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Abstra
t. In this paper a fundamental duality is established between

algebrai
 
o
y
les and algebrai
 
y
les on a smooth proje
tive vari-

ety. A map is 
onstru
ted between these spa
es and shown to be a

weak homotopy equivalen
e. The proof makes use of a new Chow

moving lemma for families. If X is a smooth proje
tive variety of

ndimension n, the duality map indu
es isomorphisms L

s

H

k

(X) !

L

n�s

H

2n�k

(X) for 2s � k, whi
h 
arry over via natural transforma-

tions to the Poin
ar�e duality isomorphism H

k

(X;Z)! H

2n�k

(X;Z).

The most general duality result asserts that for smooth proje
tive vari-

eties X and Y the natural graphing homomorphism sending algebrai



o
y
les on X with values in Y to algebrai
 
y
les on the produ
t

X � Y is a weak homotopy equivalen
e. The main results have a wide

variety of appli
ations. Among these is the determination of the ho-

motopy type of 
ertain algebrai
 mapping 
omplexes. It also in
ludes

a determination of the group of algebrai
 s-
o
y
les modulo algebrai


equivalen
e on a smooth proje
tive variety.
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Introdu
tion

In [FL

1

℄, the authors introdu
ed the notion of an e�e
tive algebrai
 
o
y
le on an alge-

brai
 variety X with values in a variety Y , and developed a \bivariant morphi
 
ohomology

theory" based on su
h obje
ts. The theory was shown to have a number of intriguing prop-

erties, in
luding Chern 
lasses for algebrai
 bundles, operations, ring stru
ture, and natural

transformations to singular 
ohomology over Z. The fundamental obje
ts of the theory

are simply families of algebrai
 
y
les on Y parametrized by X. More pre
isely they are

de�ned as morphisms from X to the Chow varieties of r-
y
les on Y and 
an be repre-

sented as 
y
les on the produ
t X � Y whi
h are equidimensional over X. Su
h 
o
y
les

form a topologi
al abelian monoid, denoted Mor(X; C

r

(Y )), and the morphi
 
ohomology

groups are de�ned to be the homotopy groups of its group 
ompletion Mor(X;Z

r

(Y )).

This stands in analogy with (and, in fa
t, re
overs by letting X = a point) the homology

groups introdu
ed and studied in [F

1

℄, [L℄, and elsewhere.

When Y = A

n

, the theory is of stri
t 
ohomology type. It has a natural 
up produ
t

given by the pointwise join of 
y
les, and a natural transformation (of ring fun
tors) to

H

�

(X; Z).

The main point of this paper is to establish a duality theorem between algebrai
 
y
les

and algebrai
 
o
y
les. The fundamental result (Theorem 3.3) states that if X and Y are

smooth and proje
tive, then the graphing map

Mor(X; C

r

(Y )) ,! Z

m+r

(X � Y )

whi
h sends Y -valued 
o
y
les on X to 
y
les on X � Y is a homotopy equivalen
e.

(Here m = dim(X)). Stated in terms of homotopy groups this theorem asserts that

the morphi
 
ohomology groups of X with values in Y are isomorphi
 to the L-homology

groups of X � Y . This duality theorem was not forseen when we �rst formulated the


on
ept of an algebrai
 
o
y
le and it represents a non-trivial result for algebrai
 
y
les. In

parti
ular, 
omputations of 
y
le spa
es provide 
omputations of mapping spa
es 
onsisting

of algebrai
 morphisms.
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The duality theorem also holds when Y = A

n

and thereby gives a duality isomorphism

D : L

s

H

k

(X)

�

=

�! L

m�s

H

2m�k

(X)

between the morphi
 
ohomology and the L-homology of any smooth, m-dimensional pro-

je
tive variety X. It is shown that this map has a number of interesting properties. The

most 
ompelling property is the 
ompatibility of D with the Poin
ar�e duality map PD. It

is shown in x5 that there is a 
ommutative diagram

L

s

H

k

(X)

D

���! L

m�s

H

2m�k

(X)

�

?

?

?

y

?

?

?

y

�

H

k

(X;Z)

PD

���! H

2m�k

(X;Z)

where the maps � are the natural transformations. It is also shown that on smooth varieties

D intertwines the 
up produ
t on L

�

H

�

(X) with the interse
tion produ
t on L

�

H

�

(X)

that was established in [FG℄.

The map D has 
ertain basi
 properties. It is 
ompatible with morphisms, and for

smooth varieties it intertwines 
ertain Gysin maps. It is also 
ompatible with the s-

operations of [FM℄ whi
h a
t on both theories. This shows that for smooth varieties

Poin
ar�e duality preserves the �ltrations indu
ed by these operations on singular theory

(with Z-
oeÆ
ients) [FM℄, [FL

1

℄.

The basi
 results have a wide range of appli
ations. For example it is shown that

for generalized 
ag manifolds X;Y (smooth varieties with 
ell de
ompositions) there is an

isomorphism

�

�

Mor(X;Z

r

(Y ))

�

=

H

2(m+r)+�

(X � Y ; Z):

where m = dim(X). Furthermore, for any smooth m- dimensional variety X there are

natural isomorphisms

Mor(X;Z

0

(P

s

))=falgebrai
 equivalen
eg

�

=

A

m�s

(X)�A

m�s�1

(X)� � � � � A

0

(X)

where A

r

(X) denotes the group of algebrai
 r-
y
les modulo algebrai
 equivalen
e on X,

and where t � m. One also shows that for a smooth variety X, the spa
e of parametrized

rational 
urves on Z

r

(X) is weakly homotopy equivalent to Z

r

(X)�Z

r+1

(X).

The proof of the main theorem (3.3) is based on a Moving Lemma for Families of

Cy
les of Bounded Degree established in [FL

2

℄.

In this paper we have introdu
ed the notation Mor(X; C

r

(Y )) for the topologi
al

monoid of Y -valued 
o
y
les of relative dimension r on X. This notation emphasizes the

nature of 
o
y
les as mappings and di�ers from the notation in [FL

1

℄. Furthermore, in

the theory of 
o
y
les developed in [FL

1

℄ we used the homotopy-theoreti
 group 
omple-

tion Z

m+r

(X; Y ) � 
BMor(X; C

r

(Y )) of the monoid to de�ne the morphi
 
ohomology

groups. In this paper we shall use instead the newer "te
hnology" of na��ve topologi
al group
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ompletions as introdu
ed in [Li

2

℄ and formulated in [FG℄. These na��ve group 
ompletions

have dire
tly a

essible geometri
 properties and work better in many 
ir
umstan
es.

The two group 
ompletions give equivalent theories, for there is a natural weak homo-

topy equivalen
e 
BMor(X; C

r

(Y ))

�

=

Mor(X;Z

r

(Y )) established in Appendix T. There

we revisit the theory of tra
table monoids and tra
table a
tions, introdu
ed in [FG℄, in

order to provide the topologi
al formalities needed to work with na��ve group 
ompletions

of 
o
y
le spa
es. In parti
ular, we isolate the spe
ial topologi
al property of varieties

whi
h we use: any 
losed, 
onstru
tible embedding is a 
o�bration.

In Appendix C we prove that for any normal quasi-proje
tive varietyX and any proje
-

tive variety Y , the topology indu
ed on Mor(X; C

r

(Y )) by the embedding Mor(X; C

r

(Y ))

! C

r

(X � Y ) is exa
tly the topology of uniform 
onvergen
e with bounded degree on


ompa
t subsets. If X is proje
tive, then it is exa
tly the 
ompa
t-open topology.

The results of this paper basi
ally 
on
ern proje
tive varieties. The authors made

e�orts to extend the methods to quasi-proje
tive varieties with mixed su

ess. We �nally

realized that a more sophisti
ated approa
h is required to appropriately realize fun
tori-

ality, duality, and other desired properties for the topologi
al abelian groups of 
o
y
les

on quasi-proje
tive varieties. Su
h an approa
h 
an be found in [F

2

℄. A more abstra
t

treatment of duality for varieties over more general �elds is given in [FV℄.

It is assumed throughout the main body of this paper that X and Y are proje
tive

varieties over C and that X is normal.

x0. Conventions and terminology.

By a proje
tive algebrai
 variety X we shall mean a redu
ed, irredu
ible s
heme

over C whi
h admits a Zariski 
losed embedding in some (
omplex) proje
tive spa
e P

N

.

Thus, X is the zero lo
us in P

N

of a �nite 
olle
tion of homogeneous polynomials, and

the irredu
ibility 
ondition is the 
ondition that X is not a non-trivial union of two su
h

zero lo
i. By a 
losed subvariety W � X we shall mean a Zariski 
losed subset with its

stru
ture of a redu
ed C-s
heme (but whi
h is not ne
essarily irredu
ible). Unless expli
it

mention to the 
ontrary, we shall view lo
ally 
losed algebrai
 subsets of proje
tive spa
es

with their analyti
 topology.

Throughout this paper we retain the 
onvention that X;Y are proje
tive algebrai


varieties of dimensions m;n respe
tively and that X is normal. Also throughout, r and

t shall denote non-negative integers with r � n and t � m. We re
all that an r-
y
le

on Y is a formal integer 
ombination Z =

P

n

i

W

i

, where ea
h W

i

� Y is an irredu
ible

subvariety of dimension r in Y . Su
h an r-
y
le is said to be e�e
tive if ea
h n

i

is positive.

We denote by jZj the support of Z =

P

n

i

W

i

, de�ned as the union jZj = [

i

W

i

� Y .

Our study involves the 
onsideration of Chow varieties (see, for example, [S℄). For

ea
h set of non-negative integers r � N and d, there is Zariski 
losed subset

C

r;d

(P

N

) � P

M

where M = M

r;d;N

, whose points are in natural 1-1 
orresponden
e with e�e
tive r-


y
les of degree d on P

N

. For any algebrai
 subset Y � P

N

, the set of those e�e
tive
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r-
y
les of degree d on P

N

with support on Y 
orrespond to a Zariski 
losed subset

C

r;d

(Y ) � C

r;d

(P

N

). Although there is not a \universal 
y
le" above C

r;d

(Y ), there

does exists the in
iden
e 
orresponden
e I

r;d

(Y ) � C

r;d

(Y )� Y , the Zariski 
losed subset


onsisting of pairs (Z; y) with y 2 jZj. With the analyti
 topology on ea
h C

r;d

(Y ) the

Chow monoid

C

r

(Y )

def

=

a

d

C

r;d

(Y )

of e�e
tive r-
y
les on Y is an abelian topologi
al monoid whose algebrai
 (and, hen
e,

topologi
al) stru
ture is independent of the 
hoi
e of proje
tive embedding Y � P

N

[B℄.

In this paper, we frequently work with homomorphisms of topologi
al abelian groups

whi
h are weak homotopy equivalen
es. At times, we have need to invert su
h maps: we

de�ne a weak homotopy inverse of a weak homotopy equivalen
e f : S ! T to be a map

g : T

0

! S

0

whi
h is a homotopy inverse on the CW-approximation of f . At other times,

we deal with diagrams of su
h maps whi
h \weakly homotopy 
ommute"; in other words,


ompositions of maps in the diagram with same sour
e and target have the property that

they indu
e homotopi
 maps on CW-approximations. The reader 
omfortable with derived


ategories will re
ognize that these somewhat 
lumsy 
onventions would be avoided if we

were to repla
e these topologi
al abelian groups by their asso
iated 
hain 
omplexes and

repla
e homomorphisms whi
h are weak homotopy equivalen
es by quasi- isomorphisms.

x1. Co
y
les on Proje
tive Varieties.

In this se
tion we rework the de�nition of the spa
e of algebrai
 
o
y
les on a pro-

je
tive variety. We retain the de�nition from [FL

1

℄ of the monoid of e�e
tive 
o
y
les,

but repla
e the formal 
onstru
tion of the homtopy-theoreti
 group 
ompletion with the

more a

essible 
onstru
tion of the na��ve group 
ompletion. One satisfying aspe
t of the

latter is that the na��ve group 
ompletion of the topologi
al monoid of e�e
tive 
o
y
les

is a topologi
al abelian group whose points are in one-to-one 
orresponden
e with formal

di�eren
es of e�e
tive 
o
y
les.

We re
all that the na��ve group 
ompletion M

+

of an abelian topologi
al monoid

M with the 
an
ellation property is the topologi
al quotient of M �M by the equivalen
e

relation: (m

1

;m

2

) � (n

1

; n

2

) i� m

1

+ n

2

= m

2

+ n

1

.

De�nition 1.1. By the topologi
al monoid of e�e
tive algebrai
 
o
yles of relative

dimension r on X with values in Y we mean the abelian monoid

Mor(X; C

r

(Y )) (1:1:1)

of morphisms from X to the Chow monoid C

r

(Y ) provided with the 
ompa
t open topol-

ogy. We de�ne the topologi
al abelian group of all su
h 
o
y
les to be the na��ve group


ompletion of Mor(X; C

r

(Y )),

Mor(X;Z

r

(Y ))

def

= [Mor(X; C

r

(Y ))℄

+

: (1:1:2)
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A 
ase of fundamental importan
e is where Y is essentially the quasi-proje
tive variety

A

n

. This is de�ned as follows. By the monoid of e�e
tive algebrai
 
o
y
les of


odimension-t on X we mean the topologi
al quotient monoid

C

t

(X)

def

= Mor(X; C

0

(P

t

))=Mor(X; C

0

(P

t�1

)): (1:1:3)

Its na��ve group 
ompletion

Z

t

(X)

def

= [C

t

(X)℄

+

def

= Mor(X;Z

0

(A

t

)): (1:1:4)

is the topologi
al group of all algebrai
 
o
y
les of 
odimension-t on X.

As observed in [FL

1

℄,Mor(X;Z

r

(Y )) enjoys various fun
toriality properties. Compo-

sition with a morphism f : X

0

! X determines a 
ontinuous homomorphism

f

�

:Mor(X;Z

r

(Y )) �! Mor(X

0

;Z

r

(Y )):

Push-forward of 
y
les via a morphism g : Y ! Y

0

determines g

�

: C

r

(Y ) ! C

r

(Y

0

) and

thus

g

�

:Mor(X;Z

r

(Y )) �! Mor(X;Z

r

(Y

0

)):

Similarly, if g :

~

Y �! Y is 
at of relative dimension k, then 
at pull-ba
k determines

g

�

: C

r

(Y )! C

r+k

(

~

Y ) and thus

g

�

:Mor(X;Z

r

(Y )) ! Mor(X;Z

r+k

(

~

Y ))

(denoted by g

!

in [FL

1

℄).

Sin
e X is assumed to be normal, there is an alternative, equivalent de�nition of the

spa
e of algebrai
 
o
y
les. We denote by

C

r

(Y )(X) � C

r+m

(X � Y )

the topologi
al submonoid of those e�e
tive 
y
les on X � Y whi
h are equidi-

mensional of relative dimension r over X. In [F

1

℄ it was shown that any morphism

 : X ! C

r

(Y ) has a naturally asso
iated graph G( ) 2 C

r

(Y )(X), and in [FL

1

℄ we

showed that for normal varieties X this map G : Mor(X; C

r

(Y )) ! C

r

(Y )(X) is a

bije
tion. In Appendix C we establish the following.

Theorem 1.2. The graphing 
onstru
tion

G :Mor(X; C

r

(Y )) �! C

r

(Y )(X)

is a homeomorphism.

This alternative formulation of Mor(X; C

r

(Y )) be
omes the de�nition of the monoid

of e�e
tive 
o
y
les in the more general 
ontext of [F

2

℄.
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Consideration of na��ve group 
ompletions is rare in algebrai
 topology be
ause spa
es


onstru
ted as quotients with the quotient topology typi
ally have ina

essible algebrai


invariants. The usual method of \group 
ompleting" a topologi
al monoid M is to take

the loop spa
e of the 
lassifying spa
e ofM , 
B[M ℄, whose algebrai
 invariants are 
losely

related to those of M (
f. [M-S℄). In Appendix T, we demonstrate that C

r

(Y )(X) is a

tra
table monoid in the sense of [FG℄ whi
h by Theorem 1.2 implies the following.

Proposition 1.3. There is a natural weak homotopy equivalen
e


B[Mor(X; C

r

(Y ))℄

�

=

�! Mor(X;Z

r

(Y ))

(i.e., natural up to weak homotopy). Moreover, if Y

1

� Y is a 
losed subvariety, then

the following triple is a �bration sequen
e (i.e., it determines a long exa
t sequen
e in

homotopy groups):

Mor(X;Z

r

(Y

1

)) ! Mor(X;Z

r

(Y )) ! [Mor(X; C

r

(Y ))=Mor(X; C

r

(Y

1

))℄

+

:

We re
all that the monoid of e�e
tive k-
y
les on the quasi-proje
tive variety X �A

t

is de�ned to be the quotient monoid

C

k

(X �A

t

)

def

= C

k

(X �P

t

)=C

k

(X �P

t�1

);

where P

t�1

� P

t

is the linear embedding of a \hyperplane at1". Be
ause C

0

(P

t�1

)(X) �

C

m

(X �P

t�1

) is obtained by interse
tion with the Zariski 
losed subset C

m

(X �P

t�1

) �

C

m

(X �P

t

), we 
on
lude easily that

C

t

(X)

�

=

C

0

(P

t

)(X)=C

0

(P

t�1

)(X) ,! C

m

(X �A

t

) (1:3:3)

is a 
ontinuous inje
tive mapping. (The reader is 
autioned that (1.3.3) is not a topologi
al

embedding however. See Example C.7 in Appendix C.)

As an immediate 
orollary of the pre
eding results, we 
on
lude that our de�nitions

of spa
es of 
o
y
les agree up to homotopy with those of [FL

1

℄.

Corollary 1.4. There are natural weak homotopy equivalen
es:


BMor(X; C

r

(Y ))

�

=

�! Mor(X;Z

r

(Y ));

hty�b

n

BMor(X; C

0

(P

t�1

))! BMor(X; C

0

(P

t

))

o

�

=

�! Z

t

(X):

The fundamental result (
f. [L℄) about spa
es of algebrai
 
y
les is the Algebrai


Suspension Theorem whi
h asserts that the algebrai
 suspension map

�= : C

r;d

(Y ) �! C

r+1;d

(�= Y )
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indu
es a homotopy equivalen
e on homtopy-theoreti
 group 
ompletions of Chow monoids,

�= : 
B[C

r

(Y )℄

�

=

�! 
B[C

r+1

(�= Y )℄:

Sin
e the natural map 
B[C

r

(Y )℄! Z

r

(Y ) is a weak equivalen
e (
f. [Li

2

℄, [FG℄, or Corol-

lary T.5 of Appendix T), this implies that �= also indu
es a weak homotopy equivalen
e

�= : Z

r

(Y ) �! Z

r+1

(�= Y ):

In [FL

1

;3.3℄, the algebrai
 suspension theorem was extended to equidimensional 
y-


les by repla
ing �= with the relative analogue �=

X

. Thus, the equivalen
e of na��ve and

homotopy-theoreti
 group 
ompletions provides as above the following suspension isomor-

phism for 
o
y
le spa
es.

Proposition 1.5. Composition of 
o
y
les with �= : C

r

(Y ) �! C

r+1

(�= Y ) indu
es a weak

homotopy equivalen
e

�=

X

:Mor(X;Z

r

(Y )) �! Mor(X;Z

r+1

(�= Y )):

x2. Duality Map

This se
tion introdu
es our duality map from spa
es of 
o
y
les to spa
es of 
y
les

and veri�es that this map is 
ompatible with various 
onstru
tions. On e�e
tive 
o
y
les,

this map is merely the in
lusion of (1.1.1). On the na��ve group 
ompletions, the map is

that indu
ed by (1.1.1). We point out that although it is inje
tive and 
ontinuous, our

duality map is not a topologi
al embedding. (See examples at the end of Appendix C.)

De�nition 2.1. The duality map

D :Mor(X;Z

r

(Y )) �! Z

r+m

(X � Y ) (2:1:1)

is the 
ontinuous inje
tive homomorphism of topologi
al abelian groups indu
ed by the

graphing 
onstru
tion:

Mor(X; C

r

(Y ))

G

�! C

r

(Y )(X) � C

r+m

(X � Y ): (2:1:2)

of Theorem 1.2. Similarly for Y = A

n

the duality map

D : Z

t

(X) �! Z

m�t

(X) (2:1:3)

is de�ned to be the 
omposition of the map on na��ve group 
ompletions indu
ed by (1.3.3)

and the inverse of the natural homotopy equivalen
e Z

m�t

(X)! Z

m

(X �A

t

) (
f. [FG℄).
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In the following proposition, we verify that the duality map D of (2.1.1) is natural

with respe
t to fun
torial 
onstru
tions on 
y
les and 
o
y
les.

Proposition 2.2. If f : Y ! Y

0

is a morphism of proje
tive algebrai
 varieties, then f

�

�ts in the following 
ommutative square

Mor(X;Z

r

(Y ))

D

���! Z

r+m

(X � Y )

f

�

?

?

?

y

?

?

?

y

(1� f)

�

Mor(X;Z

r

(Y

0

))

D

���! Z

r+m

(X � Y

0

):

(2:2:1)

If g :

~

Y ! Y is a 
at map of proje
tive varieties of relative dimension k, then g

�

�ts

in the following 
ommutative square

Mor(X;Z

r

(Y ))

D

���! Z

r+m

(X � Y )

g

�

?

?

?

y

?

?

?

y

(1� g)

�

Mor(X;Z

r+k

(

~

Y ))

D

���! Z

r+m+k

(X �

~

Y ):

(2:2:2)

If h :

~

X ! X is a 
at morphism of relative dimension e, then h

�

�ts in the following


ommutative square

Mor(X;Z

r

(Y ))

D

���! Z

r+m

(X � Y )

h

�

?

?

?

y

?

?

?

y

(h� 1)

�

Mor(

~

X;Z

r

(Y ))

D

���! Z

r+m+e

(

~

X � Y ):

(2:2:3)

If i : X

0

! X is a regular 
losed embedding of 
odimension 
, then i

�

�ts in the

following weakly homotopy 
ommutative square

Mor(X;Z

r

(Y ))

D

���! Z

r+m

(X � Y )

i

�

?

?

?

y

?

?

?

y

(i� 1)

!

Mor(X

0

;Z

r

(Y ))

D

���! Z

r+m�


(X

0

� Y );

(2:2:4)

where (1� i)

!

is the Gysin map of [FG℄.

Proof. To prove the 
ommutativity of (2.2.1), it suÆ
es to verify the following: if G =

G( ) � X � Y is the graph of  : X ! C

r

(Y ), then (1 � f)

�

(G) equals the graph

9



G

0

= G(f Æ  ) of f Æ  . This is veri�ed by observing that (1 � f)

�

(G) and G

0

are equal

when restri
ted to Spe
(K)� Y

0

, where � : Spe
(K) ! X is the generi
 point, and both

are given as the 
losures in X � Y

0

of these restri
tions.

The 
ommutativity of (2.2.2) follows by observing that g

�

on Mor(X; C

r

(Y )) equals

the restri
tion to C

r

(Y )(X) � C

r+m

(X � Y ) of (1 � g)

�

. This is veri�ed as in the proof

of the 
ommutativity of (2.2.1) by observing that g

�

Æ  : X ! C

r

(Y ) ! C

r+k

(

~

Y ) has

graph whose restri
tion to Spe
(K) �

~

Y equals the restri
tion of (1 � g)

�

(G( )), where

� : Spe
(K)! X is the generi
 point.

To verify the 
ommutativity of (2.2.3), we must show that (h�1)

�

(G( )) = G( Æh) for

a morphism  : X ! C

r

(Y ). On
e again, this is veri�ed by observing that the restri
tions

of these 
y
les to Spe
(

~

K)� Y are equal, where ~� : Spe
(

~

K)!

~

X is the generi
 point.

As veri�ed in [FG;3.4℄, the Gysin map

(i� 1)

!

: C

r+m

(X � Y ) �! C

r+m�


(X

0

� Y )


an be represented by interse
tion (in the sense of [Fu℄) with X

0

� Y on the submonoid

C

r+m

(X � Y ;X

0

� Y ) of those 
y
les whi
h meet X

0

� Y properly. Clearly, C

r

(Y )(X) �

C

r+m

(X�Y ;X

0

�Y ). On the other hand, the homomorphism i

�

: C

r

(Y )(X)! C

r

(Y )(X

0

)

given by interse
tion with X

0

� Y is identi�ed in [FM

1

;3.2℄ with i

�

: Mor(X; C

r

(Y )) !

Mor(X

0

; C

r

(Y )) given by 
omposition with i.

We state without proof the following analogue of Proposition 2.2 for the duality map

D of (2.1.3). This analogue follows easily from the naturality of the 
onstru
tions involved

in (2.2.3) and (2.2.4).

Proposition 2.3. If h :

~

X ! X is a 
at morphism of relative dimension e, then the

following square 
ommutes

Z

t

(X)

D

���! Z

m�t

(X)

h

�

?

?

?

y

?

?

?

y

(h� 1)

�

Z

t

(

~

X)

D

���! Z

m+e�t

(

~

X):

(2:3:1)

If i : X

0

! X is a regular 
losed immersion of 
odimension 
, then the following square is

weakly homotopy 
ommutative

Z

t

(X)

D

���! Z

m�t

(X)

i

�

?

?

?

y

?

?

?

y

(i� 1)

!

Z

t

(X

0

)

D

���! Z

m�t�


(X

0

):

(2:3:2)

We next pro
eed to exhibit a Gysin morphism on 
o
y
les with respe
t to a regular

embedding � : Y

0

! Y . Essentially, we show that the Gysin map 
onstru
ted in [FG℄ on

10




y
le spa
es for a regular embedding restri
ts to a map on 
o
y
le spa
es. To 
arry out

this argument, we use the formulation of e�e
tive 
o
y
les as graphs from Theorem 1.2,

and appeal to a variant of our duality theorem (namely, Corollary 3.6 of the next se
tion).

For this we introdu
e the submonoid

C

r

(Y ;Y

0

)(X) � C

r

(Y )(X) (2:3:3)

of those e�e
tive 
o
y
les whi
h interse
t X � Y

0

properly, where we have assumed r �


odimY

0

. It 
an be veri�ed that (2.3.3) is a 
onstru
tible embedding by applying the upper

semi-
ontinuity of the �bres of the proje
tion

I \ [C

r

(Y )(X)� (X � Y

0

)℄ �! C

r

(Y )(X)

where I � C

r+m

(X � Y )� (X � Y ) is the in
iden
e 
orresponden
e. (However, this basi


fa
t is not used in the proof below). We set

Z

r

(Y ;Y

0

)(X)

def

= [C

r

(Y ;Y

0

)(X)℄

+

: (2:3:4)

Our appeal to duality in proving Proposition 2.4 explains the smoothness hypotheses.

The result may hold in greater generality. However, one should note that the map �

!

is not

given by a simple 
omposition of the Gysin map Z

r

(Y )! Z

r�e

(Y

0

) with 
o
y
les.

Proposition 2.4. Assume that X;Y are smooth and 
onsider a regular (Zariski) 
losed

embedding � : Y

0

! Y of 
odimension e where e � r. Then there is a natural weak

homotopy 
lass of maps

�

!

:Mor(X;Z

r

(Y )) �! Mor(X;Z

r�e

(Y

0

))

whi
h �ts in the following weakly homotopy 
ommutative diagram

Mor(X;Z

r

(Y ))

D

���! Z

r+m

(X � Y )

�

!

?

?

?

y

?

?

?

y

(1� �)

!

Mor(X;Z

r�e

(Y

0

))

D

���! Z

r+m�e

(X � Y

0

):

(2:4:1)

Proof. By Theorem 1.2 we may repla
e Mor(X;Z

r

(Y )) by the na��ve group 
ompletion

Z

r

(Y )(X) of the topologi
al monoid C

r

(Y )(X). By Corollary 3.6 there is a weak homotopy

equivalen
e

j : Z

r

(Y ;Y

0

)(X)

�

=

�! Z

r

(Y )(X): (2:4:2)

We de�ne the Gysin map �

!

to be the 
omposition

�

!

: Z

r

(Y )(X)

�

=

�! Z

r

(Y ;Y

0

)(X) �! Z

r�e

(Y

0

)(X)

11



where the �rst map is the weak homotopy inverse of (2.4.2), and the se
ond is the na��ve

group 
ompletion of the map C

r

(Y ;Y

0

)(X) ! C

r�e

(Y

0

)(X) given by interse
tion with

X�Y

0

. So de�ned �

!

�ts in the weakly homotopy 
ommutative square (2.4.1) by [FG;3.4℄.

In [FM

1

℄, a basi
 operation s : 
B[C

r

(X)℄ ^ S

2

! 
B[C

r�1

(X)℄ was introdu
ed and

studied. (Here S

2

denotes the 2-sphere, the underlying topologi
al spa
e of P

1

.) This

s-map was originally de�ned using the algebrai
 suspension theorem and the join mapping

# : C

r

(X)� C

0

(P

1

) �! C

r+1

(X#P

1

):

In [FG℄, this operation was extended to an operation s : Z

r

(U) ^ S

2

! Z

r�1

(U) for


y
les on a quasi-proje
tive variety U and was shown to be independent of the proje
tive

embedding. (A fa
t not previously known even for X proje
tive). In the formulation of

[FG;2.6℄, the join mapping is repla
ed by the produ
t mapping

� : C

r

(X)� C

0

(P

1

) �! C

r

(X �P

1

) (2:5:0)

sending a pair (Z; p) to Z � fpg, and the algebrai
 suspension theorem is repla
ed by the

Gysin map Z

r

(X �P

1

)! Z

r�1

(X).

In the following proposition, we verify that the duality map is natural with respe
t to

this s-map. Sin
e our proof on
e again uses duality, we require that Y and X be smooth.

Proposition 2.5. Assume that X;Y be are smooth. The s-map determines a weak

homotopy 
lass of maps

s :Mor(X;Z

r

(Y )) ^ S

2

�! Mor(X;Z

r�1

(Y )) (2:5:1)

whi
h �ts in the following weakly homotopy 
ommutative square:

Mor(X;Z

r

(Y )) ^ S

2

D^1

����! Z

r+m

(X � Y ) ^ S

2

s

?

?

?

y

?

?

?

y

s

Mor(X;Z

r�1

(Y ))

D

����! Z

r+m�1

(X � Y ):

(2:5:2)

Proof. As in the proof of Proposition 2.4, we repla
e Mor(X;Z

r

(Y )) by Z

r

(Y )(X). We


onsider the following 
ommutative diagram

Z

r

(Y )(X)� Z

0

(P

1

)

�

�! Z

r

(Y �P

1

)(X)

j

 � Z

r

(Y �P

1

;Y � f1g)(X)

D � 1

?

?

?

y

D

?

?

?

y

D

?

?

?

y

(2:5:3)

Z

r+m

(X � Y )�Z

0

(P

1

)

�

�! Z

r+m

(X � Y �P

1

)

j

 � Z

r+m

(X � Y �P

1

;X � Y � f1g)

12



where by Corollary 3.6 the maps j are weak homotopy equivalen
es. We now 
onsider the


ommutative diagram

Z

r

(Y �P

1

;Y � f1g)(X)

�

����! Z

r�1

(Y )(X)

D

?

?

?

y

?

?

?

y

D

Z

r+m

(X � Y �P

1

;X � Y � f1g)

�

����! Z

r+m�1

(X � Y )

(2:5:4)

where the map � of the upper row denotes interse
tion with Y � f1g, and the map �

of the lower row denotes interse
tion with X � Y � f1g. We de�ne s : Z

r

(Y )(X) ^

S

2

�! Z

r�1

(Y )(X) to be the 
omposition of the maps in the upper rows of (2.5.3) and

(2.5.4) (with j repla
ed by its weak homotopy inverse) restri
ted to Z

r

(Y )(X)^S

2

, where

S

2

' P

1

! Z

0

(P

1

) is de�ned to be the pointed map sending p 2 P

1

to p�f1g 2 Z

0

(P

1

).

The 
omposition of the maps in the lower rows of the diagrams (again with j repla
ed by

its weak homotopy inverse), when restri
ted to Z

r+m

(X � Y ) ^ S

2

, gives the s-map by

[FG;2.6℄. The weak homotopy 
ommutativity of (2.5.2) now follows.

Proposition 2.5 admits the following analogue for 
o
y
le spa
es.

Proposition 2.6. If X is smooth, then there is a natural weak homotopy 
lass of maps

s : Z

t

(X) ^ S

2

�! Z

t+1

(X) (2:6:1)

whi
h �ts in the following weakly homotopy 
ommutative square

Z

t

(X) ^ S

2

D^1

���! Z

m�t

(X) ^ S

2

s

?

?

?

y

?

?

?

y

s

Z

t+1

(X)

D

���! Z

m�t�1

(X):

(2:6:2)

Proof. To de�ne the map (2.6.1) we 
onsider the upper rows of (2.5.3) and (2.5.4) with

r = 1 and Y = P

t

. We restri
t this row to e�e
tive 
y
les, and map it, via the linear

in
lusion P

t

� P

t+1

, to the analogous row with r = 1 and Y = P

t+1

. Applying algebrai


suspension (
f. 1.5) and the taking quotients, we obtain the 
hain of maps

C

t

(X)� C

0

(P

1

)

�=�1

���!

�

C

1

(P

t+1

)(X)=C

1

(P

t

)(X)

�

� C

0

(P

1

)

�

���! C

1

(P

t+1

�P

1

)(X)=C

1

(P

t

�P

1

)(X)

j

 ���

C

1

(P

t+1

�P

1

;P

t+1

�1)(X)=C

1

(P

t

�P

1

;P

t

�1)(X)

�

���! Z

t+1

(X):

13



Taking na��ve group 
ompletions and repla
ing j by its weak homotopy inverse, we obtain

a 
hain of maps from Z

t

(X)�Z

0

(P

1

) to Z

t+1

(X) whi
h determines s.

The stri
t naturality of the 
ommutative diagrams (2.5.3) and (2.5.4) with respe
t to

the linear embedding of a hyperplane P

t

� P

t+1

enables us to 
on
lude the weak homotopy


ommuativity of (2.6.2) as in the proof of Proposition 2.5.

We 
on
lude this se
tion with a veri�
ation that the join produ
t on 
o
y
le spa
es

de�ned in [FL

1

;6.2℄:

#

X

: Z

0

(P

t

)(X)�Z

0

(P

u

)(X) �! Z

1

(P

t+u+1

)(X) ' Z

0

(P

t+u

)(X) (2:7:0)

and the interse
tion produ
t on 
y
le spa
es de�ned in [FG;3.5℄ intertwine with the duality

map.

Proposition 2.7. If X is smooth and if t and u are non-negative integers with t+u � m,

then the join pairing of (2.7.0) �ts in a homotopy 
ommutative diagram

Z

0

(P

t

)(X)� Z

0

(P

u

)(X) ���! Z

t

(X)� Z

u

(X)

D�D

���! Z

m�t

(X)� Z

m�u

(X)

#

X

?

?

?

y

?

?

?

y

�

Z

0

(P

t+u

)(X) ���! Z

t+u

(X)

D

���! Z

m�t�u

(X)

(2:7:1)

where the left horizontal arrows are the de�ning proje
tions and where (�) � (�) denotes

the interse
tion produ
t on 
y
le spa
es.

Proof. LetW � P

t

�P

u

�P

t+u+1

denote the subvariety 
onsisting of those triples (a; b; 
)

with the property that 
 lies on the line from a to b, where P

t

;P

u

� P

t+u+1

are embedded

linearly and disjointly. Thus, � : W ! P

t

� P

u

is the proje
tive bundle of the 2-plane

bundle pr

�

1

(O

P

t

(1))
 pr

�

2

(O

P

u

(1)) over P

t

� P

u

. Now #

X

fa
tors as the 
omposition of

the maps

Z

0

(P

t

)(X)� Z

0

(P

u

)(X)

�

�! Z

0

(P

t

�P

u

)(X �X)

�

�

X

�! Z

0

(P

t

�P

u

)(X) (2:7:2)

with the maps

Z

0

(P

t

�P

u

)(X)

�

�

�! Z

1

(W )(X)

p

�

�! Z

1

(P

t+u+1

)(X)

i

!

�! Z

0

(P

t+u

)(X) (2:7:3)

where � sends a pair of 0-
y
les to their produ
t, i

!

is the Gysin map of Proposition 2.4,

�

X

: X ! X �X denotes the diagonal, � : W ! P

t

� P

u

and p : W ! P

t+u+1

are the

proje
tions, and i : P

t+u

! P

t+u+1

is a linear embedding.
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We set (2.7.2) as the top row of the following diagram (whose Gysin maps are well

de�ned up to weak homotopy)

Z

0

(P

t

)(X)� Z

0

(P

u

)(X)

�

�! Z

0

(P

t

�P

u

)(X

2

)

�

�

X

�! Z

0

(P

t

�P

u

)(X)

D �D

?

?

?

y

D

?

?

?

y

?

?

?

y

D

Z

m

(X �P

t

)� Z

m

(X �P

u

)

�

�! Z

2m

(X

2

�P

t

�P

u

)

(�

X

�1)

!

�! Z

m

(X �P

t

�P

u

)

i

!

t

� i

!

u

?

?

?

y

i

!

t+u

?

?

?

y

?

?

?

y

i

!

t+u

Z

m�t

(X)� Z

m�u

(X)

�

�! Z

2m�t�u

(X

2

)

�

!

X

�! Z

m�t�u

(X):

(2:7:4)

The bottom row of this diagram de�nes � : Z

m�t

(X)� Z

m�u

(X) �! Z

m�t�u

(X). Now

the upper left square of this diagram 
ommutes by inspe
tion; the upper right square is

weakly homotopy 
ommutative as in (2.2.4); the lower left square is weakly homotopy


ommutative sin
e i

!

t

: Z

m

(X�P

t

)! Z

m�t

(X) is the right weak homotopy inverse of pr

�

1

(
f. Proposition 5.5); and the lower right square is weakly homotopy 
ommutative by the


ommutativity property of the Gysin map proved in [FG;3.4℄. The square

Z

0

(P

t

)(X)

D

����! Z

m

(X �P

t

)

pr

?

?

?

y

?

?

?

y

i

!

Z

t

(X)

D

����! Z

m�t

(X)

weakly homotopy 
ommutes sin
e we 
an arrange for X � X � P

t

to miss X � P

t�1

�

X �P

t

. We therefore 
on
lude that the analogue of (2.7.1) with #

X

repla
ed by �

!

X

Æ �

of (2.7.2) is weakly homotopy 
ommutative.

To 
omplete the proof, we use the fa
t that #

X

is obtained from �

!

X

Æ � of (2.7.2)

by 
omposing with the maps of (2.7.3). The 
hain of maps of (2.7.3) is mapped with the

duality map D to the following 
hain:

Z

m

(X�P

t

�P

u

)

�

�

�! Z

m+1

(X�W )

p

�

�! Z

m+1

(X�P

t+u+1

)

i

!

�! Z

m

(X�P

t+u

): (2:7:5)

Ea
h of the terms of this 
hain maps to Z

m�t�u

(X) via a Gysin map asso
iated to the

in
lusion of X into the produ
t o

urring in that term. Using [FG;3.4℄ (whi
h establishes

the naturality and 
ommutativity of the Gysin maps) or Proposition 5.5 below, we easily

verify the maps of (2.7.5) �t in weakly homotopy 
ommutative triangles over Z

m�t�u

(X).

In other words, we 
an extend (2.7.4) to the right in su
h a way that the diagram remains

weakly homotopy 
ommutative, the upper row represents the join produ
t, and the bottom

row represents the interse
tion produ
t.
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Remark. As shown in [FL

1

℄, the join produ
t indu
es a well de�ned pairing on homotopy

groups (i.e., morphi
 
ohomology groups) �

i

(Z

t

(X))
�

j

(Z

u

(X))! �

i+j

(Z

t+u

(X)). This

implies that (2.7.1) establishes that the duality map interwines the join produ
t on morphi



ohomology groups with the interse
tion produ
t on L-homology groups. In Corollary 3.4,

we make this intertwining expli
it.

x3. Duality Theorems

In this se
tion, we present our duality theorem (Theorem 3.3) and some of its imme-

diate 
onsequen
es. We begin by de�ning a topologi
al 
on
ept whi
h will be appli
able

in our study of maps of na��ve group 
ompletions of abelian topologi
al monoids.

De�nition 3.1. A �ltration of a topologi
al spa
e T by a sequen
e of subspa
es T

0

�

T

1

� � � � � T

j

� � � � is said to be a good �ltration if whenever f : K ! T is a 
ontinuous

map from a 
ompa
t spa
e K, there exists some e � 0 su
h that f(K) � T

e

. A �ltration-

preserving 
ontinuous map f : T

0

! T of spa
es with good �ltrations is said to be a very

weak deformation retra
t provided that for ea
h e � 0 there exist maps

�

0

e

: T

0

e

� I �! T

0

; �

e

: T

e

� I �! T ; �

e

: T

e

�! T

0

whose restri
tions �

0

e

�

�

T

0

e

�f0g

and �

e

�

�

T

e

�f0g

are the natural in
lusions, and whi
h �t in the

following 
ommuative diagrams

T

0

e

� I

�

0

e

���! T

0

T

0

e

� f1g � T

0

e

� I

�

0

e

���! T

0

f

e

� Id

?

?

?

y

?

?

?

y

f f

e

?

?

?

y

�

e

%

?

?

?

y

f

T

e

� I

�

e

���! T T

e

� f1g � T

e

� I

�

e

���! T:

The next lemma extends the elementary result that a deformation retra
t is a homo-

topy equivalen
e.

Lemma 3.2. Let f : T

0

! T be a very weak deformation retra
t of spa
es with good

�ltrations. Then f is a weak homotopy equivalen
e.

Proof. Let � : S

m

! T be a 
ontinuous map. Then there exists e > 0 su
h that

�(S

m

) � T

e

. Apply the homotopy �

t

(�) � �

e

(�(�); t) and note that �

1

lifts over f (via �

e

)

to a map �

0

1

: S

m

! T

0

e

. This proves surje
tivity.

Suppose �

0

: S

k

! T

0

is a map su
h that � � f Æ �

0

extends to a map � : D

k+1

! T

with image in T

e

for some e. Consider the homotopy �

0

t

(�) = �

0

e

(�

0

(�); t) for 0 � t � 1.

When t = 1, we have the 
ommutative diagram

S

k

� f1g

�

0

�f1g

�! T

0

e

� f1g �! T

0

\

?

?

y

�%

?

?

y

D

k+1

� f1g

��f1g

�! T

e

� f1g �! T

16



whi
h shows that �

0

is homotopi
 to zero. This proves inje
tivity.

We now apply Lemma 3.2 in 
onjun
tion with the \Moving Lemma for Cy
les of

Bounded Degree" [FL

2

℄ to prove our main theorem whi
h asserts the equivalen
e of spa
es

of 
o
y
les and 
y
les on smooth varieties.

Theorem 3.3. (The Duality Theorem) Consider smooth proje
tive varieties X;Y of

dimensions m;n respe
tively and let r � n; t � m be non- negative integers. Then the

duality maps (2.1.1) and (2.1.3)

D :Mor(X;Z

r

(Y )) �! Z

r+m

(X � Y )

D : Z

t

(X) �! Z

m�t

(X)

are weak homotopy equivalen
es.

Proof. By Theorem 1.2 we may repla
e Mor(X;Z

r

(Y )) by Z

r

(Y )(X), and we re
all that

D is indu
ed by the topologi
al embedding j : C

r

(Y )(X) ,! C

r

m

(X � Y ). Let

� : C

r+m

(X � Y )� C

r+m

(X � Y ) �! Z

r+m

(X � Y )

�

0

: C

r

(Y )(X)� C

r

(Y )(X) �! Z

r

(Y )(X)

denote the 
anoni
al proje
tion maps. Then the �ltration fK

e

g

1

e=0

of Z

r+m

(X�Y ) given

by setting

K

e

� �

8

<

:

a

d+d

0

�e

C

r+m;d

(X � Y )� C

r+m;d

0

(X � Y )

9

=

;

is a good �ltration. (See [Li

1

℄ for example.) Consider the indu
ed �ltration fK

0

e

g

1

e=0

of

Z

r

(Y )(X):

K

0

e

� �

0

8

<

:

a

d+d

0

�e

C

r;d

(Y )(X)� C

r;d

0

(Y )(X)

9

=

;

where C

r;d

(Y )(X)

def

= C

r+m;d

(X � Y ) \ C

r

(Y )(X). We 
laim this is also a good �ltration.

Indeed, if K is 
ompa
t and f : K ! Z

r

(Y )(X) is 
ontinuous, then sin
e fK

e

g

1

e=0

is

good, there exists an e su
h that (D Æ f)(K) � K

e

. Sin
e D is inje
tive, this implies that

f(K) � K

0

e

. Hen
e, fK

0

e

g

1

e=0

is also a good �ltration and D is a �ltration-preserving map.

We now apply our Moving Lemma for Cy
les of Bounded Degree, whi
h is proved

in [FL

2

℄ and summarized in Appendix M, to show that for all e suÆ
iently large we 
an

move the family K

e

so that every 
y
le in K

e

meets every �bre fxg � Y � X � Y of the

proje
tion in proper dimension, i.e., so that every 
y
le in K

e

be
omes a 
o
y
le over X.

Indeed let e be any integer � the (
ommon) degrees of the fxg � Y , x 2 X, for some

proje
tive embedding of X � Y . Let

e

	 : C

r+m

(X � Y )�O �! C

r+m

(X � Y )� C

r+m

(X � Y )

17



be the map guarenteed by Theorem M.1. By property (d) of Theorem M.1 and the fa
t

that deg(fxg � Y ) � e for all x 2 X, we see that we have

e

	(C

r+m

(X � Y )� f�g) � C

r

(Y )(X)� C

r

(Y )(X)

for all � 6= 0 in O. In parti
ular, the restri
tion of

e

	 to C

r

(Y )(X) � O determines a


ontinuous map

e

	

0

: C

r

(Y )(X)�O �! C

r

(Y )(X)� C

r

(Y )(X):

Let

	 : Z

r+m

(X � Y )�O �! Z

r+m

(X � Y ) ; 	

0

: Z

r

(Y )(X)�O �! Z

r

(Y )(X)

be the maps de�ned by linear extension of the maps � Æ

e

	 and �

0

Æ

e

	

0

respe
tively. Note

that the fa
t that � Æ

e

	 (and therefore also �

0

Æ

e

	

0

) is a monoid homomorphism on ea
h

C

r+m

(X � Y )� f�g, and therefore extends by linearity to Z

r+m

(X � Y )� f�g, is part of

the assertion of Theorem M.1.

We now 
hoose a smooth embedding I � O with endpoints 0 and 1, and we de�ne

�

e

: K

e

� I �! Z

r+m

(X � Y ) ; �

0

e

: K

0

e

� I �! Z

r

(Y )(X)

by restri
tion of 	 and 	

0

respe
tively. One 
he
ks immediately that these maps satisfy

the 
onditions of De�nition 4.1, namely: �

0

e


overs �

e

with respe
t to D; (�

e

)

�

�

K

e

�f0g

and

(�

0

e

)

�

�

K

0

e

�f0g

are the natural in
lusions; and (�

e

)

�

�

K

e

�f�g

lifts to Z

r

(Y )(X) for any � 6= 0.

Thus, Lemma 3.2 implies that D : Mor(X;Z

r

(Y )) ! Z

r+m

(X � Y ) is a weak homtopy

equivalen
e.

We observe that D determines a map of �bration sequen
es (
f. Proposition 1.3):

Z

0

(P

t�1

)(X) �! Z

0

(P

t

)(X) �! Z

t

(X)

D

?

?

y

D

?

?

y

D

?

?

y

Z

m

(X �P

t�1

) �! Z

m

(X �P

t

) �! Z

m

(X �A

t

):

(3:3:1)

The pre
eding argument together with the 5-Lemma implies that the right verti
al

arrow is a weak homotopy equivalen
e. Thus, D : Z

t

(X) ! Z

m�t

(X), de�ned as the


omposition of this map and the weak homotopy equivalen
e Z

m�t

(X)! Z

m

(X�A

t

), is

also a weak homotopy equivalen
e.

We re
all that the homotopy groups of Z

t

(X) and Z

r

(X) are 
alled \morphi
 
oho-

mology groups" and \L-homology groups" respe
tively. These are indexed as follows:

L

t

H

k

(X)

def

= �

2t�k

(Z

t

(X)) ; L

r

H

k

(X)

def

= �

k�2r

(Z

r

(X)):

Using this notation, we re-state the se
ond assertion of Theorem 3.3 and the remark

following Proposition 2.7.
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Corollary 3.4. The duality map D : Z

t

(X)! Z

m�t

(X) of (2.1.2) indu
es isomorphisms

L

t

H

k

(X)

D

�

=

L

m�t

H

2m�k

(X):

Moreover, these isomorphisms �t in the following 
ommutative square

L

t

H

k

(X)
 L

u

H

`

(X)

D
D

����! L

m�t

H

2m�k

(X)
 L

m�u

H

2m�`

(X)

#

X

?

?

?

y

?

?

?

y

�

L

t+u

H

k+`

(X)

D

����! L

m�t�u

H

2m�k�`

(X)

Using Theorem 3.3 we now de�ne a Gysin map for 
o
y
le spa
es 
ompatible with the

duality map. We 
an view this as a supplement to Propositions 2.2 and 2.3.

Proposition 3.5. Assume thatX and Y are smooth. Consider a regular 
losed embedding

i : X

0

� X of 
odimension 
. Then there exists a weak homotopy 
lass of maps (a Gysin

map)

i

!

:Mor(X

0

;Z

r+


(Y )) �! Mor(X;Z

r

(Y )) (3:5:1)

whi
h �ts in the following weakly homotopy 
ommutative square

Mor(X

0

;Z

r+


(Y ))

i

!

���! Mor(X;Z

r

(Y ))

D

?

?

?

y

?

?

?

y

D

Z

r+m

(X

0

� Y )

i

�

���! Z

r+m

(X � Y ):

(3:5:2)

Moreover, there exists a weak homotopy 
lass of maps

i

!

: Z

t�


(X

0

) �! Z

t

(X) (3:5:3)

whi
h �ts in the following weakly homotopy 
ommutative square

Z

t�


(X

0

)

i

!

���! Z

t

(X)

D

?

?

?

y

?

?

?

y

D

Z

m�t

(X

0

)

i

�

���! Z

m�t

(X):

(3:5:4)
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Proof. Using Theorem 3.3, we de�ne i

!

as follows:

i

!

def

= D

�1

Æ i

�

Æ D: (3:5:5)

So de�ned, i

!

�ts in weakly homotopy 
ommutative diagrams (3.5.2) and (3.5.3).

In 
onstru
ting the Gysin map �

!

of Proposition 2.4, we required the following variant

of Theorem 3.3.

Corollary 3.6 Assume that X and Y are smooth, and let Y

0

� Y is a 
losed subvariety

of 
odimension � r. Then the na��ve group 
ompletion

Z

r

(Y ;Y

0

)(X) �! Z

r

(Y )(X)

of the embedding C

r

(Y ;Y

0

)(X) � C

r

(Y )(X) of (2.3.3) is a weak homotopy equivalen
e.

Proof. The Moving Lemma (Theorem M.1) enables one to move all e�e
tive 
y
les of

degree � e in C

r+m

(X � Y ) so that the resulting 
y
les properly interse
t all e�e
tive


y
les of degree � e and of dimension � n � r. We apply this result to move e�e
tive


y
les in C

r+m

(X�Y ) with respe
t to the 
y
les x�Y ;x 2 X and the 
y
le X�Y

0

. Thus,

the proof of Theorem 3.3 applies with only notational 
hanges to prove that

Z

r

(Y ;Y

0

)(X) �! Z

r+m

(X � Y )

is a weak homotopy equivalen
e. Combining this fa
t with Theorem 3.3 implies the 
orol-

lary.

x4. Compatibility with Poin
ar�e Duality

The purpose of this se
tion is to prove that the duality isomorphism D of Corollary

3.4 is 
ompatible with Poin
ar�e duality. This gives some justi�
ation for our view that D

is a natural duality for 
y
les. It also leads to some interesting appli
ations.

We begin by re
alling the natural transformations � : L

r

H

k

(X) ! H

k

(X;Z) and

� : L

t

H

k

(X) ! H

k

(X;Z) introdu
ed in [FM

1

℄ and [FL

1

℄ respe
tively. Let s : Z

r

(X) ^

S

2

! Z

r�1

(X) be the s- operation dis
ussed prior to Proposition 2.5. This indu
es a

map s : �

j

Z

r

(X) ! �

j+2

Z

r�1

(X). Beginning with �

k�2r

Z

r

(X) � L

r

H

k

(X) we iterate

this map r-times and then apply the Dold-Thom isomorphism � : �

k

Z

0

(X)

�

=

�! H

k

(X;Z).

This gives the following.

De�nition 4.1 The natural transformation

� : L

r

H

k

(X) �! H

k

(X;Z)

is de�ned by setting � = � Æ s

r

.
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We re
all that Z

t

(X)

def

= Mor(X;Z

0

(A

t

)) is the na��ve group 
ompletion of the monoid

Mor(X; C

0

(P

t

))=Mor(X; C

0

(P

t�1

)) whi
h admits an evident 
ontinuous homomorphism

Mor(X; C

0

(P

t

))=Mor(X; C

0

(P

t�1

)) �! Map(X;Z

0

(A

t

)). (Here Map(A;B) denotes the


ontinuous maps with the 
ompa
t-open topology.) Group 
ompleting this homomorphism

gives a 
ontinuous homomorphism

� :Mor(X;Z

0

(A

t

)) �! Map(X;Z

0

(A

t

)): (4:1:1)

By the Dold-Thom Theorem there is natural homotopy equivalen
e Z

0

(A

t

)

�

=

K(Z; 2t).

De�nition 4.2 The natural transformation

� : L

t

H

k

(X) �! H

k

(X;Z)

is de�ned by applying the map (4.1.1) to the homotopy groups �

2t�k

and then using the

natural isomorphism �

2t�k

Map(X;K(Z; 2t))

�

=

H

k

(X;Z).

For the proof of Theorem 4.4 below we shall need the following spe
ial 
ase of the

\Krone
ker pairing" indu
ed by the slant produ
t 
onstru
tion

Mor(X; C

r

(Y ))� C

p

(X) �! C

r+p

(Y ) (4:2:1)

given in [FL

1

;7.2℄.

Proposition 4.3. When r = p = 0, the slant produ
t (4.2.1) is given by sending the

pair (f;

P

x

i

) 2 Mor(X;SP

d

(Y )) � SP

e

(X)) to

P

f(x

i

) 2 SP

de

(Y ). By spe
ializing to

Y = P

t

, this indu
es a slant produ
t (or \Krone
ker") pairing

�

i

Mor(X;Z

0

(A

t

))
 �

2t�i

Z

0

(X)

n

�! �

2t

Z

0

(A

t

)

�

=

Z:

Proof. The asserted identi�
ation of the spe
ial 
ase of the slant produ
t de�ned in

[FL

1

;7.2℄ for e�e
tive 
o
y
les and 
y
les is immediate from the de�nitions. This 
learly

de�nes a pairing

[Mor(X; C

0

(P

t

))=Mor(X; C

0

(P

t�1

))℄� C

0

(X) �! C

0

(P

t

)=C

0

(P

t�1

)

def

= C

0

(A

t

): (4:3:1)

The map on homotopy groups of the na��ve group 
ompletion of this latter map is the

asserted slant produ
t pairing.

The following theorem demonstrates that the natural transformations above intertwine

the duality map D with the Poin
ar�e Duality map.
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Theorem 4.4. IfX is smooth, then the duality isomorphismD : L

t

H

k

(X)! L

m�t

H

2m�k

(X)

of Corollary 3.4 �ts in the following 
ommutative square

L

t

H

k

(X)

D

���! L

m�t

H

2m�k

(X)

�

?

?

y

?

?

y

� Æ s

m�t

H

k

(X;Z)

P

���! H

2m�k

(X;Z)

(4:4:1)

where P is the Poin
ar�e Duality map sending � 2 H

k

(X;Z) to � \ [X℄ 2 H

2m�k

(X;Z).

Proof. In [FL

1

;5.2℄, we showed that the 
omposition

� Æ s

m�t

: L

t

H

k

(X) �! L

m

H

k

(X) �! H

k

(X;Z)

equals �. Thus, Proposition 2.6 redu
es us to the spe
ial 
ase t = m. The 
ommutativity

of (4.4.1) for the spe
ial 
ase t = m is equivalent to the 
ommutativity of the asso
iated

squares

L

m

H

k

(X;F )

D

���! L

0

H

2m�k

(X;F )

�

?

?

y

?

?

y

�

H

k

(X;F )

P

���! H

2m�k

(X;F )

(4:4:1)

F

as F ranges ea
h of the prime �eldsQ;Z=`Z. Sin
e the evaluation and interse
tion produ
ts

H

k

(X;F )
H

k

(X;F )

h;i

�! H

0

(X;F ) ; H

2m�k

(X;F )
H

k

(X;F )

�

�! H

0

(X;F )

are perfe
t pairings, to prove the 
ommutativity of (4:4:1)

F

it suÆ
es to prove that

h�(�); 
i = �(D(�))� 


for all � 2 L

m

H

k

(X;F ), and all 
 2 H

k

(X;F ). (Re
all that h�; 
i = (� \ [X℄) � 


for � 2 H

k

(X;F ).) To prove this equality, it suÆ
es to prove the 
ommutativity of the

following diagram:

H

k

(X;F )
H

k

(X;F )

h;i

����! H

0

(X;F )

�
 �

x

?

?

?

x

?

?

?

�

�1

�

2m�k

(Mor(X;Z

0

(A

m

)); F )
 �

k

(Z

0

(X); F )

n

����! �

2m

(Z

0

(A

m

); F )

D 
 pr

�

1

?

?

?

y

?

?

?

y

=

�

2m�k

(Z

m

(X �A

m

); F )
 �

k

(Z

m

(X �A

m

); F ))

pr

2�

Æ�

����! �

2m

(Z

0

(A

m

); F )

pr

�

1

Æ �

�1


 pr

�

1

Æ �

�1

x

?

?

?

x

?

?

?

�

H

2m�k

(X;F )
H

k

(X;F )

�

����! H

0

(X;F )

(4:4:2)

22



where n is the map in homotopy with F -
oeÆ
ients indu
ed by the na��ve group 
om-

pletion of (4.3.1) and � is the natural isomorphism

� = pr

2�

Æ pr

�

1

: �

0

(Z

0

(X); F ) �! �

2m

(Z

m

(X �A

m

); F ) �! �

2m

(Z

0

(A

m

); F ):

The 
ommutativity of the upper square of (4.4.2) follows immediately from the ob-

servation that the evaluation produ
t h; i : H

k

(X;F ) 
 H

k

(X;F ) ! H

0

(X;F ) 
an be

represented as the pairing on homotopy groups indu
ed by the map

Map(X;Z

0

(A

m

))� Z

0

(X)

n

�! Z

0

(A

m

)

sending (f;

P

x

i

) to

P

f(x

i

). (See [FL

1

, x8℄ for example.)

To verify the 
ommutativity of the middle square of (4.4.2), it suÆ
es to establish the

homotopy 
ommutativity of the square

Mor(X;Z

0

(A

m

))� Z

0

(X)

n

����! Z

0

(A

m

)

D � pr

�

1

?

?

y

?

?

y

=

Z

m

(X �A

m

)�Z

m

(X �A

m

)

pr

2�

Æ�

����! Z

0

(A

m

)

: (4:4:3)

Observe that for any f : X ! C

0

(P

m

) and

P

x

i

2 SP

d

(X), the 
y
les D(f) and pr

�

1

(

P

x

i

)

interse
t properly in X �P

m

and

pr

2�

h

D(f) � pr

�

1

(

X

x

i

)

i

=

X

f(x

i

):

Thus, the homotopy 
ommutativity of (4.4.3) follows from the result proved in [FG;3.5.a℄

asserting that the interse
tion produ
t on 
y
le spa
es for the smooth variety X � A

m


an be represented by the usual interse
tion produ
t when restri
ted to the na��ve group


ompletions of pairs of 
y
le spa
es 
onsisting of 
y
les whi
h interse
t properly.

Finally, to prove the 
ommutativity of the bottom square of (4.4.2), we 
laim that it

suÆ
es to prove the 
ommutativity of the following diagram

H

2m�k

(X;F )
H

k

(X;F )

(pr

�

1

)


2

�! H

BM

4m�k

(X �A

m

; F )
H

BM

2m+k

(X �A

m

; F )

�

?

?

y

?

?

y

�

H

2m

(X �X;F )

(pr

1

�pr

1

)

�

����! H

BM

6m

((X �A

m

)

2

; F )

�

!

?

?

y

?

?

y

�

!

H

0

(X;F )

pr

�

1

����! H

BM

2m

(X �A

m

; F )

=

?

?

y

?

?

y

pr

2�

H

0

(X;F )

�

����! H

BM

2m

(A

m

; F )

(4:4:4)
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whereH

BM

�

(V ) of a quasi-proje
tive variety V is the Borel-Moore homology of V . To verify

this redu
tion, �rst re
all that the Dold-Thom isomorphism extends to quasi-proje
tive

varieties � : �

�

Z

0

(V )

'

! H

BM

�

(V ). Thus, the 
omposition of the maps in the right 
olumn


an be identi�ed with the map pr

2�

Æ� of (4.4.2) using the naturality of � and the homotopy

invarian
e of Lawson homology. On the other hand, the 
omposition of the maps in the

left 
olumn of (4.4.4) is the 
ap produ
t pairing, so that it does indeed suÆ
e to prove the


ommutativity of (4.4.4).

The evident intertwining of the external produ
t � and the 
at pull-ba
k pr

�

1

implies

the 
ommutativity of the top square of (4.4.4). As shown for example in [FG;3.4.d℄, the

Gysin maps and 
at pull- ba
ks also suitably intertwine, thereby implying the 
ommuta-

tivity of the middle square of (4.4.4). The bottom square 
ommutes by the de�nition of �.

Remark 4.5. In [FL

1

℄ we introdu
ed the groups

L

t

H

k

(X; Y )

def

= �

2t�k

Mor(X;Z

n�t

Y )

for 0 � k � 2t. When X and Y are smooth, our Duality Theorem 3.3 gives isomorphisms

D : L

t

H

k

(X; Y )

�

=

�! L

(n+m)�t

H

2(n+m)�k

(X � Y ):

Now for smooth X and Y there is a diagram

L

t

H

k

(X; Y )

D

���! L

(n+m)�t

H

2(n+m)�k

(X � Y )

�

?

?

y

?

?

y

�

M

j�i=2n�k

H

i

(X;H

j

(Y ;Z))

P

���! H

2(n+m)�k

(X � Y ;Z)

where the maps � are natural transformations (
f. [FL

1

℄, [FM

1

℄), and where P is the

Poin
ar�e duality map

M

j�i=2n�k

H

i

(X;H

j

(Y ;Z))

P

�!

M

j+i=2(n+m)�k

H

i

(X;H

j

(Y ;Z))

�

=

H

2(n+m)�k

(X � Y ;Z):

It is natural to suppose that this diagram 
ommutes.
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x5. Appli
ations

The duality theorems have a variety of 
onsequen
es, some of whi
h we now present.

Throughout this se
tionX and Y will be smooth proje
tive varieties of dimensionsm and n

respe
tively. We �x a positive integer r � m and set q = m�r. We re
all for emphasis that

Mor(X;Z

r

(Y )) is simply the Grothendie
k group of the monoid of morphismsX �! C

r

(Y )

furnished with the 
ompa
t-open topology. We also re
all the de�nition of the morphi



ohomology groups

L

q

H

k

(X; Y ) = �

2q�k

Mor(X;Z

r

(Y )):

5.A Algebrai
 Co
y
les modulo Algebrai
 Equivalen
e. We re
all the basi
 iso-

morphism (
f. [F

1

;1.8℄)

L

p

H

2p

(X) = A

p

(X)

def

= falgebrai
 p�
y
les on Xg=falgebrai
 equivalen
eg:

where A

p

(X) is the Chow group of algebrai
 p-
y
les on X modulo algebrai
 equivalen
e.

There is an analogous interpretation of the group L

q

H

2q

(X; Y ) = �

0

Mor(X;Z

r

(Y )). Ea
h

element of Mor(X;Z

r

(Y )) 
an be written as a di�eren
e f � g where f; g : X ! C

r

(Y )

are algebrai
 families of e�e
tive 
y
les on Y parameterized by X. Two su
h pairs (f; g),

(f

0

; g

0

) determine the same element if there are morphisms h; h

0

with (f + h; g + h) =

(f

0

+h

0

; g

0

+h

0

). The pairs (f; g) , (f

0

; g

0

) are algebrai
ally equivalent inMor(X;Z

r

(Y ))

if there exist h; h

0

and an algebrai
 
urve joining (f + h; g + h) to (f

0

+ h

0

; g

0

+ h

0

) in

Mor(X; C

r

(Y )) � Mor(X; C

r

(Y )). We have a similar des
ription of �

0

Mor(X;Z

r

(Y )),

ex
ept that the 
ondition is that two pairs 
an be 
onne
ted (after translation) by a real


urve. Sin
e Mor(X; C

r

(Y )) is a 
ountable disjoint union of quasi-proje
tive varieties (see

[FL

1

℄), two points in Mor(X; C

r

(Y ))

2


an be joined by a real 
urve if and only if they 
an

be joined by an algebrai
 
urve. This shows that

L

q

H

2q

(X; Y )

�

=

falgebrai
 q�
o
y
les on X with values in Y g=f algebrai
 equivalen
eg

= Mor(X;Z

r

(Y ))=falgebrai
 equivalen
eg

The Duality Theorem 3.3 now provides the following non- obvious isomorphism.

Theorem 5.1. Let X be a smooth proje
tive variety of dimension m and q a non-negative

integer with q � m. Then there are natural isomorphisms

Mor(X;Z

0

(P

q

))

falgebrai
 equivalen
eg

�

=

A

m�q

(X)�A

m�q�1

(X)� � � � � A

0

(X)

and

�

0

Mor(X;Z

0

(A

q

))

�

=

A

m�q

(X):

Proof. The se
ond isomorphism is obtained immediately by applying �

0

to the se
ond

homotopy equivalen
e of Theorem 3.3. The �rst isomorphism follows similarly by using

the proje
tive bundle theorem in L-homology proved in [FG;2.5℄ together with the �rst

homotopy equivalen
e of Theorem 3.3.
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5.B Flag manifolds Re
all that a variety Y is said to have a 
ell de
ompositon if

there is a �ltration of Y by subvarieties ; = Y

�1

� Y

0

� Y

1

� � � � � Y

k

= Y su
h that

Y

j

� Y

j�1

=

`

i

A

N

j

for ea
h j. Su
h varieties in
lude all homogeneous varieties, and in

parti
ular all generalized 
ag manifolds su
h as proje
tive spa
es, Grassmannians, et
. We

re
all from the work of Lima-Filho [Li

1

℄ that for any su
h Y the natural in
lusion

Z

r

(Y ) � J

2r

(Y )

into the topologi
al group of integral 
y
les of (real) dimension 2r on Y , is a homotopy

equivalen
e. In parti
ular, there is a homotopy equivalen
e

Z

r

(Y )

�

=

Y

j

K(H

2r+j

(Y ;Z); j) (5:2:0)

As a result of duality there is the following 
ohomologi
al version of these results

Theorem 5.2. If X and Y are smooth proje
tive varieties with 
ell de
ompositions, then

there is an isomorphism

�

�

Mor(X;Z

r

(Y ))

�

=

H

2(m+r)+�

(X � Y ; Z): (5:2:1)

Furthermore, the in
lusion

Mor(X;Z

0

(A

q

)) �! Map(X;Z

0

(A

q

)) (5:2:2)

is a weak homotopy equivalen
e.

Proof. The �rst statement follows immediately from the Duality Theorem 3.3 and (5.2.0).

The se
ond statement is equivalent to the assertion that the natural transformation

� : L

q

H

k

(X)

�

=

�! H

k

(X;Z)

is an isomorphism for all q; k with 2q � k. Now in [Li

1

℄ it is proved that the natural

transformation � Æ s

m�q

: L

m�q

H

2m�k

(X)! H

2m�k

(X;Z) is an isomorphism for all q; k

with 2(m� q) � 2m� k. Together with (4.4.1) this proves the result.

Remark. If the general 
ompatibility with Poin
ar�e duality 
onje
tured in 4.5 above holds,

then Theorem 5.2 extends to the assertion that when X and Y have 
ell de
ompositions,

the in
lusion

Mor(X;Z

r

(Y )) �! Map(X;Z

r

(Y ))

is a homotopy equivalen
e.

5.C Theorems of Segal-type Duality tells us something about rational families of 
y
les

on a smooth variety.
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Theorem 5.3. Let Y be a smooth proje
tive variety of dimension n. Then for ea
h pair

of non-negative integers r; k with r + k � n there is a weak homotopy equivalen
e

Mor(P

k

;Z

r

(Y ))

�

=

Z

r

(Y )�Z

r+1

(Y )� � � � � Z

r+k

(Y )

Proof. By Theorem 3.3 we have Mor(P

k

;Z

r

(Y ))

w:h:e:

�

=

Z

k+r

(P

k

� Y ), and from [FG;2.5℄

we know that there is a weak homotopy equivalen
e Z

k+r

(P

k

� Y )

�

=

Z

r

(Y )�Z

r+1

(Y )�

� � � � Z

r+k

(Y )

Setting k = 1 gives the following.

Corollary 5.4. The spa
e of parameterized rational 
urves on Z

r

(Y ) is weakly homotopy

equivalent to Z

r

(Y )� Z

r+1

(Y ).

A basi
 result of Graeme Segal [Se℄ states that the natural embedding

Mor

d

(P

1

; P

1

) � Map

d

(P

1

;P

1

)

of the spa
e of morphisms of degree d into the spa
e of 
ontinuous maps of degree d (with

the 
ompa
t-open topology) is 2d- 
onne
ted. In parti
ular, Segal asserts that

lim

d!1

Mor

d

(P

1

; P

1

) � lim

d!1

Map

d

(P

1

; P

1

)

is a weak homotopy equivalen
e. Subsequent work [CCMM℄ has identi�ed the stable

homotopy type (stable in the sense of spe
tra, not in the sense of in
reasing degree) of

Mor

d

(P

1

; P

n

). Setting X = P

1

and using the identi�
ation SP

n

(P

1

)

�

=

P

n

, one 
on
ludes

as a spe
ial 
ase of Corollary 5.4 in 
onjun
tion with Theorem 4.4 that

lim

�!

n;d

Mor

d

(P

1

;P

n

)) � lim

�!

n;d

Map

d

(P

1

;P

n

):

is a weak homotopy equivalen
e. For this reason we 
all the results of this se
tion \theorems

of Segal-type".

5.D Inverse to Gysin Maps In this se
tion we present a 
onsequen
e of the Moving

Lemma M.1 whi
h underpins the Duality Theorem. This result has proved useful in our

early dis
ussion (e.g., in the proof of Proposition 2.7).

Proposition 5.5. Let p : P ! Y be a 
at map of relative dimension 
 between smooth

proje
tive varieties with se
tion s : Y ! P . Then

s

!

Æ p

�

: Z

r

(Y ) �! Z

r+


(P ) �! Z

r

(Y )

is a weak homotopy equivalen
e.
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Proof. Let C

r+


(Y ;P ) � C

r+


(Y ) denote the submonoid of those e�e
tive r+ 
-
y
les on

P whi
h meet s(Y ) � P properly. By Corollary 3.6 (or, more dire
tly, by its proof), we


on
lude that the map on na��ve group 
ompletions

Z

r+


(Y ;P ) �! Z

r+


(P )

is a weak homotopy equivalen
e. On the other hand, [FG;3.4℄ asserts that the Gysin

map s

!

when restri
ted to Z

r+


(Y ;P ) is represented by interse
tion with s(Y ). Clearly,

interse
tion of a 
y
le p

�

(Z) with s(Y ) is merely the 
y
le Z for any r-
y
le Z on Y .

5.E A Dold-Thom Theorem and a fundamental 
lass for morphi
 
ohomology

The 
lassi
al Dold-Thom Theorem [DT℄ establishes an equivalen
e of fun
tors whi
h in

our 
ontext 
an be written as

L

0

H

k

(X)

�

=

H

k

(X; Z) for 0 � k � 2m:

By the Theorems 3.3 and 4.4 this implies the following result in 
ohomology.

Theorem 5.6 For any smooth proje
tive variety X of dimension m there are natural

ismorphisms

L

m

H

k

(X)

�

=

H

k

(X; Z) for 0 � k � 2m:

The 
lassi
al Dold-Thom isomorphism is 
onventionally written as the isomorphism

�

�

Z

0

(X)

�

=

H

�

(X; Z);

In analogy, the \morphi
 
ohomology version" above 
an be rewritten as

�

�

Mor(X;Z

0

(A

m

))

�

=

H

2m��

(X; Z):

As a 
orollary of Theorem 5.6 in the spe
ial 
ase k = 2m, we obtain a \Noether

normalization of virtual degree 1" giving a well-de�ned fundamental 
lass in the morphi



ohomology of X.

Corollary 5.7. Let f; g : X ! SP

d

(P

m

) determine [f � g℄ 2 �

0

Mor(X;Z(A

m

)) 
orre-

sponding to the fundamental 
lass �

X

2 H

2m

(X;Z) under the isomorphism of Theorem

5.6. Let �

2m

2 H

2m

(Z

0

(A

m

);Z) denote the 
anoni
al 
lass. Then

f

�

(�

2m

)� g

�

(�

2m

) = �

X

2 H

2m

(X):

Proof. The identi�
ation of �

0

Map(X;Z

0

(A

m

)) with H

2m

(X;Z) is a
hieved by sending

� : X ! Z

0

(A

m

) to �

�

(�

2m

).
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5.F Filtrations in Cohomology Re
all that L

q

H

k

(X) = �

2q�k

Mor(X;Z

0

(A

q

)) is

de�ned for all q > 0, and there are 
ommutative triangles

L

q

H

�

(X)

& �

s

?

?

y

H

�

(X;Z)

% �

L

q+1

H

�

(X)

where � denotes the natural transformation and s is the operation from [FL

1

℄ dis
ussed

in x2. It is natural to ask at what point the images of these maps stabilize. As we verify

in the following theorem, a strong form of stabilization is valid when X is smooth.

Theorem 5.8. Let X be a smooth proje
tive variety. Then for any q � m,

s : L

q

H

�

(X) �! L

q+1

H

�

(X)

is an isomorphism.

Proof. We interpret the s-map via the following diagram

Mor(X;Z

0

(A

q

)) ^ S

2

s

���! Mor(X;Z

0

(A

q+1

))

D � i

?

?

y

?

?

y

D

Z

m

(X �A

q

)�Z

0

(A

1

)

�

���! Z

m

(X �A

q+1

)

pr

�

� 1

x

?

?

x

?

?

pr

�

Z

0

(X �A

q�m

)�Z

0

(A

1

)

�

���! Z

0

(X �A

q+1�m

)

where i : S

2

�! Z

0

(A

m

) is given by S

2

�

=

P

1

�! Z

0

(P

1

) �! Z

0

(A

1

) sending p 2 S

2

to

p � f1g. Sin
e the map on homotopy indu
ed by the bottom horizontal arrow is simply

the Thom isomorphism assoi
ated to the trivial rank-1 bundle over X�A

q�m

, we 
on
lude

that s is a weak homotopy equivalen
e.

In [FM

1

℄, [FM

2

℄, a \topologi
al �ltration on homology"

T

r

H

k

(X;Z)

def

= image f� Æ s

r

: L

r

H

k

(X) �! H

k

(X;Z)g

(de
reasing with respe
t to r) was introdu
ed and shown to have a number of interesting

properties. In [FL

1

℄, we 
onsidered the 
ohomologi
al analogue:

T

q

H

k

(X;Z)

def

= image

�

� : L

q

H

k

(X) �! H

k

(X;Z)

	

:
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Our �nal theorem asserts that for X smooth this 
ohomologi
al analogue is exa
tly the

Poin
ar�e dual of the topologi
al �ltration on homology. The \proof" of this theorem


onsists in observing that Theorem 5.9 is merely a restatement of Theorem 4.4.

Theorem 5.9. If X is smooth, then the Poin
ar�e duality map P : H

k

(X;Z) �!

H

2m�k

(X;Z) indu
es isomorphisms

P : T

q

H

k

(X;Z)

�

=

�! T

m�q

H

2m�q

(X;Z)

of the topologi
al �ltrations in all degrees.

5.G. Adjointness within the Krone
ker pairing. We shall now prove that under

the duality isomorphism the Krone
ker pairing is equivalent to the interse
tion pairing.

This establishes the degenera
y of the Krone
ker pairing in some 
ases.

We re
all that in [FG℄ an interse
tion produ
t Z

p

(X) 
 Z

q

(X)

�

�! Z

p+q�n

(X) was

de�ned for smooth n- dimensional varieties X, when p + q � n � 0. This produ
t has

the property that when restri
ted to pairs of 
y
les whi
h meet in proper dimension, it is

homotopi
 to the standard interse
tion of 
y
les (as in [Fu℄). One 
he
ks that this pairing is


ompatible with the equivalen
es Z

p

(X)

�

=

�! Z

p+1

(X�A

1

) and thereby indu
es a pairing

L

p

H

k

(X)
 L

q

H

`

(X)

�

=

�! L

p+q�n

H

k+`�2n

(X)

for k+` � 2n, where for negative integers �r one de�nes L

�r

H

m

(X) = L

0

H

m+2r

(X�A

r

)

�

=

H

m

(X; Z).

Theorem 5.10. Let X be a smooth proje
tive variety of dimension m, and �x integers

p; k; q with 2p � k � 2q. Consider on X the Krone
ker pairing

� : L

q

H

k

(X)
 L

p

H

k

(X) �! Z

introdu
ed in [FL

1

℄, and the interse
tion pairing

� : L

m�q

H

2m�k

(X)
 L

p

H

k

(X) �! Z

established in [FG℄. Then

�('; 
) = D' � 


for all ' 2 L

q

H

k

(X) and 
 2 L

p

H

k

(X).

Proof. Consider the diagram

Mor(X;Z

0

(A

q

)) ^ Z

p

(X)

�

����! Z

p

(A

q

)

D ^ �=

q

?

?

y

Z

m

(X �A

q

) ^ Z

p+q

(X �A

q

) k

�

?

?

y

Z

p

(X �A

q

)

(pr

2

)

�

����! Z

p

(A

q

):

(5:10:1)
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where the map � is given by graphing the 
o
y
le over the 
y
le and then pushing into

A

q

. One veri�es dire
tly that � 
oin
ides with the Krone
ker map de�ned in [FL

1

, x7℄.

If we assume for the moment that � is the standard interse
tion produ
t de�ned only on

the subset of pairs of 
y
les whi
h meet properly, then the diagram (5.10.1) 
ommutes on

the nose. It therefore follows from [FG;3.5℄ that this diagram 
ommutes up to homotopy.

Taking homotopy groups \�

2q�k


 �

k�2p

" yields a 
ommutative diagram

L

q

H

k

(X)
 L

p

H

k

(X)

�

����! Z

D 
 Id

?

?

y

L

m�q

H

2m�k

(X)
 L

p

H

k

(X) k

�

?

?

y

L

q�p

H

0

(X)

�

=

����! Z:

Now the interse
tion pairing � above fa
tors through the topologi
al interse
tion prod-

u
t �

top

, i.e., there is a fa
toring of � of the form

L

m�q

H

2m�k

(X)
 L

p

H

k

(X)

�
�

�! H

2m�2p

(X; Z)
H

2p

(X; Z)

�

top

�! Z

where � is the natural transformation as above. For example when 2p = k = 2q we have

A

m�p


A

p

�
�

�! H

2m�k

(X; Z)
H

k

(X; Z)

�

top

�! Z;

and there are many well-known 
ases where the kernel of � has large rank, i.e., where

homologi
al equivalen
e does not imply algebrai
 equivalen
e. It follows that the pairing

A

m�p


A

p

�

�! Z

is degenerate in su
h 
ases (numeri
al equivalen
e does not imply algebrai
 eqivalen
e).

By Theroem 5.10 the Krone
ker pairing is also degenerate over Q in su
h 
ases.
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Appendix C. Co
y
les and the 
ompa
t- open topology.

In this appendix, we 
orre
t the mistaken dis
ussion given in [FL

1

;1.5℄ of the rela-

tionship between the 
ompa
t-open topology on the monoid Mor(U; C

r

(Y )) for a quasi-

proje
tive variety U and the topology indu
ed by the embedding

G :Mor(U; C

r

(Y )) �! C

r+m

(U � Y )

def

= C

r+m

(X � Y )=C

r+m

(X

1

� Y ) (C:1:0)

via the graphing map. When U is proje
tive, these topologies 
oin
ide. However, if U is

not proje
tive, then the topology indu
ed by G is equivalent to the topology of uniform


onvergen
e on 
ompa
ta with uniformly bounded degree. In [FL

1

℄ the added 
ondi-

tion of uniformly bounded degree was overlooked. We present here a thorough dis
ussion

of these topologies.

Throughout this appendix, U shall denote a quasi-proje
tive variety of dimension m,

X � U will denote a proje
tive 
losure with Zariski 
losed 
omplement X

1

� X, Y will

denote a proje
tive variety of dimension n, and r will be a non-negative integer � n.

We re
all that the graphing 
onstru
tion (C.1.0) is always inje
tive. We de�ne

C

r

(Y )(U) to be the topologi
al submonoid of C

r+m

(U � Y ) given as the image of G.

Proposition C.1. The inverse of the graphing 
onstru
tion

G

�1

: C

r

(Y )(U) �! Mor(U; C

r

(Y ))

is 
ontinuous, where Mor(U; C

r

(Y )), 
onsidered as a spa
e of 
ontinuous maps from U to

C

r

(Y ), is given the 
ompa
t-open topology.

Proof. It will suÆ
e to 
onstru
t an evaluation mapping

� : C

r

(Y )(U)� U �! C

r

(Y ) (C:1:1)

and establish that it is 
ontinuous (sin
e, by a standard lemma, the 
ontinuity of (C.1.1)

implies that the adjoint mapping is 
ontinuous into the 
ompa
t-open topology.) When Y

and U are smooth, we de�ne the evaluation map � using interse
tion of 
y
les: �(f; u) =

�(f) � (fug � Y ). The 
ontinuity of � in this 
ase follows from the 
ontinuity of the

interse
tion produ
t proved in [Fu℄ for families of 
y
les whi
h meet in proper dimension.

When U is smooth but Y is not ne
essarily smooth, we 
onsider a proje
tive embedding

Y � P

N

and repla
e Y by P

N

(i.e., we now write f(u) = �(f) � (fug � P

N

) where the

interse
tion takes pla
e in U �P

N

).

If U is not smooth, we 
onsider a resolution of singularities � :

e

U ! U and let

e� : C

r

(Y )(

e

U) �

e

U �! C

r

(Y ) be the evaluation map (C.1.1). Note that 
omposition of

morphisms � : U ! C

r

(Y ) with � indu
es an inje
tive map

�

�

: C

r

(Y )(U) ,! C

r

(Y )(

e

U):

The 
omposition e� Æ (�

�

� 1) : C

r

(Y )(U) �

e

U ! C

r

(Y ) des
ends to � as in (C.1.1), sin
e

e�(G(� Æ �); eu) = fug � (� Æ �)(eu).
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We now prove the 
ontinuity of �, assuming for the moment that we have shown that

�

�

is 
ontinuous. Let a

n

! a be a 
onvergent sequen
e in C

r

(Y )(U) � U . Choose fea

n

g

in C

r

(Y )(U) �

e

U with (Id � �)(ea

n

) = a

n

. Sin
e Id � � is proper, for every subsequen
e

of fa

n

g there is a sub-subsequen
e of fea

n

g su
h that ea

n

! ea upstairs, and so �(a

n

) =

e�((Id� �)(ea

n

))! e�((Id� �)(ea)) = �(a). This proves the 
ontinuity of �.

It remains to prove that �

�

is 
ontinuous. Let X be a 
ompa
ti�
ation of U , and set

X

1

= X � U . Let

e

X �

e

U be a 
ompa
ti�
ation of

e

U su
h that � :

e

U ! U admits an

extension � :

e

X ! X. Consider a subset A � C

m+r

(U�Y ) = C

m+r

(X�Y )=C

m+r

(X

1

�Y )

whi
h lies in the image of C

m+r;�d

(X�Y ), the 
ompa
t spa
e of e�e
tive (m+r)-
y
les of

degree � d on X�Y (for some proje
tive embedding of X�Y ). Let B � C

r+m;�d

(X�Y )

denote the 
onstru
tible subset of those e�e
tive r + m-
y
les ea
h 
omponent of whi
h

when restri
ted to U�Y is equidimensional over U . As argued in [FG;1-6℄ using noetherian

indu
tion and generi
 
atness of families, B � (��Id)

�

(C

r

m

;�e

(

e

X�Y )) for some suÆ
iently

large e. (Any algebrai
 family of subs
hemes on X � Y parametrized by some variety C

is generi
ally 
at over C, and the 
losure in

e

X � Y of the interse
tion of the family with

Reg(U)� Y is also generi
ally 
at over C.)

The 
ontinuity of �

�

is now proved as follows. Consider a 
onvergent sequen
e �(f

n

)!

�(f) in C

r

(Y )(U). By the paragraph above, the 
y
les �

�

(�(f

n

)) = �(

e

f

n

) and �

�

(�(f)) =

�(

e

f) (where

e

f

n

= f

n

Æ � and

e

f

n

= f Æ �) have 
losures of uniformly bounded degree in

e

X � Y . Furthermore, we see that �(

e

f

n

) ! �(

e

f) over Reg(U) � Y sin
e � � Id is an

isomorphism there. By 
ompa
tness, every subsequen
e of �(

e

f

n

) has a sub-subsequen
e

whi
h 
onverges to an e�e
tive 
y
le, say �, on

e

U�Y . From the 
onvergen
e on Reg(U)�Y

we see that � = �(

e

f) + 


0

for some e�e
tive 
y
le 


0

supported on �

�1

Sing(U)� Y . We

shall show that j


0

j � j�(

e

f)j and therefore 


0

= 0 be
ause dimfj�(

e

f)j\�

�1

Sing(U)�Y g �

m + r � 1. If x 2 j


0

j, then there exist x

n

2 j�(

e

f

n

)j su
h that x

n

! x in

e

U � Y . Then

(� � Id)(x

n

) ! (� � Id)(x) and so (� � Id)(x) 2 j�(f)j by Proposition C.2 below. This

implies that x 2 j�(

e

f)j as 
laimed.

Proposition C.2. Let fW

n

g be a sequen
e of e�e
tive r-
y
les on Y whi
h 
onverge in

C

r

(Y ) to some r-
y
le W . Consider a sequen
e of points fy

n

g with y

n

2 jW

n

j and assume

that this sequen
e 
onverges to some point y 2 Y . Then y 2 jW j.

Proof. We assume that Y is provided with the metri
 indu
ed from an embedding into

some proje
tive spa
e. A basi
 result in the theory of positive 
urrents (
f. [H℄) states that

Mass

�

W

n

�

�

B

�

(z

0

)

�

� 


2r

�

2r

for all w 2W

n

and all � > 0, where 


2r

> 0 is a 
onstant depending only upon r and where

B

�

(z

0

) is the open �-ball 
entered at z

0

.

Fix some � > 0. Set q = �!

r

=r! where ! is the restri
tion of the Kahler form of

proje
tive spa
e to Y and where � denotes the 
hara
teristi
 fun
tion of the ball B

2�

(z).

Then for all n suÆ
iently large that y

n

2 B

�

(y) we have




2r

�

2r

�

Z

W

n

q �!

Z

W

q � Mass(W \ B

2�

(y)):
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Hen
e, y 2 jW j as asserted.

We denote by Map(U; C

r

(Y )) the spa
e of 
ontinuous maps f : U ! C

r

(Y ) equipped

with the 
ompa
t-open topology, i.e., the topology of uniform 
onvergen
e on 
ompa
t

subsets.

Theorem C.3 The topology on C

r

(Y )(U) is 
hara
terized by the following property: a

sequen
e ff

i

: i 2 Ng � C

r

(Y )(U) 
onverges for this topology if and only if

(i) ff

i

: i 2 Ng 
onverges when viewed in Map(U; C

r

(Y )).

(ii) The asso
iated sequen
e fZ

i

: i 2 Ng � C

r

(Y )(U) of graphs has the property that for

some Zariski lo
ally 
losed embedding U �Y � P

N

, there is a positive integer E su
h

that ea
h Z

i

has 
losure

�

Z

i

� P

N

of degree � E.

We 
all this topology on C

r

(Y )(U) inherited from that of C

r

(Y )(U) the topology of


onvergen
e with bounded degree.

Proof. Proposition C.1 implies that 
onvergen
e of ff

i

: i 2 Ng � C

r

(Y )(U) implies (i).

Re
all from [Li

1

℄ that C

r+m

(U � Y ) has the 
ompa
tly generated topology asso
iated to

the in
reasing �ltration

: : : � C

r+m;�d

(U � Y ) � : : : � C

r+m;�d+1

(U � Y ) � : : :C

r+m

(U � Y );

where

C

r+m;�d

(U � Y )

def

= image

�

a

e�d

C

r+m;e

(X � Y ) �! C

r+m

(U � Y )

�

:

If the sequen
e of graphs fZ

i

: i 2 Ng asso
iated to ff

i

: i 2 Ng 
onverges to Z, then the

subset fZ

i

: i 2 Ng [ fZg is 
ompa
t and therefore lies in some C

r+m;�d

(U � Y ). This

immediately implies 
onvergent 
ondition (ii).

Conversely, assume ff

i

: i 2 Ng satis�es 
ondition (i) and that its asso
iated sequen
e

of graphs fZ

i

: i 2 Ng satis�es 
onditions (ii). Let g : U ! C

r

(Y ) with graph Z

g

denote

the limit in Map(U; C

r

(Y )) of ff

i

: i 2 Ng. Let

�

Z

i

denote the 
losure of Z

i

in X � Y .

By hypothesis (ii), any subsequen
e of f

�

Z

i

: i 2 Ng admits a 
onvergent subsequen
e

f

�

Z

j

: j 2 M � Ng � C

r+m

(X � Y ). Let

�

Z 2 C

r+m

(X � Y ) denote the limit of su
h a


onvergent sequen
e. It suÆ
es to prove that the restri
tion Z of

�

Z to U � Y has support


ontained in the support of Z

g

, for then Proposition C.1 implies that Z = Z

g

.

Consider an arbitrary point (x; y) 2 jZj � U � Y . The 
onvergen
e of f

�

Z

j

g to Z

implies that for every � > 0 there exists some N

�

su
h that jZ

j

j \ B

�

(x; y) 6= ; whenever

j � N

�

. Hen
e, there exists a sequen
e of points (x

j

; y

j

) 2 jZ

j

j 
onverging to (x; y). In

parti
ular, the sequen
e fy

j

2 jf

j

(x

j

)jg 
onverges to y. By 
hoosing j suÆ
iently large,

we may assume that the x

j

's lie in some 
ompa
t ball 
entered about x in U . Be
ause

ff

j

g 
onverges to g on 
ompa
t subsets of U , we 
on
lude that ff

j

(x

j

)g 
onverges to g(x).

Proposition C.2 thus implies that y 2 jg(x)j as required.

As we make expli
it in Theorem C.4, the 
ondition of bounded degree is redundant if

the domain U equals X (i.e., is proje
tive).
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Theorem C.4. The graphing 
onstru
tion

G :Mor(X; C

r

(Y )) �! C

r

(Y )(U)

is a homeomorphism.

Proof. By Theorem C.3, it suÆ
es to show the following: for any 
onvergent seqen
e ff

n

g

in Mor(X; C

r

(Y )), the asso
iated sequen
e of graphs fZ

n

g has bounded degree. For this,

it suÆ
es to prove that homology 
lasses [Z

n

℄ 2 H

2m+2r

(X � Y ) are independent of n for

n suÆ
iently large. (Namely, the homology 
lass [Z℄ determines the multi-degree of Z

n

whi
h in turn determines the degree of Z

n

.) This is implied by the assertion that the maps

f

n

are all homotopi
 for n suÆ
iently large, for a homotopy between f

n

; f

m

determines an

integral 
urrent on X � Y � I with restri
tions to Z

n

; Z

m

.

The fa
t that f

n

's are homotopi
 for all suÆ
iently large n is a 
onsequen
e of the

following elementary lemma.

Lemma C.5 Let P be a polyhedron. Then there exists an � > 0 su
h that whenever

f; g : A! P are 
ontinuous and satisfy

kf � gk

1

< �

then f is homotopi
 to g.

Proof. We embed P � R

N

and assume without loss of generality that the metri
 on P is

the one indu
ed from this embedding. Let W � P be a neighborhood of P in R

N

with a

retra
tion r : W ! P . Then there exists � > 0 su
h that for all x; y 2 P with d(x; y) < �,

the line segment xy � W . Hen
e, if kf � gk

1

< � then f

t

(x) = (1 � t)f(x) + tg(x) is a

homotopy from f to g in W and r Æ f

t

gives the desired homotopy in P .

We 
on
lude with two important examples whi
h illustrate the subtleties of the topol-

ogy on 
o
y
le spa
es.

Example C.6 The inje
tive 
ontinuous map D : Mor(X;Z

r

(Y )) ! Z

m+r

(X � Y )

given by group 
ompletion of the graphing map, is not a topologi
al embedding. To see

this, let X = Y = P

1

, and for ea
h integer n > 0 let �

n

2Mor(P

1

; C

0

(P

1

)) de�ned by the

mapping

y = x=n

in aÆne 
oordinates. Then the sequen
e of 
o
y
les �

n

def

= D(�

n+1

��

n

) 
onverges to 0 in

Z

1

(P

1

�P

1

). This is 
lear sin
e D(�

n

) 
onverges to the e�e
tive 
y
le P

1

�f0g+f1g�P

1

.

However, the sequen
e �

n

does not 
onverge to 0 in Z

1

(P

1

� P

1

). This is seen as

follows. Let M = Mor(P

1

; C

0

(P

1

)) and let � � M � M denote the diagonal. Then

by de�nition �

n

�! 0 in Mor(P

1

;Z

0

(P

1

)) i� for every M -saturated open neighborhood

U of � there is an N to that (�

n+1

;�

n

) 2 U for all n � N . Now let U = M �M �

f(�

n+1

;�

n

)g

1

n=1

and observe that U is a saturated open neighborhood of �. (It is open

be
ause the limiting 
y
le (
; 
) with 
 = P

1

� f0g+ f1g �P

1

is not in �.)
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Example C.7 The inje
tive 
ontinuous map G : Mor(X; C

0

(A

q

)) ! C

m

(X � A

q

) given

by the graphing map, is not a topologi
al embedding. To see this, 
onsider the sequen
e

of mappings  

n

2Mor(P

1

;P

2

) �Mor(P

1

; C

0

(P

2

)) given in homogeneous 
oordinates by

 

n

([x : y℄) = [x :

1

n

y :

1

n

2

y℄; with graphs

�

n

= G( 

n

) = f([x : y℄; [x :

1

n

y :

1

n

2

y℄) 2 P

1

�P

2

: x; y 2 Cg:

We take the distinguished line P

1

� P

2

to be P

1

= f[z : w : 0℄g. Then one veri�es that

�

n

�! P

1

� [1 : 0 : 0℄+[0 : 1℄�P

1

as 
y
les in P

1

�P

2

. Hen
e, the sequen
e �

n


onverges

to \0" in C

1

(P

1

�A

2

) � C

1

(P

1

�P

2

)=C

1

(P

1

�P

1

), however, it does not 
onverge at all in

Mor(P

1

; C

0

(A

2

)) �Mor(P

1

; C

0

(P

2

))=Mor(P

1

; C

0

(P

1

)).

Appendix M. The Moving Lemma for Families.

For the 
onvenien
e of the reader we present here the statement of the Moving Lemma

for Families of Cy
les of Bounded Degree proved in [FL

2

℄. The main result there is sub-

stantially more general. We quote here the form of the theorem whi
h is needed for the

duality theorems of x3. It 
an be found in [FL

2

; 3.2 and 3.3℄

Theorem M.1. Let X � P

n

C

be a 
omplex proje
tive variety of dimension m. Let r; s; e

be non-negative integers with r + s � m. Then there exists a Zariski open neighborhood

O of f0; 1g in C, and a 
ontinuous algebrai
 map

e

	 : C

s

(X)�O �! C

s

(X)

�2

whi
h has the property that � Æ

e

	 indu
es by linearity a 
ontinuous map

	 : Z

s

(X)�O �! Z

s

(X)

satisfying the following. Set  

�

j = 	

�

�

Z

s

(X)�f�g

for � 2 O.

(a)  

0

= Id:

(b) For any Z 2 Z

s

(X), the restri
tion

	

�

�

fZg�O

: fZg � O �! Z

s

(X);

determines a rational equivalen
e between Z and  

1

(Z).

(
) For any � 2 O,  

�

is a 
ontinuous group homomorphism.

(d) For any Z 2 Z

s;�e

(X), any Y 2 Z

r

0

;�e

(X); r

0

� r and any � 6= 0 in O, ea
h


omponent of ex
ess dimension (i.e., > r

0

+ s�m) of the interse
tion

jY j \ j 

�

(Z)j

is 
ontained in the singular lo
us of X.
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Appendix T. Tra
table monoids.

We re
all that a subset C of a variety V is said to be 
onstru
tible if C is a �nite union

of subsets C

i

� V ea
h of whi
h is lo
ally 
losed in V with respe
t to the Zariski topology.

Sin
e any lo
ally 
losed subset C

i

� V has the property that its 
losure (with respe
t to

the analyti
 topology) is Zariski 
losed in V (
f. [Sh℄), the 
losure of a 
onstru
tible subset

C � V is also Zariski 
losed in V . If T � V is 
onstru
tible, then a subset S � T is

said to be a 
onstru
tible embedding if S � V is a 
onstru
tible subset. If S � T is

a 
onstru
tible embedding of 
onstru
tible subsets, then the 
losure of S in T is \Zariski


losed" in the sense that S equals the interse
tion of T with some Zariski 
losed subset of

the ambient variety V .

The following lemma isolates the spe
ial property we use of the topology of algebrai


varieties. The proof of this lemma relies on the existen
e of relative triangulations for

semi-algebrai
 subsets (more general than 
onstru
tible subsets) proved by Hironaka in

[H℄.

Lemma T.1 Any 
losed, 
onstru
tible embedding S � T of 
onstru
tible spa
es is a


o�bration.

Proof. Let

�

S �

�

T denote the 
losure of S � T for some proje
tive embedding of T � P

N

.

Note that S =

�

S \ T . By Hironaka's relative triangulation theorem [H℄, there is a (�nite)

semi-algebrai
 triangulation of

�

T so that

�

S and

�

T � T are sub
omplexes, and thus T and

S are unions of some open simpli
es. We 
onstru
t a deformation retra
tion r

t

; 0 � t � 1

of a neighborhood

e

U of

�

S in

�

T onto

�

S with the property that r

t

maps ea
h open simplex

of the triangulation into itself for all t.

Namely, for some maximal (
losed) simplex � of

�

T , 
onsider �

def

= � \

�

S. Write � as

a union of (
losed) fa
es, � = [

i

F

i

, and de�ne �

�

= \

i

F

�

i

, where F

�

i

is the open star in

the �rst bary
entri
 subdivision of � of the dual fa
e F

_

i

. Then � � �

�

admits a linear

retra
tion to � whi
h restri
ts naturally to a linear retra
tion of (�� �

�

) \ � to � \

�

S, for

any fa
e � � �. We take

e

U \ � � � � �

�

to be some � -neighborhood of � � �.

We thus obtain a deformation retra
tion of a neighborhood U of S in T onto S by

taking the restri
tion of r

t

to U

def

=

e

U \ T .

We re
all from [FG℄ the following useful notion of a tra
table a
tion of a monoid M

on a spa
e T and of a tra
table monoid.

De�nition T.2. The a
tion of an abelian topologi
al monoid on a topologi
al spa
e T is

said to be tra
table if T is the topologi
al union of in
lusions

; = T

�1

� T

0

� T

1

� : : :

su
h that for ea
h n > 0 T

n�1

� T

n

�ts into a push-out square of M -equivariant maps

(with R

0

empty)

R

n

�M ���! S

n

�M

?

?

y

?

?

y

T

n�1

���! T

n

(T:1:1)
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whose upper horizontal arrow is indu
ed by a 
o�bration R

n

� S

n

of Hausdor� spa
es.

The monoid M itself is said to be tra
table if the diagonal a
tion of M on M �M is

tra
table.

If S =

`

d

S

d

is a 
ountable disjoint union of 
onstru
tible spa
es, we shall 
all S

a generalized 
onstru
tible spa
e. If i : S � T is a 
ountable disjoint union of


onstru
tible embeddings i

d

: S

d

� T

d

, we shall say that i : S � T is a 
onstru
tible

embedding.

The following proposition is a simple modi�
ation of the proofs of tra
tability given

in [FG;1.3℄.

Proposition T.3. Consider a submonoid E

r

� C

r+m

(X � Y )

def

= C

r

whose embedding

is a 
onstru
tible embedding of generalized 
onstru
tible spa
es. Then E

r

is a tra
table

monoid.

Let F

r

� E

r

be a submonoid with the property that ea
h F

r;d

def

= F

r

\C

r;d

is a Zariski


losed subset of E

r;d

def

= E

r

\ C

r;d

, where C

r;d

def

= C

r+m;d

(X � Y ). Then E

r

is tra
table as a

F

r

-spa
e and the quotient monoid E

r

=F

r

is also a tra
table monoid.

Proof. Set M = C

r+m

and M(d) = C

r+m;d

. Let T denote M �M and set

T

n

=

2

4

[

�(a;b)�n

M(a)�M(b)

3

5

�M

where � : N�N! N is a suitable bije
tion. Set

S

n

=M(a

n

)�M(b

n

); �(a

n

; b

n

) = n

and de�ne R

n

� S

n

by

R

n

= image

(

[


>0

M(a

n

� 
)�M(b

n

� 
)�M(
) ! M(a

n

)�M(b

n

)

)

:

These spa
es �t into a push-out diagram

R

n

�M ���! S

n

�M

?

?

y

?

?

y

T

n�1

���! T

n

(T:3:1)

This is pre
isely the set-up of [FG;1.3.i℄, establishing that C

r+m

is tra
table.

We now restri
t the above pi
ture to the submonoid E

r

. Set M

0

= E

r

and T

0

=

M

0

�M

0

. For ea
h d, let M

0

(d) =M

0

\M(d) and de�ne the �ltration T

0

n

of T

0

by

T

0

n

def

=

2

4

[

�(a;b)�n

M

0

(a)�M

0

(b)

3

5

�M

0

:
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We set S

0

n

= S

n

\ (M

0

�M

0

) =M

0

(a

n

)�M

0

(b

n

) and R

0

n

= R

n

\ (M

0

�M

0

) and observe

that (1.2.2) restri
ts to a push-out diagram

R

0

n

�M

0

���! S

0

n

�M

0

?

?

y

?

?

y

T

0

n�1

���! T

0

n

:

Lemma T.1 implies that ea
h R

0

n

� S

0

n

is a 
o�bration, for R

0

n

is a 
losed 
onstru
tible

subset of S

0

n

. Thus, M

0

= E

r

is a tra
table monoid.

To verify that E

r

is tra
table as an F

r

-spa
e, we pro
eed exa
tly as in [FG;1.3.ii℄,

repla
ing C

r

(Y ) and C

r

(X) in that proof by F

r

and E

r

and appealing on
e again to Lemma

T.1 to verify the 
o�bration 
ondition. Namely, be
ause ea
h multipli
ation map C

r;n�


�

C

r;


! C

r;n

is proper, so is its restri
tion E

r;n�


� E

r;


! C

r;n

. Thus, the image of ea
h

E

r;n�


� F

r;


in E

r;n

is 
losed and 
onstru
tible, thereby implying that

image f[


>0

E

r;n�


�F

r;


! E

r;n

g � E

r;n

is a 
o�bration by Lemma T.1. This is pre
isely the 
o�bration 
ondition ne
essary for

that proof.

The same 
hanges, this time to [FG;1.3.iii℄, imply that E

r

=F

r

is also a tra
table

monoid.

Corollary T.4. If E

r

� C

r

(X�Y ) is a submonoid whose embedding is 
onstru
tible, then

the natural homotopy 
lass of maps of H-spa
es

[E

r

℄

+

�! 
B[E

r

℄

is a weak homotopy equivalen
e, where [E

r

℄

+

is the naive group 
ompletion of the abelian

topologi
al monoid E

r

and B[E

r

℄ is its 
lassifying spa
e.

In parti
ular, there is a natural weak homotopy equivalen
e

Z

r

(Y )(X) �! 
B[C

r

(Y )(X)℄;

where Z

r

(Y )(X)

def

= [C

r

(Y )(X)℄

+

.

Proof. In [FG;1.4℄, it is shown for any abelian tra
table monoid M with the 
an
lellation

property that

[Sing:(M)℄

+

= Sing:(M �M)=Sing:(M) �! Sing:(M

+

)

is a weak homotopy equivalen
e, where Sing:(�) denotes the fun
tor sending a spa
e to

its singular 
omplex. On the other hand, by a theorem of D. Quillen (
f. [FM

1

;AppQ℄),

[Sing:(M)℄

+

is homotopy equivalent to the homotopy-theoreti
 group 
ompletion of the

simpli
ial monoid Sing:(M).
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