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Our Outlook

To systematically take a potential theoretic approach

to the study of nonlinear differential equations

In complex analysis and geometry

plurisubharmonic functions have been very effective

Analogies can be developed in a surprisingly general context

They apply, for example, to calibrated and symplectic geometry
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Nonlinear PDE’s – The Classical “Operator” Viewpoint

Consider X open ⊂ Rn.

Classically, a fully nonlinear second-order equation is written

f (x ,u(x),Dxu,D2
x u) = 0.

where
f : X × R× Rn × Sym2(Rn) −→ R

Subsolutions:
f (x ,u(x),Dxu,D2

x u) ≥ 0

Supersolutions:
f (x ,u(x),Dxu,D2

x u) ≤ 0
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A Geometric Approach (cf. Krylov)

We fix a closed subset

F ⊂ J2(X ) ≡ X × R× Rn × Sym2(Rn)

with certain mild properties:

(P) Fx + (0,0,P) ⊂ Fx for all P ≥ 0

(N) Fx + (r ,0,0) ⊂ Fx for all r ≤ 0

(T ) F = IntF , Fx = IntxFx , IntxFx = IntF ∩ Fx

F is call a subequation.
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A Geometric Approach

Definition. A function u ∈ C2(X ) is F -subharmonic (a subsolution) if

J2
x u ≡ (x ,u(x),Dxu,D2

x u) ∈ F ∀ x ∈ X .

It is F -harmonic (a solution) if

J2
x u ∈ ∂F ∀ x ∈ X .

We want to extend the notion of F -subharmonicity
to upper semi-continuous functions.
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Viscosity Theory (Crandall, Ishii, Lions, Evans, et al.)

USC(X ) ≡ {u : X → [−∞,∞) : u is upper semicontinuous}

Definition. Fix u ∈ USC(X ). A test function for u at a point x ∈ X is a
function ϕ, C2 near x , such that

u ≤ ϕ near x

u = ϕ at x

Definition. A function u ∈ USC(X ) is F -subharmonic if for every x ∈ X and
every test function ϕ for u at x

J2
xϕ ∈ F .

F(X) ≡ the set of these.
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Remarkable Properties

• u, v ∈ F (X ) ⇒ max{u, v} ∈ F (X )

• F (X ) is closed under decreasing limits.

• F (X ) is closed under uniform limits.

• If F ⊂ F (X ) is locally uniformly bounded above, then u∗ ∈ F (X ) where

u(x) ≡ sup
v∈F

v(x)

• If u ∈ C2(X ), then

u ∈ F (X ) ⇐⇒ J2
x u ∈ F ∀ x ∈ X .
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Subequations on Manifolds

The bundle of 2-jets on a manifold X is the vector bundle

J2(X ) −→ X

whose fibre at x ∈ X is
J2

x (X ) ≡ C∞x /C∞x,3

where
C∞x is the germs of smooth functions at x , and

C∞x,3 are those germs which vanish to order 3 at x .

There is a short exact sequence

0 → Sym2(T ∗X ) → J2(X ) → J1(X ) → 0

and J1(X ) = R⊕ T ∗X .
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Subequations on Manifolds

Definition. A subequation on X is a closed subset

F ⊂ J2(X )

which satisfies the three conditions (P), (N), and (T) above.

The F -subharmonic functions F (X ) are defined as before.

They have the same remarkable properties.

The key to defining differential equations on X

is to use subequations and duality.
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Duality and F -Harmonics

Define the dual of F ⊂ J2(X ) by

F̃ ≡ ∼ (−IntF ) = −(∼ IntF )

• F is a subequation ⇐⇒ F̃ is a subequation.

• In this case ˜̃F = F

• In our analysis

The roles of F and F̃ are often interchangeable.

• Note that
F ∩ −F̃ = ∂F
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Duality and F -Harmonics

Let F ⊂ J2(X ) be a subequation.

Definition. A function u on X is F -harmonic if

u ∈ F (X ) and − u ∈ F̃ (X )

These are our solutions.

u ∈ C2(X ) is F -harmonic ⇐⇒ J2
x u ∈ ∂F ∀ x ∈ X .
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Examples P and P̃
Constant coefficient, pure second-order in Rn:

define P ⊂ Sym2(Rn) by

P ≡ {A : A ≥ 0}

P̃ = {A : A has at least one eigenvalue ≥ 0}.

Proposition. For an open set X ⊂ Rn

P(X ) = the convex functions on X .

P̃(X ) = the subaffine functions on X .

The homogeneous real Monge-Ampère Equation

D2u ≥ 0 and det(D2u) = 0.
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D2u ≥ 0 and det(D2u) = 0.
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Examples: Other Branches of the MA Equation

For A ∈ Sym2(Rn) let

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A)

be the ordered eigenvalues of A.

Pk ≡ {λk (A) ≥ 0}

P̃k = Pn−k+1

Blaine Lawson Restriction and Removable Singularities October 27, 2013 14 / 45



Examples: Other Branches of the MA Equation

For A ∈ Sym2(Rn) let

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A)

be the ordered eigenvalues of A.

Pk ≡ {λk (A) ≥ 0}

P̃k = Pn−k+1

Blaine Lawson Restriction and Removable Singularities October 27, 2013 14 / 45



Examples: Other Branches of the MA Equation

For A ∈ Sym2(Rn) let

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A)

be the ordered eigenvalues of A.

Pk ≡ {λk (A) ≥ 0}

P̃k = Pn−k+1

Blaine Lawson Restriction and Removable Singularities October 27, 2013 14 / 45



Examples: Other Branches of the MA Equation

For A ∈ Sym2(Rn) let

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A)

be the ordered eigenvalues of A.

Pk ≡ {λk (A) ≥ 0}

P̃k = Pn−k+1

Blaine Lawson Restriction and Removable Singularities October 27, 2013 14 / 45



Examples: Other Elementary Symmetric Functions

Sk ≡ {A : σ1(A) ≥ 0, ..., σk (A) ≥ 0}

σk (A) ≡ σk (λ1(A), ..., λn(A))

This is the principal branch of the equation

σk (D2u) = 0.

The equation has (k − 1) other branches.
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Examples: p-Convexity
For each real number p ∈ [1,n],

define

Pp ≡
{

A : λ1(A) + · · ·+ λ[p](A) + (p − [p])λ[p]+1(A) ≥ 0
}

where λ1(A) ≤ · · · ≤ λn(A) are the ordered eigenvalues of A.

The Pp-subharmonics are p-convex functions.

Theorem. For p an integer:

The restriction of a Pp-subharmonic to any minimal p-dimensional
submanifold Y is subharmonic in the induced metric on Y .

Pp-harmonics are solutions of the polynomial equation

MAp(A) =
∏

i1<···<ip

(
λi1 (A) + · · ·+ λip (A)

)
= 0.
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Examples: p-Convexity

The Riesz kernel

Kp(x) ≡ −1
(p − 2)|x |p−2 if p 6= 2

and K2(x) ≡ log|x |

is Pp-harmonic in Rn − {0}
and Pp-subharmonic across 0.

Blaine Lawson Restriction and Removable Singularities October 27, 2013 17 / 45



Examples: p-Convexity

The Riesz kernel

Kp(x) ≡ −1
(p − 2)|x |p−2 if p 6= 2 and K2(x) ≡ log|x |

is Pp-harmonic in Rn − {0}
and Pp-subharmonic across 0.

Blaine Lawson Restriction and Removable Singularities October 27, 2013 17 / 45



Examples: p-Convexity

The Riesz kernel

Kp(x) ≡ −1
(p − 2)|x |p−2 if p 6= 2 and K2(x) ≡ log|x |

is Pp-harmonic in Rn − {0}
and Pp-subharmonic across 0.

Blaine Lawson Restriction and Removable Singularities October 27, 2013 17 / 45



Examples: Complex Analogues
Cn = (R2n, J).

Sym2
C(Cn) ⊂ Sym2(R2n)

AC ≡ 1
2 (A− JAJ)

AC has complex eigenspaces and ordered eigenvalues

λC
1 (A) ≤ · · · ≤ λC

n (A)

All the O(n)-invariant subequations given in terms of the λk (A)

have U(n)-invariant analogues given by the same conditions on the λC
k (A)

Example: The homogeneous complex Monge-Ampère equation

PC = {A : AC ≥ 0},
and its branches

PC
k = {A : λC

k (A) ≥ 0},
(Note: PC(X ) = the plurisubharmonic functions on X )
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Examples: Quaternionic Analogues

Hn = (R4n, I, J,K ).

AH ≡ 1
4 (A− IAI − JAJ − KAK )

AC has quaternionic eigenspaces and ordered eigenvalues

λH
1 (A) ≤ · · · ≤ λH

n (A)

All the O(n)-invariant subequations given in terms of the λk (A)

have Sp(n)-invariant analogues given by same conditions on the λH
k (A)

Example: The quaternionic Monge-Ampère equation (Alesker, Verbitsky)

PH = {A : AH ≥ 0},
and its branches

PH
k = {A : λH

k (A) ≥ 0},
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Examples: Geometric Cases – Calibrations

Fix a compact set
Gl ⊂ G(p,Rn) (Grassmannian)

and define
FGl ≡

{
A : tr

(
A
∣∣
W

)
≥ 0 for all W ∈ Gl

}

Examples:

Gl = G(1,Rn) ⇒ FGl = P.

Gl = G(p,Rn) ⇒ FGl = Pp.

Gl = GC(1,Cn) ⇒ FGl = PC.

Gl = LAG = the lagrangian n planes in Cn.

Gl = Gl (φ) = the φ-planes associated to a calibration φ
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Riemannian manifolds and the decomposition of J2(X )

When X is Riemannian, there is a canonical bundle splitting

J2(X) = R⊕ T∗X⊕ Sym2(T∗X)

given by
J2

x u = (u(x), (du)x ,Hessxu)

where Hess u ∈ Γ(Sym2(T ∗X )) is the Riemannian hessian defined by

(Hess u)(V ,W ) = VWu − (∇V W )u

for vector fields V ,W .
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Universal Riemannian subequations

Suppose
F ⊂ J ≡ R× Rn × Sym2(Rn)

• is closed

• O(n)-invariant

• and satisfies (P), (N) and (T)

Then F canonically determines a subequation

FX ⊂ J2(X )

on any riemannian manifold X .

Example. F ≡ R× Rn × {trA ≥ 0} gives

tr(Hess u) = ∆u ≥ 0.
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Universal Hermitian subequations
Let Cn = (R2n, J). If

F ⊂ J ≡ R× Rn × Sym2(R2n)

• is closed

• U(n)-invariant

• and satisfies (P), (N) and (T)

Then F canonically determines a subequation

FX ⊂ J2(X )

on any almost complex, hermitian manifold X .

Example. F ≡ R× Rn × {AC ≥ 0} gives the homogeneous complex
Monge-Ampère subequation.
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Manifolds with Topological Structure Group G

Let
G ⊂ O(n)

be a closed subgroup. If

F ⊂ J ≡ R× Rn × Sym2(R2n)

• is closed

• G-invariant

• and satisfies (P), (N) and (T)

Then F canonically determines a subequation FX on any riemannian
manifold with topological structure group G.
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Automorphisms

An automorphism of the 2-jet bundle is an intrinsically defined bundle
isomorphism

Φ : J2(X ) −→ J2(X )

with the property that for any splitting

J2(X ) = R⊕ T ∗X ⊕ Sym2(T ∗X )

of the short exact sequence, Φ has the form

Φ(r ,p,A) = (r ,gp,hAht + L(p))

where
g,h : T ∗X → T ∗X

are bundle isomorphisms and

L : T ∗X → Sym2(T ∗X )

is a smooth bundle map.
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Affine Automorphisms

An affine automorphism of the 2-jet bundle is a bundle isomorphism

Ψ : J2(X ) −→ J2(X )

of the form
Ψ = Φ + J

where Φ is an automorphism and J is a section of J2(X ).
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Jet Equivalence of Subequations

Definition. Two subequations

F1,F2 ⊂ J2(X )

are affinely jet equivalent if there exists an affine automorphism

Ψ : J2(X ) −→ J2(X )

such that
Ψ(F1) = F2.
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Jet Equivalence of Subequations

• Jet equivalence does not send F1(X ) to F2(X ).

• The universal equations above are all locally jet equivalent to
constant coefficient equations in local coordinates.

• Affine jet equivalence converts homogeneous equations

to inhomogeneous equations,

e.g.,

detC(HessCu) = eu with HessCu ≥ 0.

λk (Hessu) = f (x)
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Monotonicity Cones – An Important Concept

F ⊂ J2(X ) a subequation on a manifold X .

Definition. A subset M ⊂ J2(X ) is a monotonicity cone for F if ∀ x ∈ X

(i) Mx is a convex cone with vertex at 0, and

(ii) Fx + Mx ⊂ Fx

Example 1. In Rn, P ≡ {A ≥ 0} is a monotonicity cone for every pure
second-order subequation.

Example 2. In Cn, PC ≡ {AC ≥ 0} is a monotonicity cone for every pure
second-order hermitian subequation.
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The Dirichlet Problem

Let F ⊂ J2(X ) be a subequation with monotonicity cone M.

THEOREM. Suppose F is locally affinely jet-equivalent to a constant
coefficient subequation. Suppose also that X supports a strictly M-harmonic
function.

Then for any domain Ω ⊂⊂ X whose boundary is both F and F̃ strictly
convex, the Dirichlet Problem for F -harmonic functions is uniquely solvable
for all continuous boundary functions ϕ ∈ C(∂Ω).
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Removable Singularities – General Results

Let F ⊂ J2(X ) be a subequation with monotonicity cone M.

Definition. A subset E ⊂ X is M-polar if E = {ψ = −∞} for an
M-subharmonic function which is smooth on X − E .

THEOREM A. Suppose E ⊂ X is a closed subset which is locally M-polar.
Then E is removable for F -subharmonic functions which are locally
bounded above across E .

That is, if u ∈ F (X − E) and locally bounded above across E , then its
canonical upper semi-continuous extension is F -subharmonic on X .

THEOREM B. Suppose E is a closed set with no interior, which is locally
M-polar. Then for u ∈ C(X ),

u is F -harmonic on X − E ⇒ u is F -harmonic on X .
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Removable Singularities – Discussion

In particular,

M-polar sets are removable for M-subharmonics and harmonics.

This is not interesting since M is convex.

However,

M-polar sets are also

removable for M̃-subharmonics and harmonics.

THEOREM. Pluripolar sets (i.e. PC-polar sets) in Cn are removable for

all branches of the homogeneous Monge-Ampère equation.
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Removable Singularities – Riesz Potentials

Fix 2 < p ≤ n and recall

Pp ≡
{

A : λ1(A) + · · ·+ λ[p](A) + (p − [p])λ[p]+1(A) ≥ 0
}

THEOREM C. A closed set E with
locally finite Hausdorff (p − 2)-measure is locally Pp-polar.

Thus, if F is a subequation with
F + Pp ⊂ F ,

then E is removable for F -subharmonics and F -harmonics as before.

The proof uses Riesz potentials

µ ∗ Kp where Kp(x) =
−1
|x |p−2 .
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Thus, if F is a subequation with
F + Pp ⊂ F ,

then E is removable for F -subharmonics and F -harmonics as before.

The proof uses Riesz potentials

µ ∗ Kp where Kp(x) =
−1
|x |p−2 .

Blaine Lawson Restriction and Removable Singularities October 27, 2013 33 / 45



Removable Singularities – Riesz Potentials

Fix 2 < p ≤ n and recall

Pp ≡
{

A : λ1(A) + · · ·+ λ[p](A) + (p − [p])λ[p]+1(A) ≥ 0
}

THEOREM C. A closed set E with
locally finite Hausdorff (p − 2)-measure is locally Pp-polar.

Thus, if F is a subequation with
F + Pp ⊂ F ,

then E is removable for F -subharmonics and F -harmonics as before.

The proof uses Riesz potentials

µ ∗ Kp where Kp(x) =
−1
|x |p−2 .

Blaine Lawson Restriction and Removable Singularities October 27, 2013 33 / 45



Removable Singularities – Riesz Potentials

Fix 2 < p ≤ n and recall

Pp ≡
{

A : λ1(A) + · · ·+ λ[p](A) + (p − [p])λ[p]+1(A) ≥ 0
}

THEOREM C. A closed set E with
locally finite Hausdorff (p − 2)-measure is locally Pp-polar.

Thus, if F is a subequation with
F + Pp ⊂ F ,

then E is removable for F -subharmonics and F -harmonics as before.

The proof uses Riesz potentials

µ ∗ Kp where Kp(x) =
−1
|x |p−2 .

Blaine Lawson Restriction and Removable Singularities October 27, 2013 33 / 45



Riesz Characteristics

Let M ⊂ Sym2(Rn) be a convex cone subequation and 1 ≤ p ≤ n

Lemma.

Pp ⊂ M ⇐⇒ I − p πe ∈ M for all unit vectors e ∈ Rn.

Definition. The Riesz characteristic of M is

pM ≡ sup{p : I − p πe ∈ M for all |e| = 1}

THEOREM D.

Suppose F ⊂ Sym2(Rn) is a subequation with monotonicity cone M.

Then any closed set E of locally finite Hausdorff (pM − 2)-measure

is removable for F -subharmonics and F -harmonics.
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Examples

Example 1. (The δ-Uniformly Elliptic Cone). For δ > 0 define

P(δ) ≡ {A ∈ Sym2(Rn) : A + δ(trA) · I ≥ 0}

P(δ) has Riesz characteristic
1 + δn
1 + δ

.

Example 2. (The Pucci Cone). For 0 < λ < Λ define

Pλ,Λ ≡ {A ∈ Sym2(Rn) : λtrA+ + ΛtrA− ≥ 0},

Pλ,Λ has Riesz characteristic
λ

Λ
(n − 1) + 1.

Example 3. (The k th Elementary Symmetric Cone). For k = 1, ...,n define

Fk ≡ {A ∈ Sym2(Rn) : σ1(A) ≥ 0, ..., σk (A) ≥ 0},

Fk has Riesz characteristic
n
k
.

Labutin, Amensola-Galise-Vitolo, Caffarelli-Li-Nirenberg
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Restriction

Given a subequation F ⊂ J2(X ) and a submanifold i : Y ↪→ X ,

there is an induced subequation

i∗F ⊂ J2(Y ).

Problem: Given an (u.s.c.) u ∈ F (X ), when is

u
∣∣
Y ∈ (i∗F )(Y )?

There is a general answer based on a technical restriction hypothesis.

This leads to a number of more specific interesting results.

For constant coefficient subequations restriction always holds.

For linear equations there is a simple and useful linear restriction hypothesis.
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Restriction Theorem 1

Consider a closed subset
Gl ⊂ G(k ,X )

and let
FGl ≡

{
J2u : tr

(
Hess u

∣∣
W

)
≥ 0

}

A Gl -submanifold of X is defined to be a k -dimensional submanifold Y ⊂ X
such that Ty Y ∈ Gl for all y ∈ Y .

Theorem. Let Y ⊂ X be a Gl -submanifold which is minimal.
Then restriction to Y holds for FGl .

In other words, the restriction of any FGl -plurisubharmonic function to Y
is subharmonic in the induced riemannian metric on Y .
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Restriction Theorem 2

There is a second restriction theorem which assumes

local jet equivalence mod Y

to a constant coefficient subequation.

One consequence is

Theorem. Let X be a riemannian manifold of dimension N and
F ⊂ J2(X )

a subequation canonically determined
by an ON -invariant universal subequation F ⊂ J2

N .
Then restriction holds for F on any totally geodesic submanifold Y ⊂ X.
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Almost Complex Manifolds and the Pali Conjecture

On any almost complex manifold (X , J)

There are three definitions of plurisubharmonic functions

1. There is an intrinsic subequation PC(J) defined by

i∂∂u ≥ 0,

or equivalently

H(u)(V ,V ) = (VV + (JV )(JV ) + J[V , JV ]) · u ≥ 0.

One now applies the viscosity definition as before.
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Almost Complex Manifolds and the Pali Conjecture

2. A classical result of Nijenhuis and Woolf states that

Given x ∈ X and a complex tangent line ` at x

there exists a (pseudo-)holomorphic curve Σ ⊂ X through x with tangent `.

We now define u ∈ USC(X ) to be plurisubharmonic if its restriction to each
holomorphic curve is classically subharmonic.

3. A distribution u ∈ D′(X ) is plurisubharmonic if

i∂∂u = µ ≥ 0 (a positive (1, 1)− current).

THEOREM. These three definitions are equivalent.
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Almost Complex Manifolds and the Pali Conjecture
That (1) ⇐⇒ (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose u is PC(J)-plurisubharmonic. Then u ∈ L1
loc(X ) ⊂ D′(X ),

and u is distributionally J-plurisubharmonic.

(b) Suppose u ∈ D′(X ) is distributionally J-plurisubharmonic. Then
u ∈ L1

loc(X ), and there exists a unique upper semi-continuous representative ũ
of the L1

loc-class u which is PC(J)-plurisubharmonic. Moreover,

ũ(x) = ess lim sup
y→x

u(y) = lim
r↘0

ess sup
Br (x)

u

That (1)⇒ (3) was proven years ago by Nefton Pali.

Pali conjectured (3)⇒ (1) and proved it under certain assumptions on u
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ũ(x) = ess lim sup
y→x

u(y) = lim
r↘0

ess sup
Br (x)

u

That (1)⇒ (3) was proven years ago by Nefton Pali.

Pali conjectured (3)⇒ (1) and proved it under certain assumptions on u

Blaine Lawson Restriction and Removable Singularities October 27, 2013 43 / 45



Almost Complex Manifolds and the Pali Conjecture
That (1) ⇐⇒ (2) uses the Restriction Theorem.

The equivalence of (1) and (3) uses the following.

THEOREM.

(a) Suppose u is PC(J)-plurisubharmonic. Then u ∈ L1
loc(X ) ⊂ D′(X ),

and u is distributionally J-plurisubharmonic.

(b) Suppose u ∈ D′(X ) is distributionally J-plurisubharmonic. Then
u ∈ L1

loc(X ),

and there exists a unique upper semi-continuous representative ũ
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of the L1

loc-class u which is PC(J)-plurisubharmonic. Moreover,

ũ(x) = ess lim sup
y→x

u(y) = lim
r↘0

ess sup
Br (x)

u

That (1)⇒ (3) was proven years ago by Nefton Pali.

Pali conjectured (3)⇒ (1) and proved it under certain assumptions on u
Blaine Lawson Restriction and Removable Singularities October 27, 2013 43 / 45



The Dirichlet Problem on Almost Complex Manifolds

Fix a smooth volume form λ and a continuous function f ≥ 0 on X .

Fix a domain Ω ⊂⊂ X with smooth boundary ∂Ω.

For ϕ ∈ C(∂Ω), consider the Dirichlet Problem: Find u ∈ PC(Ω) with

(i∂∂u)n = fλ (viscosity sense) on Ω and u
∣∣
∂Ω

= ϕ.

THEOREM.

(a) Uniqueness holds for the Dirichlet Problem if (X , J) supports a C2-strictly
plurisubharmonic function.

(b) Existence holds for the Dirichlet Problem if (Ω, ∂Ω) has a strictly
plurisubharmonic defining function.
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The Dirichlet Problem with Prescribed Asymptotics

Consider a conical subequation F ⊂ Sym2(Rn) which has Riesz characteristic
p, 2 ≤ p ≤ n, and is Pp-monotone.

Let Ω ⊂⊂ Rn be a domain with a smooth boundary which is both F and F̃
strictly convex.

Theorem. Suppose 0 ∈ Ω and let h ∈ C(Bε − {0}) be an F-harmonic function
with limx→0 h(x) = −∞. Fix ϕ ∈ C(∂Ω).

Existence. There exists H ∈ C(Ω− {0}) such that:

(1) H is F-harmonic on Ω− {0},

(2) H
∣∣
∂Ω

= ϕ,

(3) h(x) + c ≤ H(x) ≤ h(x) + C on a neighborhood of 0 for some
constants c,C.

Uniqueness. There is at most one function h ∈ C(Ω− {0}) satisfying (1), (2),
and (3).
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