Restriction and Removable Singularities for Fully Nonlinear Partial Differential Equations

Image: A matrix

(a) (b) (c) (b)

Restriction and Removable Singularities for Fully Nonlinear Partial Differential Equations

Reese Harvey

• 3 > 4 3

To systematically take a potential theoretic approach to the study of nonlinear differential equations

To systematically take a potential theoretic approach to the study of nonlinear differential equations

In complex analysis and geometry plurisubharmonic functions have been very effective

To systematically take a potential theoretic approach to the study of nonlinear differential equations

In complex analysis and geometry plurisubharmonic functions have been very effective

Analogies can be developed in a surprisingly general context

To systematically take a potential theoretic approach to the study of nonlinear differential equations

In complex analysis and geometry plurisubharmonic functions have been very effective

Analogies can be developed in a surprisingly general context

They apply, for example, to calibrated and symplectic geometry

Consider $X^{\text{open}} \subset \mathbf{R}^n$.

Consider $X^{\text{open}} \subset \mathbf{R}^n$.

Classically, a fully nonlinear second-order equation is written

 $f(x, u(x), D_x u, D_x^2 u) = 0.$

Consider $X^{\text{open}} \subset \mathbf{R}^n$.

Classically, a fully nonlinear second-order equation is written

 $f(x, u(x), D_x u, D_x^2 u) = 0.$

where

$$f: X \times \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^n) \longrightarrow \mathbf{R}$$

Consider $X^{\text{open}} \subset \mathbf{R}^n$.

Classically, a fully nonlinear second-order equation is written

 $f(x, u(x), D_x u, D_x^2 u) = 0.$

where

$$f: X \times \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^n) \longrightarrow \mathbf{R}$$

Subsolutions:

$$f(x, u(x), D_x u, D_x^2 u) \geq 0$$

Consider $X^{\text{open}} \subset \mathbf{R}^n$.

Classically, a fully nonlinear second-order equation is written

 $f(x, u(x), D_x u, D_x^2 u) = 0.$

where

$$f: X \times \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^n) \longrightarrow \mathbf{R}^n$$

Subsolutions:

 $f(x, u(x), D_x u, D_x^2 u) \geq 0$

Supersolutions:

 $f(x, u(x), D_x u, D_x^2 u) \leq 0$

Consider $X^{\text{open}} \subset \mathbf{R}^n$.

Classically, a fully nonlinear second-order equation is written

 $f(x, u(x), D_x u, D_x^2 u) = 0.$

where

$$f: X \times \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^n) \longrightarrow \mathbf{R}^n$$

Subsolutions:

 $f(x,u(x),D_xu,D_x^2u)\ \geq\ 0$

Supersolutions:

 $f(x, u(x), D_x u, D_x^2 u) \leq 0$

イロト イヨト イヨト イヨト

We fix a closed subset

$$F \subset J^2(X) \equiv X \times \mathbf{R} \times \mathbf{R}^n \times \mathrm{Sym}^2(\mathbf{R}^n)$$

(4) (3) (4) (4) (4)

We fix a closed subset

$$F \subset J^2(X) \equiv X \times \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^n)$$

We fix a closed subset

$$F \subset J^2(X) \equiv X \times \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^n)$$

(P)
$$F_x + (0, 0, P) \subset F_x$$
 for all $P \ge 0$

We fix a closed subset

$$F \subset J^2(X) \equiv X \times \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^n)$$

$$(P) F_x + (0,0,P) \subset F_x for all P \ge 0$$

(N)
$$F_x + (r, 0, 0) \subset F_x$$
 for all $r \leq 0$

We fix a closed subset

$$F \subset J^2(X) \equiv X \times \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^n)$$

$$(P) F_x + (0,0,P) \subset F_x for all P \ge 0$$

(N)
$$F_x + (r, 0, 0) \subset F_x$$
 for all $r \leq 0$

(7)
$$F = \overline{\operatorname{Int} F}, \quad F_x = \overline{\operatorname{Int}_x F_x}, \quad \operatorname{Int}_x F_x = \operatorname{Int} F \cap F_x$$

We fix a closed subset

$$F \subset J^2(X) \equiv X \times \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^n)$$

with certain mild properties:

$$(P) F_x + (0,0,P) \subset F_x for all P \ge 0$$

(N)
$$F_x + (r, 0, 0) \subset F_x$$
 for all $r \leq 0$

(7)
$$F = \overline{\operatorname{Int} F}, \quad F_x = \overline{\operatorname{Int}_x F_x}, \quad \operatorname{Int}_x F_x = \operatorname{Int} F \cap F_x$$

F is call a subequation.

A Geometric Approach

Definition. A function $u \in C^2(X)$ is *F*-subharmonic (a subsolution) if

$$J_x^2 u \equiv (x, u(x), D_x u, D_x^2 u) \in F \qquad \forall x \in X.$$

A Geometric Approach

Definition. A function $u \in C^2(X)$ is *F*-subharmonic (a subsolution) if

$$J_x^2 u \equiv (x, u(x), D_x u, D_x^2 u) \in F \qquad \forall x \in X.$$

It is *F*-harmonic (a solution) if

$$J_x^2 u \in \partial F \quad \forall x \in X.$$

A Geometric Approach

Definition. A function $u \in C^2(X)$ is *F*-subharmonic (a subsolution) if

$$J_x^2 u \equiv (x, u(x), D_x u, D_x^2 u) \in F \qquad \forall x \in X.$$

It is *F*-harmonic (a solution) if

$$J_x^2 u \in \partial F \quad \forall x \in X.$$

We want to extend the notion of *F*-subharmonicity to upper semi-continuous functions.

(D) (A) (A) (A)

Viscosity Theory (Crandall, Ishii, Lions, Evans, et al.)

USC(X) $\equiv \{u : X \to [-\infty, \infty) : u \text{ is upper semicontinuous}\}$

Viscosity Theory (Crandall, Ishii, Lions, Evans, et al.) $USC(X) \equiv \{u : X \to [-\infty, \infty) : u \text{ is upper semicontinuous}\}$

Definition. Fix $u \in USC(X)$. A test function for u at a point $x \in X$ is a function φ , C^2 near x, such that

$$u \leq \varphi$$
 near x

$$u = \varphi$$
 at x

Viscosity Theory (Crandall, Ishii, Lions, Evans, et al.) $USC(X) \equiv \{u : X \rightarrow [-\infty, \infty) : u \text{ is upper semicontinuous}\}$

Definition. Fix $u \in USC(X)$. A test function for u at a point $x \in X$ is a function φ , C^2 near x, such that

 $u \leq \varphi$ near x

 $u = \varphi$ at x

Definition. A function $u \in USC(X)$ is *F*-subharmonic if for every $x \in X$ and every test function φ for *u* at *x*

$$J_x^2 \varphi \in F.$$

Viscosity Theory (Crandall, Ishii, Lions, Evans, et al.) $USC(X) \equiv \{u : X \rightarrow [-\infty, \infty) : u \text{ is upper semicontinuous}\}$

Definition. Fix $u \in USC(X)$. A test function for u at a point $x \in X$ is a function φ , C^2 near x, such that

 $u \leq \varphi$ near x

 $u = \varphi$ at x

Definition. A function $u \in USC(X)$ is *F*-subharmonic if for every $x \in X$ and every test function φ for *u* at *x*

$$J_x^2 \varphi \in F.$$

 $F(X) \equiv$ the set of these.

Blaine Lawson

イロト イヨト イヨト イヨト

• $u, v \in F(X) \Rightarrow \max\{u, v\} \in F(X)$

イロン イヨン イヨン イヨン

- $u, v \in F(X) \Rightarrow \max\{u, v\} \in F(X)$
- F(X) is closed under decreasing limits.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- $u, v \in F(X) \Rightarrow \max\{u, v\} \in F(X)$
- *F*(*X*) is closed under decreasing limits.
- *F*(*X*) is closed under uniform limits.

- $u, v \in F(X) \Rightarrow \max\{u, v\} \in F(X)$
- *F*(*X*) is closed under decreasing limits.
- F(X) is closed under uniform limits.
- If $\mathcal{F} \subset F(X)$ is locally uniformly bounded above, then $u^* \in F(X)$ where

$$u(x) \equiv \sup_{v\in\mathcal{F}} v(x)$$

- $u, v \in F(X) \Rightarrow \max\{u, v\} \in F(X)$
- *F*(*X*) is closed under decreasing limits.
- F(X) is closed under uniform limits.
- If $\mathcal{F} \subset F(X)$ is locally uniformly bounded above, then $u^* \in F(X)$ where

$$u(x) \equiv \sup_{v\in\mathcal{F}} v(x)$$

• If $u \in C^2(X)$, then

$$u \in F(X) \iff J_x^2 u \in F \quad \forall \ x \in X.$$

-

・ロト ・ 日 ・ ・ 日 ・ ・

The **bundle of 2-jets** on a manifold X is the vector bundle

 $J^2(X) \longrightarrow X$

The **bundle of 2-jets** on a manifold *X* is the vector bundle

$$J^2(X) \longrightarrow X$$

whose fibre at $x \in X$ is

$$J_x^2(X) \equiv C_x^\infty/C_{x,3}^\infty$$

where

• = • •

The **bundle of 2-jets** on a manifold *X* is the vector bundle

$$J^2(X) \longrightarrow X$$

whose fibre at $x \in X$ is

$$J_x^2(X) \equiv C_x^\infty/C_{x,3}^\infty$$

where

 C_x^{∞} is the germs of smooth functions at *x*, and $C_{x,3}^{\infty}$ are those germs which vanish to order 3 at *x*.

The **bundle of 2-jets** on a manifold *X* is the vector bundle

$$J^2(X) \longrightarrow X$$

whose fibre at $x \in X$ is

$$J_x^2(X) \equiv C_x^\infty/C_{x,3}^\infty$$

where

 C_x^{∞} is the germs of smooth functions at *x*, and $C_{x,3}^{\infty}$ are those germs which vanish to order 3 at *x*.

There is a short exact sequence

$$0 \rightarrow \operatorname{Sym}^2(T^*X) \rightarrow J^2(X) \rightarrow J^1(X) \rightarrow 0$$

The **bundle of 2-jets** on a manifold *X* is the vector bundle

$$J^2(X) \longrightarrow X$$

whose fibre at $x \in X$ is

$$J_x^2(X) \equiv C_x^\infty/C_{x,3}^\infty$$

where

 C_x^{∞} is the germs of smooth functions at *x*, and $C_{x,3}^{\infty}$ are those germs which vanish to order 3 at *x*.

There is a short exact sequence

$$0 \rightarrow \operatorname{Sym}^2(T^*X) \rightarrow J^2(X) \rightarrow J^1(X) \rightarrow 0$$

and $J^1(X) = \mathbf{R} \oplus T^*X$.

Definition. A subequation on *X* is a closed subset

 $F \subset J^2(X)$

which satisfies the three conditions (P), (N), and (T) above.

• • • • • • •

Image: Image:

Definition. A subequation on *X* is a closed subset

 $F \subset J^2(X)$

which satisfies the three conditions (P), (N), and (T) above.

The *F*-subharmonic functions F(X) are defined as before. They have the same remarkable properties.

Definition. A subequation on *X* is a closed subset

 $F \subset J^2(X)$

which satisfies the three conditions (P), (N), and (T) above.

The *F*-subharmonic functions F(X) are defined as before. They have the same remarkable properties.

The key to defining differential equations on X

Definition. A subequation on *X* is a closed subset

 $F \subset J^2(X)$

which satisfies the three conditions (P), (N), and (T) above.

The *F*-subharmonic functions F(X) are defined as before. They have the same remarkable properties.

The key to defining differential **equations** on *X* is to use subequations and **duality**.

Blaine Lawson

イロト イヨト イヨト イヨト

Define the **dual** of $F \subset J^2(X)$ by

$$\widetilde{F} \equiv \sim (-\mathrm{Int}F) = -(\sim \mathrm{Int}F)$$

(D) (A) (A) (A)

Define the **dual** of $F \subset J^2(X)$ by

$$\widetilde{F} \equiv \sim (-\mathrm{Int}F) = -(\sim \mathrm{Int}F)$$

• *F* is a subequation $\iff \widetilde{F}$ is a subequation.

Define the **dual** of $F \subset J^2(X)$ by

$$\widetilde{F} \equiv \sim (-\mathrm{Int}F) = -(\sim \mathrm{Int}F)$$

- *F* is a subequation $\iff \widetilde{F}$ is a subequation.
- In this case

$$\widetilde{\widetilde{F}} = F$$

Define the **dual** of $F \subset J^2(X)$ by

$$\widetilde{F} \equiv \sim (-\mathrm{Int}F) = -(\sim \mathrm{Int}F)$$

- *F* is a subequation $\iff \widetilde{F}$ is a subequation.
- In this case

$$\widetilde{\widetilde{F}} = F$$

• In our analysis

The roles of *F* and \tilde{F} are often interchangeable.

Define the **dual** of $F \subset J^2(X)$ by

$$\widetilde{F} \equiv \sim (-\mathrm{Int}F) = -(\sim \mathrm{Int}F)$$

- *F* is a subequation $\iff \widetilde{F}$ is a subequation.
- In this case

$$\widetilde{\widetilde{F}} = F$$

In our analysis

The roles of *F* and \tilde{F} are often interchangeable.

Note that

$$F \cap -\widetilde{F} = \partial F$$

Let $F \subset J^2(X)$ be a subequation.

(I) < ((i) <

Let $F \subset J^2(X)$ be a subequation.

Definition. A function *u* on *X* is *F*-harmonic if

$$u \in F(X)$$
 and $-u \in \widetilde{F}(X)$

Let $F \subset J^2(X)$ be a subequation.

Definition. A function *u* on *X* is *F*-harmonic if

$$u \in F(X)$$
 and $-u \in \widetilde{F}(X)$

These are our solutions.

• • • • • • •

Image: A matrix

Let $F \subset J^2(X)$ be a subequation.

Definition. A function *u* on *X* is *F*-harmonic if

$$u \in F(X)$$
 and $-u \in \widetilde{F}(X)$

These are our solutions.

 $u \in C^2(X)$ is *F*-harmonic $\iff J_x^2 u \in \partial F \quad \forall x \in X.$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Constant coefficient, pure second-order in \mathbf{R}^n :

• E > • E

Constant coefficient, pure second-order in \mathbf{R}^n : define $P \subset \text{Sym}^2(\mathbf{R}^n)$ by

$$P \equiv \{A : A \ge 0\}$$

Constant coefficient, pure second-order in \mathbf{R}^n : define $P \subset \text{Sym}^2(\mathbf{R}^n)$ by

$$P \equiv \{A : A \ge 0\}$$

 $\tilde{P} = \{A : A \text{ has at least one eigenvalue } \geq 0\}.$

Constant coefficient, pure second-order in \mathbf{R}^n : define $P \subset \text{Sym}^2(\mathbf{R}^n)$ by

$$P \equiv \{A : A \ge 0\}$$

 $\tilde{P} = \{A : A \text{ has at least one eigenvalue } \geq 0\}.$

Proposition. For an open set $X \subset \mathbf{R}^n$

P(X) = the convex functions on X.

Constant coefficient, pure second-order in \mathbf{R}^n : define $P \subset \text{Sym}^2(\mathbf{R}^n)$ by

$$P \equiv \{A : A \ge 0\}$$

 $\tilde{P} = \{A : A \text{ has at least one eigenvalue } \geq 0\}.$

Proposition. For an open set $X \subset \mathbf{R}^n$

P(X) = the convex functions on X.

 $\tilde{P}(X)$ = the subaffine functions on X.

Constant coefficient, pure second-order in \mathbf{R}^n : define $P \subset \text{Sym}^2(\mathbf{R}^n)$ by

$$P \equiv \{A : A \ge 0\}$$

 $\tilde{P} = \{A : A \text{ has at least one eigenvalue } \geq 0\}.$

Proposition. For an open set $X \subset \mathbf{R}^n$

P(X) = the convex functions on X.

 $\tilde{P}(X)$ = the subaffine functions on X.

The homogeneous real Monge-Ampère Equation

$$D^2 u \ge 0$$
 and $\det(D^2 u) = 0$.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

For $A \in \text{Sym}^2(\mathbb{R}^n)$ let

$$\lambda_1(\mathbf{A}) \leq \lambda_2(\mathbf{A}) \leq \cdots \leq \lambda_n(\mathbf{A})$$

be the ordered eigenvalues of A.

For $A \in \text{Sym}^2(\mathbb{R}^n)$ let

$$\lambda_1(\mathbf{A}) \leq \lambda_2(\mathbf{A}) \leq \cdots \leq \lambda_n(\mathbf{A})$$

be the ordered eigenvalues of A.

 $P_k \equiv \{\lambda_k(A) \ge 0\}$

For $A \in \text{Sym}^2(\mathbb{R}^n)$ let

$$\lambda_1(\mathbf{A}) \leq \lambda_2(\mathbf{A}) \leq \cdots \leq \lambda_n(\mathbf{A})$$

be the ordered eigenvalues of A.

$$P_k \equiv \{\lambda_k(A) \ge 0\}$$

$$\widetilde{P}_k = P_{n-k+1}$$

Examples: Other Elementary Symmetric Functions

$$S_k \equiv \{A : \sigma_1(A) \ge 0, ..., \sigma_k(A) \ge 0\}$$

$$\sigma_k(A) \equiv \sigma_k(\lambda_1(A), ..., \lambda_n(A))$$

Examples: Other Elementary Symmetric Functions

$$S_k \equiv \{A : \sigma_1(A) \ge 0, ..., \sigma_k(A) \ge 0\}$$

$$\sigma_k(A) \equiv \sigma_k(\lambda_1(A), ..., \lambda_n(A))$$

This is the principal branch of the equation

$$\sigma_k(D^2 u) = 0.$$

Blaine Lawson

October 27, 2013 15 / 45

Examples: Other Elementary Symmetric Functions

$$S_k \equiv \{A : \sigma_1(A) \ge 0, ..., \sigma_k(A) \ge 0\}$$

$$\sigma_k(A) \equiv \sigma_k(\lambda_1(A), ..., \lambda_n(A))$$

This is the principal branch of the equation

$$\sigma_k(D^2 u) = 0.$$

The equation has (k - 1) other branches.

For each real number $p \in [1, n]$,

• • • • • • • • • • • • • •

For each real number $p \in [1, n]$, define

$$\mathcal{P}_{\boldsymbol{\rho}} \equiv \left\{ \boldsymbol{A} : \lambda_1(\boldsymbol{A}) + \dots + \lambda_{[\boldsymbol{\rho}]}(\boldsymbol{A}) + (\boldsymbol{\rho} - [\boldsymbol{\rho}])\lambda_{[\boldsymbol{\rho}]+1}(\boldsymbol{A}) \geq \boldsymbol{0} \right\}$$

where $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ are the ordered eigenvalues of A.

For each real number $p \in [1, n]$, define

$$\mathcal{P}_{\rho} \equiv \left\{ \boldsymbol{A} : \lambda_{1}(\boldsymbol{A}) + \dots + \lambda_{[\rho]}(\boldsymbol{A}) + (\boldsymbol{\rho} - [\boldsymbol{\rho}])\lambda_{[\rho]+1}(\boldsymbol{A}) \geq \boldsymbol{0} \right\}$$

where $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ are the ordered eigenvalues of A.

The \mathcal{P}_p -subharmonics are *p*-convex functions.

For each real number $p \in [1, n]$, define

$$\mathcal{P}_{\rho} \equiv \left\{ \boldsymbol{A} : \lambda_{1}(\boldsymbol{A}) + \dots + \lambda_{[\rho]}(\boldsymbol{A}) + (\boldsymbol{\rho} - [\boldsymbol{\rho}])\lambda_{[\rho]+1}(\boldsymbol{A}) \geq \boldsymbol{0} \right\}$$

where $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ are the ordered eigenvalues of A.

The \mathcal{P}_{p} -subharmonics are *p*-convex functions.

Theorem. For *p* an integer:

For each real number $p \in [1, n]$, define

$$\mathcal{P}_{\rho} \equiv \left\{ \boldsymbol{A} : \lambda_{1}(\boldsymbol{A}) + \dots + \lambda_{[\rho]}(\boldsymbol{A}) + (\boldsymbol{\rho} - [\boldsymbol{\rho}])\lambda_{[\rho]+1}(\boldsymbol{A}) \geq 0 \right\}$$

where $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ are the ordered eigenvalues of A.

The \mathcal{P}_p -subharmonics are *p*-convex functions.

Theorem. For *p* an integer:

The restriction of a \mathcal{P}_p -subharmonic to any minimal *p*-dimensional submanifold *Y* is subharmonic in the induced metric on *Y*.

For each real number $p \in [1, n]$, define

$$\mathcal{P}_{\rho} \equiv \left\{ \boldsymbol{A} : \lambda_{1}(\boldsymbol{A}) + \dots + \lambda_{[\rho]}(\boldsymbol{A}) + (\boldsymbol{\rho} - [\boldsymbol{\rho}])\lambda_{[\rho]+1}(\boldsymbol{A}) \geq 0 \right\}$$

where $\lambda_1(A) \leq \cdots \leq \lambda_n(A)$ are the ordered eigenvalues of A.

The \mathcal{P}_{p} -subharmonics are *p*-convex functions.

Theorem. For *p* an integer:

The restriction of a \mathcal{P}_p -subharmonic to any minimal *p*-dimensional submanifold *Y* is subharmonic in the induced metric on *Y*.

 \mathcal{P}_{p} -harmonics are solutions of the polynomial equation

$$MA_{\rho}(A) = \prod_{i_1 < \cdots < i_{\rho}} (\lambda_{i_1}(A) + \cdots + \lambda_{i_{\rho}}(A)) = 0.$$

• □ ▶ • □ ▶ • □ ▶ • □ ▶

The Riesz kernel

$$K_{p}(x) \equiv \frac{-1}{(p-2)|x|^{p-2}}$$
 if $p \neq 2$

イロト イヨト イヨト イヨト

Examples: p-Convexity

The Riesz kernel

$$\mathcal{K}_p(x) \equiv rac{-1}{(p-2)|x|^{p-2}}$$
 if $p \neq 2$ and $\mathcal{K}_2(x) \equiv \log |x|$

イロト イヨト イヨト イヨト

Examples: p-Convexity

The Riesz kernel

 $\mathcal{K}_p(x) \equiv rac{-1}{(p-2)|x|^{p-2}}$ if $p \neq 2$ and $\mathcal{K}_2(x) \equiv \log |x|$

is \mathcal{P}_p -harmonic in $\mathbf{R}^n - \{0\}$ and \mathcal{P}_p -subharmonic across 0.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

$$\mathbf{C}^n = (\mathbf{R}^{2n}, J).$$

$$\mathbf{C}^n = (\mathbf{R}^{2n}, J).$$

 $\operatorname{Sym}^2_{\mathbf{C}}(\mathbf{C}^n) \subset \operatorname{Sym}^2(\mathbf{R}^{2n})$

ъ

<ロト <回ト < 回ト

$$\mathbf{C}^n = (\mathbf{R}^{2n}, J).$$

 $\operatorname{Sym}^2_{\mathbf{C}}(\mathbf{C}^n) \subset \operatorname{Sym}^2(\mathbf{R}^{2n})$
 $A_{\mathbf{C}} \equiv \frac{1}{2}(A - JAJ)$

イロト イヨト イヨト イヨト

$$\mathbf{C}^{n} = (\mathbf{R}^{2n}, J).$$

$$\operatorname{Sym}^{2}_{\mathbf{C}}(\mathbf{C}^{n}) \subset \operatorname{Sym}^{2}(\mathbf{R}^{2n})$$

$$A_{\mathbf{C}} \equiv \frac{1}{2}(A - JAJ)$$

Ac has complex eigenspaces and ordered eigenvalues

$$\lambda_1^{\mathbf{C}}(\mathbf{A}) \leq \cdots \leq \lambda_n^{\mathbf{C}}(\mathbf{A})$$

< A

$$\mathbf{C}^{n} = (\mathbf{R}^{2n}, J).$$

$$\operatorname{Sym}^{2}_{\mathbf{C}}(\mathbf{C}^{n}) \subset \operatorname{Sym}^{2}(\mathbf{R}^{2n})$$

$$A_{\mathbf{C}} \equiv \frac{1}{2}(A - JAJ)$$

Ac has complex eigenspaces and ordered eigenvalues

$$\lambda_1^{\mathbf{C}}(\mathbf{A}) \leq \cdots \leq \lambda_n^{\mathbf{C}}(\mathbf{A})$$

All the O(n)-invariant subequations given in terms of the $\lambda_k(A)$

$$\mathbf{C}^{n} = (\mathbf{R}^{2n}, J).$$

$$\operatorname{Sym}^{2}_{\mathbf{C}}(\mathbf{C}^{n}) \subset \operatorname{Sym}^{2}(\mathbf{R}^{2n})$$

$$A_{\mathbf{C}} \equiv \frac{1}{2}(A - JAJ)$$

Ac has complex eigenspaces and ordered eigenvalues

$$\lambda_1^{\mathbf{C}}(\mathbf{A}) \leq \cdots \leq \lambda_n^{\mathbf{C}}(\mathbf{A})$$

All the O(n)-invariant subequations given in terms of the $\lambda_k(A)$ have U(n)-invariant analogues given by the same conditions on the $\lambda_k^{\mathbf{C}}(A)$

$$\mathbf{C}^{n} = (\mathbf{R}^{2n}, J).$$

$$\operatorname{Sym}^{2}_{\mathbf{C}}(\mathbf{C}^{n}) \subset \operatorname{Sym}^{2}(\mathbf{R}^{2n})$$

$$A_{\mathbf{C}} \equiv \frac{1}{2}(A - JAJ)$$

Ac has complex eigenspaces and ordered eigenvalues

$$\lambda_1^{\mathbf{C}}(\mathbf{A}) \leq \cdots \leq \lambda_n^{\mathbf{C}}(\mathbf{A})$$

All the O(n)-invariant subequations given in terms of the $\lambda_k(A)$ have U(n)-invariant analogues given by the same conditions on the $\lambda_k^{\mathbf{C}}(A)$

Example: The homogeneous complex Monge-Ampère equation

$$P^{\mathbf{C}} = \{A : A_{\mathbf{C}} \geq 0\},\$$

and its branches

$$P_k^{\mathbf{C}} = \{ \boldsymbol{A} : \lambda_k^{\mathbf{C}}(\boldsymbol{A}) \geq \mathbf{0} \},$$

$$\mathbf{C}^{n} = (\mathbf{R}^{2n}, J).$$

$$\operatorname{Sym}^{2}_{\mathbf{C}}(\mathbf{C}^{n}) \subset \operatorname{Sym}^{2}(\mathbf{R}^{2n})$$

$$A_{\mathbf{C}} \equiv \frac{1}{2}(A - JAJ)$$

Ac has complex eigenspaces and ordered eigenvalues

$$\lambda_1^{\mathbf{C}}(\mathbf{A}) \leq \cdots \leq \lambda_n^{\mathbf{C}}(\mathbf{A})$$

All the O(n)-invariant subequations given in terms of the $\lambda_k(A)$ have U(n)-invariant analogues given by the same conditions on the $\lambda_k^{\mathbf{C}}(A)$

Example: The homogeneous complex Monge-Ampère equation

$$P^{\mathbf{C}} = \{A : A_{\mathbf{C}} \geq 0\},\$$

and its branches

$$P_k^{\mathbf{C}} = \{ \boldsymbol{A} : \lambda_k^{\mathbf{C}}(\boldsymbol{A}) \geq \mathbf{0} \},$$

(Note: $\mathcal{P}^{\mathbf{C}}(X)$ = the plurisubharmonic functions on X)

Examples: Quaternionic Analogues

$$\mathbf{H}^{n} = (\mathbf{R}^{4n}, I, J, K).$$
$$A_{\mathbf{H}} \equiv \frac{1}{4}(A - IAI - JAJ - KAK)$$

Ac has quaternionic eigenspaces and ordered eigenvalues

$$\lambda_1^{\mathbf{H}}(\mathbf{A}) \leq \cdots \leq \lambda_n^{\mathbf{H}}(\mathbf{A})$$

All the O(n)-invariant subequations given in terms of the $\lambda_k(A)$ have Sp(n)-invariant analogues given by same conditions on the $\lambda_k^H(A)$

Example: The quaternionic Monge-Ampère equation (Alesker, Verbitsky)

$$P^{\mathsf{H}} = \{A : A_{\mathsf{H}} \geq 0\},\$$

and its branches

$$P_k^{\mathsf{H}} = \{ \mathsf{A} : \lambda_k^{\mathsf{H}}(\mathsf{A}) \ge \mathsf{0} \},\$$

Fix a compact set

 $\mathbf{G} \subset \mathrm{G}(\boldsymbol{p}, \mathbf{R}^n)$ (Grassmannian)

.

Fix a compact set

 $\mathbf{G} \subset \mathrm{G}(\boldsymbol{p}, \mathbf{R}^n)$ (Grassmannian)

and define

$$F_{\mathbf{G}} \equiv \left\{ A : \operatorname{tr} \left(A \right|_{W} \right) \geq 0 \text{ for all } W \in \mathbf{G} \right\}$$

.

Fix a compact set

 $\mathbf{G} \subset \mathrm{G}(\boldsymbol{p}, \mathbf{R}^n)$ (Grassmannian)

and define

$$F_{\mathbf{G}} \equiv \left\{ A : \operatorname{tr} \left(A \big|_{W} \right) \geq 0 \text{ for all } W \in \mathbf{G} \right\}$$

Examples:

$$\mathbf{G} = G(1, \mathbf{R}^n) \qquad \Rightarrow \qquad F_{\mathbf{G}} = \mathcal{P}.$$

Fix a compact set

 $\mathbf{G} \subset \mathrm{G}(\boldsymbol{p}, \mathbf{R}^n)$ (Grassmannian)

and define

$$F_{\mathbf{G}} \equiv \left\{ A : \operatorname{tr} \left(A \big|_{W} \right) \geq 0 \text{ for all } W \in \mathbf{G} \right\}$$

Examples:

$$\mathbf{G} = G(1, \mathbf{R}^n) \qquad \Rightarrow \qquad F_{\mathbf{G}} = \mathcal{P}.$$
$$\mathbf{G} = G(\rho, \mathbf{R}^n) \qquad \Rightarrow \qquad F_{\mathbf{G}} = \mathcal{P}_{\rho}.$$

Fix a compact set

 $\mathbf{G} \subset \mathrm{G}(\boldsymbol{p}, \mathbf{R}^n)$ (Grassmannian)

and define

$$F_{\mathbf{G}} \equiv \left\{ A : \operatorname{tr} \left(A \big|_{W} \right) \geq 0 \text{ for all } W \in \mathbf{G} \right\}$$

Examples:

$$\begin{aligned} \mathbf{G} &= G(1, \mathbf{R}^n) &\Rightarrow & F_{\mathbf{G}} &= \mathcal{P}. \\ \mathbf{G} &= G(p, \mathbf{R}^n) &\Rightarrow & F_{\mathbf{G}} &= \mathcal{P}_p. \\ \mathbf{G} &= G^{\mathbf{C}}(1, \mathbf{C}^n) &\Rightarrow & F_{\mathbf{G}} &= \mathcal{P}^{\mathbf{C}}. \end{aligned}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Fix a compact set

 $\mathbf{G} \subset \mathrm{G}(\boldsymbol{p}, \mathbf{R}^n)$ (Grassmannian)

and define

$$F_{\mathbf{G}} \equiv \left\{ A : \operatorname{tr} \left(A \big|_{W} \right) \geq 0 \text{ for all } W \in \mathbf{G} \right\}$$

Examples:

$$\begin{aligned} \mathbf{G} &= G(\mathbf{1}, \mathbf{R}^n) &\Rightarrow & F_{\mathbf{G}} &= \mathcal{P}. \\ \mathbf{G} &= G(\rho, \mathbf{R}^n) &\Rightarrow & F_{\mathbf{G}} &= \mathcal{P}_{\rho}. \\ \mathbf{G} &= G^{\mathbf{C}}(\mathbf{1}, \mathbf{C}^n) &\Rightarrow & F_{\mathbf{G}} &= \mathcal{P}^{\mathbf{C}}. \end{aligned}$$

 $\mathbf{G} = LAG$ = the lagrangian *n* planes in \mathbf{C}^n .

.

Fix a compact set

 $\mathbf{G} \subset \mathrm{G}(\boldsymbol{p}, \mathbf{R}^n)$ (Grassmannian)

and define

$$F_{\mathbf{G}} \equiv \left\{ A : \operatorname{tr} \left(A \big|_{W} \right) \geq 0 \text{ for all } W \in \mathbf{G} \right\}$$

Examples:

$$\begin{split} \mathbf{G} &= G(1, \mathbf{R}^n) \qquad \Rightarrow \qquad F_{\mathbf{G}} = \mathcal{P}. \\ \mathbf{G} &= G(p, \mathbf{R}^n) \qquad \Rightarrow \qquad F_{\mathbf{G}} = \mathcal{P}_p. \\ \mathbf{G} &= G^{\mathbf{C}}(1, \mathbf{C}^n) \qquad \Rightarrow \qquad F_{\mathbf{G}} = \mathcal{P}^{\mathbf{C}}. \end{split}$$

 $\mathbf{G} = LAG$ = the lagrangian *n* planes in \mathbf{C}^n .

 $\mathbf{G} = \mathbf{G}(\phi)$ = the ϕ -planes associated to a calibration ϕ

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Image: A matrix

When X is **Riemannian**, there is a canonical bundle splitting

 $J^{2}(X) = R \oplus T^{*}X \oplus Sym^{2}(T^{*}X)$

When X is **Riemannian**, there is a canonical bundle splitting

$$J^{2}(X) = R \oplus T^{*}X \oplus Sym^{2}(T^{*}X)$$

given by

$$J_x^2 u = (u(x), (du)_x, \operatorname{Hess}_x u)$$

When X is **Riemannian**, there is a canonical bundle splitting

$$\mathbf{J}^{\mathbf{2}}(\mathbf{X}) = \mathbf{R} \oplus \mathbf{T}^{*}\mathbf{X} \oplus \operatorname{Sym}^{\mathbf{2}}(\mathbf{T}^{*}\mathbf{X})$$

given by

$$J_x^2 u = (u(x), (du)_x, \operatorname{Hess}_x u)$$

where $\text{Hess } u \in \Gamma(\text{Sym}^2(T^*X))$ is the **Riemannian hessian** defined by

$$(\text{Hess } u)(V, W) = VWu - (\nabla_V W)u$$

for vector fields V, W.

• = • •

$$\mathbf{F} \subset \mathbf{J} \equiv \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^n)$$

イロト イポト イヨト イヨ

$$\mathbf{F} \subset \mathbf{J} \equiv \mathbf{R} imes \mathbf{R}^n imes \operatorname{Sym}^2(\mathbf{R}^n)$$

• is closed

$$\mathbf{F} \subset \mathbf{J} \equiv \mathbf{R} imes \mathbf{R}^n imes \operatorname{Sym}^2(\mathbf{R}^n)$$

- is closed
- O(n)-invariant

イロト イヨト イヨト

$$\mathbf{F} \subset \mathbf{J} \equiv \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^n)$$

- is closed
- O(n)-invariant
- and satisfies (P), (N) and (T)

A B F A B F

4 冊

$$\mathbf{F} \subset \mathbf{J} \equiv \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^n)$$

- is closed
- O(n)-invariant
- and satisfies (P), (N) and (T)

Then F canonically determines a subequation

$$F_X \subset J^2(X)$$

on any riemannian manifold X.

$$\mathbf{F} \subset \mathbf{J} \equiv \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^n)$$

- is closed
- O(n)-invariant
- and satisfies (P), (N) and (T)

Then F canonically determines a subequation

$$F_X \subset J^2(X)$$

on any riemannian manifold X.

Example. F

 $\textbf{F} ~\equiv~ \textbf{R} \times \textbf{R}^n \times \{ {\rm tr} \textbf{A} \geq \textbf{0} \} \text{ gives}$

$$tr(Hess u) = \Delta u \geq 0.$$

Universal Hermitian subequations

Let $C^n = (R^{2n}, J)$. If

$$\mathbf{F} \ \subset \ \mathbf{J} \ \equiv \ \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^{2n})$$

- is closed
- **U**(*n*)-invariant
- and satisfies (P), (N) and (T)

Then F canonically determines a subequation

$$F_X \subset J^2(X)$$

on any **almost complex**, hermitian manifold X.

Example. $\mathbf{F} \equiv \mathbf{R} \times \mathbf{R}^n \times \{A_{\mathbf{C}} \ge 0\}$ gives the homogeneous **complex Monge-Ampère** subequation.

Blaine Lawson

Manifolds with Topological Structure Group G

Let

 $G \subset \mathrm{O}(n)$

be a closed subgroup. If

$$\mathbf{F} \subset \mathbf{J} \equiv \mathbf{R} \times \mathbf{R}^n \times \operatorname{Sym}^2(\mathbf{R}^{2n})$$

• is closed

- G-invariant
- and satisfies (P), (N) and (T)

Then **F** canonically determines a subequation F_X on any riemannian manifold with topological structure group *G*.

Blaine Lawson

イロト イヨト イヨト イヨト

An **automorphism** of the 2-jet bundle is an intrinsically defined bundle isomorphism

 $\Phi: J^2(X) \longrightarrow J^2(X)$

・ロット (雪) (き) (き)

An **automorphism** of the 2-jet bundle is an intrinsically defined bundle isomorphism

$$\Phi: J^2(X) \longrightarrow J^2(X)$$

with the property that for any splitting

$$J^2(X) = \mathbf{R} \oplus T^*X \oplus \operatorname{Sym}^2(T^*X)$$

of the short exact sequence,

An **automorphism** of the 2-jet bundle is an intrinsically defined bundle isomorphism

$$\Phi: J^2(X) \longrightarrow J^2(X)$$

with the property that for any splitting

$$J^2(X) = \mathbf{R} \oplus T^*X \oplus \operatorname{Sym}^2(T^*X)$$

of the short exact sequence, Φ has the form

$$\Phi(r, p, A) = (r, gp, hAh^t + L(p))$$

An **automorphism** of the 2-jet bundle is an intrinsically defined bundle isomorphism

1

$$\Phi: J^2(X) \longrightarrow J^2(X)$$

with the property that for any splitting

$$J^2(X) = \mathbf{R} \oplus T^*X \oplus \operatorname{Sym}^2(T^*X)$$

of the short exact sequence, Φ has the form

$$\Phi(r, p, A) = (r, gp, hAh^t + L(p))$$

where

$$g,h:T^*X\to T^*X$$

are bundle isomorphisms

Automorphisms

An **automorphism** of the 2-jet bundle is an intrinsically defined bundle isomorphism

$$\Phi: J^2(X) \longrightarrow J^2(X)$$

with the property that for any splitting

$$J^2(X) = \mathbf{R} \oplus T^*X \oplus \operatorname{Sym}^2(T^*X)$$

of the short exact sequence, Φ has the form

$$\Phi(r, p, A) = (r, gp, hAh^t + L(p))$$

where

$$g,h:T^*X \to T^*X$$

are bundle isomorphisms and

$$L: T^*X \rightarrow \operatorname{Sym}^2(T^*X)$$

is a smooth bundle map.

Affine Automorphisms

Blaine Lawson

・ロト ・回 ト ・ ヨト ・ ヨ

Affine Automorphisms

An affine automorphism of the 2-jet bundle is a bundle isomorphism

$$\Psi: J^2(X) \longrightarrow J^2(X)$$

of the form

$$\Psi = \Phi + J$$

Affine Automorphisms

An affine automorphism of the 2-jet bundle is a bundle isomorphism

$$\Psi: J^2(X) \longrightarrow J^2(X)$$

of the form

$$\Psi = \Phi + J$$

where Φ is an automorphism and *J* is a section of $J^2(X)$.

-

(日)

Definition. Two subequations

$$F_1, F_2 \subset J^2(X)$$

are affinely jet equivalent

Definition. Two subequations

$$F_1, F_2 \subset J^2(X)$$

are affinely jet equivalent if there exists an affine automorphism

$$\Psi: J^2(X) \longrightarrow J^2(X)$$

such that

$$\Psi(F_1) = F_2.$$

• Jet equivalence does **not** send $F_1(X)$ to $F_2(X)$.

• • • • • • • • • • • • • •

- Jet equivalence does **not** send $F_1(X)$ to $F_2(X)$.
- The universal equations above are all locally jet equivalent to constant coefficient equations in local coordinates.

- Jet equivalence does **not** send $F_1(X)$ to $F_2(X)$.
- The universal equations above are all locally jet equivalent to constant coefficient equations in local coordinates.
- Affine jet equivalence converts homogeneous equations
 to inhomogeneous equations,

- Jet equivalence does **not** send $F_1(X)$ to $F_2(X)$.
- The universal equations above are all locally jet equivalent to constant coefficient equations in local coordinates.
- Affine jet equivalence converts homogeneous equations
 to inhomogeneous equations,

e.g.,

$$\det_{\mathbf{C}}(\operatorname{Hess}_{\mathbf{C}} u) = e^{u}$$
 with $\operatorname{Hess}_{\mathbf{C}} u \geq 0$.

- Jet equivalence does **not** send $F_1(X)$ to $F_2(X)$.
- The universal equations above are all locally jet equivalent to constant coefficient equations in local coordinates.
- Affine jet equivalence converts homogeneous equations
 to inhomogeneous equations,

e.g.,

$$\det_{\mathbf{C}}(\operatorname{Hess}_{\mathbf{C}} u) = e^{u}$$
 with $\operatorname{Hess}_{\mathbf{C}} u \geq 0$.

$$\lambda_k(\text{Hess}u) = f(x)$$

(D) (A) (A) (A)

 $F \subset J^2(X)$ a subequation on a manifold X.

 $F \subset J^2(X)$ a subequation on a manifold X.

Definition. A subset $M \subset J^2(X)$ is a **monotonicity cone** for *F*

 $F \subset J^2(X)$ a subequation on a manifold X.

Definition. A subset $M \subset J^2(X)$ is a monotonicity cone for F if $\forall x \in X$

(i) M_x is a convex cone with vertex at 0, and

 $F \subset J^2(X)$ a subequation on a manifold X.

Definition. A subset $M \subset J^2(X)$ is a monotonicity cone for F if $\forall x \in X$

(i) M_x is a convex cone with vertex at 0, and

(ii)
$$F_x + M_x \subset F_x$$

 $F \subset J^2(X)$ a subequation on a manifold X.

Definition. A subset $M \subset J^2(X)$ is a monotonicity cone for F if $\forall x \in X$

(i) M_x is a convex cone with vertex at 0, and

(ii)
$$F_x + M_x \subset F_x$$

 $F \subset J^2(X)$ a subequation on a manifold X.

Definition. A subset $M \subset J^2(X)$ is a monotonicity cone for F if $\forall x \in X$

(i) M_x is a convex cone with vertex at 0, and

(ii)
$$F_x + M_x \subset F_x$$

Example 1. In \mathbf{R}^n , $\mathcal{P} \equiv \{A \ge 0\}$ is a monotonicity cone for every pure second-order subequation.

 $F \subset J^2(X)$ a subequation on a manifold X.

Definition. A subset $M \subset J^2(X)$ is a monotonicity cone for F if $\forall x \in X$

(i) M_x is a convex cone with vertex at 0, and

(ii)
$$F_x + M_x \subset F_x$$

Example 1. In \mathbf{R}^n , $\mathcal{P} \equiv \{A \ge 0\}$ is a monotonicity cone for every pure second-order subequation.

Example 2. In \mathbf{C}^n , $\mathcal{P}^{\mathbf{C}} \equiv \{A_{\mathbf{C}} \ge 0\}$ is a monotonicity cone for every pure second-order hermitian subequation.

Blaine Lawson

Let $F \subset J^2(X)$ be a subequation with monotonicity cone *M*.

Let $F \subset J^2(X)$ be a subequation with monotonicity cone *M*.

THEOREM. Suppose *F* is locally affinely jet-equivalent to a constant coefficient subequation.

• • • • • • •

Let $F \subset J^2(X)$ be a subequation with monotonicity cone *M*.

THEOREM. Suppose F is locally affinely jet-equivalent to a constant coefficient subequation. Suppose also that X supports a strictly M-harmonic function.

Let $F \subset J^2(X)$ be a subequation with monotonicity cone *M*.

THEOREM. Suppose F is locally affinely jet-equivalent to a constant coefficient subequation. Suppose also that X supports a strictly M-harmonic function.

Then for any domain $\Omega \subset X$ whose boundary is both F and \widetilde{F} strictly convex,

Let $F \subset J^2(X)$ be a subequation with monotonicity cone *M*.

THEOREM. Suppose F is locally affinely jet-equivalent to a constant coefficient subequation. Suppose also that X supports a strictly M-harmonic function.

Then for any domain $\Omega \subset X$ whose boundary is both F and \tilde{F} strictly convex, the Dirichlet Problem for F-harmonic functions is **uniquely solvable** for all continuous boundary functions $\varphi \in C(\partial \Omega)$.

(D) (A) (A) (A)

Let $F \subset J^2(X)$ be a subequation with monotonicity cone M.

(D) (A) (A) (A)

Let $F \subset J^2(X)$ be a subequation with monotonicity cone *M*.

Definition. A subset $E \subset X$ is *M*-polar if $E = \{\psi = -\infty\}$ for an *M*-subharmonic function which is smooth on X - E.

Let $F \subset J^2(X)$ be a subequation with monotonicity cone *M*.

Definition. A subset $E \subset X$ is *M*-polar if $E = \{\psi = -\infty\}$ for an *M*-subharmonic function which is smooth on X - E.

THEOREM A. Suppose $E \subset X$ is a closed subset which is locally *M*-polar.

Let $F \subset J^2(X)$ be a subequation with monotonicity cone *M*.

Definition. A subset $E \subset X$ is *M*-polar if $E = \{\psi = -\infty\}$ for an *M*-subharmonic function which is smooth on X - E.

THEOREM A. Suppose $E \subset X$ is a closed subset which is locally *M*-polar. Then *E* is removable for *F*-subharmonic functions which are locally bounded above across *E*.

Let $F \subset J^2(X)$ be a subequation with monotonicity cone *M*.

Definition. A subset $E \subset X$ is *M*-polar if $E = \{\psi = -\infty\}$ for an *M*-subharmonic function which is smooth on X - E.

THEOREM A. Suppose $E \subset X$ is a closed subset which is locally *M*-polar. Then *E* is removable for *F*-subharmonic functions which are locally bounded above across *E*.

That is, if $u \in F(X - E)$ and locally bounded above across *E*, then its canonical upper semi-continuous extension is *F*-subharmonic on *X*.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let $F \subset J^2(X)$ be a subequation with monotonicity cone *M*.

Definition. A subset $E \subset X$ is *M*-polar if $E = \{\psi = -\infty\}$ for an *M*-subharmonic function which is smooth on X - E.

THEOREM A. Suppose $E \subset X$ is a closed subset which is locally *M*-polar. Then *E* is removable for *F*-subharmonic functions which are locally bounded above across *E*.

That is, if $u \in F(X - E)$ and locally bounded above across *E*, then its canonical upper semi-continuous extension is *F*-subharmonic on *X*.

THEOREM B. Suppose *E* is a closed set with no interior, which is locally *M*-polar.

Let $F \subset J^2(X)$ be a subequation with monotonicity cone *M*.

Definition. A subset $E \subset X$ is *M*-polar if $E = \{\psi = -\infty\}$ for an *M*-subharmonic function which is smooth on X - E.

THEOREM A. Suppose $E \subset X$ is a closed subset which is locally *M*-polar. Then *E* is removable for *F*-subharmonic functions which are locally bounded above across *E*.

That is, if $u \in F(X - E)$ and locally bounded above across *E*, then its canonical upper semi-continuous extension is *F*-subharmonic on *X*.

THEOREM B. Suppose *E* is a closed set with no interior, which is locally *M*-polar. Then for $u \in C(X)$,

u is *F*-harmonic on $X - E \Rightarrow u$ is *F*-harmonic on *X*.

Removable Singularities – Discussion

In particular,

M-polar sets are removable for *M*-subharmonics and harmonics.

Removable Singularities – Discussion

In particular,

M-polar sets are removable for *M*-subharmonics and harmonics.

This is *not* interesting since *M* is convex.

Removable Singularities – Discussion

In particular,

M-polar sets are removable for *M*-subharmonics and harmonics.

This is *not* interesting since *M* is convex.

However,

M-polar sets are also

removable for \widetilde{M} -subharmonics and harmonics.

Removable Singularities – Discussion

In particular,

M-polar sets are removable for *M*-subharmonics and harmonics.

This is *not* interesting since *M* is convex.

However,

M-polar sets are also

removable for M-subharmonics and harmonics.

THEOREM. Pluripolar sets (i.e. \mathcal{P}^{c} -polar sets) in \mathbf{C}^{n} are removable for all branches of the homogeneous Monge-Ampère equation.

-

• • • • • • • • • • • • • •

Fix 2 and recall

$$\mathcal{P}_{\boldsymbol{\rho}} \equiv \left\{ \boldsymbol{A} : \lambda_1(\boldsymbol{A}) + \dots + \lambda_{[\boldsymbol{\rho}]}(\boldsymbol{A}) + (\boldsymbol{\rho} - [\boldsymbol{\rho}])\lambda_{[\boldsymbol{\rho}]+1}(\boldsymbol{A}) \geq \mathbf{0} \right\}$$

Fix 2 and recall

$$\mathcal{P}_{\boldsymbol{\rho}} \equiv \left\{ \boldsymbol{A} : \lambda_1(\boldsymbol{A}) + \dots + \lambda_{[\boldsymbol{\rho}]}(\boldsymbol{A}) + (\boldsymbol{\rho} - [\boldsymbol{\rho}])\lambda_{[\boldsymbol{\rho}]+1}(\boldsymbol{A}) \geq \mathbf{0} \right\}$$

THEOREM C. A closed set E with

locally finite Hausdorff (p-2)-measure is locally \mathcal{P}_p -polar.

.

Fix 2 and recall

$$\mathcal{P}_{\boldsymbol{\rho}} \equiv \left\{ \boldsymbol{A} : \lambda_1(\boldsymbol{A}) + \cdots + \lambda_{[\boldsymbol{\rho}]}(\boldsymbol{A}) + (\boldsymbol{\rho} - [\boldsymbol{\rho}])\lambda_{[\boldsymbol{\rho}]+1}(\boldsymbol{A}) \geq 0 \right\}$$

THEOREM C. A closed set E with

locally finite Hausdorff (p-2)-measure is locally \mathcal{P}_p -polar.

Thus, if F is a subequation with

 $F + \mathcal{P}_{p} \subset F$,

- A 🗇 N - A 🖻 N - A 🖻 N

Fix 2 and recall

$$\mathcal{P}_{\boldsymbol{\rho}} \equiv \left\{ \boldsymbol{A} : \lambda_1(\boldsymbol{A}) + \cdots + \lambda_{[\boldsymbol{\rho}]}(\boldsymbol{A}) + (\boldsymbol{\rho} - [\boldsymbol{\rho}])\lambda_{[\boldsymbol{\rho}]+1}(\boldsymbol{A}) \geq 0 \right\}$$

THEOREM C. A closed set E with

locally finite Hausdorff (p-2)-measure is locally \mathcal{P}_p -polar.

Thus, if F is a subequation with

$$F + \mathcal{P}_{p} \subset F$$
,

then *E* is removable for *F*-subharmonics and *F*-harmonics as before.

Fix 2 and recall

$$\mathcal{P}_{\boldsymbol{\rho}} \equiv \left\{ \boldsymbol{A} : \lambda_1(\boldsymbol{A}) + \cdots + \lambda_{[\boldsymbol{\rho}]}(\boldsymbol{A}) + (\boldsymbol{\rho} - [\boldsymbol{\rho}])\lambda_{[\boldsymbol{\rho}]+1}(\boldsymbol{A}) \geq 0 \right\}$$

THEOREM C. A closed set *E* with locally finite Hausdorff (p - 2)-measure is locally \mathcal{P}_p -polar. Thus, if *F* is a subequation with $F + \mathcal{P}_p \subset F$,

then E is removable for F-subharmonics and F-harmonics as before.

The proof uses Riesz potentials

$$\mu * K_p$$
 where $K_p(x) = \frac{-1}{|x|^{p-2}}$.

Blaine Lawson

イロト イヨト イヨト イヨト

Let $M \subset \operatorname{Sym}^2(\mathbf{R}^n)$ be a convex cone subequation and $1 \le p \le n$

(D) (A) (A) (A)

Let $M \subset \text{Sym}^2(\mathbf{R}^n)$ be a convex cone subequation and $1 \le p \le n$ Lemma.

 $\mathcal{P}_p \subset M \quad \iff \quad I - p \pi_e \in M \quad \text{for all unit vectors } e \in \mathbf{R}^n.$

イロト イヨト イヨト

Let $M \subset \text{Sym}^2(\mathbf{R}^n)$ be a convex cone subequation and $1 \le p \le n$ Lemma.

 $\mathcal{P}_p \subset M \quad \iff \quad I - p \pi_e \in M \quad \text{for all unit vectors } e \in \mathbf{R}^n.$

Definition. The Riesz characteristic of M is

$$p_M \equiv \sup\{p: I - p \pi_e \in M \text{ for all } |e| = 1\}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let $M \subset \text{Sym}^2(\mathbf{R}^n)$ be a convex cone subequation and $1 \le p \le n$ Lemma.

 $\mathcal{P}_p \subset M \quad \iff \quad I - p \pi_e \in M \quad \text{for all unit vectors } e \in \mathbf{R}^n.$

Definition. The **Riesz characteristic** of *M* is

$$p_M \equiv \sup\{p: I - p \pi_e \in M \text{ for all } |e| = 1\}$$

THEOREM D.

Suppose $F \subset \text{Sym}^2(\mathbf{R}^n)$ is a subequation with monotonicity cone *M*.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let $M \subset \text{Sym}^2(\mathbf{R}^n)$ be a convex cone subequation and $1 \le p \le n$ Lemma.

 $\mathcal{P}_p \subset M \quad \iff \quad l - p \pi_e \in M \quad \text{for all unit vectors } e \in \mathbf{R}^n.$

Definition. The Riesz characteristic of M is

$$p_M \equiv \sup\{p: I - p \pi_e \in M \text{ for all } |e| = 1\}$$

THEOREM D.

Suppose $F \subset \text{Sym}^2(\mathbf{R}^n)$ is a subequation with monotonicity cone M. Then any closed set E of locally finite Hausdorff ($p_M - 2$)-measure is removable for F-subharmonics and F-harmonics.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Example 1. (The δ **-Uniformly Elliptic Cone).** For $\delta > 0$ define

$$P(\delta) \equiv \{A \in \operatorname{Sym}^2(\mathbb{R}^n) : A + \delta(\operatorname{tr} A) \cdot I \ge 0\}$$

$$\mathcal{P}(\delta) \text{ has Riesz characteristic } \frac{1 + \delta n}{1 + \delta}.$$

(I) < ((i) <

Example 1. (The δ **-Uniformly Elliptic Cone).** For $\delta > 0$ define

$$P(\delta) \equiv \{A \in \operatorname{Sym}^2(\mathbf{R}^n) : A + \delta(\operatorname{tr} A) \cdot I \ge 0\}$$

$$\mathcal{P}(\delta) \text{ has Riesz characteristic } \frac{1 + \delta n}{1 + \delta}.$$

Example 2. (The Pucci Cone). For $0 < \lambda < \Lambda$ define

$$\mathcal{P}_{\lambda,\Lambda} \equiv \{ \boldsymbol{A} \in \operatorname{Sym}^2(\mathbf{R}^n) : \lambda \operatorname{tr} \boldsymbol{A}^+ + \Lambda \operatorname{tr} \boldsymbol{A}^- \ge \mathbf{0} \},$$

$$\mathcal{P}_{\lambda,\Lambda} \text{ has Riesz characteristic } \frac{\lambda}{\Lambda}(n-1) + 1.$$

・ロト ・同ト ・ヨト ・ヨ

Example 1. (The δ **-Uniformly Elliptic Cone).** For $\delta > 0$ define

$$P(\delta) \equiv \{A \in \operatorname{Sym}^2(\mathbf{R}^n) : A + \delta(\operatorname{tr} A) \cdot I \ge 0\}$$

$$\mathcal{P}(\delta) \text{ has Riesz characteristic } \frac{1 + \delta n}{1 + \delta}.$$

Example 2. (The Pucci Cone). For $0 < \lambda < \Lambda$ define

$$\mathcal{P}_{\lambda,\Lambda} \equiv \{ A \in \operatorname{Sym}^2(\mathbf{R}^n) : \lambda \operatorname{tr} A^+ + \Lambda \operatorname{tr} A^- \ge 0 \},$$

$$\mathcal{P}_{\lambda,\Lambda} \text{ has Riesz characteristic } \frac{\lambda}{\Lambda}(n-1) + 1.$$

Example 3. (The k^{th} **Elementary Symmetric Cone).** For k = 1, ..., n define $F_k \equiv \{A \in \text{Sym}^2(\mathbb{R}^n) : \sigma_1(A) \ge 0, ..., \sigma_k(A) \ge 0\},$ F_k has Riesz characteristic $\frac{n}{k}$.

Example 1. (The δ **-Uniformly Elliptic Cone).** For $\delta > 0$ define

$$P(\delta) \equiv \{A \in \operatorname{Sym}^2(\mathbf{R}^n) : A + \delta(\operatorname{tr} A) \cdot I \ge 0\}$$

$$\mathcal{P}(\delta) \text{ has Riesz characteristic } \frac{1 + \delta n}{1 + \delta}.$$

Example 2. (The Pucci Cone). For $0 < \lambda < \Lambda$ define

$$\mathcal{P}_{\lambda,\Lambda} \equiv \{ A \in \operatorname{Sym}^2(\mathbf{R}^n) : \lambda \operatorname{tr} A^+ + \Lambda \operatorname{tr} A^- \ge 0 \}$$

$$\mathcal{P}_{\lambda,\Lambda} \text{ has Riesz characteristic } \frac{\lambda}{\Lambda}(n-1) + 1.$$

Example 3. (The k^{th} **Elementary Symmetric Cone).** For k = 1, ..., n define

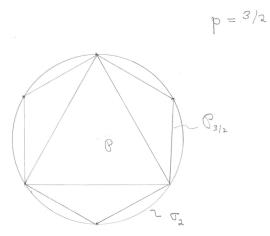
$$F_k \equiv \{A \in \operatorname{Sym}^2(\mathbf{R}^n) : \sigma_1(A) \ge 0, ..., \sigma_k(A) \ge 0\},\$$

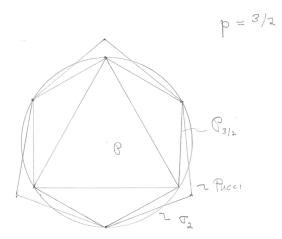
$$F_k \text{ has Riesz characteristic } \frac{n}{k}.$$

Labutin, Amensola-Galise-Vitolo, Caffarelli-Li-Nirenberg

Blaine Lawson

Restriction and Removable Singularities





Blaine Lawson

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Given a subequation $F \subset J^2(X)$ and a submanifold $i: Y \hookrightarrow X$,

(I) < ((i) <

Given a subequation $F \subset J^2(X)$ and a submanifold $i: Y \hookrightarrow X$, there is an induced subequation

 $\overline{i^*F} \subset J^2(Y).$

Given a subequation $F \subset J^2(X)$ and a submanifold $i: Y \hookrightarrow X$, there is an induced subequation

$$\overline{i^*F} \subset J^2(Y).$$

Problem: Given an (u.s.c.) $u \in F(X)$, when is

 $u|_Y \in (\overline{i^*F})(Y)?$

Given a subequation $F \subset J^2(X)$ and a submanifold $i: Y \hookrightarrow X$, there is an induced subequation

$$\overline{i^*F} \subset J^2(Y).$$

Problem: Given an (u.s.c.) $u \in F(X)$, when is

$$u|_Y \in (\overline{i^*F})(Y)?$$

There is a general answer based on a technical restriction hypothesis.

Given a subequation $F \subset J^2(X)$ and a submanifold $i: Y \hookrightarrow X$, there is an induced subequation

$$\overline{i^*F} \subset J^2(Y).$$

Problem: Given an (u.s.c.) $u \in F(X)$, when is

$$u|_Y \in (\overline{i^*F})(Y)?$$

There is a general answer based on a technical **restriction hypothesis**. This leads to a number of more specific interesting results.

Given a subequation $F \subset J^2(X)$ and a submanifold $i: Y \hookrightarrow X$, there is an induced subequation

$$\overline{i^*F} \subset J^2(Y).$$

Problem: Given an (u.s.c.) $u \in F(X)$, when is

$$u|_Y \in (\overline{i^*F})(Y)?$$

There is a general answer based on a technical **restriction hypothesis**. This leads to a number of more specific interesting results. For constant coefficient subequations restriction always holds.

Given a subequation $F \subset J^2(X)$ and a submanifold $i: Y \hookrightarrow X$, there is an induced subequation

$$\overline{i^*F} \subset J^2(Y).$$

Problem: Given an (u.s.c.) $u \in F(X)$, when is

$$u|_Y \in (\overline{i^*F})(Y)?$$

There is a general answer based on a technical **restriction hypothesis**. This leads to a number of more specific interesting results. For constant coefficient subequations restriction always holds. For linear equations there is a simple and useful linear restriction hypothesis.

Blaine Lawson

・ロト ・回 ト ・ ヨト ・ ヨ

Consider a closed subset

 $\mathbf{G} \subset G(k,X)$

(D) (A) (A) (A)

Consider a closed subset

$$\mathbf{G} \subset G(k,X)$$

and let

$$F_{\mathbf{G}} \equiv \left\{ J^2 u : \operatorname{tr} \left(\operatorname{Hess} u \big|_{W} \right) \geq 0 \right\}$$

(4) (3) (4) (4) (4)

Consider a closed subset

$$\mathbf{G} \subset G(k,X)$$

and let

$$F_{\mathbf{G}} \equiv \left\{ J^2 u : \operatorname{tr} \left(\operatorname{Hess} u \big|_{W} \right) \ge 0 \right\}$$

A **G-submanifold** of *X* is defined to be a *k*-dimensional submanifold $Y \subset X$ such that $T_y Y \in \mathbf{G}$ for all $y \in Y$.

Consider a closed subset

$$\mathbf{G} \subset G(k,X)$$

and let

$$F_{\mathbf{G}} \equiv \left\{ J^2 u : \operatorname{tr} \left(\operatorname{Hess} u \big|_{W} \right) \geq 0 \right\}$$

A **G-submanifold** of *X* is defined to be a *k*-dimensional submanifold $Y \subset X$ such that $T_y Y \in \mathbf{G}$ for all $y \in Y$.

Theorem. Let $Y \subset X$ be a **G**-submanifold which is minimal.

Consider a closed subset

$$\mathbf{G} \subset G(k,X)$$

and let

$$F_{\mathbf{G}} \equiv \left\{ J^2 u : \operatorname{tr} \left(\operatorname{Hess} u \big|_{W} \right) \geq 0 \right\}$$

A **G-submanifold** of *X* is defined to be a *k*-dimensional submanifold $Y \subset X$ such that $T_y Y \in \mathbf{G}$ for all $y \in Y$.

Theorem. Let $Y \subset X$ be a **G**-submanifold which is minimal. Then restriction to Y holds for F_{G} .

Consider a closed subset

$$\mathbf{G} \subset G(k,X)$$

and let

$$F_{\mathbf{G}} \equiv \left\{ J^2 u : \operatorname{tr} \left(\operatorname{Hess} u \big|_{W} \right) \geq 0 \right\}$$

A **G-submanifold** of *X* is defined to be a *k*-dimensional submanifold $Y \subset X$ such that $T_y Y \in \mathbf{G}$ for all $y \in Y$.

Theorem. Let $Y \subset X$ be a **G**-submanifold which is minimal. Then restriction to Y holds for F_{G} .

In other words, the restriction of any F_{G} -plurisubharmonic function to Y is subharmonic in the induced riemannian metric on Y.

Blaine Lawson

イロト イヨト イヨト イヨト

There is a second restriction theorem which assumes

local jet equivalence mod Y

to a constant coefficient subequation.

There is a second restriction theorem which assumes

local jet equivalence mod Y

to a constant coefficient subequation.

One consequence is

Theorem. Let *X* be a riemannian manifold of dimension *N* and $F \subset J^2(X)$ a subequation canonically determined by an O_N -invariant universal subequation $\mathbf{F} \subset \mathbf{J}_N^2$.

There is a second restriction theorem which assumes

local jet equivalence mod Y

to a constant coefficient subequation.

One consequence is

Theorem. Let *X* be a riemannian manifold of dimension *N* and $F \subset J^2(X)$ a subequation canonically determined by an *O_N*-invariant universal subequation $\mathbf{F} \subset \mathbf{J}_N^2$. Then restriction holds for *F* on any totally geodesic submanifold $Y \subset X$.

Blaine Lawson

Image: A matrix

On any **almost complex** manifold (X, J)

There are three definitions of plurisubharmonic functions

On any **almost complex** manifold (X, J)There are three definitions of plurisubharmonic functions

1. There is an intrinsic subequation $\mathcal{P}^{\mathbf{C}}(J)$ defined by $i\partial\overline{\partial}u \geq 0$,

On any **almost complex** manifold (X, J)There are three definitions of plurisubharmonic functions

1. There is an intrinsic subequation $\mathcal{P}^{\mathbf{C}}(J)$ defined by

 $i\partial\overline{\partial}u \geq 0,$

or equivalently

 $H(u)(V,V) = (VV + (JV)(JV) + J[V,JV]) \cdot u \geq 0.$

On any **almost complex** manifold (X, J)There are three definitions of plurisubharmonic functions

1. There is an intrinsic subequation $\mathcal{P}^{\mathbf{C}}(J)$ defined by

 $i\partial\overline{\partial}u \geq 0,$

or equivalently

$$H(u)(V, V) = (VV + (JV)(JV) + J[V, JV]) \cdot u \geq 0.$$

One now applies the viscosity definition as before.

2. A classical result of Nijenhuis and Woolf states that Given $x \in X$ and a complex tangent line ℓ at x

2. A classical result of Nijenhuis and Woolf states that

Given $x \in X$ and a complex tangent line ℓ at x there exists a (pseudo-)holomorphic curve $\Sigma \subset X$ through x with tangent ℓ .

2. A classical result of Nijenhuis and Woolf states that

Given $x \in X$ and a complex tangent line ℓ at x there exists a (pseudo-)holomorphic curve $\Sigma \subset X$ through x with tangent ℓ .

We now define $u \in USC(X)$ to be plurisubharmonic if its **restriction** to each holomorphic curve is classically subharmonic.

2. A classical result of Nijenhuis and Woolf states that

Given $x \in X$ and a complex tangent line ℓ at x there exists a (pseudo-)holomorphic curve $\Sigma \subset X$ through x with tangent ℓ .

We now define $u \in USC(X)$ to be plurisubharmonic if its **restriction** to each holomorphic curve is classically subharmonic.

3. A distribution $u \in \mathcal{D}'(X)$ is plurisubharmonic

2. A classical result of Nijenhuis and Woolf states that

Given $x \in X$ and a complex tangent line ℓ at x there exists a (pseudo-)holomorphic curve $\Sigma \subset X$ through x with tangent ℓ .

We now define $u \in USC(X)$ to be plurisubharmonic if its restriction to each holomorphic curve is classically subharmonic.

3. A distribution $u \in \mathcal{D}'(X)$ is plurisubharmonic if

 $i\partial \overline{\partial} u = \mu \ge 0$ (a positive (1, 1) - current).

2. A classical result of Nijenhuis and Woolf states that

Given $x \in X$ and a complex tangent line ℓ at x there exists a (pseudo-)holomorphic curve $\Sigma \subset X$ through x with tangent ℓ .

We now define $u \in USC(X)$ to be plurisubharmonic if its restriction to each holomorphic curve is classically subharmonic.

3. A distribution $u \in \mathcal{D}'(X)$ is plurisubharmonic if

 $i\partial \overline{\partial} u = \mu \ge 0$ (a positive (1, 1) – current).

THEOREM. These three definitions are equivalent.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

That (1) \iff (2) uses the Restriction Theorem.

(日)

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose *u* is $\mathcal{P}^{\mathbf{C}}(J)$ -plurisubharmonic.

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose *u* is $\mathcal{P}^{c}(J)$ -plurisubharmonic. Then $u \in L^{1}_{loc}(X) \subset \mathcal{D}'(X)$, and *u* is distributionally *J*-plurisubharmonic.

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose *u* is $\mathcal{P}^{c}(J)$ -plurisubharmonic. Then $u \in L^{1}_{loc}(X) \subset \mathcal{D}'(X)$, and *u* is distributionally *J*-plurisubharmonic.

(b) Suppose $u \in D'(X)$ is distributionally *J*-plurisubharmonic.

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose *u* is $\mathcal{P}^{c}(J)$ -plurisubharmonic. Then $u \in L^{1}_{loc}(X) \subset \mathcal{D}'(X)$, and *u* is distributionally *J*-plurisubharmonic.

(b) Suppose $u \in \mathcal{D}'(X)$ is distributionally *J*-plurisubharmonic. Then $u \in L^1_{loc}(X)$,

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose *u* is $\mathcal{P}^{c}(J)$ -plurisubharmonic. Then $u \in L^{1}_{loc}(X) \subset \mathcal{D}'(X)$, and *u* is distributionally *J*-plurisubharmonic.

(b) Suppose $u \in \mathcal{D}'(X)$ is distributionally *J*-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X)$, and there exists a unique upper semi-continuous representative \tilde{u} of the L^1_{loc} -class *u* which is $\mathcal{P}^{\mathbf{C}}(J)$ -plurisubharmonic.

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose *u* is $\mathcal{P}^{c}(J)$ -plurisubharmonic. Then $u \in L^{1}_{loc}(X) \subset \mathcal{D}'(X)$, and *u* is distributionally *J*-plurisubharmonic.

(b) Suppose $u \in \mathcal{D}'(X)$ is distributionally *J*-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X)$, and there exists a unique upper semi-continuous representative \tilde{u} of the L^1_{loc} -class *u* which is $\mathcal{P}^{\mathbf{C}}(J)$ -plurisubharmonic. Moreover,

$$\widetilde{u}(x) = \operatorname{ess} \limsup_{y \to x} u(y)$$

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose *u* is $\mathcal{P}^{c}(J)$ -plurisubharmonic. Then $u \in L^{1}_{loc}(X) \subset \mathcal{D}'(X)$, and *u* is distributionally *J*-plurisubharmonic.

(b) Suppose $u \in \mathcal{D}'(X)$ is distributionally *J*-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X)$, and there exists a unique upper semi-continuous representative \tilde{u} of the L^1_{loc} -class *u* which is $\mathcal{P}^{\mathbf{C}}(J)$ -plurisubharmonic. Moreover,

$$\widetilde{u}(x) = \operatorname{ess} \limsup_{y \to x} u(y) = \lim_{r \to 0} \operatorname{ess} \sup_{B_r(x)} u$$

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose *u* is $\mathcal{P}^{c}(J)$ -plurisubharmonic. Then $u \in L^{1}_{loc}(X) \subset \mathcal{D}'(X)$, and *u* is distributionally *J*-plurisubharmonic.

(b) Suppose $u \in \mathcal{D}'(X)$ is distributionally *J*-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X)$, and there exists a unique upper semi-continuous representative \tilde{u} of the L^1_{loc} -class *u* which is $\mathcal{P}^{\mathbf{C}}(J)$ -plurisubharmonic. Moreover,

$$\widetilde{u}(x) = \operatorname{ess} \limsup_{y \to x} u(y) = \lim_{r \to 0} \operatorname{ess} \sup_{B_r(x)} u$$

That (1) \Rightarrow (3) was proven years ago by Nefton Pali.

That (1) \iff (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose *u* is $\mathcal{P}^{c}(J)$ -plurisubharmonic. Then $u \in L^{1}_{loc}(X) \subset \mathcal{D}'(X)$, and *u* is distributionally *J*-plurisubharmonic.

(b) Suppose $u \in \mathcal{D}'(X)$ is distributionally *J*-plurisubharmonic. Then $u \in L^1_{\text{loc}}(X)$, and there exists a unique upper semi-continuous representative \tilde{u} of the L^1_{loc} -class *u* which is $\mathcal{P}^{\mathbf{C}}(J)$ -plurisubharmonic. Moreover,

$$\widetilde{u}(x) = \operatorname{ess} \limsup_{y \to x} u(y) = \lim_{r \to 0} \operatorname{ess} \sup_{B_r(x)} u$$

That (1) \Rightarrow (3) was proven years ago by Nefton Pali.

Pali conjectured (3) \Rightarrow (1) and proved it under certain assumptions on u

Blaine Lawson

Image: A matrix

Fix a smooth volume form λ and a continuous function $f \ge 0$ on X.

Image: Image:

Fix a smooth volume form λ and a continuous function $f \ge 0$ on X. Fix a domain $\Omega \subset \subset X$ with smooth boundary $\partial \Omega$.

Fix a smooth volume form λ and a continuous function $f \ge 0$ on X. Fix a domain $\Omega \subset X$ with smooth boundary $\partial \Omega$.

For $\varphi \in C(\partial \Omega)$, consider the Dirichlet Problem: Find $u \in \mathcal{P}^{\mathbf{C}}(\overline{\Omega})$ with

 $(i\partial \overline{\partial} u)^n = f\lambda$ (viscosity sense) on Ω and $u\Big|_{\partial \Omega} = \varphi$.

Fix a smooth volume form λ and a continuous function $f \ge 0$ on X. Fix a domain $\Omega \subset \subset X$ with smooth boundary $\partial \Omega$.

For $\varphi \in C(\partial \Omega)$, consider the Dirichlet Problem: Find $u \in \mathcal{P}^{\mathbf{C}}(\overline{\Omega})$ with

 $(i\partial \overline{\partial} u)^n = f\lambda$ (viscosity sense) on Ω and $u\Big|_{\partial \Omega} = \varphi$.

THEOREM.

(a) Uniqueness holds for the Dirichlet Problem if (X, J) supports a C^2 -strictly plurisubharmonic function.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Fix a smooth volume form λ and a continuous function $f \ge 0$ on X. Fix a domain $\Omega \subset \subset X$ with smooth boundary $\partial \Omega$.

For $\varphi \in C(\partial \Omega)$, consider the Dirichlet Problem: Find $u \in \mathcal{P}^{\mathbf{C}}(\overline{\Omega})$ with

 $(i\partial\overline{\partial}u)^n = f\lambda$ (viscosity sense) on Ω and $u\Big|_{\partial\Omega} = \varphi$.

THEOREM.

(a) Uniqueness holds for the Dirichlet Problem if (X, J) supports a C^2 -strictly plurisubharmonic function.

(b) Existence holds for the Dirichlet Problem if $(\Omega, \partial \Omega)$ has a strictly plurisubharmonic defining function.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider a conical subequation $F \subset \text{Sym}^2(\mathbf{R}^n)$ which has Riesz characteristic $p, 2 \leq p \leq n$, and is \mathcal{P}_p -monotone.

Consider a conical subequation $F \subset \text{Sym}^2(\mathbf{R}^n)$ which has Riesz characteristic $p, 2 \leq p \leq n$, and is \mathcal{P}_p -monotone.

Let $\Omega \subset \mathbb{R}^n$ be a domain with a smooth boundary which is both F and F strictly convex.

Consider a conical subequation $F \subset \text{Sym}^2(\mathbf{R}^n)$ which has Riesz characteristic $p, 2 \leq p \leq n$, and is \mathcal{P}_p -monotone.

Let $\Omega \subset \mathbf{R}^n$ be a domain with a smooth boundary which is both F and \overline{F} strictly convex.

Theorem. Suppose $0 \in \Omega$ and let $h \in C(B_{\epsilon} - \{0\})$ be an *F*-harmonic function with $\lim_{x\to 0} h(x) = -\infty$. Fix $\varphi \in C(\partial\Omega)$.

Consider a conical subequation $F \subset \text{Sym}^2(\mathbf{R}^n)$ which has Riesz characteristic $p, 2 \leq p \leq n$, and is \mathcal{P}_p -monotone.

Let $\Omega \subset \mathbf{R}^n$ be a domain with a smooth boundary which is both F and \overline{F} strictly convex.

Theorem. Suppose $0 \in \Omega$ and let $h \in C(B_{\epsilon} - \{0\})$ be an *F*-harmonic function with $\lim_{x\to 0} h(x) = -\infty$. Fix $\varphi \in C(\partial\Omega)$.

Existence. There exists $H \in C(\overline{\Omega} - \{0\})$ such that:

(1) *H* is *F*-harmonic on $\Omega - \{0\}$,

Consider a conical subequation $F \subset \text{Sym}^2(\mathbf{R}^n)$ which has Riesz characteristic $p, 2 \leq p \leq n$, and is \mathcal{P}_p -monotone.

Let $\Omega \subset \mathbf{R}^n$ be a domain with a smooth boundary which is both F and \overline{F} strictly convex.

Theorem. Suppose $0 \in \Omega$ and let $h \in C(B_{\epsilon} - \{0\})$ be an *F*-harmonic function with $\lim_{x\to 0} h(x) = -\infty$. Fix $\varphi \in C(\partial\Omega)$.

Existence. There exists $H \in C(\overline{\Omega} - \{0\})$ such that:

- (1) *H* is *F*-harmonic on $\Omega \{0\}$,
- (2) $H|_{\partial\Omega} = \varphi$,

Consider a conical subequation $F \subset \text{Sym}^2(\mathbf{R}^n)$ which has Riesz characteristic $p, 2 \leq p \leq n$, and is \mathcal{P}_p -monotone.

Let $\Omega \subset \mathbf{R}^n$ be a domain with a smooth boundary which is both F and \tilde{F} strictly convex.

Theorem. Suppose $0 \in \Omega$ and let $h \in C(B_{\epsilon} - \{0\})$ be an *F*-harmonic function with $\lim_{x\to 0} h(x) = -\infty$. Fix $\varphi \in C(\partial\Omega)$.

Existence. There exists $H \in C(\overline{\Omega} - \{0\})$ such that:

(1) H is F-harmonic on
$$\Omega - \{0\}$$
,

(2)
$$H|_{\partial\Omega} = \varphi$$
,

(3) $h(x) + c \le H(x) \le h(x) + C$ on a neighborhood of 0 for some constants c, C.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Consider a conical subequation $F \subset \text{Sym}^2(\mathbf{R}^n)$ which has Riesz characteristic $p, 2 \leq p \leq n$, and is \mathcal{P}_p -monotone.

Let $\Omega \subset \mathbf{R}^n$ be a domain with a smooth boundary which is both F and \tilde{F} strictly convex.

Theorem. Suppose $0 \in \Omega$ and let $h \in C(B_{\epsilon} - \{0\})$ be an *F*-harmonic function with $\lim_{x\to 0} h(x) = -\infty$. Fix $\varphi \in C(\partial\Omega)$.

Existence. There exists $H \in C(\overline{\Omega} - \{0\})$ such that:

(1) H is F-harmonic on
$$\Omega - \{0\}$$
,

(2)
$$H|_{\partial\Omega} = \varphi$$
,

(3) $h(x) + c \le H(x) \le h(x) + C$ on a neighborhood of 0 for some constants c, C.

Uniqueness. There is at most one function $h \in C(\overline{\Omega} - \{0\})$ satisfying (1), (2), and (3).