Mor(X, Z,.(Yoo)) — Mor(X, Z,.(Y)) — [Mor(X,C-(Y))/Mor(X, Cpr (Yoo )]

We recall that the monoid of effective k-cycles on the quasi-projective variety X x A?
is defined to be the quotient monoid

Co(X x AT X' (X x P)/Cl(X x P71,

where P! C P! is the linear embedding of a “hyperplane at oo”. Because Co(P*~1)(X) C
Crn (X x P71 is obtained by intersection with the Zariski closed subset Cp, (X x P*™1) C
Cn (X x P?), we conclude easily that

C'(X) = C(P)(X)/Co(P'™)(X) < Cm(X x A) (1.3.3)

is a continuous injective mapping. (The reader is cautioned that (1.3.3) is not a topological
embedding however. See Example C.7 in Appendix C.)

As an immediate corollary of the preceding results, we conclude that our definitions
of spaces of cocycles agree up to homotopy with those of [FL4].

Corollary 1.4. There are natural weak homotopy equivalences:
QBMor(X,Cr(Y)) — Mor(X, Z,.(Y)),
htyﬁb{BEmOt(X, Co(Pt1)) — BMor(X, co(Pt))} =, ZHX).

The fundamental result (cf. [L]) about spaces of algebraic cycles is the Algebraic
Suspension Theorem which asserts that the algebraic suspension map

Vo Cra(Y) — Cryra(EY)
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induces a homotopy equivalence on homtopy-theoretic group completions of Chow monoids,
Z : QB[CT(Y)] — QB[CT—H(ZY)]'

Since the natural map QBI[C,(Y)] — Z,(Y) is a weak equivalence (cf. [Liz], [FG], or Corol-
lary T.5 of Appendix T), this implies that ¥ also induces a weak homotopy equivalence

L:2,(Y) — Zoa(EY).

In [FLy;3.3], the algebraic suspension theorem was extended to equidimensional cy-
cles by replacing ¥ with the relative analogue ¥ x. Thus, the equivalence of naive and
homotopy-theoretic group completions provides as above the following suspension isomor-
phism for cocycle spaces.

Proposition 1.5. Composition of cocycles with ¥ : C,.(Y) — C,+1(XY) induces a weak
homotopy equivalence

Ty Mor(X, Z,(Y)) — Mor(X, 2,41 (LY)).

§2. Duality Map

This section introduces our duality map from spaces of cocycles to spaces of cycles
and verifies that this map is compatible with various constructions. On effective cocycles,
this map is merely the inclusion of (1.1.1). On the naive group completions, the map is
that induced by (1.1.1). We point out that although it is injective and continuous, our
duality map is not a topological embedding. (See examples at the end of Appendix C.)

Definition 2.1. The duality map
D:Moe(X,Z2.(Y)) — Zim(X xY) (2.1.1)

is the continuous injective homomorphism of topological abelian groups induced by the
graphing construction:

Mor(X,C, (V) L5 Co(Y)(X) C Crym(X X Y). (2.1.2)
of Theorem 1.2. Similarly for Y = A™ the duality map
D:ZYX) — Z,_(X) (2.1.3)

is defined to be the composition of the map on naive group completions induced by (1.3.3)
and the inverse of the natural homotopy equivalence Z,,_+(X) — Z,,(X x A?) (cf. [FG]).

8



In the following proposition, we verify that the duality map D of (2.1.1) is natural
with respect to functorial constructions on cycles and cocycles.

Proposition 2.2. If f : Y — Y’ is a morphism of projective algebraic varieties, then f,
fits in the following commutative square

Mor(X, Z,(Y)) ——  Zyp(X x Y)

1. l l (1% f). (2.2.1)
Mor(X, Z,(V") ——  Zrom(X x V7).

Ifg: Y — Y is a flat map of projective varieties of relative dimension k, then g* fits
in the following commutative square

Mor(X, Z,(Y)) ——  Zrpm(X x V)

- J l (1% g)* (2.2.2)

D -
mot(X, ZT+]<;(Y)) — Zr+m~|—k (X X Y)

If h: X — X is a flat morphism of relative dimension e, then h* fits in the following
commutative square

Mor(X, Z,(Y)) ——  Zyp(X x Y)
e l l (h x 1)* (2.2.3)

~ D ~
Mor(X, Z,(Y)) —— Zromae(X x V).

If v : Xg — X is a regular closed embedding of codimension c, then ¢* fits in the
following weakly homotopy commutative square

Mor(X, Z,(Y)) ——s Zrpm(X x V)

i* J J (i x 1)* (2.2.4)

D
Mor(Xo, Z,.(Y)) —— Zram_e(Xo xY),

where (1 x i)' is the Gysin map of [FG].

Proof. To prove the commutativity of (2.2.1), it suffices to verify the following: if G =
G(y) C X x Y is the graph of ¥ : X — C.(Y), then (1 x f).(G) equals the graph
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G' = G(f o) of foep. This is verified by observing that (1 x f).(G) and G’ are equal
when restricted to Spec(K) x Y’ where n : Spec(K) — X is the generic point, and both
are given as the closures in X x Y’ of these restrictions.

The commutativity of (2.2.2) follows by observing that g* on Mor(X,C,(Y)) equals
the restriction to C,.(Y)(X) C Cram (X x Y) of (1 x g)*. This is verified as in the proof
of the commutativity of (2.2.1) by observing that g* o) : X — C.(Y) — Cp45(Y) has
graph whose restriction to Spec(K) x Y equals the restriction of (1 x ¢)*(G(1))), where
n : Spec(K) — X is the generic point.

To verify the commutativity of (2.2.3), we must show that (hx1)*(G(¢)) = G(1poh) for
a morphism 9 : X — C,(Y'). Once again, this is verified by observing that the restrictions
of these cycles to Spec(K) x Y are equal, where 7 : Spec(K) — X is the generic point.

As verified in [FG;3.4], the Gysin map

(i X D) Crgm (X XY)  — Crgm—e(Xo x Y)

can be represented by intersection (in the sense of [Fu]) with Xy X Y on the submonoid
Crim(X X Y; Xy xY) of those cycles which meet Xy x Y properly. Clearly, C,.(Y)(X) C
Cram (X xY; Xy xY). On the other hand, the homomorphism ¢* : C,.(Y)(X) — C,(Y)(Xo)
given by intersection with Xy x Y is identified in [FM;;3.2] with i* : Mor(X,C,.(Y)) —
Mor(Xo,C,(Y)) given by composition with ¢. [

We state without proof the following analogue of Proposition 2.2 for the duality map
D of (2.1.3). This analogue follows easily from the naturality of the constructions involved
in (2.2.3) and (2.2.4).

Proposition 2.3. If h : X — X is a flat morphism of relative dimension e, then the
following square commutes

Z(X) —  Zp_o(X)

h* J J (h x 1)* (2.3.1)

ZHR) 2 Zppes(X).

If i : Xg — X is a regular closed immersion of codimension c, then the following square is
weakly homotopy commutative

Z(X) s Zp(X)

i* l l (i x 1)! (2.3.2)
ZHX)) — Zmso(Xo).

We next proceed to exhibit a Gysin morphism on cocycles with respect to a regular
embedding € : Yy — Y. Essentially, we show that the Gysin map constructed in [FG] on
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cycle spaces for a regular embedding restricts to a map on cocycle spaces. To carry out
this argument, we use the formulation of effective cocycles as graphs from Theorem 1.2,
and appeal to a variant of our duality theorem (namely, Corollary 3.6 of the next section).
For this we introduce the submonoid

C(V;Y)(X) © C(Y)(X) (2.3.3)

of those effective cocycles which intersect X x Y properly, where we have assumed r >
codimYp. It can be verified that (2.3.3) is a constructible embedding by applying the upper
semi-continuity of the fibres of the projection

IN[C(Y)(X) x (X xYy)] — C(Y)(X)

where Z C Cpym (X X Y) x (X xY) is the incidence correspondence. (However, this basic
fact is not used in the proof below). We set

Z(YV;Y0)(X) € [C(Y;Ye) (X)) (2.3.4)

Our appeal to duality in proving Proposition 2.4 explains the smoothness hypotheses.
The result may hold in greater generality. However, one should note that the map €' is not
given by a simple composition of the Gysin map Z,.(Y) — 2Z,_.(Yp) with cocycles.
Proposition 2.4. Assume that X,Y are smooth and consider a regular (Zariski) closed
embedding € : Yy — Y of codimension e where e < r. Then there is a natural weak
homotopy class of maps

e Mor(X, Z,.(Y)) — Mor(X, Z,_.(Y0))

which fits in the following weakly homotopy commutative diagram

Mor(X, Z,(Y)) ——s  Zrpm(X x )

l l (1% e (2.4.1)

D
Mor(X, Z,_(Y) —— Zrim—e(X X Y)).

Proof. By Theorem 1.2 we may replace 9Mor(X, Z,.(Y)) by the naive group completion
Z,(Y)(X) of the topological monoid C,.(Y)(X). By Corollary 3.6 there is a weak homotopy
equivalence

i Z (V5 Y)(X) = Z.(Y)(X). (2.4.2)

We define the Gysin map €' to be the composition
¢ Z(V)(X) = Z.(Y;Y0)(X) — Zr_e(Yo)(X)
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where the first map is the weak homotopy inverse of (2.4.2), and the second is the naive
group completion of the map C,(Y;Yp)(X) — Cr—c(Yp)(X) given by intersection with
X x Yy. So defined €' fits in the weakly homotopy commutative square (2.4.1) by [FG;3.4].
O

In [FM;], a basic operation s : QB[C,(X)] A §? — QBJ[C,_1(X)] was introduced and
studied. (Here S? denotes the 2-sphere, the underlying topological space of PL.) This
s-map was originally defined using the algebraic suspension theorem and the join mapping

#:Co(X) x Co(P) — Cryyt (X#P1).

In [FG], this operation was extended to an operation s : Z.(U) A S? — Z,_1(U) for
cycles on a quasi-projective variety U and was shown to be independent of the projective
embedding. (A fact not previously known even for X projective). In the formulation of
[FG;2.6], the join mapping is replaced by the product mapping

x :Cr(X) x Co(PY) — C.(X x PY) (2.5.0)
sending a pair (Z,p) to Z x {p}, and the algebraic suspension theorem is replaced by the
Gysin map Z,.(X x P') = Z,_1(X).

In the following proposition, we verify that the duality map is natural with respect to

this s-map. Since our proof once again uses duality, we require that Y and X be smooth.

Proposition 2.5. Assume that X,Y be are smooth. The s-map determines a weak
homotopy class of maps

s: Mor(X, Z.(Y)ASE — Mor(X, Z,_1(Y)) (2.5.1)

which fits in the following weakly homotopy commutative square:

DAL
Mor(X, Z(Y)AS? —— Z (X xY)AS?

. J l . (2.5.2)

D
mot(X, Z?"—].(Y)) —_— Zr+m—1(X X Y)

Proof. As in the proof of Proposition 2.4, we replace Mor(X, Z,.(Y)) by Z,.(Y)(X). We
consider the following commutative diagram

Z(Y)(X)x Zo(PY) 5 Z(Y xPY)(X) - Z,(Y x PLY x {o0})(X)

D x 1l Dl Dl (2.5.3)
Zram(X X Y) % Z0(PY) =5 Zom(X xY xPY) ¢ Z, . (XxY xPLXxY x {co})
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where by Corollary 3.6 the maps 7 are weak homotopy equivalences. We now consider the
commutative diagram

Z?"(Y X Pl; Y x {OO})(X) B ZT—].(Y)(X)
D J l D (2.5.4)

Zrim(X XY xPLX XY x {o0}) —— Zrpmo1(X x V)

where the map e of the upper row denotes intersection with Y x {oc}, and the map e
of the lower row denotes intersection with X x Y x {oo}. We define s : Z,.(Y)(X) A
5?2 — Z._1(Y)(X) to be the composition of the maps in the upper rows of (2.5.3) and
(2.5.4) (with j replaced by its weak homotopy inverse) restricted to Z,.(Y)(X) A S?, where
S2 ~ Pl — Z,(P!) is defined to be the pointed map sending p € P! to p—{oco} € Zo(P1).
The composition of the maps in the lower rows of the diagrams (again with j replaced by
its weak homotopy inverse), when restricted to Z,,,(X x Y) A S2, gives the s-map by
[FG;2.6]. The weak homotopy commutativity of (2.5.2) now follows. O

Proposition 2.5 admits the following analogue for cocycle spaces.
Proposition 2.6. If X is smooth, then there is a natural weak homotopy class of maps
s: ZHX)AS? — ZM(X) (2.6.1)

which fits in the following weakly homotopy commutative square

ZHX)ASE 22N 2, (X)A S

. l l . (2.6.2)

D
ZHUX)  — Z_e 1 (X).

Proof. To define the map (2.6.1) we consider the upper rows of (2.5.3) and (2.5.4) with
r =1 and Y = P!. We restrict this row to effective cycles, and map it, via the linear
inclusion P* C P**!, to the analogous row with r = 1 and Y = P**1. Applying algebraic
suspension (cf. 1.5) and the taking quotients, we obtain the chain of maps

CH(X) x Co(Ph) & [C1(PH)(X)/C1(P*)(X)] x Co(P1)
X, (PP x PY)(X)/Cy (Pt x PY(X)

C1 (P x PL P! x 00)(X)/C1(P? x PL; P! x 00)(X) —— Z'HX).
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Taking naive group completions and replacing j by its weak homotopy inverse, we obtain
a chain of maps from Z*(X) x Zy(P!) to Z!71(X) which determines s.

The strict naturality of the commutative diagrams (2.5.3) and (2.5.4) with respect to
the linear embedding of a hyperplane P? C P*+! enables us to conclude the weak homotopy
commuativity of (2.6.2) as in the proof of Proposition 2.5. O

We conclude this section with a verification that the join product on cocycle spaces
defined in [FL1;6.2]:

#y : Zo(PY)(X) x Zo(PY)(X) — Z1(PHH)(X) ~ Zo(PH)(X) (2.7.0)

and the intersection product on cycle spaces defined in [FG;3.5] intertwine with the duality
map.

Proposition 2.7. If X is smooth and if t and u are non-negative integers with t +u < m,
then the join pairing of (2.7.0) fits in a homotopy commutative diagram

Zo(PY(X) x Zo(PY)(X) —— ZHX) x 24X) 20 Zp o(X) X Zmu(X)

ol -

Z,(PH)(X) L zy) 2, Zo it (X)

(2.7.1)
where the left horizontal arrows are the defining projections and where (—) e (—) denotes
the intersection product on cycle spaces.

Proof. Let W C P! x P*x P!+“*1 denote the subvariety consisting of those triples (a, b, ¢)
with the property that c lies on the line from a to b, where P*, P* C P*%*! gre embedded
linearly and disjointly. Thus, 7 : W — P! x P* is the projective bundle of the 2-plane
bundle pri(Op¢(1)) @ pri(Op« (1)) over P! x P%. Now #x factors as the composition of
the maps

Zo(PH)(X) x Zo(P*)(X) X Zo(P! x P*)(X x X) A—% Zo(P! x P")(X) (2.7.2)
with the maps
Zo(P! x P")(X) AN 2, (W)(X) L, Z (P (X) Z—'> Zo(PH")(X) (2.7.3)

where x sends a pair of 0-cycles to their product, i' is the Gysin map of Proposition 2.4,
Ax : X — X x X denotes the diagonal, 7 : W — P! x P* and p : W — P!tu+1 are the
projections, and i : Pt** — Pttutl ig g linear embedding.
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We set (2.7.2) as the top row of the following diagram (whose Gysin maps are well
defined up to weak homotopy)

Zo(PH(X) x Zo(PY)(X) =5 Z(Ptx PU(X2) 2% Z(Px P)(X)

DxD| D | | »

Z(X X P x Zn(X x PY) 25 Zyn (X2 x Ptx Pv) BXAD z(x « ptox pu)

-1 .1 .1 -1
Zt X qu{ zt—i—uJ{ J{zt—i—u

Z—t(X) X Zp_u(X) RN Zom—t—u(X?) . Zm—t—u(X).

(2.7.4)
The bottom row of this diagram defines @ : Z,,, (X)) X Z,,—4(X) — Zp—t—u(X). Now
the upper left square of this diagram commutes by inspection; the upper right square is
weakly homotopy commutative as in (2.2.4); the lower left square is weakly homotopy
commutative since i} : Z,,(X x P*) — Z,,_4(X) is the right weak homotopy inverse of pr}
(cf. Proposition 5.5); and the lower right square is weakly homotopy commutative by the
commutativity property of the Gysin map proved in [FG;3.4]. The square

Zy(PY(X) ———s Zn(X x PY)

TRY

ZUX)  — 2, (X)

weakly homotopy commutes since we can arrange for X C X x P? to miss X x Pt~ C
X x P*. We therefore conclude that the analogue of (2.7.1) with #x replaced by Al o x
of (2.7.2) is weakly homotopy commutative.

To complete the proof, we use the fact that #x is obtained from A!X o x of (2.7.2)
by composing with the maps of (2.7.3). The chain of maps of (2.7.3) is mapped with the
duality map D to the following chain:

Zn(XxPExPY) ™5 20 (X x W) 25 20 (X x PHUHL) 5y 2 (X« PHYY). (2.7.5)

Each of the terms of this chain maps to Z,,_¢ ,(X) via a Gysin map associated to the
inclusion of X into the product occurring in that term. Using [FG;3.4] (which establishes
the naturality and commutativity of the Gysin maps) or Proposition 5.5 below, we easily
verify the maps of (2.7.5) fit in weakly homotopy commutative triangles over Z,, s, (X).
In other words, we can extend (2.7.4) to the right in such a way that the diagram remains
weakly homotopy commutative, the upper row represents the join product, and the bottom
row represents the intersection product. [
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Remark. As shown in [FL;], the join product induces a well defined pairing on homotopy
groups (i.e., morphic cohomology groups) m;(Z*(X))®@m;(Z“(X)) — mi;(Z**T"(X)). This
implies that (2.7.1) establishes that the duality map interwines the join product on morphic
cohomology groups with the intersection product on L-homology groups. In Corollary 3.4,
we make this intertwining explicit.

§3. Duality Theorems

In this section, we present our duality theorem (Theorem 3.3) and some of its imme-
diate consequences. We begin by defining a topological concept which will be applicable
in our study of maps of naive group completions of abelian topological monoids.

Definition 3.1. A filtration of a topological space T by a sequence of subspaces Ty C
T, C ---C1T; C---issaid to be a good filtration if whenever f : K — T is a continuous
map from a compact space K, there exists some e > 0 such that f(K) C T.. A filtration-
preserving continuous map f : T’ — T of spaces with good filtrations is said to be a very
weak deformation retract provided that for each e > 0 there exist maps

O T xT —T , o Tox I —T, A\:Te — T

whose restrictions ¢, 1% {0} and qbe‘Te «{0} are the natural inclusions, and which fit in the
following commuative diagrams
be e
T!xI —— T T! x{1} Cc T!xI — T
foxa | s | A K
Pe Pe
T.xI —— T T.x {1} ¢ TexI —— T.

The next lemma extends the elementary result that a deformation retract is a homo-
topy equivalence.

Lemma 3.2. Let f : T" — T be a very weak deformation retract of spaces with good
filtrations. Then f is a weak homotopy equivalence.

Proof. Let & : S™ — T be a continuous map. Then there exists e > 0 such that
£(S™) C T.. Apply the homotopy &;(-) = ¢(£(-),t) and note that ¢; lifts over f (via A.)
to a map &} : S™ — T.. This proves surjectivity.

Suppose &' : S¥ — T’ is a map such that £ = f o ¢’ extends to a map ¢ : DFtt = T
with image in T, for some e. Consider the homotopy &,(-) = ¢L(£'(+),¢t) for 0 < ¢ < 1.
When t = 1, we have the commutative diagram

skx {1}y W oy o
" Lo
Dy 8oy o7
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which shows that & is homotopic to zero. This proves injectivity. []

We now apply Lemma 3.2 in conjunction with the “Moving Lemma for Cycles of
Bounded Degree” [FLz] to prove our main theorem which asserts the equivalence of spaces
of cocycles and cycles on smooth varieties.

Theorem 3.3. (The Duality Theorem) Consider smooth projective varieties X,Y of
dimensions m,n respectively and let r < n, t < m be non- negative integers. Then the
duality maps (2.1.1) and (2.1.3)

D:Mor(X, Z,(Y)) — Zrom(X xY)

D:ZYX) — Zn_(X)

are weak homotopy equivalences.

Proof. By Theorem 1.2 we may replace Mor(X, Z,.(Y)) by Z,.(Y)(X), and we recall that
D is induced by the topological embedding j : C,.(Y)(X) <= C,, (X x Y). Let

T:Crgm(X XY)XCrpm(X xY) — Zin(X xXY)

7 C(Y)(X) x G (V)(X) — Z.(Y)(X)

denote the canonical projection maps. Then the filtration { K.}, of Z,4,,(X xY) given
by setting

Ke=n{ J] Crama(X xY) x Crypma (X xY)
d+d' <e

is a good filtration. (See [Li;] for example.) Consider the induced filtration {K]}22, of
2, (Y)(X):

K,=n'¢ [ Cra¥)(X)x Cra(Y)(X)
d+d'<e

where C, 4(Y)(X) Lt Crim,d(X xY)NC.(Y)(X). We claim this is also a good filtration.

Indeed, if K is compact and f : K — Z,.(Y)(X) is continuous, then since {K.}32, is
good, there exists an e such that (Do f)(K) C K.. Since D is injective, this implies that
f(K) C K. Hence, {K_}22, is also a good filtration and D is a filtration-preserving map.

We now apply our Moving Lemma for Cycles of Bounded Degree, which is proved
in [FLy] and summarized in Appendix M, to show that for all e sufficiently large we can
move the family K. so that every cycle in K. meets every fibre {x} x Y C X x Y of the
projection in proper dimension, i.e., so that every cycle in K. becomes a cocycle over X.
Indeed let e be any integer > the (common) degrees of the {x} x Y, z € X, for some
projective embedding of X x Y. Let

U:Crgpm (X XY)X O — Crogn (X X Y) X Crym (X X Y)
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be the map guarenteed by Theorem M.1. By property (d) of Theorem M.1 and the fact
that deg({z} x Y) <e for all z € X, we see that we have

U(Cram(X xY) x {7}) C C(Y)(X) x C,(Y)(X)

for all 7 # 0 in O. In particular, the restriction of ¥ to C.(Y)(X) x O determines a
continuous map

U C(Y)(X)x O — C(Y)(X) x C(Y)(X).
Let

U:Zm(XXxY)X O — Zim(XxY),  U:ZY)(X)x0 — Z.(Y)(X)

be the maps defined by linear extension of the maps 7 o ¥ and 7/ o U/ respectively. Note
that the fact that 7 o U (and therefore also 7’ o U’ ) is a monoid homomorphism on each
Crim (X xY) x {7}, and therefore extends by linearity to Z, 4, (X x YY) x {7}, is part of
the assertion of Theorem M.1.

We now choose a smooth embedding I C O with endpoints 0 and 1, and we define

be: Ko X T — Zo(X XY) | ¢ K. x T — Z,.(Y)(X)

by restriction of ¥ and ¥’ respectively. One checks immediately that these maps satisfy

the conditions of Definition 4.1, namely: ¢/, covers ¢, with respect to D; (%)‘K < {0} and

(qﬁg)‘K,x{o} are the natural inclusions; and ((ﬁe)‘K <} lifts to Z,.(Y)(X) for any 7 # 0.
Thus, Lemma 3.2 implies that D : Mor(X, Z,.(Y)) = Z,4m(X X Y) is a weak homtopy
equivalence.

We observe that D determines a map of fibration sequences (cf. Proposition 1.3):

Zo(PH(X) — Z(PH(X) — ZHX)

D l D l D l (3.3.1)
Za(X x P Zo(X xPY) — Z,(X x Ab).

The preceding argument together with the 5-Lemma implies that the right vertical
arrow is a weak homotopy equivalence. Thus, D : Z(X) — Z,,_+(X), defined as the
composition of this map and the weak homotopy equivalence Z,,_¢(X) — Z,,(X x A?), is
also a weak homotopy equivalence. []

We recall that the homotopy groups of Z¢(X) and Z,.(X) are called “morphic coho-
mology groups” and “L-homology groups” respectively. These are indexed as follows:

def def

L'HM(X) F 7y 1 (2Y(X)) , LeHp(X) E mp_on(Z.(X)).

Using this notation, we re-state the second assertion of Theorem 3.3 and the remark
following Proposition 2.7.

18



Corollary 3.4. The duality map D : Z"(X) — Z,,—+(X) of (2.1.2) induces isomorphisms

D
~

LYH*(X) 2 Ly yHom_i(X).

Moreover, these isomorphisms fit in the following commutative square

DRD
L'H*(X)® L*HY(X) ——— Ly—tHam—1(X) ® Lyy—uHam_o(X)

| -

LH—UHIH—E(X) — Lm—t—uHZm—k—e(X)

Using Theorem 3.3 we now define a Gysin map for cocycle spaces compatible with the
duality map. We can view this as a supplement to Propositions 2.2 and 2.3.

Proposition 3.5. Assume that X andY are smooth. Consider a regular closed embedding
i: Xo C X of codimension c. Then there exists a weak homotopy class of maps (a Gysin

map)
it Mor(Xo, Zrye(Y)) — Mor(X, Z,.(Y)) (3.5.1)

which fits in the following weakly homotopy commutative square

Mor(Xo, ZrrolY)) ——s Mor(X, Z,(Y))
D J l D (3.5.2)

Zoim(XoxY)  ——  Zom(X x Y).
Moreover, there exists a weak homotopy class of maps
i Z274(Xy) — Z4X) (3.5.3)
which fits in the following weakly homotopy commutative square
Zt=¢(Xy) —— ZHX)

D l l D (3.5.4)



Proof. Using Theorem 3.3, we define i' as follows:

.1 def

7 D loi,oD. (3.5.5)

So defined, i' fits in weakly homotopy commutative diagrams (3.5.2) and (3.5.3). [

In constructing the Gysin map €' of Proposition 2.4, we required the following variant
of Theorem 3.3.

Corollary 3.6 Assume that X and Y are smooth, and let Yy C Y is a closed subvariety
of codimension < r. Then the naive group completion

Z.(Y;Y))(X) — Z.(Y)(X)

of the embedding C,.(Y;Yp)(X) C C,.(Y)(X) of (2.3.3) is a weak homotopy equivalence.

Proof. The Moving Lemma (Theorem M.1) enables one to move all effective cycles of
degree < e in Crym (X X Y) so that the resulting cycles properly intersect all effective
cycles of degree < e and of dimension > n — r. We apply this result to move effective
cycles in Cp 4, (X X Y') with respect to the cycles z x Y;x € X and the cycle X x Y. Thus,
the proof of Theorem 3.3 applies with only notational changes to prove that

Z(Y:Y)(X) — Zm(X xY)

is a weak homotopy equivalence. Combining this fact with Theorem 3.3 implies the corol-
lary. [

§4. Compatibility with Poincaré Duality

The purpose of this section is to prove that the duality isomorphism D of Corollary
3.4 is compatible with Poincaré duality. This gives some justification for our view that D
is a natural duality for cycles. It also leads to some interesting applications.

We begin by recalling the natural transformations ® : L, Hy(X) — Hy(X;Z) and
® : L'H*(X) — H¥(X;Z) introduced in [FM;] and [FL;] respectively. Let s : Z.(X) A
S? — Z._1(X) be the s- operation discussed prior to Proposition 2.5. This induces a
map s : 7;2,.(X) = mj122,_1(X). Beginning with m4_9, 2, (X) = L, H(X) we iterate
this map r-times and then apply the Dold-Thom isomorphism 7 : 7w Zy(X) =, Hy(X;Z).
This gives the following.

Definition 4.1 The natural transformation
®: L. Hp(X) — Hp(X;Z)
is defined by setting ® = 7o s".
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We recall that Zt(X) % 9tor(X, Zo(At)) is the naive group completion of the monoid

Mor(X, Co(Ph))/Mor(X,Co(PP~1)) which admits an evident continuous homomorphism
Mor(X, Co(Pt))/Mor(X,Co(Pt=1)) — Map(X, Zo(At)). (Here Map(A, B) denotes the
continuous maps with the compact-open topology.) Group completing this homomorphism
gives a continuous homomorphism

® : Mor(X, Zo(A?Y)) — Map(X, Z5(AY)). (4.1.1)
By the Dold-Thom Theorem there is natural homotopy equivalence Zo(A') = K(Z, 2t).

Definition 4.2 The natural transformation
d: L'H*(X) — HNX;Z)

is defined by applying the map (4.1.1) to the homotopy groups me;—j and then using the
natural isomorphism oy Map(X, K(Z,2t)) = H*(X; Z).

For the proof of Theorem 4.4 below we shall need the following special case of the
“Kronecker pairing” induced by the slant product construction

Mor(X,Cr(Y)) x Cp(X) — Cryp(Y) (4.2.1)
given in [FL;;7.2].

Proposition 4.3. When r = p = 0, the slant product (4.2.1) is given by sending the
pair (f,>"x;) € Mor(X,SPHY)) x SP(X)) to > f(x;) € SP¥*(Y). By specializing to
Y = P!, this induces a slant product (or “Kronecker”) pairing

T IMot(X, Zo(AY)) © mar—i Z0(X) — marZ0(A) = Z.

Proof. The asserted identification of the special case of the slant product defined in
[FL1;7.2] for effective cocycles and cycles is immediate from the definitions. This clearly
defines a pairing

def

[Mor(X, Co(Ph))/Mor(X, Co(PT1))] x Co(X) — Co(PY)/Co(PH1) % ¢y(AY). (4.3.1)

The map on homotopy groups of the naive group completion of this latter map is the
asserted slant product pairing. [

The following theorem demonstrates that the natural transformations above intertwine
the duality map D with the Poincaré Duality map.
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Theorem 4.4. If X is smooth, then the duality isomorphismD : L'H*(X) — L, _tHom_1(X)
of Corollary 3.4 fits in the following commutative square

LHE(X) —— Lo yHom n(X
( ) E— m—t 2m—k( )
® l l 7 osm—t (4.4.1)

HY(X:Z) ——  Hop n(X:Z)
where P is the Poincaré Duality map sending o € H*(X;Z) to a N [X] € Hap_1(X; Z).
Proof. In [FL1;5.2], we showed that the composition
Pos™t: ['H¥(X) — L™H*(X) — H¥(X;Z)
equals ®. Thus, Proposition 2.6 reduces us to the special case t = m. The commutativity

of (4.4.1) for the special case ¢ = m is equivalent to the commutativity of the associated
squares

D
L™H*(X,F) —— LoHom_i(X,F)
® l l r (4.4.1)

P
HF(X,F) ——  Hop k(X F)
as F ranges each of the prime fields Q, Z/¢Z. Since the evaluation and intersection products

H*(X,F)® Hy(X, F) 5 Hy(X,F) | Hom—y(X,F)® Hy(X,F) -2 Hy(X, F)

are perfect pairings, to prove the commutativity of (4.4.1) g it suffices to prove that

(®(a),7) = 7(D(a)) @y
for all « € L™H*(X,F), and all v € Hy(X,F). (Recall that (¢,v) = (¢ N [X]) ® v
for € H¥(X,F).) To prove this equality, it suffices to prove the commutativity of the
following diagram:

()

vor | [ o

Wzm_k(mot(X, Zo(Am)),F) ® Wk(Zo(X),F) ;) Wzm(ZO(Am),F)

D& prt J l _ (4.4.2)
Tom—k(Zm (X X A™), F) @ mg (2 (X X A™), F)) ——— mom(20(A™), F)
prioT ! ®@prior~1 T T €
Hopm (X, F) ® Hi(X, F) — Ho(X, F)
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where \ is the map in homotopy with F-coefficients induced by the naive group com-
pletion of (4.3.1) and € is the natural isomorphism

€ = proy, opry : mp(Zo(X), F) — Tom(Zm(X X A™), F) — mon(Z0(A™), F).

The commutativity of the upper square of (4.4.2) follows immediately from the ob-
servation that the evaluation product (,) : H¥(X,F) ® Hy(X,F) — Hy(X,F) can be
represented as the pairing on homotopy groups induced by the map

Map(X, Zo(A™)) x Zo(X) — Zo(A™)

sending (f,> ;) to > f(x;). (See [FLy, §8] for example.)
To verify the commutativity of the middle square of (4.4.2), it suffices to establish the
homotopy commutativity of the square

Mor(X, Zo(A™)) x Zo(X) SRR Zy(A™)

D x pr? l l _ . (4.4.3)

pra,ce

Zn(X X A™) x Z(X x A™)  — "5 Zo(A™)

Observe that for any f : X — Co(P™) and Y x; € SP¥(X), the cycles D(f) and pri (> x;)
intersect properly in X x P™ and

pro, [ D(f) epri (Y )| = D ().

Thus, the homotopy commutativity of (4.4.3) follows from the result proved in [FG;3.5.a]
asserting that the intersection product on cycle spaces for the smooth variety X x A™
can be represented by the usual intersection product when restricted to the naive group
completions of pairs of cycle spaces consisting of cycles which intersect properly.

Finally, to prove the commutativity of the bottom square of (4.4.2), we claim that it
suffices to prove the commutativity of the following diagram

I'* X2
Homi(X,F) @ Hy(X,F) 5 HBM (X x A™ F)@ HBM, (X x A™, F)

2m-+k
xl lx

(pry xpry)*

Hom(X x X, F) oy HBM((X x A™)2,F)
AlJ{ J{Al
Hy(X, F) SR HEM (X x A™, F)
-l L

(4.4.4)
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where HZM (V) of a quasi-projective variety V' is the Borel-Moore homology of V. To verify
this reduction, first recall that the Dold-Thom isomorphism extends to quasi-projective
varieties 7 : 7, Zo(V) = HEM (V). Thus, the composition of the maps in the right column
can be identified with the map pr,, oe of (4.4.2) using the naturality of 7 and the homotopy
invariance of Lawson homology. On the other hand, the composition of the maps in the
left column of (4.4.4) is the cap product pairing, so that it does indeed suffice to prove the
commutativity of (4.4.4).

The evident intertwining of the external product x and the flat pull-back pr] implies
the commutativity of the top square of (4.4.4). As shown for example in [FG;3.4.d], the
Gysin maps and flat pull- backs also suitably intertwine, thereby implying the commuta-
tivity of the middle square of (4.4.4). The bottom square commutes by the definition of e.
O

Remark 4.5. In [FL;] we introduced the groups

def

L'HM(X;Y) T 7wy pMor(X, Z,_4Y)

for 0 < k£ <2t. When X and Y are smooth, our Duality Theorem 3.3 gives isomorphisms

o~

D:L'H*(X;Y) — Linsm)—tHamsm)—x(X X Y).

Now for smooth X and Y there is a diagram

D
LtHk(X; Y) g L(n+m)—tH2(n+m)—k(X X Y)

o | | @

, P
P H(X:H;j(Y;Z)) — Hopnm)—u(X x Y3 Z)

j—i=2n—k

where the maps ® are natural transformations (cf. [FL1], [FM;]), and where P is the
Poincaré duality map

i P ~
P H(X:H;(Y;Z) — @ Hi(X;Hj(Y;Z) = Hypim)—r(X x Y;2Z).
j—i=2n—k Jjt+i=2(n+m)—k

It is natural to suppose that this diagram commutes.
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§5. Applications

The duality theorems have a variety of consequences, some of which we now present.
Throughout this section X and Y will be smooth projective varieties of dimensions m and n
respectively. We fix a positive integer » < m and set ¢ = m—r. We recall for emphasis that
Mor(X, Z,.(Y)) is simply the Grothendieck group of the monoid of morphisms X — C,.(Y)
furnished with the compact-open topology. We also recall the definition of the morphic

cohomology groups
LIH*(X;Y) = moq_1:Mor(X, Z.(Y)).

5.A Algebraic Cocycles modulo Algebraic Equivalence. We recall the basic iso-
morphism (cf. [F1;1.8])

L,Hyp(X) = Ap(X) o {algebraic p—cycles on X }/{algebraic equivalence}.

where A, (X) is the Chow group of algebraic p-cycles on X modulo algebraic equivalence.
There is an analogous interpretation of the group LIH?(X; Y) = mpMor(X, Z,.(Y)). Each
element of Mor(X, Z,(Y)) can be written as a difference f — g where f,g : X — C,.(Y)
are algebraic families of effective cycles on Y parameterized by X. Two such pairs (f,g),
(f',g") determine the same element if there are morphisms h,h’ with (f + h,g + h) =
(f"+h',g"+h"). The pairs (f,g), (f',¢’) are algebraically equivalent in Mor(X, Z,.(Y))
if there exist h,h’ and an algebraic curve joining (f + h,g + h) to (f' + h',¢' + 1’) in
Mor(X,C.(Y)) x Mor(X,C,.(Y)). We have a similar description of myMor(X, Z,.(Y)),
except that the condition is that two pairs can be connected (after translation) by a real
curve. Since Mor(X,C,(Y)) is a countable disjoint union of quasi-projective varieties (see
[FL1]), two points in Mor(X,C.(Y))? can be joined by a real curve if and only if they can
be joined by an algebraic curve. This shows that

LYH?1(X;Y) = {algebraic g—cocycles on X with values in Y'}/{ algebraic equivalence}
=  Mor(X, Z,.(Y))/{algebraic equivalence}

The Duality Theorem 3.3 now provides the following non- obvious isomorphism.

Theorem 5.1. Let X be a smooth projective variety of dimension m and q a non-negative
integer with ¢ < m. Then there are natural isomorphisms

Mor(X, Zo(P7)) N B
{algebraic equivalence} Am—q(X) X Am—g-1(X) X x Ap(X)

and
moMor(X, Zp(A7)) =2 A,_q(X).

Proof. The second isomorphism is obtained immediately by applying my to the second
homotopy equivalence of Theorem 3.3. The first isomorphism follows similarly by using
the projective bundle theorem in L-homology proved in [FG;2.5] together with the first
homotopy equivalence of Theorem 3.3. [
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5.B Flag manifolds Recall that a variety Y is said to have a cell decompositon if
there is a filtration of Y by subvarieties ) = Y_; C Yo C Yy C --- C Y = Y such that
Y; -Y;_1 =11, AN for each j. Such varieties include all homogeneous varieties, and in
particular all generalized flag manifolds such as projective spaces, Grassmannians, etc. We
recall from the work of Lima-Filho [Li;] that for any such Y the natural inclusion

Z.(Y) C T2 (Y)

into the topological group of integral cycles of (real) dimension 2r on Y, is a homotopy
equivalence. In particular, there is a homotopy equivalence

Z(Y) =[] K(Hor (Y5 2),) (5.2.0)

As a result of duality there is the following cohomological version of these results

Theorem 5.2. If X and Y are smooth projective varieties with cell decompositions, then
there is an isomorphism

T Mor(X, Z,.(Y)) = Hopmgr)4(X X Y5 Z). (5.2.1)
Furthermore, the inclusion
Mor(X, Zo(A?)) — Map(X, Zy(A?)) (5.2.2)

is a weak homotopy equivalence.

Proof. The first statement follows immediately from the Duality Theorem 3.3 and (5.2.0).
The second statement is equivalent to the assertion that the natural transformation

®: LIH*(X) = H*(X;Z)

is an isomorphism for all ¢,k with 2¢ > k. Now in [Li;] it is proved that the natural
transformation 70 8™~ : Ly, Hop—(X) = Hop—r(X; Z) is an isomorphism for all ¢, k
with 2(m — ¢) < 2m — k. Together with (4.4.1) this proves the result. [

Remark. If the general compatibility with Poincaré duality conjectured in 4.5 above holds,
then Theorem 5.2 extends to the assertion that when X and Y have cell decompositions,
the inclusion

Mor(X, Z,.(Y)) — Map(X, Z,.(Y))

is a homotopy equivalence.

5.C Theorems of Segal-type Duality tells us something about rational families of cycles
on a smooth variety.
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Theorem 5.3. Let Y be a smooth projective variety of dimension n. Then for each pair
of non-negative integers r, k with r + k < n there is a weak homotopy equivalence

Mor(P*, Z,.(V)) =2 Z.(Y) x Z,1(Y) x -+ x Zpyp (V)

w.h.e.
Proof. By Theorem 3.3 we have Mor(P*, Z,.(Y)) & Z..(P* xY), and from [FG;2.5]
we know that there is a weak homotopy equivalence Z;1,.(P¥ x V) 2 Z.(Y) x Z,,11(Y) x
N ZT+I<; (Y) ]

Setting £ = 1 gives the following.

Corollary 5.4. The space of parameterized rational curves on Z,.(Y') is weakly homotopy
equivalent to Z,.(Y') x Z.41(Y).

A basic result of Graeme Segal [Se| states that the natural embedding
Morg(P*, PY) C Map,(P', P')

of the space of morphisms of degree d into the space of continuous maps of degree d (with
the compact-open topology) is 2d- connected. In particular, Segal asserts that

lim Morg(P!, P!) C Jim Map, (P!, P')
—00

d—oo

is a weak homotopy equivalence. Subsequent work [CCMM] has identified the stable
homotopy type (stable in the sense of spectra, not in the sense of increasing degree) of
Morg(P1, P™). Setting X = P! and using the identification SP™(P1) & P™, one concludes
as a special case of Corollary 5.4 in conjunction with Theorem 4.4 that

lim Morg(P*, P")) C  lim Mapy(P*, P™).
n,d n,d

is a weak homotopy equivalence. For this reason we call the results of this section “theorems
of Segal-type”.

5.D Inverse to Gysin Maps In this section we present a consequence of the Moving
Lemma M.1 which underpins the Duality Theorem. This result has proved useful in our

early discussion (e.g., in the proof of Proposition 2.7).

Proposition 5.5. Let p: P — Y be a flat map of relative dimension ¢ between smooth
projective varieties with section s : Y — P. Then

s op*: Z,(Y) — Z,1o(P) — Z.(Y)
is a weak homotopy equivalence.
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Proof. Let C,4c(Y; P) C Cr4c(Y') denote the submonoid of those effective r + c-cycles on
P which meet s(Y') C P properly. By Corollary 3.6 (or, more directly, by its proof), we
conclude that the map on naive group completions

Zr4e(Y;P) — Ziqe(P)

is a weak homotopy equivalence. On the other hand, [FG;3.4] asserts that the Gysin
map s' when restricted to Z,,.(Y; P) is represented by intersection with s(Y). Clearly,
intersection of a cycle p*(Z) with s(Y) is merely the cycle Z for any r-cycle Z on Y. O

5.E A Dold-Thom Theorem and a fundamental class for morphic cohomology
The classical Dold-Thom Theorem [DT] establishes an equivalence of functors which in
our context can be written as

LoH,(X) = Hp(X; Z) for 0<k <2m.
By the Theorems 3.3 and 4.4 this implies the following result in cohomology.
Theorem 5.6 For any smooth projective variety X of dimension m there are natural

ismorphisms
L™H*(X) = H*(X; Z) for 0<k<2m.

The classical Dold-Thom isomorphism is conventionally written as the isomorphism
. Z0(X) 2 H (X Z),
In analogy, the “morphic cohomology version” above can be rewritten as
mMor(X, Zo(A™)) =2 H*™ *(X; Z).

As a corollary of Theorem 5.6 in the special case £k = 2m, we obtain a “Noether
normalization of virtual degree 1”7 giving a well-defined fundamental class in the morphic
cohomology of X.

Corollary 5.7. Let f,g: X — SPYP™) determine [f — g] € moMMor(X, Z(A™)) corre-
sponding to the fundamental class 1x € H*™(X;Z) under the isomorphism of Theorem

5.6. Let Loy, € H*™(Z5(A™); Z) denote the canonical class. Then

F*(t2m) = 9% (t2m) = 1x € H*™(X).

Proof. The identification of moMap(X, Z5(A™)) with H?>™(X;Z) is achieved by sending
¢: X — Zo(A™) to ¢*(tam). O
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5.F Filtrations in Cohomology Recall that LIH*(X) = ma,_;Mor(X, Zo(A)) is
defined for all ¢ > 0, and there are commutative triangles

LIH*(X)
N @
sl H*(X;Z)
S
LIt H*(X)

where ® denotes the natural transformation and s is the operation from [FL;| discussed
in §2. It is natural to ask at what point the images of these maps stabilize. As we verify
in the following theorem, a strong form of stabilization is valid when X is smooth.
Theorem 5.8. Let X be a smooth projective variety. Then for any q > m,

s: LIH*(X) — LIT'H*(X)

is an isomorphism.

Proof. We interpret the s-map via the following diagram

Mor(X, Zo(AN))AS2 —— Mor(X, Zy(ATHY)

Dxi | |p

X

Zm(X x A9) x Zp(AY) ——  Z,(X x At
pr* x 1 T T pr*
Zo(X x AT™) x Zy(AY) s Zy(X x Adtl-m)
where i : S — Zo(A™) is given by S2 2 Pl — Zy(P!) — Zy(Al!) sending p € S? to
p — {oo}. Since the map on homotopy induced by the bottom horizontal arrow is simply
the Thom isomorphism assoicated to the trivial rank-1 bundle over X x A9~ we conclude
that s is a weak homotopy equivalence. [
In [FM;], [FM2], a “topological filtration on homology”

T, Hy(X;Z) % image{ros": L, Hy(X) — Hi(X;Z)}

(decreasing with respect to ) was introduced and shown to have a number of interesting
properties. In [FL;], we considered the cohomological analogue:

TIHY(X;Z) < image {®: LIH*(X) — H*(X;Z)}.
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Our final theorem asserts that for X smooth this cohomological analogue is exactly the
Poincaré dual of the topological filtration on homology. The “proof” of this theorem
consists in observing that Theorem 5.9 is merely a restatement of Theorem 4.4.

Theorem 5.9. If X is smooth, then the Poincaré duality map P : H*(X;Z) —
Hsp k(X Z) induces isomorphisms

P:TIHY(X;Z) — T gHom—o( X;Z)
of the topological filtrations in all degrees.

5.G. Adjointness within the Kronecker pairing. We shall now prove that under
the duality isomorphism the Kronecker pairing is equivalent to the intersection pairing.
This establishes the degeneracy of the Kronecker pairing in some cases.

We recall that in [FG] an intersection product Z,(X) ® Z,(X) — Zpiq-n(X) was
defined for smooth n- dimensional varieties X, when p + ¢ — n > 0. This product has
the property that when restricted to pairs of cycles which meet in proper dimension, it is
homotopic to the standard intersection of cycles (as in [Fu]). One checks that this pairing is

compatible with the equivalences Z,(X) = Zp+1(X x A') and thereby induces a pairing

LyHp(X) ® LeHy(X) —  Lptq-nHpro—2n(X)

for k+£¢ > 2n, where for negative integers —r one defines L_, H,,(X) = LoHp, 2, (X X A")
=~ H,(X; Z).

Theorem 5.10. Let X be a smooth projective variety of dimension m, and fix integers
p, k,q with 2p < k < 2q. Consider on X the Kronecker pairing

k: LIHY(X)® LyHp(X) — Z
introduced in [FLy], and the intersection pairing
o i Ly gHom i(X)® LyHy(X) — Z

established in [FG]. Then
k(p, c) = Dypec

for all p € L1H*(X) and ¢ € L,Hy(X).
Proof. Consider the diagram
Mor(X, Zo(AD)) A Z,(X) ——s  Z,(A9)
DA Y1 l

Zn(X X AY) A 2,4 4(X x A9) [ (5.10.1)

-
(pry)«

Z,(X x A9) — " Z,(A9).
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where the map ¢ is given by graphing the cocycle over the cycle and then pushing into
A7, One verifies directly that ¢ coincides with the Kronecker map defined in [FL;, §7].
If we assume for the moment that e is the standard intersection product defined only on
the subset of pairs of cycles which meet properly, then the diagram (5.10.1) commutes on
the nose. It therefore follows from [FG;3.5] that this diagram commutes up to homotopy.
Taking homotopy groups “ma,_p ® Ti_2," yields a commutative diagram

K

LIH*(X)® LH(X)  —— Z
Dold |
Ly —gHop—1(X) ® L,Hp(X) |
N
Lq—pHO(X) ; Z. [

Now the intersection pairing e above factors through the topological intersection prod-
uct ey, i.e., there is a factoring of e of the form

Lip—qHzm—1(X) ® Ly Hi(X) et Hapy 2y (X5 Z) @ Hop (X5 Z) v g,

where ® is the natural transformation as above. For example when 2p = k = 2¢ we have

Am—p @Ay 23 Hop_n(X:; Z) ® Hp(X; Z) 23 Z,

and there are many well-known cases where the kernel of ® has large rank, i.e., where
homological equivalence does not imply algebraic equivalence. It follows that the pairing

Am_p @A, — Z

is degenerate in such cases (numerical equivalence does not imply algebraic eqivalence).
By Theroem 5.10 the Kronecker pairing is also degenerate over Q in such cases.
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Appendix C. Cocycles and the compact- open topology.

In this appendix, we correct the mistaken discussion given in [FLj;1.5] of the rela-
tionship between the compact-open topology on the monoid 9Mot(U,C,(Y)) for a quasi-
projective variety U and the topology induced by the embedding

G:Mor(U,Cr(Y)) — Copm(UXY) X Copn(X X Y)/Crim(Xoo xY)  (C.1.0)

via the graphing map. When U is projective, these topologies coincide. However, if U is
not projective, then the topology induced by G is equivalent to the topology of uniform
convergence on compacta with uniformly bounded degree. In [FL;] the added condi-
tion of uniformly bounded degree was overlooked. We present here a thorough discussion
of these topologies.

Throughout this appendix, U shall denote a quasi-projective variety of dimension m,
X D U will denote a projective closure with Zariski closed complement X, C X, Y will
denote a projective variety of dimension n, and r will be a non-negative integer < n.

We recall that the graphing construction (C.1.0) is always injective. We define
C-(Y)(U) to be the topological submonoid of C, 4, (U X Y) given as the image of G.

Proposition C.1. The inverse of the graphing construction
G :C.(Y)U) — Mor(U,C(Y))

is continuous, where Mor(U,C,(Y')), considered as a space of continuous maps from U to
C-(Y), is given the compact-open topology.

Proof. It will suffice to construct an evaluation mapping
e:C(Y)U)xU —C.(Y) (C.1.1)

and establish that it is continuous (since, by a standard lemma, the continuity of (C.1.1)
implies that the adjoint mapping is continuous into the compact-open topology.) When Y
and U are smooth, we define the evaluation map € using intersection of cycles: €(f,u) =
I(f) e ({u} x Y). The continuity of € in this case follows from the continuity of the
intersection product proved in [Fu| for families of cycles which meet in proper dimension.
When U is smooth but Y is not necessarily smooth, we consider a projective embedding
Y C P¥ and replace Y by P¥ (i.e., we now write f(u) = I'(f) e ({u} x PN) where the
intersection takes place in U x PY).

If U is not smooth, we consider a resolution of singularities 7 : U — U and let

€: C(Y)U) x U — Cp(Y) be the evaluation map (C.1.1). Note that composition of
morphisms ¢ : U — C,.(Y) with m induces an injective map

7 C(YV)(U) = Co(V)(D).

The composition €o (7% x 1) : Cp(Y)(U) x U — Cr(Y) descends to € as in (C.1.1), since
(G(pom),u) = {u}t x (¢om)(u).
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We now prove the continuity of €, assuming for the moment that we have shown that
7* is continuous. Let a,, — a be a convergent sequence in C,(Y)(U) x U. Choose {a,}
in C.(Y)(U) x U with (Id x 7)(@n) = a,. Since Id x 7 is proper, for every subsequence
of {a,} there is a sub-subsequence of {a,} such that @, — @ upstairs, and so €(a,) =
€((Id x m)(ayn)) — €((Id x 7)(a)) = €(a). This proves the continuity of e.

It remains to prove that 7* is continuous. Let X be a compactification of U, and set
Xow = X —U. Let X D U be a compactification of U such that 7 : U — U admits an
extension 7 : X — X. Consider a subset A C Cpyqrr (UXY) = Cppypr (X XY) /Crrygrr (X oo XY)
which lies in the image of Cp4 <a(X X Y'), the compact space of effective (m+r)-cycles of
degree < d on X xY (for some projective embedding of X xY'). Let B C Cyym,<a(X xXY)
denote the constructible subset of those effective r + m-cycles each component of which
when restricted to U x Y is equidimensional over U. As argued in [FG;1-6] using noetherian
induction and generic flatness of families, B C (7 xId). (CTm,Se()Af xY")) for some sufficiently
large e. (Any algebraic family of subschemes on X X Y parametrized by some variety C
is generically flat over (', and the closure in X x Y of the intersection of the family with
Reg(U) x Y is also generically flat over C.)

The continuity of 7* is now proved as follows. Consider a convergent sequence I'(f,,) —
I'(f) in C.(Y)(U). By the paragraph above, the cycles 7*(I'(f,)) = I'(fn) and 7*(I(f)) =
F(f) (where ﬁ = fpom and fn = f om) have closures of uniformly bounded degree in
X x Y. Furthermore, we see that I'(f,) — I'(f) over Reg(U) x Y since m x Id is an

isomorphism there. By compactness, every subsequence of I'(f,,) has a sub-subsequence
which converges to an effective cycle, say A, on U xY. From the convergence on Reg(U)xY

we see that A = I'(f) + ¢o for some effective cycle ¢ supported on 7~ !Sing(U) x Y. We
shall show that |co| C |T'(f)| and therefore ¢y = 0 because dim{|T'(f)|N7 = Sing(U) x Y} <
m+7r —1. If & € |co|, then there exist z,, € |['(f,)| such that z, — # in U x Y. Then
(m x Id)(z,) — (7 x Id)(z) and so (7 x Id)(z) € |I'(f)| by Proposition C.2 below. This

implies that x € |I'(f)| as claimed. O

Proposition C.2. Let {W,,} be a sequence of effective r-cycles on Y which converge in
C.(Y) to some r-cycle W. Consider a sequence of points {y,} with y,, € |W,,| and assume
that this sequence converges to some point y € Y. Then y € |W|.

Proof. We assume that Y is provided with the metric induced from an embedding into
some projective space. A basic result in the theory of positive currents (cf. [H]) states that

Mass (W"‘B (z,)> > o€

for all w € W), and all ¢ > 0, where cg,. > 0 is a constant depending only upon r and where
B.(7') is the open e-ball centered at z’.

Fix some ¢ > 0. Set ¢ = xw"/r! where w is the restriction of the Kahler form of
projective space to Y and where x denotes the characteristic function of the ball Bo(z).
Then for all n sufficiently large that y,, € B.(y) we have

Cop€2" S/ qg — /q < Mass(W N Bac(y)).
W, w

n
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Hence, y € |W| as asserted. [

We denote by Map(U,C,.(Y)) the space of continuous maps f : U — C,.(Y) equipped
with the compact-open topology, i.e., the topology of uniform convergence on compact
subsets.

Theorem C.3 The topology on C.(Y)(U) is characterized by the following property: a

sequence {f; :i € N} C C.(Y)(U) converges for this topology if and only if

(i) {fi : i € N} converges when viewed in Map(U,C,.(Y)).

(ii) The associated sequence {Z; : i € N} C C.(Y)(U) of graphs has the property that for
some Zariski locally closed embedding U x Y C P, there is a positive integer E such
that each Z; has closure Z; C PN of degree < E.

We call this topology on C.(Y)(U) inherited from that of C,.(Y)(U) the topology of

convergence with bounded degree.

Proof. Proposition C.1 implies that convergence of {f; : i € N} C C,.(Y)(U) implies (i).
Recall from [Li;] that C,4, (U X Y') has the compactly generated topology associated to
the increasing filtration

... C Cr—{-m,gd(U X Y) C...C Cr—{-m,gd—i—l(U X Y) C.. .Cr+m(U X Y),

where

Crim,<a(U xXY) ef image{H Crom,e(X XY) — Criym (U x Y)}
e<d

If the sequence of graphs {Z; : i € N} associated to {f; : i € N} converges to Z, then the
subset {Z; : i € N} U {Z} is compact and therefore lies in some Cyyy <a(U x Y). This
immediately implies convergent condition (ii).

Conversely, assume { f; : i« € N} satisfies condition (i) and that its associated sequence
of graphs {Z; : i € N} satisfies conditions (ii). Let g : U — C,(Y) with graph Z; denote
the limit in Map(U,C,.(Y)) of {f; : i € N}. Let Z; denote the closure of Z; in X x Y.
By hypothesis (ii), any subsequence of {Z; : i € N} admits a convergent subsequence
{Z;:j € M C N} CCrym(X xY). Let Z € Crin(X x Y) denote the limit of such a
convergent sequence. It suffices to prove that the restriction Z of Z to U x Y has support
contained in the support of Z,, for then Proposition C.1 implies that Z = Z,.

Consider an arbitrary point (z,y) € |Z| C U x Y. The convergence of {Z;} to Z
implies that for every e > 0 there exists some N, such that |Z;| N B.(z,y) # () whenever
j > N.. Hence, there exists a sequence of points (z;,y;) € |Z;| converging to (z,y). In
particular, the sequence {y; € |f;(z;)|} converges to y. By choosing j sufficiently large,
we may assume that the x;’s lie in some compact ball centered about x in U. Because
{f;} converges to g on compact subsets of U, we conclude that {f;(z;)} converges to g(z).
Proposition C.2 thus implies that y € |g(z)| as required. O

As we make explicit in Theorem C.4, the condition of bounded degree is redundant if
the domain U equals X (i.e., is projective).

34



Theorem C.4. The graphing construction
G:Mor(X,C.(Y)) — C.(Y)(U)

is a homeomorphism.

Proof. By Theorem C.3, it suffices to show the following: for any convergent seqence { f,,}
in Mor(X,C,(Y)), the associated sequence of graphs {Z,,} has bounded degree. For this,
it suffices to prove that homology classes [Z,] € Hop42-(X X Y) are independent of n for
n sufficiently large. (Namely, the homology class [Z] determines the multi-degree of Z,
which in turn determines the degree of Z,,.) This is implied by the assertion that the maps
fn are all homotopic for n sufficiently large, for a homotopy between f,,, f,,, determines an
integral current on X x Y x I with restrictions to Z,,, Z,.

The fact that f,’s are homotopic for all sufficiently large n is a consequence of the
following elementary lemma.

Lemma C.5 Let P be a polyhedron. Then there exists an € > 0 such that whenever
f,g9: A — P are continuous and satisfy

If=glls < e

then f is homotopic to g.

Proof. We embed P C RY and assume without loss of generality that the metric on P is
the one induced from this embedding. Let W D P be a neighborhood of P in R¥ with a
retraction 7 : W — P. Then there exists € > 0 such that for all z,y € P with d(z,y) <¢,
the line segment Ty C W. Hence, if ||f — g|lco < € then fi(z) = (1 —t)f(z) + tg(x) is a
homotopy from f to g in W and r o f; gives the desired homotopy in P. [J

We conclude with two important examples which illustrate the subtleties of the topol-
ogy on cocycle spaces.

Example C.6 The injective continuous map D : Mor(X, Z,(Y)) = Zptr (X X Y)
given by group completion of the graphing map, is not a topological embedding. To see
this, let X =Y = P! and for each integer n > 0 let ', € Mor(P,Co(P1)) defined by the
mapping

y=ux/n

in affine coordinates. Then the sequence of cocycles X, of D(Ty, 41 —1T',) converges to 0 in

Z1 (P xP1). This is clear since D(I',,) converges to the effective cycle P! x {0} +{oo} x P1.
However, the sequence Y,, does not converge to 0 in Z;(P! x P!). This is seen as
follows. Let M = Mor(P!, Co(P')) and let A C M x M denote the diagonal. Then
by definition ¥,, — 0 in Mor(PL, Z4(PL)) iff for every M-saturated open neighborhood
U of A there is an N to that (I';,41,1,) € U for all n > N. Now let Y = M x M —
{(Tr41,T0n)}52, and observe that U is a saturated open neighborhood of A. (It is open
because the limiting cycle (¢, c) with ¢ = P! x {0} + {oo} x P! is not in A.)
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Example C.7 The injective continuous map G : Mor(X,Co(A?)) — Cp (X x AY) given
by the graphing map, is not a topological embedding. 'To see this, consider the sequence
of mappings 1,, € Mor(PL, P?) C Mor(PL,Cy(P?)) given in homogeneous coordinates by
Yn([z:y]) = [2: Ly 5y], with graphs

U =G(n) ={([z: 9], [v: +y: 5y) e P' xP? : z,y € C}.

We take the distinguished line P* C P? to be P! = {[z : w : 0]}. Then one verifies that
[y, — Plx[1:0:0]+[0:1]x P! as cycles in P! x P2. Hence, the sequence I';, converges
to “0” in C1 (P! x A?) = C; (P! x P?)/C, (P! x P1), however, it does not converge at all in
Mor(PL,Co(A2)) = Mor(PL,Co(P?))/Mor(PL, Co(PL)).

Appendix M. The Moving Lemma for Families.

For the convenience of the reader we present here the statement of the Moving Lemma
for Families of Cycles of Bounded Degree proved in [FLy]. The main result there is sub-
stantially more general. We quote here the form of the theorem which is needed for the
duality theorems of §3. It can be found in [FLo; 3.2 and 3.3]

Theorem M.1. Let X C P& be a complex projective variety of dimension m. Let r,s,e
be non-negative integers with r +s > m. Then there exists a Zariski open neighborhood
O of {0,1} in C, and a continuous algebraic map

U:Cy(X) x O — Cy(X)*2
which has the property that 7o U induces by linearity a continuous map
U: Z(X)x O — Z4X)

satisfying the following. Set 1, for T € O.

(a) ’Qb() = Id.
(b) For any Z € Z4,(X), the restriction

| = \I]‘ZS(X)X{T}

\p\{z}xo : {Z} x O — Z,(X),

determines a rational equivalence between Z and 1 (Z).

(¢) For any T € O, 9, is a continuous group homomorphism.

(d) Forany Z € Z5<.(X), any Y € Z1 <.(X), v' > r and any 7 # 0 in O, each
component of excess dimension (i.e., > ' + s —m) of the intersection

Y[ [y-(2)]
is contained in the singular locus of X .
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Appendix T. Tractable monoids.

We recall that a subset C' of a variety V is said to be constructible if C' is a finite union
of subsets C; C V each of which is locally closed in V' with respect to the Zariski topology.
Since any locally closed subset C; C V' has the property that its closure (with respect to
the analytic topology) is Zariski closed in V' (cf. [Sh]), the closure of a constructible subset
C C V is also Zariski closed in V. If T C V is constructible, then a subset S C T is
said to be a constructible embedding if S C V is a constructible subset. If § C T is
a constructible embedding of constructible subsets, then the closure of S in T is “Zariski
closed” in the sense that S equals the intersection of 7" with some Zariski closed subset of
the ambient variety V.

The following lemma isolates the special property we use of the topology of algebraic
varieties. The proof of this lemma relies on the existence of relative triangulations for

semi-algebraic subsets (more general than constructible subsets) proved by Hironaka in
[H].

Lemma T.1 Any closed, constructible embedding S C T of constructible spaces is a
cofibration.

Proof. Let S C T denote the closure of S C T for some projective embedding of T C P¥.
Note that S = S NT. By Hironaka’s relative triangulation theorem [H], there is a (finite)
semi-algebraic triangulation of T so that S and T — T are subcomplexes, and thus T and
S are unions of some open simplices. We construct a deformation retraction ry, 0 <t <1
of a neighborhood U of S in T onto S with the property that r, maps each open simplex
of the triangulation into itself for all ¢.

Namely, for some maximal (closed) simplex o of T, consider u ©f NS, Write [ as
a union of (closed) faces, u = U;F;, and define p* = N, F*, where F* is the open star in
the first barycentric subdivision of o of the dual face F;Y. Then o — p* admits a linear
retraction to p which restricts naturally to a linear retraction of (¢ — p*) N7 to 7N S, for

any face 7 C 0. We take U No C 0 — p* to be some € -neighborhood of p C o.
We thus obtain a deformation retraction of a neighborhood U of S in T onto S by

taking the restriction of r; to U ConT. ]

We recall from [FG] the following useful notion of a tractable action of a monoid M
on a space T and of a tractable monoid.

Definition T.2. The action of an abelian topological monoid on a topological space T is
said to be tractable if 7" is the topological union of inclusions

@ZT_1CT0CT1C...

such that for each n > 0 T,,_1 C T, fits into a push-out square of M-equivariant maps
(with Ry empty)
R, xM —— S,xM

l l (T.1.1)

Tn— 1 — Tn
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whose upper horizontal arrow is induced by a cofibration R,, C S,, of Hausdorff spaces.
The monoid M itself is said to be tractable if the diagonal action of M on M x M is
tractable.

If S = [[,;Sq is a countable disjoint union of constructible spaces, we shall call S
a generalized constructible space. If ¢ : § C T is a countable disjoint union of
constructible embeddings ¢4 : Sq C Ty, we shall say that ¢ : S C T is a constructible
embedding.

The following proposition is a simple modification of the proofs of tractability given
in [FG;1.3].

Proposition T.3. Counsider a submonoid &, C Cpyp(X X Y) def C, whose embedding
is a constructible embedding of generalized constructible spaces. Then &, is a tractable
monoid. ot

e

Let F, C &, be a submonoid with the property that each F, 4 = F,.NC, 4 is a Zariski

closed subset of &, 4 def & NCyr 4, where C, 4 def Cr4m,a(X X Y). Then &, is tractable as a

Fr-space and the quotient monoid &,./F, is also a tractable monoid.

Proof. Set M = C, 4y, and M(d) = Cpim 4. Let T denote M x M and set

T,=| |J M(a)xM®)| M
v(a,b)<n

where v : N x N — N is a suitable bijection. Set
Sp = M (ay) x M(by,), V(ap,by) =n
and define R, C S, by
R, = image { U M(an — ) x M(by, — ) x M(c) —» M(ay) x M(bn)} :
c>0

These spaces fit into a push-out diagram

R, xM —— S,xM

l l (T.3.1)

Tn— 1 — Tn

This is precisely the set-up of [FG;1.3.i], establishing that C,,, is tractable.
We now restrict the above picture to the submonoid &,.. Set M’ = &, and T' =
M' x M'. For each d, let M'(d) = M' N M (d) and define the filtration 7",, of T by

T, € | |J M@)xM@)|- M.

v(a,b)<n
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We set ', =S, N(M'x M") = M'(a,) x M'(b,) and R',, = R,, N (M’ x M') and observe
that (1.2.2) restricts to a push-out diagram

R, xM —— S, xM

l l

T 1 —— T,

Lemma T.1 implies that each R’,, C S’,, is a cofibration, for R’,, is a closed constructible
subset of S’,,. Thus, M’ = £, is a tractable monoid.

To verify that &, is tractable as an F,.-space, we proceed exactly as in [FG;1.3.ii],
replacing C,(Y') and C,(X) in that proof by F, and &, and appealing once again to Lemma
T.1 to verify the cofibration condition. Namely, because each multiplication map C, ,_. X
Cr,c — Cy.p 1s proper, so is its restriction &, ,,—. X &. . — C, 5. Thus, the image of each
Erm—c X Frein &y is closed and constructible, thereby implying that

image {Uc>0Erm—c X Frc = En} C &

is a cofibration by Lemma T.1. This is precisely the cofibration condition necessary for
that proof.

The same changes, this time to [FG;1.3.iii], imply that &./F, is also a tractable
monoid. []

Corollary T.4. If £, C C,.(X xY) is a submonoid whose embedding is constructible, then
the natural homotopy class of maps of H-spaces

&7 — QBIE,]

is a weak homotopy equivalence, where [€,.]1 is the naive group completion of the abelian
topological monoid &, and B[&,] is its classifying space.
In particular, there is a natural weak homotopy equivalence

Z(Y)(X) — QB[C(Y)(X)],

d:ef[

where 2, (Y)(X) % (¢, (v)(X)]*.

Proof. In [FG;1.4], it is shown for any abelian tractable monoid M with the canclellation
property that
[Sing.(M)]* = Sing.(M x M)/Sing.(M) — Sing.(M™)

is a weak homotopy equivalence, where Sing.(—) denotes the functor sending a space to
its singular complex. On the other hand, by a theorem of D. Quillen (cf. [FMj;AppQ]),
[Sing.(M)]* is homotopy equivalent to the homotopy-theoretic group completion of the
simplicial monoid Sing.(M). O
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