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Abstract

We study the Dirichlet problem for fully nonlinear, degenerate elliptic equations
of the form F.Hessu/ D 0 on a smoothly bounded domain � b R

n. In our
approach the equation is replaced by a subset F � Sym2.Rn/ of the symmetric
n�nmatrices with @F � fF D 0g. We establish the existence and uniqueness of
continuous solutions under an explicit geometric “F -convexity” assumption on
the boundary @�. We also study the topological structure of F -convex domains
and prove a theorem of Andreotti-Frankel type. Two key ingredients in the anal-
ysis are the use of “subaffine functions” and “Dirichlet duality.” Associated to
F is a Dirichlet dual set zF that gives a dual Dirichlet problem. This pairing is a
true duality in that the dual of zF is F , and in the analysis the roles of F and zF
are interchangeable. The duality also clarifies many features of the problem in-
cluding the appropriate conditions on the boundary. Many interesting examples
are covered by these results including: all branches of the homogeneous Monge-
Ampère equation over R, C, and H; equations appearing naturally in calibrated
geometry, Lagrangian geometry, and p-convex Riemannian geometry; and all
branches of the special Lagrangian potential equation.
c 2008 Wiley Periodicals, Inc.
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1 Introduction

The point of this paper is to study the Dirichlet problem for certain fully non-
linear, degenerate elliptic, second-order differential equations that appear naturally
in geometry. The class of problems we consider has a rich structure and covers
a wide variety of interesting cases. To be more specific, we suppose that � is a
bounded domain in R

n with smooth boundary and that the nonlinear operator F

depends only on the second derivatives of the unknown function. We then consider
the homogeneous Dirichlet problem: to show

(DP) given ' 2 C.@�/; 9Šu 2 C.�/ with F.Hessu/ D 0 on � and u
ˇ̌
@�

D ':

To our surprise, uniqueness does not seem to be included in the general theory of
viscosity solutions unless F is either uniformly elliptic or proper, which requires
being strictly monotone with respect to the variable u. Moreover, a local geometric
condition on @� needed for existence only seems to be available in certain cases
(cf. the inspiring paper [6]). We shall give answers to these two questions.

We take a geometric approach to the equation (in the spirit of Krylov [19])
that eliminates the operator F and replaces it with a closed subset F of the space
Sym2.Rn/ of real symmetric n�nmatrices, with the property that @F is contained
in fF D 0g. In this approach we formulate the notion of solution as a dual notion.
Although the fact is not needed in this paper, we show at the end of Section 4 that
our solutions are the standard viscosity solutions. We feel our duality makes all the
basic properties and the comparison theorem more transparent. Furthermore, this
duality is a true duality in that every equation has a well-defined dual equation, and
their roles are interchangeable in the theory.

The geometric approach to the problem also leads naturally to a pointwise con-
vexity condition on the boundary @� needed for the existence question. This
condition generalizes the usual convexity and pseudoconvexity for the classical
Monge-Ampère equation in the real and complex case, as well as the �-convexity
introduced for domains in a calibrated manifold .M; �/ in [12].

Interestingly, this convexity condition for @� gives explicit restrictions on the
topology of the domain �. In particular, there is an integer D, depending only on
the subset F , such that if @� satisfies the convexity condition at each point, then
� has the homotopy type of a CW-complex of dimension � D.
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An important aspect of this theory is that it applies to a wide spectrum of inter-
esting cases. For example, supposeK D R, C, or H (the real, complex, and quater-
nionic number fields, respectively), and consider Kn D R

N where N D n, 2n, or
4n. Every real symmetric N �N matrix A has a K-Hermitian symmetric part AK

with eigenvalues �1 � � � � � �n. The associated determinant detKAK D �1 � � ��n

is a polynomial of degree n in the entries of A, and there is an associated Monge-
Ampère equation

detKfHessugK D 0:

Solutions to the Dirichlet problem for this equation are understood in the case
where fHess ugK � 0, i.e., �1 D 0 (see, for example, [1, 3, 4, 5, 21]). However,
our theory gives unique solutions of (DP) for the other branches of the equation,
namely,

�q D 0

for any fixed q. This important result is due to Hunt and Murray [15] and Slod-
kowski [22] in the complex case. The work of Slodkowski was an inspiration for
this paper. His result on the largest eigenvalue of a convex function is the deepest
ingredient in our uniqueness proof.

We note that the problem dual to �q D 0 in our sense is �n�qC1 D 0.

One can also treat the equation

�p C �pC1 C � � � C �pCq D 0

for fixed p and q by these methods.

A large and important class of examples are those that are geometrically de-

fined. In particular, every calibration on R
n gives rise to an equation of our type.

More details are given just below.

Yet another interesting case is the equation

Imfei� det.I C i Hessu/g D 0

(for fixed � ), which governs the potential functions in the theory of special La-
grangian submanifolds. The locus of this equation, considered as a subset of
Sym2.Rn/, has n distinct connected components or branches, unless � D �

2
when

n is odd or � D 0 when n is even. In these exceptional cases there are n � 1

branches. For the two outermost branches and with � D 0, the Dirichlet prob-
lem was treated in depth in [6]. Furthermore, they conjectured that there exist the
same number of solutions as there are branches. Our results show that indeed the
Dirichlet problem is uniquely solvable in continuous functions for every branch
and for every � in each dimension. In particular, the n (or n � 1) distinct solutions
for a given boundary function exist and are uniquely determined by the distinct
branches. They are also nested, i.e., u1 � u2 � � � � .
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Our general setup here is the following. We start with a given closed subsetF of
the space of real symmetric matrices Sym2.Rn/. We are interested in formulating
and solving the Dirichlet problem for the equation

(1.1) Hessx u 2 @F for all x 2 �:
using the functions of “type F ,” i.e., which satisfy

(1.2) Hessx u 2 F for all x:

A priori these conditions make sense only for C 2-functions u. We shall extend the
notion to functions that are only upper semicontinuous.

This extension requires two ingredients. First we introduce the class of sub-

affine functions. These are upper semicontinuous functions u defined locally by
the condition that

for each affine function a, if u � a on the boundary of a ball B ,
then u � a on B .

These locally subaffine functions are globally subaffine and hence satisfy the maxi-
mum principle on any compact set. AC 2-function is subaffine if and only if Hessu
has at least one eigenvalue � 0 at each point.

The second step is to consider the Dirichlet dual set

(1.3) zF � �.�IntF /

and define an upper semicontinuous function u to be of type F if

(1.4) uC v is subaffine for all C 2-functions v of type zF .

In other words, u 2 USC is type F if for any “test function” v 2 C 2 of dual
type zF , the sum uC v satisfies the maximum principle.

The key requirement on F for solving the Dirichlet problem is that the maxi-
mum of two functions of type F be again of type F . This is, in effect, equivalent
to the following positivity condition on our set. We say that F is a Dirichlet set if
it satisfies the condition

(1.5) F C P � F

where
P D fA 2 Sym2.Rn/ W A � 0g

is the subset of nonnegative matrices. This condition corresponds to degenerate
ellipticity in modern fully nonlinear theory.

The simplest case, where F D P , is classical. Here the functions of type P are
the convex functions, and strict P-convexity of the boundary is the conventional
notion.

In the dual case where F D zP D fA 2 Sym2.Rn/ W A 6< 0g we shall prove that
an upper semicontinuous function u is of type zP if and only if it is subaffine.

It is easy to see that F is a Dirichlet set if and only if zF is a Dirichlet set, and

that zzF D F . In particular, our definition (1.4) above has an inherent symmetry.
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Dirichlet sets can be quite general in structure. Translates, unions (when they
are closed), and intersections of Dirichlet sets are Dirichlet sets. However, there
are quite interesting ones coming from geometry as follows: Let G.p;Rn/ denote
the Grassmannian of p-planes in R

n and fix any compact subset G � G.p;Rn/.
Let

P.G/ D fA 2 Sym2.Rn/ W trace.A
ˇ̌
�
/ � 0 for all � 2 Gg:

Then P.G/ is a Dirichlet set with Dirichlet dual

zP.G/ D fA 2 Sym2.Rn/ W trace.A
ˇ̌
�
/ � 0 for some � 2 Gg:

The C 2-functions of type P.G/ are characterized by being subharmonic on all G-
planes. In fact, they are subharmonic on all minimalG-submanifolds (those whose
tangent planes are all G-planes). Every calibration � gives a set G D G.�/ of
this type where G-submanifolds are automatically minimal. As special cases one
considers the complex and quaternionic Grassmannians. Another interesting case,
not coming from a calibration, is given by the set G D LAG of all Lagrangian
n-planes in C

n.

Further interesting examples arise from restriction. If FW � Sym2.W / is a
Dirichlet set, where W � R

n is a linear subspace, then F D fA 2 Sym2.Rn/ W
A
ˇ̌
W

2 FW g is also a Dirichlet set. Since arbitrary intersections of Dirichlet sets
are Dirichlet sets, this yields a new Dirichlet set for each family of Dirichlet sets
on subspaces of R

n.

In addition, many of the interesting examples can be introduced in terms of
Gårding polynomials on Sym2.Rn/ with the identity I a hyperbolic direction.
These in turn can generate more examples by taking directional derivatives in the
direction I .

The very general nature of Dirichlet sets complicates the question, What geo-
metric conditions on @� are necessary to solve the Dirichlet problem for a given
F ? Associated to each F is an asymptotic cone or “ray set” EF . This is a closed
cone with vertex at the origin and consisting essentially of the rays that lie inside
F after some point.

Suppose now that� b R
n is a domain with smooth boundary. Denote by II the

second fundamental form of the boundary with respect to the inward-pointing unit
normal. Then @� is said to be strictly EF -convex at x 2 @� if

IIx D B
ˇ̌
T

for some B 2 Int EF :

where T D Tx.@�/. This is equivalent to the condition that IIx C tPn 2 Int EF for
all t � some t0 where Pn is the projection onto the line normal to @� at x.

By a global defining function for @�, we mean a function � 2 C1.�/ with
� < 0 on � and with � D 0 and r� ¤ 0 on @�. We prove the following result:
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THEOREM 5.12 Suppose F is a Dirichlet set. If the boundary @� is strictly EF -

convex at each point, then there exists a global defining function � 2 C1.�/ for

@� that is strictly of type EF on �. Moreover,

9� > 0 and R > 0 such that C.� � � 1
2
jxj2/ 2 F.�/ for all C � R:

We are now in a position to discuss the main theorem. A function u on a domain
� is said to be F -Dirichlet if u is of type F and �u is of type zF . Such a function
u is automatically continuous, and at any point x where u is C 2, it satisfies the
condition Hessx u 2 @F .

THEOREM 6.2 (Dirichlet Problem) Let� be a bounded domain in R
n with smooth

boundary @�, and let F be a Dirichlet set. Suppose that @� is both EF and
EzF

strictly convex at each point. Then for each ' 2 C.@�/, there exists a unique

u 2 C.�/ that is an F -Dirichlet function on � and equals ' on @�.

Note. The requirement of both EF -convexity and EzF -convexity for @� is necessary.
In fact, this explains the restriction 2q < n that appears in the work of Hunt and
Murray [15].

Note. Well-known uniqueness results (cf. [16, 17, 18, 26]) require either uniform
ellipticity or degenerate ellipticity together with strict monotonicity of the equation
with respect to the variable u. See [7] for a fuller account and references.

The uniqueness part of Theorem 6.2 is immediate from the following compar-
ison result and the maximum principle for subaffine functions. For an open set
X � R

n, let F.X/ denote the set of (upper semicontinuous) functions of type F
on X and let SA.X/ denote the subaffine functions on X .

THEOREM 6.5 (Subaffine Theorem) Assume that F is a Dirichlet set. If u 2 F.X/
and v 2 zF .X/, then uC v 2 SA.X/.

The proof of this result is given in Sections 7 and 8. In Section 7 we use a
breakthrough technique of Slodkowski to prove the subaffine theorem when u and
v are quasi-convex. Slodkowski’s work enables one to pass from an estimate that
holds almost everywhere to one that holds at all points and can therefore be used
to establish the maximum principle. Then, in Section 8, sup-convolution is used
to approximate arbitrary u and v, of type F and zF , respectively, by quasi-convex
functions of the same type.

Remark. We note that if F1 � F2 are Dirichlet sets, and if u1; u2 are the corre-
sponding solutions to the Dirichlet problem above (for the same boundary function
'), then

(1.6) u1 � u2 on �:
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Thus the entire lattice of Dirichlet sets, ordered by inclusion, maps in an order-
preserving way to the set of solutions. If, for example, one only considers Dirichlet
sets that are cones with a vertex at the origin, then our ordered family has an initial
object P and final object zP . For any continuous function given on the boundary of
a convex domain, we obtain a huge family of solutions, all lying above the convex
solution and below the concave one. They serve as “barriers” for each other in that
(1.6) holds whenever F1 � F2. Of course, somewhere in there lies the harmonic
solution corresponding to Fharm D fA W trA � 0g. Even in two variables it is
interesting to contemplate this family. Within it, for example, lie the Dirichlet sets
F D fA W a11 � 0g and F D fA W a11 � 0 and a22 � 0g whose associated
Dirichlet functions are weak solutions of uxx D 0 and uxxuyy D 0, respectively.

Remark. The case F D fA W a11 � 0g, corresponding to uxx D 0, demonstrates
the utter lack of regularity (beyond continuity) for general solutions obtained here.
The F -convexity required for a domain� � R

2 is that it be horizontal-slice convex
(i.e., horizontal slices are connected) and the unique solution for a given boundary
function ' is the linear interpolation on these slices.

The paper is organized as follows: In Section 2 we introduce the notion of a
subaffine function. This is a class of functions that satisfy the maximum principle
and are determined by local properties.

In Section 3 the “positivity condition” F C P � F is discussed in some detail.
For convenience, and to avoid the overused word elliptic, these sets are called
Dirichlet sets. This is exactly the natural condition to ensure that u; v 2 F.X/ )
maxfu; vg 2 F.X/.

In Section 4 the dual set zF is investigated. This duality clarifies our weak def-
inition of type F and leads to a natural discussion of uniqueness via the subaffine
theorem.

In Section 5 the associated ray set EF is introduced, EF -convexity of the boundary
is discussed, and Theorem 5.12 is proved.

In Sections 6, 7, and 8 the Dirichlet problem is solved. Existence follows from
the Perron method and the classical “barrier” argument, combined with a regularity
argument of Walsh. Uniqueness is reduced to the subaffine theorem, which is
proved in Sections 7 and 8.

In Section 9 we show that the natural domains � for which the F -Dirichlet
problem can be solved are topologically restricted. To each equation F we asso-
ciate an easily calculable integer D, called the free dimension of F . The following
is proved.

THEOREM 9.5 Let F � Sym2.Rn/ be a Dirichlet-ray set of free dimension D.

Suppose � b R
n is a domain with a smooth, strictly F -convex boundary. Then �

has the homotopy type of a CW-complex of dimension � D. In particular,

Hk.@�I Z/ Š Hk.�I Z/ for all k < n �D � 1;
and the map Hn�D�1.@�I Z/ ! Hn�D�1.�I Z/ is surjective.
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Theorem 9.5 represents a surprising extension of the classical Andreotti-Frankel
theorem from complex analysis to this quite general context.

In Section 10 we discuss numerous examples of Dirichlet sets as well as general
principles for constructing them. This section shows that there are many interesting
applications of the main results.

In Appendix A we show for Dirichlet sets F which can be defined using fewer
of the variables in R

n (i.e., in terms of a Dirichlet set F0 associated to a proper
subspace R

p � R
n) that an upper semicontinuous function u is of type F if and

only if the restriction of u to each horizontal R
p is of type F0.

In Appendix B a distributional definition of type F is given when F is convex.

Remark. Since writing this article we have learned of the very nice series of papers
[23, 25, 24] by Z. Slodkowski that develops an axiomatic perspective on Perron
families and addresses the Dirichlet problem in this context. Interestingly, there
is a version of duality that plays an important role in Slodkowski’s theory. It is
formulated quite differently from ours. However, in the cases where our work
overlaps with his, results in [24] show that the two notions of duality are equivalent.

Note. Throughout this paper X will denote an open connected subset of R
n.

2 The Maximum Principle and Subaffine Functions

For a discussion of the maximum principle it is natural to consider the space
USC.X/ of upper semicontinuous functions on X with values in Œ�1;1/. A
function u 2 USC.X/ satisfies the maximum principle if for each compact subset
K � X

(2.1) sup
K

u � sup
@K

u:

A function u may locally satisfy the maximum principle without satisfying the
maximum principle on all of X . (Consider, for example, a function u on R with
compact support, 0 � u � 1, u � 1, on a neighborhood of the origin and otherwise
monotone.) However, this situation is easily remedied. First, note that (2.1) is
equivalent to the condition that

(2.10) u � c on @K ) u � c on K for all constants c;

i.e., u is subconstants. Replacing the constant functions by the affine functions,
consider the condition

(2.2) u � a on @K ) u � a on K for all affine functions a:

DEFINITION 2.1 A function u 2 USC.X/ satisfying (2.2) for all compact sub-
sets K � X will be called subaffine on X . Let SA.X/ denote the space of all
u 2 USC.X/ that are locally subaffine on X , i.e., for all x 2 X there exists a
neighborhood B of x with u

ˇ̌
B

subaffine on B .

Note. If u is subaffine onX , then the restriction to any open subset is also subaffine.
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LEMMA 2.2 If u is locally subaffine on X , then u is subaffine on X . Moreover,

u … SA.X/ if and only if

(2.3)
there exist x0 2 X , a affine, and � > 0 such that

.u � a/.x/ � ��jx � x0j2 near x0 and .u � a/.x0/ D 0.

PROOF: Subaffine implies locally subaffine, which implies (2.3) is impossible.
Hence, it remains to show that if (2.3) is false, then u is subaffine, or, equivalently,
if u is not subaffine on X , then (2.3) is true. If u is not subaffine on X , then for
some compact set K � X and some affine function b, the difference w D u � b

has a strict interior maximum point for K. For � > 0 sufficiently small, the same
is true for w D uC �jxj2 � b. Choose a maximum point x0 2 IntK for w and let
M D w.x0/ denote the maximum value on K. Then uC �jxj2 � b �M � 0 on
K and equals zero at x0. Since �jxj2 and �jx � x0j2 differ by an affine function,
this proves that there is an affine function a such that uC �jx � x0j2 � a � 0 on
K and is equal to zero at x0, i.e., (2.3) is true. �

PROPOSITION 2.3 (Maximum Principle) Suppose K � R
n is compact and u 2

USC.K/. If u 2 SA.IntK/, then

sup
K

u � sup
@K

u:

PROOF: Exhaust IntK by compact sets K�. Since u 2 SA.IntK/, supK�
u �

sup@K�
u. Since u 2 USC.K/, each Uı D fx 2 K W u.x/ < sup@K u C ıg for

ı > 0 is an open neighborhood of @K in K. Therefore, there exists � > 0 with
@K� � Uı , which implies that sup@K�

u � sup@K uC ı. �

For functions that are C 2 (twice continuously differentiable), the subaffine con-
dition is a condition on the Hessian of u at each point.

PROPOSITION 2.4 Suppose u 2 C 2.X/. Then

u 2 SA.X/ ” Hessx u has at least one eigenvalue � 0 at each point x 2 X:
PROOF: Suppose Hessx0

u < 0 (negative definite) at some point x0 2 X . Then
the Taylor expansion of u about x0 implies (2.3). Therefore u … SA.X/.

Conversely, if u … SA.X/, then (2.3) is valid for some point x0 2 X , which
implies that Hessx0

uC �I � 0. So Hessx u < 0 is negative definite. �

EXAMPLE (n D 1) Suppose I is an open interval in R. Then

u 2 SA.I / ” either u 2 Convex.I / or u � �1:

PROOF: Suppose u 2 SA.I / equals �1 at one point ˛ 2 I but u is finite
at another point ˇ 2 I with ˛ < ˇ. Choose a to be the affine function with
a.˛/ D �N and a.ˇ/ D u.ˇ/. By (2.2), we have u � a on Œ˛; ˇ�, which implies
(by letting N ! 1) that u � �1 on Œ˛; ˇ/. The case ˇ < ˛ is identical. Hence
u is either � �1 or it is finite-valued on all of I (and therefore convex). The
converse is immediate. �
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Next we give a characterization of subaffine functions and convex functions that
is the prototype of Dirichlet duality.

PROPOSITION 2.5 Suppose v 2 USC.X/. Then v 2 SA.X/ ” uCv 2 SA.X/
for all u 2 Convex.X/.

PROOF: Since u D 0 is convex, we need only prove that if u 2 Convex.X/ and
v 2 SA.X/, then uC v 2 SA.X/. Equivalently, we must show that if v 2 SA.X/,
then

(2.4) 8w 2 Concave.X/ v � w on @B ) v � w on B

for an arbitrary closed ball B contained in X . That is,

(2.5) v is subaffine ) v is “subconcave.”

To prove (2.4), choose a affine with w � a on B . Then v � w � a on @B
implies v � a on B since v is subaffine. Now any concave function w is the
infimum over the family of affine functions a with w � a. (To see this, apply the
finite-dimensional Hahn-Banach theorem to the graph of w.) It follows that v � w

on B . �

Let Convex.X/ denote the set of functions on X that locally are either convex
or � �1. It is easy to see by the example above that

(2.6) u 2 Convex.X/ ”
the restriction of u to each line L is in Convex.L \X/:

PROPOSITION 2.6 Suppose u 2 USC.X/. Then

u 2 Convex.X/ if and only if uC v 2 SA.X/ for all v 2 SA.X/.

PROOF: If u 2 Convex.X/ and v 2 SA.X/, then by Proposition 2.5, uC v 2
SA.X/. Furthermore, the extra case u � �1 is obvious.

It remains to show that if u C v 2 SA.X/ for all v 2 SA.X/, then u 2
Convex.X/. It will suffice to show that

(2.7) u … Convex.X/ )
9 a subaffine quadratic function B with uC B … SA.X/:

Since u … Convex.X/, we know that for the restriction u of u to some line L, we
have u … Convex.L/. For n D 1, SA D Convex, so that (2.3) applies to u. Assume
that the line is the x1-axis and that the point on the line L in (2.3) is the origin in
R

n. Also, change u by the affine function in (2.3). Then there exists ı > 0 so that
u.t/ � ��t2 for jt j � ı and u.0/ D 0. Hence, by the upper semicontinuity of u,
there exists r > 0 small with

u.t; y/C �

2
t2 < 0 for t D ˙ı; jyj � r:
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Now choose � � 0 so that

u.t; y/C �

2
t2 � �jyj2 < 0 for jt j � ı; jyj D r:

The quadratic function B � �
2
t2 � �jyj2 is subaffine by Proposition 2.4, but the

sum u C v is zero at the origin and strictly less than zero on the boundary of the
cylinder jt j � ı, jyj � r , about the origin. Hence uC B is not subaffine. �

3 Dirichlet Sets: The Maximum of Two Functions

Each subset F of Sym2.Rn/ defines a class of C 2-functions u by requiring that
Hessx u 2 F at each point x. An important property that we want functions of this
type F to have is the following:

Maximum Property

If u; v are of type F , then maxfu; vg is of type F .

Of course, we must first extend the definition of type F functions to include
non-C 2-functions such as maxfu; vg. The appropriate condition on F that insures
this maximum property is the standard positivity (or elliptic) condition given in the
next definition. See Remark 3.3 at the end of this section for more detail.

DEFINITION 3.1 A proper nonempty closed subset F � Sym2.Rn/ will be called
a Dirichlet set if it satisfies the positivity condition

(3.1) F C P � F

where

(3.2) P � fA 2 Sym2.Rn/ W A � 0g
denotes the set of nonnegative quadratic forms on R

n.

We first introduce the notion of F -plurisubharmonicity for C 2-functions. The
definition will be substantially generalized in the next section.

DEFINITION 3.2 Suppose F � Sym2.Rn/ is a Dirichlet set. If u 2 C 2.X/ has
Hessx u 2 F for all x 2 X , then u is of type F or F -plurisubharmonic. If
Hessx u 2 IntF for some x 2 X , then u is called strict of type F at x.

Elementary Properties of Dirichlet Sets F

(1) F C IntP � IntF .
(2) F D IntF .
(3) IntF C P � IntF .
(4) For each B 2 Sym2.Rn/ the set ft 2 R W B C tI 2 F g D Œb;1/ for some

b 2 R.
(5) (F is “asymptotically convex.”) Given A;B 2 F , 9t > 0 such that AC tI

and B C tI both belong to the convex subset .AC P/ \ .B C P/ of F .
(6) F is Dirichlet ) �F C A is Dirichlet for � > 0 and A 2 Sym2.Rn/.
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(7) F is Dirichlet ” gF is Dirichlet with g 2 GLn.R/ acting on Sym2.Rn/

by the standard action g.A/ D gt ı A ı g.

PROOF:

(1) For each A 2 F the open set AC IntP is contained in F .

(2) Use (1) and A D lim�!0.AC �I /.

(3) For each P 2 P the open set IntF C P is contained in F .

(4) Since F Dirichlet implies that F � B is Dirichlet, we may assume that
B D 0. We must show that the set ƒF � ft 2 R W tI 2 F g is connected,
proper, and nonempty. If t0 2 ƒF , then by the positivity condition t � t0 implies
t 2 ƒF . Hence ƒF is connected. If ƒF D R, then �tI 2 F for all t > 0. Hence
�tI C P � F for all t > 0. This implies that F equals Sym2.Rn/, which is not
allowed. Therefore ƒF ¤ R. This implies ƒF ¤ ¿ by duality. (See Remark 4.2
in the next section.)

(5) Pick t � 0 so large that AC tI 2 B C P and B C tI 2 AC P .

Properties (6) and (7) are straightforward.
�

Remark 3.3. Motivation for the positivity condition is provided by the following
lemma.

HESSIAN LEMMA Suppose u; v 2 C 2.X/ and r.u � v/ ¤ 0 on fu D vg. Then

taking the distributional Hessian, we have

Hess.maxfu; vg/ D �fu�vg HessuC �fv�ug Hess v C �r.u � v/ ı r.u � v/
where � is a nonnegative measure supported on fu D vg.

This formula strongly suggests that one should require

AC � ı � 2 F for all A 2 F; � 2 R
n:

Since each P � 0 can be written as P D P
j �j ej ıej , this condition is equivalent

to the positivity condition (3.1) that F CP � F . We omit the proof of this lemma.

4 Dirichlet Duality

As noted in Definition 3.2, each subset F of Sym2.Rn/ defines a class of C 2-
functions u by requiring that Hessx u 2 F at each point x. In this section we
will give a dual characterization of this condition, which will enable us to define
functions of type F that are not necessarily of class C 2. This nonlinear duality can
be used in a fashion that has some similarity to the use of distribution theory in
linear problems.

Throughout this section we assume that F is a Dirichlet set. Let

zP D �.� IntP/ D �.� IntP/:
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denote the set of all quadratic forms except those that are negative definite, i.e.,
A 2 zP if and only if A has at least one eigenvlaue � 0. Note that for u 2 C 2.X/,

u is convex iff u is of type P and u is subaffine iff u is of type zP .

The second statement is just Proposition 2.4.
The key to the dual characterization of functions of type F is the existence of a

dual subset zF . This is made precise in Lemma 4.3 below.

DEFINITION 4.1 Suppose F � Sym2.Rn/ is a Dirichlet set. The Dirichlet dual of
F is the set

zF D �.� IntF / D �.� IntF /:

Elementary Properties of the Dirichlet Dual

(1) zzF D F .
(2) F1 � F2 ) zF2 � zF1.
(3) CF1 \ F2 D zF1 [ zF2.
(4) CF1 [ F2 D zF1 \ zF2.
(5) BF C A D zF � A.
(6) F is a Dirichlet set ” zF is a Dirichlet set.

PROOF:
(1) follows from F D IntF . (2), (3), and (4) are obvious. For (5) note that

B 2 BF C A ” �B … Int.F C A/ D IntF C A

” �.B C A/ … IntF ” B C A 2 zF ” B 2 zF � A:
To prove (6), suppose P 2 P . Then F C P � F or, equivalently, F � F � P .
By (2) this implies that BF � P � zF . By (5) we have BF � P D zF C P so that
zF C P � zF . �

Remark 4.2. Define zƒF D� .� IntƒF / and note that zƒF D ƒ zF
. Hence

ƒF D ¿ ) ƒ zF
D R ) zF D Sym2.Rn/ ) F D ¿, completing the proof

of property (4) in Section 3.

The following duality result is stated in several forms: first for the special case
of points A 2 Sym2.Rn/ (i.e., quadratic functions), and then for functions u 2
C 2.X/.

LEMMA 4.3 Suppose F is a Dirichlet set. Then

(i) A 2 F ” AC B 2 zP for all B 2 zF .

(ii) u 2 C 2.X/ is of type F ” uC B 2 SA.X/ for all quadratic B 2 zF .

(iii) u 2 C 2.X/ is of type F ” uC v 2 SA.X/ for all v 2 C 2.X/ of type
zF .
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PROOF: Statement (ii) follows from special case (i) by setting A D Hessx u,
B D Hessx v, and using Definition 3.2 along with Proposition 2.4. Thus the three
conditions are equivalent.

To prove (i), first note that

(i0) A 2 F ” AC P � F

is obviously true because of the positivity condition (3.1).

NowACP � F ” zF � BAC P (which equals zP�A) ” AC zF � zP .
Thus (i0) is equivalent to

(i) A 2 F ” AC zF � zP .

�

Because of this lemma we can extend our Definition 3.2 of type F from C 2-
functions to upper semicontinuous functions. This extension is another central
concept of the paper.

DEFINITION 4.4 A function u 2 USC.X/ is said to be of type F or F -plurisub-

harmonic if

(4.1) uC v 2 SA.X/ for all v 2 C 2.X/ of type zF :
Let F.X/ denote the set of all u 2 USC.X/ of type F .

PROPOSITION 4.5 Suppose u 2 USC.X/. Then ( for X connected)

u is convex or u � �1 ” u is of type P;

u is subaffine ” u is of type zP :

Moreover, for any u of type P and any v of type zP , the sum uC v 2 SA.X/.

PROOF: This is just a restatement of Propositions 2.5 and 2.6. �

Note. For two Dirichlet sets F1 and F2,

(4.2) F1.X/ � F2.X/ ” F1 � F2:

It is important to have some equivalent formulations of the definition of func-
tions of type F . For example, as it stands it is not clear that if u is of type F on X ,
then the restriction of u to a smaller open subset is also of type F . This, however,
is true and is easily seen from other equivalent definitions.

In making these reformulations we first reduce the space of test functions from
C 2.X/ \ zF .X/ to just zF , the space of quadratic functions of type F . The second
formulation says that if u … F.X/, then near some point x0 2 X , the condition for
type F is strongly violated.

LEMMA 4.6 A function u is in F.X/ if and only if

(4.3) uC B 2 SA.X/ for all quadratic functions B 2 zF :
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Moreover, u … F.X/ if and only if

(4.4) 9B 2 Int zF , x0 2 X , a affine, and � > 0 such that

uC B � a � ��jx � x0j2 near x0 and D 0 at x0.

PROOF: If u 2 F.X/, then, taking v D B , we see that (4.1) implies (4.3).
Furthermore, (4.3) obviously implies that (4.4) is false. It remains to show that if
(4.1) is false, then (4.4) is true. If (4.1) is false, then there exists v 2 C 2.X/\ zF .X/
such that uC v … SA.X/. Applying Lemma 2.2, there exist x0 2 X , � > 0, and
an affine function a with u C v � a � �2�jx � x0j2 near x0 and equal to zero
at x0. Since v 2 C 2.X/, replacing v by the quadratic part B of v at x0 yields
uCB�a � �2�jx�x0j2 near x0 and uCB�a D 0 at x0. Finally, since B 2 zF ,
we have B C �I 2 Int zF , proving (4.4). �

Properties of the Class F.X/ for Dirichlet Sets F

(1) (Local Property) A function u is locally of type F if and only if u is
(globally) of type F .

(2) (Affine Property) F.X/ C Aff.X/ � F.X/, i.e., if u 2 F.X/ and a is
affine, then uC a 2 F.X/.

(3) (Translation Property) If u 2 F.X/, then v.x/ � u.x � y/ 2 F.X C y/.

As expected, the positivity condition insures the maximum property.

(4) (Maximum Property) If u; v 2 F.X/, then maxfu; vg 2 F.X/.
(5) (Decreasing Limits) If fuj g1

j D0 is a decreasing (i.e., uj � uj C1) se-
quence of functions in F.X/, then limj uj 2 F.X/.

(50) (Uniform Limits) If fuj g1
j D0 is a sequence of functions in F.X/ that con-

verges uniformly to u on compact subsets, then u 2 F.X/.
(6) (Families Locally Bounded Above) Suppose F � F.X/ is locally uni-

formly bounded above. Then the upper envelope u D supf 2F f has upper
semicontinuous regularization u� 2 F.X/.

(7) If u is twice differentiable at x 2 X , then Hessx u 2 F .

PROOF:
(1) By Definition 2.1, restrictions of subaffine functions are again subaffine,

and by Lemma 2.2, locally subaffine implies subaffine. Condition (4.3) now en-
sures that functions of type F are locally of type F (since the quadratic functions
are “universal,” i.e., defined on all of R

n). Conversely, if u is locally of type F ,
then (4.4) is false, and hence u is globally of type F .

(2, 3, 4) These facts follow from the definitions.

(5) This standard proof uses the fact that fx 2 @K W uj .x/Cv.x/ � a.x/C�g
is compact for uj 2 USC.X/ and hence empty for j large.

(50) This is standard from (5). Given �j & 0, �j C1 < �j , pick j large so that
juj � uj < 1

2
.�j C1 � �j / and set u0

j D uj C 1
2
.�j C1 C �j /.
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(6) If u� C v � a on @K, then f C v � a on @K for all f 2 F . Hence,
f C v � a on K for all f 2 F , and so u C v � a on K. Since v 2 C 2,
u� C v D .uC v/� � a� D a on K.

(7) Let H D Hessx u. Then the quadratic function H.y/ is the uniform limit
as � ! 0 of the approximate Hessians

H�.y/ D ��2fu.x C �y/ � u.x/ � ru.x/ � yg:
By (50) it suffices to prove that

the approximate Hessians H� are of type F .

Since 1
�2 .u.x/C �ru.x/ �y/ is affine, we must show that .Lu/.y/ D 1

�2u.xC �y/

is of type F . Now L has an inverse given by

.L�1v/.y/ D �2v
�y � x

�

�
:

Note that if v is C 2, then HessL�1v D Hess v at corresponding points. Conse-
quently, if v is C 2 and of type zF , then L�1v is of type zF . Therefore, uCL�1v 2
SA.X/ because u 2 F.X/. Finally, since L maps subaffine to subaffine (this
is property (7) for zP and can be verified directly), we conclude that Lu C v D
L.uC L�1v/ is subaffine. Hence Lu is of type F as desired. �

Remark 4.7 (Maximum Principle). This principle is not always true and (perhaps
surprisingly) not necessary for the Dirichlet problem. However, the maximum
principle for all functions in F.X/ is true if and only if F.X/ � SA.X/ because
of (2) above. By (4.2) this is equivalent to F � zP . Note that

(4.5) F � zP ” 0 … IntF:

If 0 2 IntF , then F contains a negative definite quadratic form so that F � zP is
impossible. Conversely, if F 6� zP , then F contains a negative definite quadratic
form A D �P0, P0 > 0. The open set fAC P W P > 0g � F contains the origin.
This proves (4.5) and hence we have the following proposition.

PROPOSITION 4.8 Suppose F � Sym2.Rn/ is a Dirichlet set. The maximum

principle holds for each u 2 F.X/ if and only if 0 … IntF .

In the cases where 0 2 IntF , (i.e., when the maximum principle does not hold),
the functions u 2 F.X/ will be called F -quasi-plurisubharmonic.

Remark 4.9 (Viscosity Subsolutions). Condition (4.4) above is equivalent to the
following:

(4.40) 9x0 2 X and  2 C 2.X/ that is strict of type zF at x0 such that
uC  has a local maximum at x0.

PROOF: That (4.4) ) (4.40) is obvious. For the converse set �a D h.r /.x0/;

x � x0i and B D 1
2
.Hessx0

 /.x � x0/ � 2�I 2 Int zF . �
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Since Int zF D �.�F /, if we set ' D � , then (4.40) is equivalent to the
condition

(�V) 9x0 2 X and ' 2 C 2.X/ with Hessx0
' … F but u�' has a local

maximum at x0.

Finally, the negation of (�V) is

(V) 8x0 2 X and ' 2 C 2.X/, if u � ' has a local maximum at x0,
then Hessx0

' 2 F .

Condition (V) is the standard viscosity definition of subsolution.

5 Boundary Convexity

We assume throughout this section that � is a bounded domain in R
n with

smooth boundary @�. It turns out that the natural boundary–convexity condition
associated to a Dirichlet set F is expressed in terms of another Dirichlet set EF , the
ray set associated with F , which will be defined in a moment. Our main result
(Theorem 5.12 below) asserts that strict local EF -convexity of the boundary implies
the existence of a global defining function that is strictly EF -plurisubharmonic. This
global function will play a key role in our solution to the Dirichlet problem in
Section 6.

The key property of this associated ray set EF is the Ray property:

(5.1) A 2 EF ” tA 2 EF for all t � 0:

Moreover, EF D F if and only if F itself has the ray property.

A Dirichlet set EF with property (5.1) will be called a Dirichlet-ray set or D-ray

set. We assume for the moment that EF is any Dirichlet-Ray set (not necessarily
the one associated with F ). Note that since scalar multiplication by t > 0 is a
homeomorphism of Sym2.Rn/, (5.1) implies

(5.10) A 2 Int EF ” tA 2 Int EF for all t > 0:

Definitions of Boundary Convexity

A smooth function � defined near a point x 2 @� is said to be a local defining

function for @� near x if on some neighborhood of x we have � D f� < 0g and
r� ¤ 0. At the boundary point x, let T D Tx@� denote the tangent space and n
a unit normal vector.

DEFINITION 5.1 The boundary @� is strictly EF -convex at a point x 2 @� if

(5.2) Hessx �
ˇ̌
T

D B
ˇ̌
T

for some B 2 Int EF :

LEMMA 5.2 The condition of strict EF -convexity for @� is independent of the defin-

ing function �.
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PROOF: Any other defining function z� is of the form z� D u� with u > 0. At
x 2 @�, Hessx z� D uHessx � C ru ı r�. Since ru ı r� restricted to T is
zero, we have zH

ˇ̌
T

D uH
ˇ̌
T

. By the ray property (5.10) for Int EF , the proof is
complete. �

The notion of strict EF -convexity has other useful formulations. Let us denote
by Pn D n ı n 2 Sym2.Rn/ the orthogonal projection onto the line in the normal
direction n.

LEMMA 5.3 The following conditions on a local defining function � for @� are

equivalent:

(i) Hessx �
ˇ̌
T

D B
ˇ̌
T

for some B 2 Int EF (i.e., @� is strictly EF -convex at x/.

(ii) Hessx �
ˇ̌
T

C tPn 2 Int EF for all t � some t0.

(ii0) Hessx �C tPn 2 Int EF for all t � some t0.

PROOF: LetH D Hessx �. Statements (ii) and (ii0) each imply (i) since in both

cases the restriction to T equals H
ˇ̌
T

. Suppose now that (i) is true. Then, in terms

of the 2 � 2 blocking induced by R
n D spann ˚ T , we have H � B D . a ˛

˛ 0 /.

Therefore,H C tPn D B��I C tPn CH �BC�I . If � > 0 is chosen small, then

B��I 2 Int EF , while tPn CH �BC�I D . tCaC� ˛
˛ �I

/, which is positive definite

for t � 0. By Property (3) for Dirichlet sets, this implies thatH C tPn 2 Int EF for

t � 0. Hence, (i) implies (ii0). Repeating the argument with H replaced by H
ˇ̌
T

proves that (i) implies (ii). �

COROLLARY 5.4 Let II denote the second fundamental form of @� with respect to

the inward-pointing unit normal n. Then @� is strictly EF -convex at x 2 @� if and

only if

� IIx D B
ˇ̌
T

for some B 2 Int EF or, equivalently,

� IIx C tPn 2 Int EF for all t � some t0.

PROOF: By Lemma 5.2 we may choose � to be the signed distance function in
a neighborhood of @�, i.e., for x near @�

�.x/ D ı.x/ D
(

�dist.x; @�/ if x 2 �
Cdist.x; @�/ if x … �:

Then it is a standard calculation (cf. [12, (4.7)]) that

Hess ı D
�
0 0

0 II

�

with respect to the splitting R
n D .R�rı/˚.rı/?. We now apply Lemma 5.3. �
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Associated Ray Set EF of F

DEFINITION 5.5 Suppose F is a Dirichlet set and B 2 Sym2.Rn/ is fixed. The
ray set with vertex B associated to F , denoted by EFB , is defined by

EFB D fA 2 Sym2.Rn/ W 9t0 such that B C tA 2 F 8t � t0g:

Example 5.6. The set EFB may not be closed. Take B D 0 and F D P \ fdet � 1g.

LEMMA 5.7 The closure of EFB is independent of the vertex B .

PROOF: This is property (6) proven below. �

DEFINITION 5.8 Suppose F is a Dirichlet set. The ray set associated to F , denoted
EF , is defined to be the closure of EFB for any vertex B .

Elementary Properties of EFB

(1) EFB C P � EFB .
(2) EFB C IntP � Int EFB .
(3) EFB � Closure.Int EFB/.
(4) Int EFB � EFB 0 for all B 0.
(5) Int EFB D Int EFB 0 for all B 0.
(6) Closure. EFB/ D Closure. EFB 0/ for all B 0.

PROOF:

(1) B C tA 2 F for t � t0 ) B C t .A C P / D B C tA C tP 2 F for

t � t0 � 0.

(2) IfA 2 EFB , then by (1) the open setACIntP � EFB , and henceACIntP �
Int EFB .

(3) If A 2 EFB , then by (2) we have that for � > 0, AC �I 2 Int EFB . Hence,

A D lim�!0.AC �I / 2 Int EFB . Equality in (3) does not hold in general. See the

example below.

(4) If A 2 Int EFB , then A � �I 2 EFB for some � > 0. This means that

there exists a t0 so that B C t .A � �I / 2 F for all t � t0. Now B 0 C tA D
B C t .A � �I / C t�I � .B � B 0/. Choose � > 0 so that �I � .B � B 0/ > 0 is

positive definite. If t � t0 and t � �
�

, then B 0 C tA 2 F C P � F , proving that

A 2 EFB 0 .

(5) Property (5) follows from (4).

(6) Property (6) follows from (5) and (3). �
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Since boundary convexity involves Int EF , some additional facts about Int EF are
useful. The associated ray set EF for F was defined to be as large as possible. The

smallest set of rays associated with F is Int
�����!
.IntF /B where

�����!
.IntF /B � fA 2 Sym2.Rn/ W 9t0 so that B C tA 2 IntF 8t � t0g:

EXAMPLE The set
�����!
.IntF /B may not be open. Take F D P and B D I .

LEMMA 5.9 Int
�����!
.IntF /B D Int EF :

PROOF: Since
�����!
.IntF /B D ����������!

.Int.F � B//0 and
����!
F � B D EF � B , we may

assume B D 0. Because
�����!
.IntF /0 � EF , it suffices to show Int EF � �����!

.IntF /0.

Suppose A 2 Int EF . Then there exists � > 0 with A � �I 2 EF D Closure. EF0/.

Therefore for all ı > 0 there exists B 2 EF0 with jA � �I � Bj < ı, which

implies that ıI C A � �I � B > 0. Take ı D �
2

. Then A � �
2
I � B > 0 and

B 2 EF0. Hence there exists t0 > 0 so that t � t0 ) tB 2 F . Therefore

t .B C �
2
I / D tB C �t

2
I 2 IntF if t � t0. This proves that B C �

2
I 2 �����!

.IntF /0.

Finally, A D B C �
2
I C A � B � �

2
I 2 �����!

.IntF /0 C IntP � �����!
.IntF /0. �

COROLLARY 5.10 One has A 2 Int EF if and only if

(5.3) 9� > 0 and R > 0 such that C.A � �I / 2 F for all C � R:

Moreover, if A0 2 Int EF , then 9�0 > 0 and R0 > 0 so that (5.3) holds for all A in

a neighborhood of A0, all R � R0, and every � � �0.

PROOF: By the previous lemma we have Int EF D Int
�����!
.IntF /0. Therefore, if

A 2 Int EF , then for some � > 0, A � �I 2 �����!
.IntF /0; i.e., there exists R > 0 such

that C � R implies C.A � �I / 2 F .

Conversely, assume (5.3) is true. Suppose B C �I > 0. This condition defines

a neighborhood of the origin in Sym2.Rn/. It suffices to show that A C B 2 EF
for all such B . Now A C B D A � �I C B C �I and hence C.A C B/ D
C.A � �I / C C.B C �I /, which belongs to F C P � F if C � R. Hence

AC B 2 EF0 � EF .

For the last statement, suppose A0 2 Int EF . Then there exists �0 > 0 with

A � A0 � �0I 2 Int EF . Now by the paragraph above there exists R0 > 0 so that

C.A C B/ 2 F for all B in a neighborhood of 0 and all C � R0. Furthermore,

C.A0 � �0I C B/ 2 F ) C.A0 � �I C B/ 2 F for � � �0 by positivity. �

PROPOSITION 5.11 If F is a Dirichlet set, then the associated ray set EF is also a

Dirichlet set. Moreover, EF has the ray property.
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PROOF: Take the closure in (1) above. �

Remark. Since the associated ray set EF of F is a Dirichlet-Ray set, the definition
of strict EF -convexity at a boundary point x 2 @� is independent of the defining

function � (Lemma 5.2).

Global Defining Functions

A smooth function � 2 C1.�/ is called a global defining function for @�

if � D f� < 0g and r� ¤ 0 on @�. Note that if this function � is strictly of

type EF , then @� is strictly EF -convex (cf. Definition 5.1). An important fact is that

the converse is true.

THEOREM 5.12 Suppose EF is a Dirichlet-Ray set. If the boundary @� is strictly

EF -convex at each point, then there exists a global defining function � 2 C1.�/

for @� that is strict of type EF on�. Moreover, if EF is the ray set associated with a

Dirichlet set F , then

(5.4) 9� > 0 and R > 0 such that C

�
� � � 1

2
jxj2

�
2 F.�/ for all C � R:

The existence of the function � in this theorem is the only part of this section
needed to solve the Dirichlet problem in Section 6.

PROOF: Pick any smooth defining function � 2 C1.�/ for @�. Let z� D
� C C�2. Since @� is strictly EF -convex at each point, we have by Lemma 5.3(ii0)

that on @�,

Hess z� D .1C 2C�/Hess �C Cr� ı r� D Hess �C Cr� ı r� 2 Int EF
for all C � 0. That is, for large C , the defining function z� is strictly EF -pluri-

subharmonic at each boundary point. This proves that we may assume the defining

function � is strict of type EF in a neighborhood of @�. Choose r > 0 so that the set

f�r < � < rg is contained in this neighborhood of @� where � is strict. Choose

ı > 0 small enough so that �rCıjxj2 < � in a neighborhood U of @�. We extend

� to � by setting

y� � maxf�;�r C ıjxj2g:
On the open set ��r D f� < �rg we have y� D �r C ıjxj2, while on the neigh-
borhood U of @�, we have y� D �.

We now smooth this maximum function y� � M.u1; u2/ � maxfu1; u2g of
u1 D � and u2 D �r C ıjxj2 without changing M.u1; u2/ on the set where
ju1 � u2j � �. Then choosing � > 0 small enough, the smoothing y�� will equal
y� in a neighborhood of @�. Let M�.t1; t2/ denote the smoothing of M.t1; t2/ D
maxft1; t2g on R

2 (see [12, remark 1.6] for more details). This can be done so that:
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(1) M�.t1; t2/ D M.t1; t2/ if jt1 � t2j � �.
(2) @M�

@t1
C @M�

@t2
D 1, @M�

@t1
� 0, @M�

@t2
� 0.

(3) M�.t1; t2/ converges uniformly to M.t1; t2/ as � ! 0.

We must now show that y�� D M�.u1; u2/ is strict of type EF at each point
x 2 �. By the chain rule

HessM�.u1; u2/ D @M�

@t1
Hessu1 C @M�

@t2
Hessu2 C

2X

i;j D1

@2M�

@ti@tj
rui ı ruj :

One can show that the third term is � 0. Hence, by (2) above it suffices to show
that

As D sHessx �C .1 � s/2ıI 2 Int EF :
At all points in the neighborhood of @� where s D @M

@t1
¤ 0, we have Hessx � 2

Int EF and hence As 2 Int EF . At points x where s D 0, ıI 2 Int EF . We have now
constructed a strictly EF -plurisubharmonic global defining function z� � y�� for @�.

It remains to prove assertion (5.4). By Corollary 5.10, for each x 2 � there
exist �x > 0 and Cx > 0 so that C.A��I / 2 IntF for all C � Cx , all � � �x , and
all A in a neighborhood of Hessx z�. Since z� is smooth, we have C.Hessy z���I / 2
IntF for all C � Cx; � � �x , and all y in a neighborhood Ux of x. Passing to a
finite cover of � by such sets and taking the largest Cx and smallest �x completes
the proof. �

We conclude this section by listing some of the properties of Dirichlet-ray sets
and their corresponding plurisubharmonic functions.

Elementary Properties of Dirichlet-Ray Sets F

(1) ft 2 R W tI 2 F g D Œ0;1/:

(2) 0 2 @F . (20) 0 2 @ zF .
(3) P � F . (30) zF � zP .
(4) A 2 IntF ” tA 2 IntF 8t > 0.
(5) F is a D-ray set ” zF is a D-ray set.
(6) F � zP . (60) P � zF .

PROOF: Since 0 2 F and F C P � F , we have tI 2 F for all t � 0. If
�tI 2 F for some t > 0, then �tI C P � F for all t > 0 and F D Sym2.Rn/,
contrary to hypothesis. This proves (1). (2) follows from (1). For any Dirichlet
set F , (2) and (20) are equivalent since @ zF D �@F . (3) follows from (2) because
of the positivity condition. (30) is the Dirichlet dual of (3). For (4) note that if
N � F is a neighborhood of A 2 IntF and t > 0, then tA 2 IntF since tN is a
neighborhood of tA. (5) follows from (4). (6) follows from (30) and (5). (60) is the
Dirichlet dual of (6). �
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Properties of the Class F.X/ for Dirichlet-Ray Sets F

(7) Affine functions u satisfy Hessx u 2 @F .
(8) Convex functions are F -plurisubharmonic.
(9) F -plurisubharmonic functions are subaffine.

(10) F -plurisubharmonic functions satisfy the maximum principle.

PROOF: .2/ ) .7/, .3/ ) .8/, .6/ ) .9/. Finally, .7/ and .9/ ) .10/. �

6 The Dirichlet Problem

In this section we state the main result, the existence and uniqueness of solu-
tions of the Dirichlet problem. We then discuss how uniqueness follows from a
local result — the subaffine theorem, whose proof is postponed to Sections 7 and
8. We conclude the section with the proof of existence.

Given a Dirichlet set F note that @F D F \ .� IntF / D F \ .� zF /, i.e.,
A 2 @F if and only if A 2 F and �A 2 zF . Also note that @ zF D �@F .

DEFINITION 6.1 A function u with both

u 2 F.X/ and �u 2 zF .X/
will be called an F -Dirichlet function on X or an F -Dirichlet solution on X .

In particular, a C 2-function u is F -Dirichlet if and only if

Hessx u 2 @F for all x 2 X:

THEOREM 6.2 (Dirichlet Problem) Let� be a bounded domain in R
n with smooth

boundary @�, and let F be a Dirichlet set. Suppose that @� is both EF and
EzF

strictly convex. Then for each ' 2 C.@�/, there exists a unique u 2 C.�/ that is

an F -Dirichlet function on � and equals ' on @�.

Remark. In most interesting cases either F � zF or zF � F , and then only one
boundary hypothesis is required.

Uniqueness and the Subaffine Theorem

No boundary regularity is required for uniqueness, so we replace � by an arbi-
trary compact subset K � R

n.

THEOREM 6.3 (Uniqueness) Suppose that F is a Dirichlet set. If u; v 2 C.K/ are

both F -Dirichlet on IntK and u D v on @K, then u D v on K.

This uniqueness theorem follows immediately from the next result.

THEOREM 6.4 (Comparison Principle) Suppose that F is a Dirichlet set and that

u;�v 2 USC.K/. If

u 2 F.IntK/ and � v 2 zF .IntK/;
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then

u � v on @K ) u � v on K:

PROOF: Due to the maximum principle (Proposition 2.3) for subaffine func-
tions, the comparison principle is an immediate consequence of the next, purely
local result. �

THEOREM 6.5 (Subaffine Theorem) Assume that F is a Dirichlet set. If u 2 F.X/
and v 2 zF .X/, then uC v 2 SA.X/.

The proof of this result is given in Sections 7 and 8.

Proof of Existence (Perron Solution)

Let
F.'/ � fv 2 USC.�/ W v

ˇ̌
�

2 F.�/ and v
ˇ̌
@�

� 'g
denote the Perron family for the boundary function ' 2 C.@�/. While this fam-
ily F.'/ may not necessarily satisfy the maximum principle, there is a translate
F.'/C �jxj2 of the family that does.

LEMMA 6.6 Suppose F is a Dirichlet set. Then there exists � > 0 with

F C �I � zP :
Hence the maximum principle applies to uC � 1

2
jxj2 for all u 2 F.X/.

PROOF: Elementary property (6) of Section 4 says that zF is also a Dirichlet
set. Applying property (4) of Section 3 to zF , pick �I 2 zF . This implies that
�I C P � zF . Taking duals via property (5) of Section 4 yields F � zP � �I . �

Lemma 6.6 implies that the family F.'/ is bounded above on �. Let

u.x/ � sup
v2F.'/

v.x/

denote the upper envelope of F.'/.

PROPOSITION 6.7 The function u belongs to F.'/, that is,

u 2 USC.X/; u
ˇ̌
�

2 F.�/; and u
ˇ̌
@�

� ':

PROOF: By the families property (6) in Section 4, u has upper semicontinuous
regularization u� that satisfies

(6.1) u�
ˇ̌
�

2 F.�/:

LEMMA 6.8 If � has a strictly
EzF -convex boundary, then

(6.2) u�
ˇ̌
@�

� ':
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Now (6.1) and (6.2) imply that u� 2 F.'/. Therefore, u� � u, which is the
same as

(6.3) u� D u on �:

This completes the proof of Proposition 6.7 once Lemma 6.8 is established. �

PROOF OF LEMMA 6.8: By Theorem 5.12 applied to zF , there exists a global

defining function � that is strictly EzF -convex on �. Pick x0 2 @�. It follows from

(5.4) and the affine property (2) in Section 4 that there exist � > 0 and R > 0 so

that C.� � �jx � x0j2/ 2 zF .�/ if C � R. Given ı > 0, pick C � 0 so that

(6.4) on @�W ' C C.� � �jx � x0j2/ D ' � C�jx � x0j2 � '.x0/C ı:

Then for each v 2 F.'/

w � v C C.� � �jx � x0j2/ 2 SA.�/ \ USC.�/:

By the maximum principle we have

sup
�

w D sup
@�

w:

Now sup@�w � '.x0/C ı since

w
ˇ̌
@�

D v
ˇ̌
@�

C C.� � �jx � x0j2/ � ' � C�jx � x0j2 � '.x0/C ı:

This proves that for all v 2 F.'/

w.x/ D v.x/C C.� � �jx � x0j2/ � '.x0/C ı for all x 2 �:
Hence, the upper envelope u satisfies

u.x/C C.� � �jx � x0j2/ � '.x0/C ı for all x 2 �:
Therefore u� also satisfies

u�.x/C C.� � �jx � x0j2/ � '.x0/C ı for all x 2 �:
Evaluating at x D x0 yields

u�.x0/ � '.x0/C ı:

�

LEMMA 6.9 If � has a strictly EF -convex boundary, then

lim inf
x!x0

u.x/ � '.x0/ 8x0 2 @�:

PROOF: By Theorem 5.12 there exists � > 0 so that for C � 0 the function
C.� � �jx � x0j2/ is of type F . Given ı > 0, pick C � 0 so that (cf. (6.4))

(6.40) on @�W '.x0/C C.� � �jx � x0j2/ � '.x/C ı:

Set
v.x/ D '.x0/ � ı C C.� � �jx � x0j2/ on �:
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Then v 2 F.'/. Consequently, v � u on �, and so

lim inf
x!x0

u.x/ � lim
x!x0

v.x/ D '.x0/ � �:

�

COROLLARY 6.10 If @� is both strictly EF -convex and strictly
EzF -convex, then the

function u is continuous at each point of @� and u
ˇ̌
@�

D '.

We now apply an argument of Walsh [27] to prove interior continuity.

PROPOSITION 6.11 u 2 C.�/.

PROOF: Let �ı � fx 2 � W dist.x; @�/ > ıg and let Cı � fx 2 � W
dist.x; @�/ < ıg. Suppose � > 0 is given. By the continuity of u at points of @�
and the compactness of @�, it follows easily that there exists a ı > 0 such that

(6.5) if jyj � ı; then uy < uC � on C2ı ;

where uy.x/ � u.x C y/ is the y-translate of u and where we define u to be �1
on R

n ��. We claim that

(6.6) if jyj � ı; then uy � uC � on �:

Setting ´ D x C y, this implies that

´ 2 �; x 2 �; and j´ � xj � ı H) u.´/ � u.x/C �

and by symmetry that ju.´/ � u.x/j � �. This completes the proof once (6.6) is
established.

To establish (6.6), note first that uy � � 2 F.�ı/ for each jyj < ı by the
translation property (3) and the affine property (2) in Section 4. Since uy < uC �

on the collar C2ı , one has

gy � maxfuy � �; ug 2 F.�/
by the maximum property (4) in Section 4. Now (6.5) implies that gy D u on C2ı .
Therefore

gy 2 F.'/;

and hence gy � u on �. This proves

uy � � � gy � u on �ı :

Combined with (6.5), this proves (6.6). �

This proves that u 2 C.�/, u
ˇ̌
�

2 F.�/, and u
ˇ̌
@�

D '. To complete the
proof of existence for (DP), we show the following lemma.

LEMMA 6.12 �u
ˇ̌
�

2 zF .�/.
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PROOF: If �u … zF .�/, then since zzF D F , Lemma 4.6 implies that there exist
x0 2 �, a affine, � > 0, and A 2 IntF such that

A � u � a
(

� ��jx � x0j2 near x0

D 0 at x0:

Now v D A � aC �
2
jx � x0j2 is of type F . Furthermore, v < u on @Br.x0/ for a

small r > 0 but v.x0/ D u.x0/. Set v0 D v C ı with ı > 0 small so that v0 < u

remains true on @Br.x0/ but u.x0/ < v
0.x0/. Then

w D
(
u on � � Br.x0/

maxfu; v0g on Br.x0/

defines a function w 2 F.'/, the Perron family for the boundary function '. This
is because the continuity of v0 � u (by Proposition 6.11) implies that fv0 < ug D
fv0 � u < 0g is an open neighborhood of @Br.x0/. However, w.x0/ D v0.x0/ >

u.x0/, contradicting the definition of u as the upper envelope of F.'/. �

7 Quasi-Convex Functions

In some sense the nicest class of F -plurisubharmonic functions is the one where
F D P . If X is connected, then

(7.1) v 2 P.X/ ” v 2 Convex.X/ or v � �1:

(See Proposition 2.6 and its restatement as Proposition 4.5.) The important prop-
erty (6) in Section 4, for “families locally bounded above,” can be strengthened in
this case.

(7.2)
If F is a family of convex functions that is locally bounded above,
then the upper envelope v D supf 2F f is also convex.

The point is that in this case there is no need to regularize from v to v�.
Another useful improvement is the following:

(7.3)
If fvj g is a sequence of functions in P.X/ that converges pointwise
to a function v, then v 2 P.X/.

These properties are easily established.
Another important property of convex functions is due to Alexandrov [2].

(7.4) If u is a convex function, then u is twice differentiable a.e.

All these properties carry over directly to the quasi-convex case. Their analogues,
which are listed below, will be used to prove the subaffine theorem, Theorem 6.5.
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DEFINITION 7.1 A function u onX is �-quasi-convex if v D uC�1
2
jxj2 is convex.

Set P� � P � �I . Then for X connected, we have

u 2 P�.X/ ” u is �-quasi-convex or u � �1:(7.10)

If F is a family of �-quasi-convex functions that is locally bounded
above, then the upper envelope u D supf 2F f is also �-quasi-
convex.

(7.20)

Since supf 2F .f C �1
2
jxj2/ D .supf 2F f / C �1

2
jxj2, the extension of property

(7.3) is obvious.

(7.30)
If fuj g is a sequence of functions in P�.X/ that converges point-
wise to a function u, then u 2 P�.X/.

The extension of Alexandrov’s theorem is also obvious.

(7.40) If u is a locally quasi-convex function, then u is twice differen-
tiable a.e.

Note that if ' is smooth, then in any relatively compact subdomain there exists
� > 0 such that ' is �-quasi-convex on the subdomain.

We will also need a final property of quasi-convex functions — differentiability

at maximum points (DMP). Since this property is essentially vacuous for purely
convex (nonconstant) functions, we include a proof.

(DMP)
Suppose u is quasi-convex and x is a local maximum point of u.
Then u is differentiable at x and .ru/.x/ D 0.

PROOF: We may assume that the maximum point is the origin and the maxi-
mum value is zero. Then v.x/ � u.x/C�1

2
jxj2 � �1

2
jxj2 near x D 0 and v.0/ D

0. Therefore, by convexity of v, 0 D 2v.0/ � v.x/ C v.�x/ � v.x/ C �1
2
jxj2.

Thus,

�� 1
2

jxj2 � v.x/ � �
1

2
jxj2;

which proves that v is differentiable at the origin and that .rv/.0/ D 0. Therefore
the same conclusion holds for u. �

Suppose now that v is a convex function. If v is differentiable at a point x, then
define

(7.5) K.v; x/ � lim
�!0

2��2 sup
jyjD1

fv.x C �y/ � v.x/ � �rv.x/ � yg:

Otherwise define K.v; x/ D 1. If v is twice differentiable at x, then K.v; x/ is
the largest eigenvalue of Hessx v.

The next result is a key to our development.

THEOREM 7.2 (Slodkowski [22]) Suppose that v is a convex function on X . If

K.v; x/ � ƒ a.e., then K.v; x/ � ƒ everywhere.
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This theorem provides a nice test for when a quasi-convex function is subaffine.
Recall by Proposition 2.5 and its restatement as Proposition 4.5 that zP.X/ D
SA.X/ is the space of subaffine functions.

THEOREM 7.3 Suppose u is locally quasi-convex on X . Then

Hessu 2 zP a.e. ) u 2 zP.X/:
PROOF: Set v.x/ � u.x/ C ƒ1

2
jx � x0j2. At a point x where u is twice

differentiable,

(7.6) Hessx u 2 zP ” Hessx v 2 . zP Cƒ � I / ” K.v; x/ � ƒ:

Thus the hypothesis Hessx u 2 zP a.e. is equivalent to

(7.7) K.v; x/ � ƒ a.e. on X:

By Slodkowski’s largest eigenvalue theorem, Theorem 7.2, this is equivalent to

(7.8) K.v; x/ � ƒ everywhere on X:

We now suppose that u … zP.X/ and derive a contradiction. By Lemma 2.2
there exists x0 2 X , a affine, and � > 0 such that

(7.9) u.x/ � a.x/
(

� �� 1
2
jx � x0j2 near x0

D 0 at x0:

Pick ƒ so that v.x/ � u.x/ C ƒ1
2

jx � x0j2 is convex near x0. By (7.9) (DMP)
implies that u, and hence v, is differentiable at x0. Thus K.v; x0/ is defined by
(7.5). Since

v.x/ � a.x/
(

� .ƒ � �/1
2
jx � x0j2 near x0

D 0´ at x0;

it follows that K.v; x0/ � ƒ � �, a contradiction. �

Remark. Suppose v D uCƒ 1
2
jxj2 is convex. Theorem 7.3 states that

IfK.v; x/ � ƒ a.e., then v�ƒ 1
2
jxj2 is subaffine (or equivalently

that v is of type zP Cƒ � I ).

COROLLARY 7.4 (Subaffine Theorem for Quasi-Convex Functions) Suppose F is

a Dirichlet set. If u and v are �-quasi-convex with u 2 F.X/ and v 2 zF .X/, then

uC v 2 SA.X/.

PROOF: By Alexandrov’s theorem, u, v, and uCv are twice differentiable a.e.,
and the a.e. Hessians satisfy

Hessx.uC v/ D Hessx uC Hessx v:

By property (7) in Section 4, Hessx u 2 F a.e. and Hessx v 2 zF a.e. Therefore,

(7.10) Hessx.uC v/ 2 F C zF � zP a.e.:
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(One has F C zF � zP by Lemma 4.3(i).) Since uC v is 2�-quasi-convex, Theo-
rem 7.3 implies that uC v 2 zP.X/; i.e., uC v is subaffine. �

Theorem 7.3 extends from zP to an arbitrary Dirichlet set F .

COROLLARY 7.5 Suppose u is locally quasi-convex on X . Then

Hessu 2 F a.e. ) u 2 F.X/:

PROOF: Suppose Hessx u 2 F a.e. Given B 2 zF , Hessx.uCB/ D Hessx uC
B 2 F C zF � zP a.e. By Theorem 7.3 this implies that u C B 2 SA.X/, and
hence by Lemma 4.6 that u 2 F.X/. �

Note. Note that by property (7) in Section 4 the converse is true as well; that is,
u 2 F.X/ ) Hessx u 2 F a.e.

8 Sup-Convolution Approximation

Suppose that X is an open subset of R
n.

DEFINITION 8.1 (Sup-Convolution) Suppose that u is a bounded function on X .
For each � > 0, define

(8.1) u�.x/ D sup
y2X

�
u.y/ � 1

�
jx � yj2

�
8x 2 X:

Note. Note that u � u� on X . Set ı �
p
�2N where juj � N on X , and define

Xı D fx 2 X W dist.x; @X/ > ıg. The following equivalent formula for u� is
useful:

(8.2) u�.x/ D sup
jx�yj�ı

�
u.y/ � 1

�
jx � yj2

�
8x 2 Xı :

PROOF: If x; y 2 X and jx � yj > ı, then

u.y/ � u.x/ � 1

�
jx � yj2 � 2N � ı2

�
D 0:

Therefore, u.y/ � 1
�
jx � yj2 � u.x/ if jx � yj > ı. Since u.x/ � u�.x/, this

proves that

sup
jx�yj>ı; y2X

�
u.y/ � 1

�
jx � yj2

�
� u�.x/ if x 2 X;

which gives (8.2). �

Making the change of variables ´ D x � y in (8.2) yields

(8.3) u�.x/ D sup
j´j�ı

�
u.x � ´/ � 1

�
j´j2

�
8x 2 Xı :
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THEOREM 8.2 (Approximation) Suppose u 2 F.X/ with ju.x/j � N onX . Given

� > 0, define ı D
p
2�N . Then

(i) u� decreases to u as � ! 0.

(ii) u� is 1
�

-quasi-convex.

(iii) u� 2 F.Xı/.

PROOF: For (i) note that �1 < �2 ” � 1
�1
< � 1

�2
. Now any of (8.1), (8.2),

or (8.3) imply that u� is monotone decreasing as � ! 0. By (8.2)

u�.x/ � sup
jx�yj�ı

u.y/ 8x 2 Xı :

As noted above, u � u�. Hence

u.x/ � u�.x/ � sup
jx�yj�ı

u.y/:

Because u 2 USC.X/, the functions supjx�yj�ı u.y/ decrease to u.x/, thus prov-
ing (i).

To prove (ii) we first note that for y 2 X fixed, the function u.y/� 1
�
jx�yj2 C

1
�
jxj2 is affine and hence convex. That is, u.y/ � 1

�
jx � yj2 is a 1

�
-quasi-convex

function of x. Now applying (7.20) to (8.1) (note that (8.3) does not work here)
proves that u� is 1

�
-quasi-convex.

To prove (iii) we make use of (8.3). Each function u´.x/ D u.x � ´/ 2 F.Xı/

if j´j � ı by the translation property (3) in Section 4. Therefore, by the “families
locally bounded above” property (6) in Section 4, the upper envelope u� of the
family

F D
�
u.x � ´/ � 1

�
j´j2 W j´j � ı

�

has upper semicontinuous regularization in F.Xı/. However, u� is continuous
since it is quasi-convex. Hence u� equals its upper semicontinuous regularization.

�

The subaffine theorem, Theorem 6.5, follows easily from the quasi-convex case
(Corollary 7.4) because of the approximation theorem, Theorem 8.2.

PROOF OF SUBAFFINE THEOREM 6.5: The result is local, so by upper semi-
continuity we may assume u and v are bounded above. We may also assume
they are bounded below by replacing them with um D maxfu;�mg and vm D
maxfv;�mg, and then taking the decreasing limit of um C vm as m ! 1.

We now apply Theorem 8.2 to u and v to obtain sequences fuj g and fvj g that
are quasi-convex for each j and converge monotonically downward to u and v,
respectively, as j ! 1. By Corollary 7.4, the sum uj C vj 2 SA.X/ for all j .
Since uj C vj decreases to uC v, the decreasing limits property (5) in Section 4,
applied to the subaffine case, implies that uC v 2 SA.X/. �
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9 Topological Restrictions on Domains

with Strictly EF -Convex Boundaries

In this section we show that the strict EF -convexity of @�, which was assumed
in our main theorem, Theorem 6.2, often places strong restrictions on the topology
of �. A typical example is that of a domain in C

n with pseudoconvex boundary
(a Stein domain) that has the homotopy type of a complex of dimension � n. The-
orem 9.5 greatly generalizes this fact. For its statement we need to introduce the
following ideas.

Suppose R
n D N ˚ W is an orthogonal decomposition of R

n. Let �W W
Sym2.Rn/ ! Sym2.W / denote restriction of quadratic functions.

DEFINITION 9.1 Suppose that F is a Dirichlet-Ray set and that R
n D N ˚W .

(i) W is F -free if �W .F / D Sym2.W /.
(ii) W is F -Morse if there exists A 2 F with �W .A/ < 0.

(iii) N is F -strict if PN 2 IntF .

PROPOSITION 9.2 Suppose F is a Dirichlet-Ray set and that R
n D N ˚W . Then

the following conditions are equivalent:

(i) W is F -free,

(ii) W is F -Morse,

(iii) N is F -strict.

The proof is given at the end of this section.

DEFINITION 9.3 The free dimension of a Dirichlet ray set F , denoted by free-
dim.F /, is the maximal dimension of an F -free subspace of R

n. By Proposi-
tion 9.2, free-dim.F / is also the maximal dimension of an F -Morse subspace
of R

n.

Example 9.4. Suppose F D P.G/ is defined by a closed subset G � G.p;Rn/ of
the Grassmannian of p-planes, as in (10.10) below. Then a subspace W � R

n is
P.G/-free if and only if it contains no G-planes, i.e.,

6 9� 2 G with � � W:

(For the proof see [14, lemma 10.2].) This enables one to easily calculate the
free dimension in all the standard calibrated geometries. For example, when G �
G.2;R2n/ is the Grassmannian of complex lines in C

n D R
2n, the free dimension

is n. This is the Stein case. In associative geometry, the free dimension is 4, and in
coassociative geometry it is 4. When G is the space of Lagrangian n-planes in C

n,
the free dimension is 2n � 2.

The following theorem is the main result of this section. It represents a surpris-
ing extension of the Andreotti-Frankel theorem in complex analysis to this general
context.
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THEOREM 9.5 Let F � Sym2.Rn/ be a Dirichlet-Ray set with free-dim.F / D D.

Suppose � b R
n is a domain with a smooth, strictly F -convex boundary. Then �

has the homotopy type of a CW-complex of dimension � D.

COROLLARY 9.6 Let� b X be a domain with a smooth, strictly F -convex bound-

ary, and let D be the free dimension of F . Then

Hk.@�I Z/ Š Hk.�I Z/ 8k < n �D � 1;
and the map Hn�D�1.@�I Z/ ! Hn�D�1.�I Z/ is surjective.

PROOF OF THEOREM 9.5: By Theorem 5.12 a global defining function � 2
C1.�/ for @� exists that is strictlyF -plurisubharmonic on�. Set u D � log.��/
and note that u is a proper exhaustion function for �. Direct computation shows
that

Hessu D �1
�

Hess �C 1

�2
.r� ı r�/:

Since Hessx � 2 IntF and .r� ı r�/x 2 P , elementary property (3) in Section 3
shows that

(9.1) Hessx u 2 IntF

at each x 2 �; i.e., u is strictly F -plurisubharmonic on �. By standard approxi-
mation theorems (cf. [20]) we may assume that all critical points of u are nonde-
generate. The theorem will follow from Morse theory if we can show that each
critical point x0 of u in X has index � D.

Suppose x0 were a critical point of index > D. Then there would exist a linear
subspace W � Tx0

R
n D R

n of dimension > D such that

Hessx0
u
ˇ̌
W
< 0:

However, by Proposition 9.2 and (9.1) we see that D is the largest dimension of
a subspace W for which this can hold. Hence the index of Hessx0

u � D as
desired. �

PROOF OF COROLLARY 9.6: This follows from the exact sequence

HkC1.�; @�I Z/ ! Hk.@�I Z/ ! Hk.�I Z/ ! Hk.�; @�I Z/;

Lefschetz duality (Hk.�; @�I Z/ Š Hn�k.�I Z/), and Theorem 9.5. �

PROOF OF PROPOSITION 9.2: Let � W Sym2.Rn/ ! Sym2.N /? denote or-
thogonal projection onto the subspace Sym2.N /? of Sym2.Rn/. Also consider
the conditions

(1�) �.F / D Sym2.N /? and
(3�) Sym2.N / \ IntF ¤ ¿:

The implications .1�/ ) .1/ and .3�/ ) .3/ are trivial. We will prove that
.1/ ) .3/, .3�/ ) .1�/, and .1/ ” .2/.
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.1/ ) .3/

By (1) there exists A 2 F with �W .A/ D �IW where IW denotes the identity
onW . It suffices to show that there exist t > 0 and P > 0 such that PN D tACP ,
because by the ray property tA 2 F , and F C IntP � IntF . In terms of the 2 � 2
blocking induced by R

n D N ˚W , we have A D . a b
b �IW

/. Therefore

1

t
P D 1

t
PN � A D

�
1
t
IN � a �b
�b IW

�
:

For t > 0 sufficiently small, we have 1
t
P > 0 and hence P > 0.

EXERCISE Show that  
1
t
IN � a �b
�b IW

!
> 0

for all sufficiently small t > 0.

.3�/ ) .1�/

Suppose A 2 Sym2.N / \ IntF , i.e., A D . a 0
0 0 /. Given B 2 Sym2.N /?, i.e.,

B D . 0 b
b c
/, pick � > 0 small enough so that AC �B 2 F . By the ray property,

1

�
AC B D

 
1
�
a b

b c

!
2 F:

Finally, �.1
�
AC B/ D B .

.1/ ” .2/

Note that W is not F -Morse ” �W .F / � zPW where PW D fA 2
Sym2.W / W A � 0g ” PW � B�W .F /. It is easy to show that �W .F / satisfies
the positivity condition. Moreover, �W .F / ¤ ¿ since F ¤ ¿. Hence, �W .F / is
either a Dirichlet set or �W .F / D Sym2.W /. In either case B�W .F / satisfies the
positivity condition. Hence

zPW � B�W .F / ” 0 2 B�W .F /:

By definition, 0 2 B�W .F / ” 0 … Int�W .F /. Since F satisfies the ray
condition, so does �W .F /. Therefore,

�W .F / D Sym2.W / ” 0 2 Int�W .F /;

or equivalently,

0 … Int�W .F / ” �W .F / ¤ Sym2.W /I
i.e., W is not F -free. �
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10 Examples of Dirichlet Sets

Dirichlet sets F � Sym2.Rn/, to which our main existence and uniqueness
theorem applies, are abundant, interesting, and quite varied. They arise in quite
different contexts, and we have tried to organize our presentation in that way. There
are, however, some organizational principles that illuminate the constructions. We
shall mention these early on.

In many cases the C 2-solutions to the Dirichlet problem associated to F sat-
isfy an explicit nonlinear second-order differential equation. When this is so, the
equations will be presented.

As mentioned in the introduction, readers are encouraged to look at examples
close to their interests and bear them in mind while reading other parts of the paper.

Three Fundamental Examples

The most basic example of a Dirichlet set is the set

P D fA 2 Sym2.Rn/ W A � 0g

of nonnegative symmetric matrices, whose Dirichlet dual is the set zP of matrices
with at least one nonnegative eigenvalue. These sets have analogues over C and H.

Consider the three vector spaces R
n, C

n, and H
n with scalar fields K D R,

C, and H, respectively. (In the quaternionic case it is convenient to have the
scalars H act on H

n from the right.) Let G.p;Kn/ denote the Grassmannian
of p-dimensional K-planes in Kn. For each � 2 G.p;Kn/ define the �-trace of
A 2 Sym2

R
.Kn/ D Sym2.RN / (with N D n; 2n or 4n) by

(10.1) tr� A D tracefA
ˇ̌
�
g D hA;P�i

where P� 2 Sym2.RN / is orthogonal projection onto � and h � ; � i is the standard
inner product on Sym2.RN /. Define

P.Rn/ D fA 2 Sym2.Rn/ W tr� A � 0 8� 2 G.1;Rn/;(10.2)

PC.C
n/ D fA 2 Sym2

R.C
n/ W tr� A � 0 8� 2 G.1;Cn/g;(10.3)

PH.H
n/ D fA 2 Sym2

R.H
n/ W tr� A � 0 8� 2 G.1;Hn/g:(10.4)

These are the three fundamental examples of Dirichlet sets. Note that they are
convex cones in Sym2.RN / with vertex at the origin. Their Dirichlet duals are
given, respectively, by

zP.Rn/ D fA 2 Sym2.Rn/ W 9� 2 G.1;Rn/ s.t. tr� A � 0g;
zPC.C

n/ D fA 2 Sym2
R
.Cn/ W 9� 2 G.1;Cn/ s.t. tr� A � 0g;

zPH.H
n/ D fA 2 Sym2

R
.Hn/ W 9� 2 G.1;Hn/ s.t. tr� A � 0g:
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Given A 2 Sym2
R
.Kn/ D Sym2.RN /, consider the Hermitian symmetric part

of A. In the complex case C
n D .R2n; J / this is just

(10.5) AC D 1

2
.A � JAJ /

while in the quaternionic case H
n D .R4n; I; J;K/ it is

(10.6) AH D 1

4
.A � IAI � JAJ �KAK/:

The Hermitian symmetric part is K-linear with n eigenvalues �1; : : : ; �n. The
Dirichlet sets P.Rn/, PC.C

n/, and PH.H
n/ can all be (equivalently) defined as

PK.K
n/ D fA 2 Sym2.RN / W AK � 0g

D fA 2 Sym2.RN / W �1 � 0; : : : ; �n � 0g:
(10.7)

The Monge-Ampère Equation

In all three cases there is a determinant function on Sym2.RN /:

(10.8) detKA D �1 � � ��n:

Of course, if K D R, this is the real determinant of A 2 Sym2.Rn/, and if K D
C, then this is the complex determinant of the Hermitian symmetric part of A 2
Sym2

R
.Cn/. If K D H, then one can show that detHA is also a polynomial of

degree n (cf. [8]). Note that in each of these cases the boundary of the Dirichlet
set (@P , @PC, or @PH) is contained in the zero locus of the determinant function
(detR, detC, detH). Therefore, if u is a PK-Dirichlet function that is C 2, then at
each point

(10.9) detK.Hessu/ D 0:

The Next Tier: Other Branches of det.Hess u/ D 0

Fix a positive integer 0 � q � n � 1 and consider the sets

Pq.K
n/ D fA 2 Sym2.RN / W 9W 2 G.n � q;Kn/ with A

ˇ̌
W

2 PK.W /g
D fA 2 Sym2.RN / W AK has at least n � q eigenvalues � 0g
D fA 2 Sym2.RN / W 8V 2 G.q C 1; n/A

ˇ̌
V

2 zPK.V /g:
The first line shows that Pq.Kn/ is a Dirichlet set. It is easy to see that

zPq.K
n/ D fA 2 Sym2.RN / W 8W 2 G.n � q;Kn/A

ˇ̌
W

2 zPK.W /g:
If we order the eigenvalues of AK so that �1 � � � � � �n, then

Pq.K
n/ D f�qC1 � 0g and zPq.K

n/ D f�n�q � 0g:
In all three cases,

zPq D Pn�q�1 and

(
P0 D P

Pn�1 D zPI
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therefore, u is a Pq-Dirichlet function if u 2 Pq.X/ and �u 2 Pn�q�1.X/. Thus,
if u is C 2 and �1.x/ � � � � � �n.x/ are the eigenvalues of Hessx u, then u is
Pq-Dirichlet if and only if

�qC1 � 0:

No matter what q (0 � q � n � 1), one has

@Pq � fA W detKAK D 0g;
and, in fact, @Pq consists of the branch of fA W detK AK D 0g where �qC1 D 0. In
particular, a Pq-Dirichlet function that is C 2 satisfies the Monge-Ampère equation
(10.9).

Geometrically Defined Dirichlet Sets

The three fundamental examples P , PC, and PH are geometrically defined
by the three Grassmannians G.1;Rn/, G.1;Cn/, and G.1;Hn/, respectively. In
fact, there exists a vast array of geometrically interesting Dirichlet sets defined in
a similar fashion. Let G � G.p;Rn/ be a closed subset of the Grassmannian of
p-planes, and define

(10.10) P.G/ D fA 2 Sym2.Rn/ W 8W 2 G; trW .A/ � 0g:
This is evidently a Dirichlet set. It is also a convex cone with vertex at the origin.
Its Dirichlet dual is

zP.G/ D fA 2 Sym2.Rn/ W 9W 2 G; trW .A/ � 0g
In these cases the P.G/-plurisubharmonic functions have the nice property that
they are subharmonic on minimal G-submanifolds (those whose tangent planes lie
in G). There are many other important cases coming from calibrated geometry
and symplectic geometry. This and other related matters are discussed in detail in
[11, 12, 13], and we briefly describe them next.

The Dirichlet Problem in Calibrated Geometry

Let � 2 ƒp
R

n be a (constant coefficient) calibration on R
n, and let G.�/ D

f� 2 G.p;Rn/ W �.�/ D 1g be the Grassmannian of �-planes (cf. [10]). Then
we have a geometrically defined Dirichlet set given by (10.10). The attendant
notions of �-plurisubharmonic functions and �-convexity are discussed in detail in
[12]. Our main theorem, Theorem 6.2, shows that, on strictly �-convex domains
� � R

n, the Dirichlet problem is uniquely solvable in the class of continuous
�-Dirichlet functions for all continuous boundary data.

We recall that this includes many interesting cases, for example, special La-
grangian geometry, associative, coassociative, and Cayley geometries, and many
others. When a solution to the Dirichlet problem is C 2, it is partially �-pluri-
harmonic, that is, tr� Hessu � 0 for all �-planes � and D 0 for some �-plane � at
each point. The associated differential equations of Monge-Ampère type in these
cases have not all been found.
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The Dirichlet Problem in Lagrangian Geometry

Consider C
n D .R2n; J / as before, and for A 2 Sym2.R2n/ define its La-

grangian component to be

ALAG D t

n
I C 1

2
.AC JAJ /

D t

n
I C Askew

where t D 1

2
trRA:

The matrix Askew, called the skew-Hermitian part of A, anticommutes with J and
therefore has eigenvalues

�1;��1; : : : ; �n;��n

with corresponding eigenvectors of the form

e1; Je1; : : : ; en; Jen:

Following [13] we consider the expression

(10.11) MLAG.A/ D
Y

2n times

.t ˙ �1 ˙ � � � ˙ �n/ :

This is a polynomial in t whose coefficients are symmetric functions in �2
1; : : : ; �

2
n.

It follows from the work of Dadok and Kac [8] that MLAG.A/ is a polynomial
in the coefficients of A. It is, in fact, one of the factors of det.DALAG/ where
DALAG W ƒn

R
2n ! ƒn

R
2n is the extension of ALAG as a derivation.

We now consider the set LAG � G.n; 2n/ of Lagrangian n-planes in R
2n D

C
n. This gives us the geometrically defined Dirichlet set

P.LAG/ D fA 2 Sym2.Rn/ W 8� 2 LAG; tr� A � 0g
D fA 2 Sym2.Rn/ W t � �1 � � � � � �n � 0g

where we assume by convention that 0 � �1 � � � � � �n. The Dirichlet dual is

zP.LAG/ D fA 2 Sym2.Rn/ W 9� 2 LAG; tr� A � 0g
D fA 2 Sym2.Rn/ W t � �1 C � � � C �n � 0g:

Our Dirichlet problem on a strictly Lagrangian-convex domain � � R
n is

uniquely solvable for continuous boundary data and gives a Lagrangian plurisub-
harmonic function u 2 C.�/ which, when it is class C 2, satisfies the differential
equation

MLAG.Hessu/ D 0:

We can now elaborate this discussion using the general principle above. Fix a
positive integer p � n and consider the set

ISOp D f� 2 G.p; 2n/ W � is an isotropic p-planeg:
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(Recall that a p-plane � is isotropic if � ? J � or, equivalently, if !
ˇ̌
�

D 0 where
! is the standard Kähler form.) Following our general principle we introduce the
Dirichlet sets

P.ISOp/ D fA 2 Sym2.Rn/ W 8W 2 GC.p; n/; A 2 P.LAG/.W /g

D fA 2 Sym2.Rn/ W 8� 2 ISOp; tr� A � 0g
D
n
A 2 Sym2.Rn/ W p

n
t � �n�pC1 � � � � � �n � 0

o

where 0 � �1 � � � � � �n as above, and its Dirichlet dual

zP.ISOp/ D fA 2 Sym2.Rn/ W 9W 2 GC.p; n/; A 2 zP.LAG/.W /g

D fA 2 Sym2.Rn/ W 9� 2 ISOp; tr� A � 0g
D
n
A 2 Sym2.Rn/ W p

n
t C �n�pC1 C � � � C �n � 0

o
:

Associated to this problem we have the polynomial

MISOp
.A/ D

Y

jI jDp and ˙

�p
n
t ˙ �i1

˙ � � � ˙ �ip

�
;

which is a factor of det.DALAG/ where DALAG W ƒp
R

2n ! ƒp
R

2n is the extension
of ALAG as a derivation. As above we have that any C 2-function u that is ISOp-
Dirichlet satisfies the differential equation

MISOp
.Hessu/ D 0:

The Geometrically p-Plurisubharmonic Dirichlet Problem

There is a second, more geometric, choice for the p-plurisubharmonic func-
tions, different from the one made at the beginning of this section. Namely, con-
sider for 1 � p � n the geometrically defined Dirichlet sets

P.G.p;Rn// D fA 2 Sym2.Rn/ W tr� A � 0 8� 2 G.p;Rn/g;
P.G.p;Cn// D fA 2 Sym2

R
.Cn/ W tr� A � 0 8� 2 G.p;Cn/g;

P.G.p;Hn// D fA 2 Sym2
R
.Hn/ W tr� A � 0 8� 2 G.p;Hn/g:

The Dirichlet duals are
zP.G.p;Rn// D fA 2 Sym2.Rn/ W 9� 2 G.p;Rn/ s.t. tr� A � 0g;
zP.G.p;Cn// D fA 2 Sym2

R
.Cn/ W 9� 2 G.p;Cn/ s.t. tr� A � 0g;

zP.G.p;Hn// D fA 2 Sym2
R
.Hn/ W 9� 2 G.p;Hn/ s.t. tr� A � 0g:

In all three of these cases (R, C, or H) there is a Monge-Ampère polynomial Mp.
First, we consider the real case. For A 2 Sym2.Rn/, let

DA W ƒp
R

n ! ƒp
R

n
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be the extension as a derivation. If A has eigenvalues �1; : : : ; �n with eigenvectors
e1; : : : ; en, then DA has eigenvalues �I D �i1

C � � � C �ip with eigenvectors eI D
ei1

^ � � � ^ eip where I D .i1; : : : ; ip/ is strictly increasing. One can prove that

P.G.p;Rn// D fA 2 Sym2.Rn/ W DA � 0g
D fA 2 Sym2.Rn/ W �I .A/ � 0 8jI j D pg

and its Dirichlet dual
zP.G.p;Rn// D fA 2 Sym2.Rn/ W DA has at least one eigenvalue � 0g

D fA 2 Sym2.Rn/ W �I .A/ � 0 for some jI j D pg:
If u is C 2 and �1.x/ � � � � � �n.x/ are the eigenvalues of Hessx u, then u is
P.G.p;Rn//-Dirichlet if and only if

�1 C � � � C �p � 0:

Thus C 2-solutions to the Dirichlet problem in this case are p-plurisubharmonic
functions that satisfy the differential equation

(10.12) Mp.Hessu/ D
Y

jI jDp

�I D 0:

The polynomial Mp.A/ D Q
jI jDp �I is of degree

�
n
p

�
and equals det.DA/. For a

domain � � R
n, the Dirichlet problem for P.G.p;Rn//-Dirichlet functions can

be solved uniquely provided the boundary is p-convex, i.e.,

trW fII@�g < 0
for all p-planes tangential to @�, where II@� denotes the second fundamental form
of @� with respect to the outward-pointing normal. See [11] for a more detailed
discussion of this case, as well as a discussion of the Levi problem in this context.

In all three cases (R, C, and H)

P.G.p;Kn// D fA 2 Sym2.RN / W �I .AK/ � 0 8jI j D pg;
zP.G.p;Kn// D fA 2 Sym2.RN / W �I .AK/ � 0 for some jI j D pg:

The polynomial Mp on Sym2.RN / defined by Mp.A/ D Q
jI jDp �I .AK/ of de-

gree
�

n
p

�
provides the nonlinear differential operator exactly as in the real case.

The Next Tier for P.G.p; R
n//

Fix integers 0 � q < n and 0 < p � n � q and consider the convex Dirichlet
set

Pq.G.p;R
n// D fA 2 Sym2.Rn/ W 9W 2 G.n � q;Rn/; A

ˇ̌
W

2 P.G.p;W //g
and its Dirichlet dual

zPq.G.p;R
n// D fA 2 Sym2.Rn/ W 8W 2 G.n � q;Rn/; A

ˇ̌
W

2 zP.G.p;W //g:
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Note. Note that Pq.G.1;R
n// D Pq and

zPq.G.1;R
n// D Pn�q�1 D Pn�q�1.G.1;R

n//:

LEMMA 10.1 Let �1 � � � � � �n be the eigenvalues of AK. Then

A 2 Pq.G.p;R
n// ” �qC1 C � � � C �qCp � 0;

A 2 zPq.G.p;R
n// ” �n�q�pC1 C � � � C �n�q � 0:

The proof is straightforward and omitted. One has the following:

COROLLARY 10.2 zPq.G.p;R
n// D Pn�q�p.G.p;R

n//:

It follows that a C 2-function u is Pq.G.p;R
n//-Dirichlet if and only if

�qC1 C � � � C �qCp � 0

where �1 � � � � � �n are the eigenvalues of Hessu. In particular, C 2-solutions of
the Dirichlet problem in this case are p-plurisubharmonic on q-planes and satisfy
equation (10.12). In other words, they are solutions of this equation belonging to
other branches of the locus Mp D 0.

This discussion holds in perfect analogy in the complex and quaternionic cases.

The Next Tier Principle

We have been using the following technique to generate new examples from
known ones. Let W be a family of subspaces of R

n with a Dirichlet set FW �
Sym2.W / attached to each W 2 W . Define

F D fA 2 Sym2.Rn/ W 8W 2 W; A
ˇ̌
W

2 FW g:

One easily verifies that

zF D fA 2 Sym2.Rn/ W 9W 2 W; A
ˇ̌
W

2 zFW g:

PROPOSITION 10.3 The sets F and zF are Dirichlet sets.

PROOF: This is straightforward to verify. The examples we examine here un-
der the heading “the next tier” are of this type. They can be elaborated to more
complicated examples by repeatedly applying this principle. For example, let
R

n D W1˚� � �˚WN be an orthogonal decomposition and set W D fW1; : : : ; WN g,
FW D P.G.2;W //. Then

F D fA W tr�.A/ � 0 for every 2-plane � � Wk for every kg:

�
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Gårding Cones

Let M be a homogeneous polynomial of degree m on Sym2.Rn/, and suppose
the identity I 2 Sym2.Rn/ is a hyperbolic direction forM in the sense of Gårding
[9]. This means that for each A 2 Sym2.Rn/, the polynomial pA.t/ D M.tI CA/

has exactly m real roots and that M.I/ D 1. Then the associated differential
operator

M.u/ D M.Hessu/

will be called an MA-operator, and the polynomial M will be called an MA-

polynomial.
Gårding’s beautiful theory of hyperbolic polynomials states that the set

(10.13) �.M/ D fA 2 Sym2.Rn/ W M.tI C A/ ¤ 0 for t � 0g
is an open convex cone in Sym2.Rn/ equal to the connected component of fM >

0g containing I . The closed convex cone

(10.14) FM D fA 2 Sym2.Rn/ W M.tI C A/ ¤ 0 for t > 0g
is the closure of �.M/. Moreover,

@FM D fA 2 Sym2.Rn/ W M.A/ D 0 but M.tI C A/ ¤ 0 for t > 0g:
We mention that the Dirichlet condition FM CP � FM is equivalent to P � FM

and can be stated in several equivalent ways in terms of M .

(1) M.tI C A/ ¤ 0 for all t > 0 and A > 0.
(10) M.tI C Pe/ ¤ 0 for all t > 0 and all unit vectors e.

Symmetric Functions of Hess.u/

A basic example of an MA-polynomial on Sym2.Rn/ is the determinant. Fur-
thermore, each of the elementary symmetric functions

�n�`.A/ D 1

`Š

d `

dt`
det.AC tI /

ˇ̌
ˇ̌
tD0

is also an MA-polynomial whose associated set F�n�`
is again a Dirichlet set.

See [14, appendix E] for a more complete discussion of the above.

The Special Lagrangian Potential Equation

Another interesting case to which our general theory applies comes from the
polynomial

Q.A/ � Imfdet.I C iA/g
for A 2 Sym2.Rn/. The associated differential equation

(10.15) Q.Hessu/ D 0

governs the potential functions in the theory of special Lagrangian submanifolds
(cf. [10]).



DIRICHLET DUALITY 43

The locus fA 2 Sym2.Rn/ W Q.A/ D 0g has n connected components, or
branches, when n is even, and n � 1 branches when n is odd. Each branch is a
proper analytic submanifold of Sym2.Rn/.

The Dirichlet problem for equation (10.15) was treated in [6] for the case where
Hessu is required to lie on one of the two outermost branches. Under this assump-
tion, smooth solutions are established for smooth boundary data on appropriately
convex domains. In [6] the authors asked whether it is possible to treat the other
branches of this equation.

We shall show that the answer is yes. In fact, we shall study the more general
special Lagrangian potential equation

Q� .A/ � Imfe�i� det.I C iA/g
for �

2
< � � �

2
, with associated differential equation

(10.16) Q� .Hessu/ D 0:

To begin we rewrite the equation Q� .A/ D 0 in the form

(10.17) trfarctan.A/g D � ˙ k� for k 2 Z; jkj < n

2
:

PROPOSITION 10.4 Each of the sets

Fc � fA 2 Sym2.Rn/ W trfarctan.A/g � cg
for �n�

2
< c < n�

2
is a Dirichlet set with Dirichlet dual

zFc D F�c :

COROLLARY 10.5 Let� b R
n be a smoothly bounded domain that is both EFc and

EF�c strictly convex, with c as above. Then the Dirichlet problem for continuousFc-

Dirichlet functions is uniquely solvable for all continuous boundary data on @�.

Note that any C 2-function u, which is Fc-Dirichlet, is a solution to equation
Qc.Hessu/ D 0 that lies on the branch

Hessu 2 @Fc ; that is, trfarctan.Hessu/g D c:

PROOF OF PROPOSITION 10.4: The .qC1/st ordered eigenvalue ofA 2 Sym2.Rn/

can be defined by
�qC1.A/ D sup

W

inf
w2W
jwjD1

hAw;wi

where the sup is over linear subspaces W � R
n of dimension n � q. From this it

follows that if h W R ! R is a nondecreasing function, then

�qC1.h.A// � �qC1.h.AC P //

for all P � 0. Applying this to h D arctan proves the first assertion. The second is
straightforward. �
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Remark. It is an interesting fact that the sets Fc are actually starlike with respect
to some point in their interior except for the following finite set of cases: when n
is odd, we must assume � ¤ �

2
, and for n even, we assume � ¤ 0.

The special Lagrangian potential equation is, in fact, strictly elliptic in the sense
that there is a constant � > 0 so that dist.A C P; @F / � �kP k for A 2 F and
P 2 P .

We note that for n D 3 this equation has also been treated by Yuan [28], who
established a C 2;˛-estimate for C 1;1 viscosity solutions.

Appendix A: Dirichlet Sets That Can Be Defined
Using Fewer of the Variables in R

n

Suppose F is a subset of Sym2.Rn/ that can be defined using the variables in

a subspace W � R
n. That is

F D .F \ Sym2.W // � Sym2.W /?:

Let F0 denote the subset F \ Sym2.W / of Sym2.W /, and let x D .x0; x00/ 2
W ˚W ? D R

n denote the variables.

Example A.1. Let F0 D P.W / with W D R
p and p < n. In this case a C 2-

function u is of type F if
pX

j D1

@2u

@x2
j

� 0:

That is, for each fixed x00 the function u.x0; x00/ of x0 is subharmonic.

Remark A.2. It is standard in the fully nonlinear theory to use the word elliptic to
include Dirichlet sets. Then, in particular, Example A.1 is elliptic. (See [19], for
example.) We prefer to reserve the word elliptic for Dirichlet sets that can not be
defined using fewer of the variables.

DEFINITION A.3 Given a function u.x/ that is upper semicontinuous with values
in Œ�1;1/, we say that u is horizontally of type F0 if for each fixed x00 the
function ux00.x0/ D u.x0; x00/ is of type F0.

Elementary Properties

(1) F is a Dirichlet set ” F0 is a Dirichlet set.
(2) F is convex ” F0 is convex.
(3) zF D fF0 ˚ Sym2.W /?.
(4) EF D EF0 ˚ Sym2.W /?.

If u is of class C 2, then it is obvious that u is of type F if and only if u is
horizontally of type F0.

THEOREM A.4 Suppose F D F0 ˚ Sym2.W /? is a Dirichlet set that can be

defined using the variables inW . Then u is of type F if and only if u is horizontally

of type F0.
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COROLLARY A.5 Let F be as above. Then the subaffine theorem is true for F if

and only if the subaffine theorem is true for F0.

PROOF: Suppose u is of type F and v is of type zF . Because of property (3)
the theorem applies to v as well as u. If the subaffine theorem is true for F0, then
ux00 C vx00 is a subaffine function of x0 2 R

p. Finally, we note that if wx00.x0/ D
w.x0; x00/ is subaffine in x0 (horizontally subaffine), then w is subaffine in x D
.x0; x00/. Set B D B 0 � B 00 � R

p � R
n�p. If w � a on @B , then sx00 � ax00 on

@B 0 � B 00 � @B . Hence wx00 � ax00 on B 0 � B 00. �

PROOF OF THEOREM A.4: Suppose that u is horizontally of type F0. To show
that u is of type F , we must show that uC B is subaffine for each B 2 zF . Since
zF D zF0 ˚ Sym2.W /, we have B.x0; x00/ D b.x0/C a.x0; x00/ where b 2 zF0 and
a is affine. By hypothesis, us00.x0/C b.x0/ is subaffine in x0. Since a is an affine
function, u C B is horizontally subaffine. As noted in the proof of the corollary,
this implies that uC B is subaffine.

Suppose u.x0; x00/ is not of type F0 for some fixed x00
0 . We may assume x00

0 D 0

and that there exist � > 0, x0
0 D 0, and b 2 zF0 such that

(A.1) u.x0; 0/C b.x0/

(
� ��jx0j2 near x0 D 0

D 0 at x0 D 0

after modifying by an affine function of x0 and translating so that x0
0 D 0.

Consider B.x0; x00/ D b.x0/ � ƒjx00j2 with ƒ � 0. By (A.1) and upper
semicontinuity,

u.x0; x00/C B.x0; x00/ < 0 on jx0j D r 0; jx00j � r 00;

for some r 00 > 0 small. Pick ƒ large enough so that

u.x0; x00/C B.x0; x00/ < 0 on jx0j D� r 0; jx00j D r 00:

Since u C B equals zero at x D 0, it is not subaffine and hence u is not of
type F . �

Appendix B: A Distributional Definition of Type F

for Convex Dirichlet Sets F

Suppose H is a closed half-space in Sym2.Rn/. Then H can be defined by

(B.1) H D fB 2 Sym2.Rn/ W hA;Bi � cg
for some nonzero A 2 Sym2.Rn/ and some c 2 R. Note that

(B.2) H is a Dirichlet set ” A 2 P

since, with B0 2 H , one has

c � hA;B0 C P i D hA;B0i C hA;P i D c C r2 C hA;P i
for all P � 0 if and only if 0 � hA;P i for all P � 0.
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Similarly, one can prove the following:

LEMMA B.1 If F is a Dirichlet set contained in a closed half-space H , then H is

a Dirichlet set.

As a consequence of this lemma we can state the Hahn-Banach theorem in the
context of Dirichlet sets as follows:

COROLLARY B.2 F is a convex Dirichlet set if and only if F D T
˛ H˛ over all

Dirichlet supporting half-spaces H˛ for F .

The Dirichlet dual statement is also true.

LEMMA B.3 If F is a convex Dirichlet set, then zF D S
˛

zH˛ over all Dirichlet

supporting half-spaces H˛ for F .

PROOF: If F � H˛, then zH˛ � zF , so we only need to show that zF � S
˛

zH˛.
Suppose B 2 zF , i.e., �B … IntF . We claim there exists H˛ with �B … IntH˛,
i.e., with B 2 zH˛. There are two cases. If �B … F , we can pick H˛ with
�B … H˛. If �B 2 @F , then we can pick a supporting hyperplane H˛ for F at
�B by the Hahn-Banach theorem, so that �B 2 @H˛. �

COROLLARY B.4 A function u is of type F if and only if u is of type H˛ on X for

all Dirichlet supporting half-spaces H˛ for F .

PROOF: Since F � H˛, type F implies type H˛. Conversely, if u is type H˛

for all supporting half-spaces H˛, then u C B is subaffine for all B 2 zH˛ and
hence by Lemma B.3 and Lemma 4.3(i), u is of type F . �

PROPOSITION B.5 Suppose H is a half-space through the origin, defined by

H D fB W hA;Bi � 0g with A positive definite:

Then the following are equivalent:

(i) u is of type H ,

(ii) u is sub-�A-harmonic, and

(iii) u is L1
loc and �Au � 0 .or u � �1/

where �Au D P
aijuij .

PROOF: The equivalence of (ii) and (iii) is standard. Note that H is self-dual,
i.e., zH D H . Suppose u is of type H . Given a �A-harmonic function h with
u � h on @B , we have u � h on B because �h is of type zH , which implies that
u � h is subaffine.

Conversely, suppose u is sub-�A-harmonic. Let v be a C 2-function of type
zH D H . We must show that u C v � a on @B implies u C v � a on B for any

affine function a and any ball B . Replace v by v � a and a by 0. Let h denote the
�A-harmonic function with the same boundary values as v on @B . Now uCh � 0

on @B implies u C h � 0 on B since u is sub-�A-harmonic, but v D h on @B
implies v � h on B since, as we have shown above, v is sub-�A-harmonic. �
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COROLLARY B.6 Suppose H is a Dirichlet half-space defined by (B.1) with A >

0. Pick B0 2 @H . Then u is of typeH if and only if u 2 L1
loc and�A.u�B0/ � 0I

i.e., u � B0 is �A-subharmonic.

LEMMA B.7 A convex Dirichlet set F cannot be defined using fewer of the vari-

ables in R
n if and only if each A 2 IntPC.F / is positive definite, where PC.F /

denotes the closure of the cone of directions defining the supporting half-spaces

for F .

PROOF: See [14, corollary C.4 in appendix C]. �

Combining Corollary B.4 and Lemma B.7, we have the following:

THEOREM B.8 Suppose F is a convex Dirichlet set that cannot be defined us-

ing fewer of the variables in R
n. For each supporting half-space H˛ � fB W

hA˛; Bi � cg, pick B˛
0 2 @H˛. Then u is of type F if and only if u � B˛

0 is

�A˛
-subharmonic for each A˛ .

Remark B.9. This theorem can be extended to the case where F can be defined
using fewer of the variables by applying Theorem A.4. Moreover, one can deduce
from this extension that for a Dirichlet set F

F is convex ) F.X/ is convex:
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