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Abstract

A general theory of characteristic currents associated to singular connections
is developed. In particular, a Chern-Weil theory for bundle maps is introduced
and systematically studied. This theory generalizes the standard one. It asso-
ciates to a map a : E — F between bundles with connection, singular “push-
forward” and “pullback” connections on E and F' respectively. Characteristic
classes are then shown to be canonically represented by d-closed currents uni-
versally constructed from the “curvature” of these singular connections. When
rank(FE) = rank(F) = n and ¢ is an Ad-invariant polynomial on gl,, formulas of
the type

#(QF) — #(QE) = Resy Div(a) + dT

are derived, where Div(a) is a rectifiable current canonically associated to the
singular structure of , where Resy is a smooth form of classical Chern-Weil type
computed as a polynomial in the curvatures Qg, Qp of E and F', and where T'
is a canonical, functorial trangression form with coefficients in Li .. The cases
where F and F' are complex or quaternion line bundles are examined in detail,
and lead to a new proof of the Riemann-Roch Theorem for vector bundles over
algebraic curves.

Applications include: A C'®-generalization of the Poincaré-Lelong Formula
to smooth sections of any smooth vector bundle; Universal formulas for the Thom
class as an equivariant characteristic form (i.e., canonical formulas for a de Rham
representative of the Thom class of a bundle with connection); A Differentiable
Grothendieck-Riemann-Roch Theorem at the level of forms and currents (in both
the complex and spin cases). Each of these holds in the general setting of atomic
bundle maps, as introduced and studied in [HS]. A variety of formulas relating
geometry and characteristic classes are deduced as direct consequences of the

theory.
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Introduction

The aim of this paper is to lay the foundations of a theory of Chern-Weil-
Simons-type for singular connections on a smooth vector bundle. The notion
of a singular connection here is quite general, but the focus will be on certain
connections which arise naturally from bundle maps. More specifically, suppose
that E and F are smooth vector bundles with connection over a manifold X. Then
our theory associates to each homomorphism « : E — F' a constellation of d-
closed characteristic currents on X defined canonically in terms of the curvature
of the bundles and the singularities of the map «. This is essentially a “Chern-
Weil Theory for bundle maps” which in the special case where o = 0 reduces to
the usual construction for the bundles themselves.

The theory is two-sided; one can focus attention either on E or on F' (and
retrieve, when a = 0, the standard theory for E or F'). Let us suppose the
focus is on E, and fix a characteristic polynomial ¢, i.e., an Ad -invariant
polynomial on the Lie algebra of the structure group of E. Standard Chern-Weil
Theory associates to ¢ a smooth, closed differential form ¢(Qg) on X which is
defined canonically in terms of the curvature of E and which represents a certain
characteristic class ¢(E) € H}, ppam(X ) determined universally by ¢. Our theory
associates to ¢ a d-closed current ¢(2g o) which is defined in terms of curvature
and the singular structure of a, and which also represents ¢(E).

The theory also produces a canonically defined, functorial transgression cur-
rent T = T(¢, a) with the property that

$(Qp,a) — $(Qp) =

In the special case where rank(E) = rank(F), the characteristic current has




the form
#(2p,a) = $(Qp) — S

where ¢(Q2p) is the standard Chern-Weil form associated to the bundle F' and
where S is a d-closed current supported on the singularity set ¥ = {z € X :
a, is not invertible}. Thus S is canonically and functorially cohomologous to
#(QF) — ¢(S2p). In many important cases it will turn out that 3 is an oriented
submanifold (or more generally an integral cycle) and that S can be written in

the form

S = Resy[X]

where Resy is a smooth differential form on X and [¥] is the integral current
determined by integration over ¥. This residue form will be expressed in terms
of the curvatures of E' and F' by a universally determined “residue polynomial”.

Thus we obtain an equation of currents:

$(Qr) — $(Up) = Resy[S] + dT.

One can think of Resy[2] as the characteristic current associated to & : E — F
which represents the class ¢(F') — ¢(E) € H, rpam(X)-

Detailed formulas cannot, of course, be derived for arbitrary smooth bundle
maps « : B — F since the singularities can be quite pathological. Nevertheless,
the theory does apply to quite general maps. By work of the first author and
Stephen Semmes we know that under weak assumptions on a, there exist certain
associated currents with rectifiability properties, which one might call “Thom-
Porteous currents”. For generic maps these currents are standard singularity sets
defined by rank conditions on . Our general formulas will often be expressed in
terms of smooth “residue” forms paired with these currents.

The analytic assumptions we make on our bundle maps are presented in
detail here and certain important properties are established. However, the fun-
damental results concerning the existence and structure of divisors and more
general Thom-Porteous currents appear in [HS].

To give a notion of the nature of the results, we present some elementary but
important examples. The first is provided by the case where E and F' are complex
line bundles over an oriented manifold X. Suppose for simplicity that o : B — F

vanishes non-degenerately so that the divisor Div(a) is the current associated to

the oriented codimension-2 submanifold ¥ = {z € X : a, = 0}. Then for each

polynomial ¢(u) € R[u] in one indeterminate, we obtain the formula

¢(f) = ¢(e)

0 1) - o) = { A=

} Div(a) + dT

where

f=+<0r and e= LiQp

7
are the Chern-Weil representatives of the first Chern classes of F' and E respec-

B(f)—d(e)
f—e

tively (and where is the obvious polynomial in e and f.) This formula -

holds in fact for any a which is atomic, that is for which
te{a™' Da) € L.,

(i.e., for which tr(a™!Da) has an L] -extension across ¥), where D denotes the
induced connection on Hom(E, F'). (Under local trivializations of E and F, « is
represented by a complex-valued function a, and atomicity is equivalent to the

condition da/a € L{ _.) The transgression term T in (*) is given by the formula

L{M}u(aﬂm

2% J(‘_e

When ¢(u) = v and E is trivial, equation (*) represents a C'°® generalization of
the classical Poincaré-Lelong formula.

Combining this result with the kernel-calculus of Harvey and Polking [HP)
gives a new proof of the Riemann-Roch Theorem for vector bundles over algebraic
curves.

Another example of a basic formula coming from the theory is provided by
considering a section a € I'(V) of an even-dimensional vector bundle V. — X
with spin structure. Assume that o vanishes non-degenerately (or more generally
that it is atomic in the sense of [HS] below), and let Div(a) denote its divisor.
Now Clifford multiplication by « determines a bundle map a : % — §~ be-
tween the positive and negative complex spinor bundles canonically associated to
V. Consider the function on matrices ¢(A) = ch(4) 4l race {exp(5k A)} which
gives the Chern character. Suppose §* and §~ carry connections induced from

a riemannian connection on V, and let Qg+, Qy denote the curvature matrices




of these connections (with respect to local orthonormal framings of the bundles).

Then we have the formula

(++) ch (2p+) — ch (Qs-) = A(Qy) ™! Div(a) + dT

AQy)™" = dett {Smf_llfzgilv)}

is the series of differential forms on X which canonically represent, via Chern-
Weil Theory, the inverse A-class of V, and where T is a canonically defined form
with L} -coefficients.

This generalizes immediately to a®1 : fTQF — §~QF for any coefficient
bundle F with connection. Here we obtain the formula

(5 % %) ch (Qp+gr) — ch (Qp-gr) = ch(Qg)A(Qv) ! Div(a) + dT.

When Div(a) is an oriented submanifold, this equation is precisely a formulation
at the level of differential forms of the Differentiable Riemann-Roch Theo-
rem of Atiyah and Hirzebruch [AH]. Furthermore it extends this theorem from
submanifolds to oriented subcomplexes with “normal bundle”, i.e., subcomplexes
which arise as divisors of some cross-section of a bundle.

This result emerges naturally from our philosophy of considering pushfor-
ward and pullback connections under bundle rnorphisrns.t It is also noteworthy
that the ch - A~!-series in this formula falls directly out of our computational
calculus. It is not inserted with hindsight and then cleverly verified, as is often
the case.

There are formulas analogous to (# * %) when V is complex or Spin®. In the
complex case, we obtain a version of the classical Grothendieck Theorem at the
level of differential forms and currents. To be specific let j : ¥ < X be a smooth
embedding of compact oriented manifolds. Suppose that the normal bundle to
J carries an almost complex structure. If the tangent bundles TY and TX are
given connections compatible with this normal complex structure along Y, then

we have the following equation of forms and currents on X:

{Ch (Q(AevenF‘)@E) — ch (Q(AoddFt)@E)} ATodd (QTX)
= Ch(QE) A TOdd(QTy)[Y] +dT

for any vector bundle with connection E over Y. By passing to cohomology this

formula yields the commutativity of the diagram

KY) —— K(X)

ch(- )/\Todd(y)l lch( -)ATodd(X)

H*(Y)

H*(X)
Jr
where the jy represent the Gysin “wrong way”’maps in K-theory and cohomology.

In these special Clifford multiplication cases our formalism has some sim-
ilarities with Quillen’s calculus of superconnections [Q] as developed in [MQ)],
[BV], [BGS*] and elsewhere. However, even in these cases there are substantial
differences. We are concerned with convergence questions under weak hypothe-
ses and with the structure of the limiting currents. Our theory also allows for a
quite general choice of “approximation mode”. As we shall explain in a moment,
each mode is determined by a choice of an approximate one, i.e., a C'*°-function
x 1 [0,00] — [0,1] with x’ > 0, x(0) = 0 and x(oo) = 1. Choosing x(t) = 1—e~*
puts us closest to Quillen’s theory. However, choosing x with x(¢) =1fort > 1
gives approximations supported in small neighborhoods of the singular set. For
many reasons the most natural choice is x(¢) = ¢/(1 +¢). This form of approx-
imation admits nice compactifications and is closely related to the Grassmann
graph construction of MacPherson.

A third important application arises when F is the trivial line bundle with

trivial connection, and F' is real. In this case a corresponds to a cross-section of

F. This section is said to be atomic if when expressed locally as @ = (a,...,a")
it satisfies the condition

dal I

Iallj'l € Lo

forall I with [I| <n 4 Gim F. Very general elementary criteria for atomicity are
given in [HS]. (Roughly speaking, any smooth section which vanishes algebraically
on a set of the proper codimension is atomic.) As a special case, it is shown that
any real analytic section with zeros of codimension-n is atomic.

One can think of atomicity as a weak criterion which insures the existence of
a divisor, i.e., for which the graph of « can be sliced by the zero-section of F. It

is proved in [HS] that the vanishing of an atomic section a determines a unique,




d-closed current Div(a) of codimension-n, called the divisor of . This current
is integrally flat, and in particular, when its mass is finite, it is a rectifiable cycle
in the sense of Federer [F)].

Assume now that F' is either complex, or real and oriented, and that ¢ is
the top Chern polynomial or the Pfaffian respectively (If dimg F' is odd, then
¢ = 0.) We show that if « is atomic, then there exists a canonical Lj, -form T on

X such that the following generalization of the Poincaré-Lelong formula holds:
#(Q2p) — Div(a) = dT.

Furthermore for each approximation mode as above we obtain a smooth family
of connections Dy, 0 < s < oo on F such that the associated characteristic forms
75 = ¢(£2,) have the property that 7o, = ¢(Qr) and

lim 7, = Div(a).

3—+0

There is a corresponding family of smooth forms T, 0 < s < oo, such that

7y — Div(a) = d(T - T,).

and ;%Tg =Tin Li .

It is useful to view this construction universally, that is, on the total space
of the bundle itself. Let # : F — X be the bundle projection and consider the
pullback F = 7* F' with the pullback connection. Over F' there is a tautological
cross-section « of F given by a(v) = v.

This section is atomic, in fact, non-degenerate, and the theory applies. For
each approximation mode we obtain a smooth family of closed differential forms
7s; 0 < s £ oo on F, which are expressed canonically in terms of the connection,
and which represent the Thom class of F. For example when F is real

of dimension 2n and we are in the real algebraic approximation mode (where
x(t) =1—1/y/1+1), then 7, is given by the formula

Du'Du
— 1 3 -
o= (2")"\/|u|2+32pfaff<|u|2+s2 QF)
where u = (uj,...,us,) represents the tautological section and where Du is

its covariant derivative in the pullback connection (with respect to a local or-

thonormal frame field).Note that Du can be viewed invariantly as the projection

Du:TF = F@®H — F along the horizontal subspaces H of the connection. The
form above, which falls directly out of the theory, has the following remarkable
properties:
(1) 7, is d-closed,
(2) 7, extends to a smooth d-closed form on the
fibrewise compactification P(F @& R) 2 F,

(3) muts =1 where 7, denotes integration over the fibre,
(4) 1*r, = Pfaff(Qr) wherei: X — F'is the zero-section,
(5) 7, =p(r1) where pu, : F — F denotes scalar multiplication by 1,

6) limr, = [x]

In brief, 7, is a closed 2n-form on F which dies at infinity, is integrable on the
fibres and converges, as s — 0, to the current [X] represented by the zero-section.
Tt is a family of canonical representatives of the Thom class of F' (cf. [QM]). It
can be written, as in [QM], as the image of a universal class in the equivariant
cohomology of R*".

Choosing other approximation modes yields other universal formulas for the
Thom class. In particular, if x() = 1 fort > 1, then the form 7, will have
support in the tubular neighborhood X, = {v € F' : |v] < s}. In particular, it
has compact support in each fibre.

There are many other interesting applications. A particularly nice one con-
cerns the case of an endomorphism a : E — F of quaternion line bundles.
One finds a very pretty analogy with the complex line bundle case. The classifying
space for complex line bundles is the infinite complex projective space P>(C)
whose cohomology is a polynomial ring on one generator u € H Z(P=(C); Z).
The classifying space for quaternion line bundles is the infinite quaternion pro-
jective space P*°(H) whose cohomology is a polynomial ring on one generator
uw € HY(P>*(H); Z). If we are given connections on E and F' which are compat-

ible with the quaternion structure, and if a is atomic, then for each ¢ € Ru]

1
loc

¢(f) — d(e) = {?(‘—IC}—:—?(Q}Div(a)-i-dT

there exists an L -form T with the property that

F= gt 0] wnd o= gotr (03)

16x2




are the canonical representatives of the second Chern class (or instanton class)

of E and F. Note the close similarity to the complex case above.

Our general approach to singular connections comes from the following basic

observation. Let E and F' be smooth vector bundles with connections Dp and

Dp respectively over a manifold X. Then given any pair of bundle maps

a: B — F and f:F— K

we can define induced connections:

H
Da,ﬂ:ﬁoDFoa+(1~ﬂa)oDE on B

_)
Da,ﬂ____aoDEoﬁ-f-Dpo(l—aﬁ) on F.

This allows us to expand the notion of the gauge group. Namely, if we fix Dg
and D, then to every pair «, § we have the transformed connection Db on F
(and also Dt on E). When E and F' are isomorphic (and in particular of the
same rank), we can restrict to pairs with 8 = a~! and recover the usual action
of the gauge group on the space of connections.

Now it is our intention to study a, so we want to choose 8 to be naturally
adapted to @. Suppose for example that rank(E) < rank(F) and that « is
injective. Then we would choose 8 to be projection onto image(a) followed by
the inverse. If we introduce metrics on E and F (not necessarily related to the
connections), then we can choose § = (a*a)~!a*. This formula breaks down on
the singularity set ¥ = {¢ : a, is not injective}. To remedy this we approximate
f by a family f;, s > 0, as follows. Let x : [0, 00] — [0, 1] be an approximate one
as defined above, and set p(t) = x(t)/t. This is an approximate reciprocal,

Le, Tp(4) = (H)x(%) approximates 1 as s — 0. For each s > 0 we set

t 8
a*a\ o
ﬂs - p < > s
S S

and plug this into the formulas above to obtain a family of connections ﬁs on F

-
(and D, on E). Note that f, —  as s — 0 uniformly on compacta outside

F. (See Chapters IIT and IV.)

the singular set 3. Note also that if x(¢) = 1 for ¢t > 1, then A, = § outside the
“s-tubular neighborhood” U, def {veX: ata, <s}of X

Let ﬁ)s denote the curvature of the connection 1_))3, and fix an Ad-invariant
polynomial ¢ on the Lie algebra of the structure group of F. We consider the
family of smooth forms ¢(63) representing the ¢-characteristic class F'. If the

limit lim qﬁ(ﬁs) exists as a current, we say that this limit is the ¢-characteristic
8—o0

current associated to the singular “pushforward” connection D on F.
Analogous remarks and definitions hold for the singular “pullback”connection
D on E and for the case where rank(F) > rank(F'). However, we stick to the
situation above for expository reasons.

def =

Note that on the subset X — %, lim qS(?Z—)S) = ¢( Q) is the smooth character-

_)
istic form associated to the smooth connection D

x-3x. Hence, the only serious
questions concerning this limit arise at points of ¥. Now in the special case that
rank(E) = rank(F'), the connection D
and so (,b(ﬁo) = ¢(Qg). In particular, ¢(§)0) has a smooth extension across the

singular set 3. Part of the work of this paper is aimed at finding conditions on «

x-3% 1s gauge equivalent via o to Dg,

which guarantee, in the case where rank(E) < rank(F'), that (]5(?2)[]) also extends
across ¥ as a d-closed L, -form. We show for example that this always happens
in the universal case of the tautological cross-section of #* Hom(E, F') over the
total space of Hom(E, F'). Whenever this does happen we have a decomposition

of the ¢-characteristic current:
limg(Q,) = ¢(Qo)+ 5

where S is a current on X with the property that

ds =0 and supp(S) C .

Since they are both d-closed, each term in this decomposition represents a de
Rham cohomology class on X. These classes can be non-zero even when E and
F are trivial bundles. A good example is provided when « : C — F' represents
a cross-section of F'. Here the de Rham class of qb(ﬁ)o) is computed from a

universal characteristic class (related to ¢) on the compactification P(F @ C) of




The next step in the program is to determine the detailed structure of the
singular characteristic current S and to establish its independence of the choice
of approximation mode x. In doing this we consider a family of canonical trans-

gression classes T, with the property that

dT, = ¢(Qr)— $(2 ),

and give conditions on « so that T def limT, exists in the space of currents with

8—0

Lj .-coefficients. The transgression current 7' has the property that
——)
dT' = ¢(QF) — (o) =S

It is also functorial under appropriately transversal maps between manifolds.
In a large number of cases we will show that the singular characteristic

current .S can be written in the form
S = Resy[X]

where [¥] is the current associated to integration over the singular set %, and
where Resgy is a smooth differential form on X which is independent of the bundle
map «. In many cases this residue form Resy is proved to be a classical Chern-
Weil form, i.e., it is expressed as a universal Ad-invariant polynomial in the
curvatures of the given connections on F and F'. In particular this residue form
is completely determined by computing its associated cohomology class in the
universal setting.

The formula above is then written as

(1) $(r) — ¢(y) = Resy[S] + dT

where Resy is the canonical residue form and where [X] is a current canonically

determined by the singular structure of @. Formula () represents a particularly

satisfactory Chern-Weil Theorem for bundle maps. Special cases where this all

holds have been discussed above.

A nice feature of formula (}) is that it canonically relates certain characteris-

tic forms to submanifolds and subvarieties which arise in geometric constructions.

In this manner the theory can be applied to a wide range of problems. For ex-
ample, suppose we are given k + 1 sections of a complex vector bundle F', i.e., a
bundle map a : C¥*! — F with an appropriate atomicity property (cf. Ch. VI).

Assume that F' has a complex connection. Then we have a canonical formula
cn—k(Qp) =Dy = dT

between the (n — k)" Chern form of F' and the degeneracy current i, which
is intuitively defined as the set of @ € X where a(z) is not injective, i.e., where
ay(2),...,app1(x) are linearly dependent. In fact we will produce a smooth
family of mutually cohomologous, d-closed forms ¥,, 0 < s < oo, such that
Ty = cni(p) and ¥, — Dy as s — 0. A related example arises when
considering a smooth map f: M — C*+1 of an oriented riemannian n-manifold

M where n — k = 2¢ > 0. Here we obtain formulas
pe(Qr) = (=1)Cr(f) +dT

where pe(Qar) is the " Pontrjagin form of M and where Cr(f) is a current
associated to the complex critical set: {z €¢ M : df : TM Qr C —
C*t1 s not surjective}. For example if dimM = 4 and f : M — C? is an

immersion, then we have the formula
pi(Qa) = —Cr(f) +dT

where Cr(f) is the (generically finite) set of complex tangencies to F(M) C c?
taken with appropriate indices.

Another application generalizes the formula for the global Milnor current.
The “classical” formula (cf. [Fu, 14.1.5]) concerns the critical locus of a holo-
morphic map f : X — C of a complex manifold onto a complex curve, and
computes the sum of the local Milnor numbers of the singular points in terms of
global geometry.

Some interesting formulas in the theory of foliations are derived. Some in-
teresting invariants for pairs of complex structures are introduced, and geometric
formulas relating them to characteristic forms are established. It is also possible,

using this theory, to rederive and generalize formulas of Sid Webster' [W1, 2].




These and other applications will be discussed in [HL1]. It should be remarked
that Wolfson’s paper [Wo] (cf. [MW]) served as an inspiration for this work.

Much of the work in this paper is devoted to special cases of bundle maps
a: E — F. However, these cases have much wider applicability than is appar-
ent. Using only the notions of this paper, we introduce general Thom-Porteous
currents for each rank r > 0. These are cycles associated to a general bundle map
a : E — F which encode the condition that rank(a) has dropped at least r.
They occur in many contexts. Some indication is given here but full details will
appear in a separate article, [HL1].

In the sequel to this paper [HL2] the authors will study some of the more
delicate residue formulas associated to bundle maps. These formulas will simul-
taneously involve several of the degeneracy strata of the map, each paired with
" its own residue form. There will be further applications given to certain Thom-
Porteous classes, also to sections of split bundles, and to multi-foliations.

The authors would like to thank Bill Fulton for some very useful remarks.
They would especially like to thank John Zweck who carefully read the manu-
script and made a number of important suggestions and comments.

The authors would also like to thank Mrs. Janie McBane for her patient and

professional help with preparing the manuscript.
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Some Notational Conventions

We gather here some notational conventions used throughout the article.
The manifolds, bundles, bundle maps, etc. will always be C° unless otherwise
stated. If X is a manifold, £7(X) denotes the space of differential r-forms on X
with the usual C*°-topology. The topological dual space, denoted £7(X)', is the
space of r-dimensional currents with compact support on X. Similarly, D"(X)
denotes r-forms with compact support on X, and D"(X)' denotes its dual.

By Li .(X) we shall mean the space of differential forms on X with lo-
cally integrable coefficients. When X is orientable, there is a natural embedding
Li,.(X) € D*(X)' given by associating to the form ¢ the current [p](y) = [ $A%.
The exterior derivative d is well-defined in all of these spaces.

Given a Lie group G with Lie algebra g, we denote by I (or I%) the graded

algebra of Adg-invariant polynomials on g.

A connection on a vector bundle £ — X is taken here to be a differential
operator, i.e., a linear map D : T(E) — T(T*X ® E) such that D(fo) =
df @ o + fDo for all f € C®°(X). The curvature of D is the operator D?. If e is
a local frame for E, we shall write De = we and D%e = Qe where w and ) are

the connection and curvature matrices respectively.
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I. Bundle Maps and Singular Connections

1. Chern Currents — The General Approach.

Suppose F' is a complex vector bundle on a smooth real manifold X. Suppose
¥ is a closed measure zero subset of X, which will be referred to as the singular
set. Suppose D is a smooth connection on the bundle F' over X — 3, i.e. outside
the singular set 3. Such a connection D, on F over X — X, will be referred to
as a singular connection D on F over X. One objective is to compute the
“Chern currents” for the singular connection D over X. The general method can
be described as follows.

No attempt is made to give meaning to the singular connection D as a
notion of differentiation. Instead the singular connection D is understood via

approximation by smooth connections. Assume that

(1.1) D, for 0<s<oo

is a smooth family of smooth connections on the bundle F' over X with the
following property:

(1.2) Ass— 0, Dy — D, as smooth connections on F' outside the

singular set 33,

where

1.3) D =D .
(1.3) D, .

Definition 1.4. For 0 < s < oo, D, will be referred to as a smooth approxima-

tion to the singular connection D.




(1.5) (D) = ¢(2,) = det (I + 5= Q,)  (the total Chern form),

(1.6) ch(D,) = ch(,) = trace (6%93> (the Chern character),

or more generally:

(1.7) #(Ds) = () (the ¢-characteristic form),

for any polynomial ¢ on gl(n) which is invariant under the adjoint action. Here
s = dwy, — w, A w, is the curvature matrix and wy is the gauge potential
or connection matrix for D,. The gauge potential and the curvature matrix
depend on the choice of frame while a Chern form does not depend on the choice
of frame and hence is a globally defined differential form on the manifold. The
curvature operator R, = D? is a section of the vector bundle A2T* ® End(F),
while the corresponding curvature matrix {2, is a local section of A2T* ® M,(C).

The connection D, itself is a section of an affine bundle based on the vector

bundle A'T* @ End(E).
Note: Given an invariant polynomial @, such as
¢(Q) = det(I + Q) or ¢() = tre?,
it is natural to consider the “renormalized” invariant polynomial ¢ defined by
A2 = ¢(%£0)

evaluated on the curvature matrix, or alternatively to evaluate ¢ on the normal-

ized curvature

Q = Q.

i
2
Both of these notations will be employed in this paper.
Definition 1.8. Suppose D,, 0 < s < oo, is a smooth approximation to a singu-
lar connection D. If the Chern forms ¢(Ds) converge, weakly as currents on X ,

then the limit will be denoted by @((D)) and referred to as a ¢-characteristic
current for the singular connection D.

The Chern forms for the connection D, are defined in the standard manner,

CHERN CURRENTS - THE GENERAL APPROACH

In order to compile a list of desirable conditions we start with:

Condition A. The currents ¢(D,) converge to ¢((D)), weakly as currents on X.

A current which can locally be expressed as a differential form with coefhi-
cients that are Lebesgue integrable functions will be referred to as an Ll _ form.
Since, outside the singular set 3, the connections Dy converge to D as s — 0,
the ¢-characteristic forms ¢(D;) converge to the ¢-characteristic form of the
connection D. That is,
o=

(1.9) #(Dy) g #(D) g B85 0 on X — X.

The second desirable condition may, at this point, appear somewhat surpris-

ing (cf. Remark 2.35).

1
loc

Condition B. The smooth form ¢(D) lX—E
form on X which is d-closed. The extension will be denoted by ¢(D,) € LL (X)
and referred to as the L, part of the ¢-Chern current ¢(D)).

loc

on X — X extends by zero to an L

Note that if both conditions A and B are satisfied then the ¢-Chern current

splits as:

(110) #(D) = lm (D)) = 6(D,) +5,  on X,
where S is a current with

(1.11) spt(S)CE and dS =0.

This current .S will be referred to as the singular part of the ¢-Chern current
¢(D)). In summary, ¢(D,) or ¢(£2y) will always denote the Li part of the ¢-
Chern current on X, while ¢((D)) will always denote the full ¢-Chern current
(1.10).

Although, in this paper we are interested in transgressions given explicitly,

for the sake of completeness we note the following standard result and sketch it’s

proof.
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roposition 1.12. If both Conditions A .and B are satisfied then there exists a

‘ current T' satisfying:

(1.13) dT = ¢(D_)— §(D,)~S  on X,

Proof. By assumption (1.1), the family D, of connections on F converges smooth-
ly to D_ as s approaches +oco. Therefore, the standard transgression formula

1.18) for the ath of connections _jOiDiIl I)‘g to D deﬁnes a global transgression
p g oo g &
fOI‘IIl Ts satisfying

(1.14) dT, = ¢(D,) - ¢(D,).

In particular, ¢(D_) — ¢(D,) belongs to the range of the exterior derivative

operator d : D' — D' mapping the space of currents into itself.

It is a standard fact that, for an arbitrary paracompact smooth manifold,
the range of d is closed. (We note that the corresponding result for 9 is false).
Therefore ¢(D_ ) — ¢(D,) ~ S = 51'13(1] $(D_)— ¢(D,) € d D'. This standard fact
that d has closed range is part of the statement of the de Rham duality theorem.

"The proof follows, via Cech theory, from the fact that all subspaces of the infinite
product 1152, C are closed. [I

Let Reg X denote the points where ¥ is a submanifold. Note that the com-
ponents of Reg 3 may have various dimensions. Assume that integration of forms
over the various components of Reg . defines a current with finite mass on X
and denote this current by [¥]. Further assume that [%) is d-closed.

Any current with support in an oriented submanifold, say ¥, can be written
as a finite sum of currents, each of which is obtained from a current intrinsic to
Y. by taking normal derivatives and multiplying by normal one forms. By far the

simplest of the currents supported in  are those where the intrinsic current is a

smooth form 3 and no normal derivatives occur, Le., currents such as ¥[3).

Condition C. The singular part S of the Chern current #(D)) has the form
(1.15) S = Resy(D)[Z],
where Resy(D) is a d-closed smooth form on the manifold Reg X called the

residue form of the singular connection D. (Actually, it is more appropriate to

refer to Resy(D) as the residue form of the current 7' satisfying (1.13)).

CHERN CURRENTS - THE GENERAL APPROACH

Let (JS(Q], e

homogeneous of degree m). The notation

,Qm) denote the complete polarization of ¢ (assuming ¢ is

m ilh d
(1.16) plo; Q) =) $(Q,...,0,..,Q) = — (@ + to)
=1

will be useful. The standard transgression formula [BoC] for the family D, of

connections says that:
(1.17) dT, = ¢(D_)— ¢(D,),

where T, the potential (or transgression form), is given by:

(1.18) T, = / (w5 Q) dt.

.
Condition D. The transgression forms T, converge, as currents on X, to a
current T, called the transgression current or the fundamental potential,

i.e.

(1.19) T = lm 7T, :/ ¢ (ws; Q,)ds converges in D'
' s—0 0

If Condition D is satisfied, then Condition A is automatic and, under Con-
dition B, the transgression equation (1.13) is the limiting form of the standard

transgression formula (1.17).
If all four Conditions A-D are satisfied, then the formula
on X,

(1.20) $(D_) — (Do) — Resy(D)[E] = dT

is obtained as a limiting form of (1.17), where ¢(Do) € Li,.(X) is d-closed, and
the residue form Resg(D) is also d-closed.
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2. Singular Connections Determined by Bundle Maps.

Suppose that the data

(2.1)

is given; where F is a rank p complex vector bundle, F' is a rank ¢ complex
vector bundle, both over the same smooth manifold X , and that a and f# are

vector bundle maps. Also assume that E is equipped with a connection Dp and
that F is equipped with a connection Dp.

Each of the connections Dg and Dp may be transplanted to the other vector
bundle.

Lemma 2.2. Given E Z’a F and Dg, Dp, then:
B

(2.3)(Pushforward) D = aDgf + Dp(1 - af) = Dp — (Dpa — aDg)B

defines a connection on the bundle F, which will be referred to as the push
forward connection, while

(24)(Pullback) D = #Dra +(1- fa)Dp = Dy + A(Dpa — aDp)

defines a connection on the bundle E, which will be referred to as the pullback
connection.

Proof. Suppose s is a section of E and  is a smooth function. Then

(Dra — aDg)(ps) = Drpa(s) — a(dps + pDgs)
= dpa(s) + pDra(s) — dpa(s) — paDg(s) = ¢(Dra — aDg)(s).

That is,

Dpa —aDp €T (A'T* ® Hom(E, F)),

so that D and D satisfy the product rule. [

SINGULAR CONNECTIONS DETERMINED BY BUNDLE MAPS

The connections Dg and Dp induce a connection Dg on Hom(E, F') deter-

mined by requiring the product rule

Dp(a(s)) = (Du(a))(s) + a(Dgs)
for all sections s of E. That is
(2.5) Dy(a) = Dra - aDg.

—3 [
Thus the connections D and D can be rewritten in the compact form:

(2.6)(Pushforward) Dp — Dy(a)g.

of ol

(2.7)(Pullback) = Dg + Dp(a).

The singular connections we wish to study are obtained by choosing 8 to be
“the inverse of a”. This is made precise in (2.9) below. Suppose that a single
bundle map E —+ F is given and that E and F' are equipped with hermitian
metrics denoted by { , }g and { , )F respectively. Also assume that Dg is a
connection on E and that Dp is a connection on F, but do not assume that the

metrics and connections are compatible. This basic data will be denoted by:

(2.8) E — F

Let ¥ = sing « denote the closed set where the rank of « is less than max-
imal. On the complement of the singular set ¥ let K = ker o denote the kernel
subbundle of F and let T = im « denote the image or target subbundle of

F. Now we can make our choice of f.

(2.9) Let 8 denote orthogonal projection of F' onto T followed by the

inverse of the map o : K+ — T.

The transplanted connections D and D are singular because the map [ is

singular on 3.
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Deﬁnition 2.10. The singular pushforward connection associated with

a is the singular connection DonF defined by

(211) D = aDpf+ Dr(1 - af) = Dp ~ (Dpa — aDp)f = Dy — Dg(a)p.

The singular pullback connection associated with « is the singular

connection D on E defined by

(._
(212) D = fBDpa+ (1-pBa)Dg = D+ B(Dra — aDg) = Dg +B8Dp(a).
In both cases the singular map 8 is “the inverse of a” precisely defined by (2.9).
— —
Both D and D are smooth connections over the set X — ¥ which depend

on all of the data (2.8). The three distinct expressions for D (or for (5) given
in (2.11) and (2.12) will be useful in what follows.

Remark 2.13. Choices have been made in Definition 2.10. For example,
aDpf+(1—af)Dp = Dy + a(Dgf — BDy)

is an alternative singular pushforward connection on F. The choice (2.11) is
preferred. It has the property that, when « is injective

, parallel sections of E
push forward to B—parallel sections of F'

Remark 2.14. In this paper we shall only

consider the following two generic
cases where either K = 0 or 74 = 0,

The injective case is where

(2.15) rank F < rank F and E -2 F injective on X ~ X
In this case the singular map 4 is given by

(2.16) B = (a*a)la*.

The surjective case is where

(2.17)

rank £ > rank F and E -2 F surjective on X ~ ¥,
In this case the singular map 8 is given by
(2.18) B = a*(aa*)

Here E <&~ F denotes the adjoint of a.

SINGULAR CONNECTIONS DETERMINED BY BUNDLE MAPFPS

Remark 2.19. The Injective Case. This case, where
- -1
rank F < rank F' and o®a is invertible on ~ % so that = (a"a) o,
further divides into the pushforward and pullback case.

First, note that orthogonal projection Pp : F — T is given by:

(2.20) P = a(a*a) e’
so that
(2.21) af = P fa =1

. -
Injective Pushforward Case: On X — ¥ the pushforward connection D

. _ J_ .
may be written in block form with respect to =T @ T—. Since

PDFP—OZDE/j 0
(DFO’ — CI’DE)/@ =
(1— P)DpP 0

—
the pushforward connection D blocks as

aDgpp PDp(1 - P)

]l
If

(2.22)
0 (1-P)Dp(1 - P)

which is upper triangular. Therefore, for any invariant polynomial ¢,
#D) = ¢p(aDgfd(1—P)Dp(l—P)) on X ~ 3.

Since, when restricted to sections of T, aDgf8 = aDga™! is gauge equivalent to
Dpg, this proves that

D) = D on X ~ %
(2.23) $(D) = ¢(Dp @ Dru) ,

where Dy = (1 — P)Dp(1 — P) is the connection induced on T+ C F by Dp.
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Injective Pullback Case: Here we have that

(2.24) D = BDpa on the bundle E over X ~ %,

since 1 — ffa =0 on X ~ ¥. Therefore,

(—
(2.25) (D, E) is gauge equivalent to (Dr, T) on X ~ %

where Dp = PDpP is the connection induced by Dy on the subbundle T C F.

In particular,

(2.26) #(D) = §(Dr) on X ~%.

Remark 2.27. The Surjective Case. This case, where
rank F > rank ' and aco” is invertible on ~ % so that A= a*(aa*)™!

further divides into the pullback and pushforward case. First, note that orthog-
onal projection Pg. : E — K% is given by

(2.28) P = a*(aa*)a

so that

(2.29) aff =1 and fa = P

Surjective Pullback Case: Since

pDpa— PDgP  —PDg(1— P)
B(Dra — aDEg) =

0 0

) —
the pullback connection D blocks with respect to E = K1 @ I{, outside the

singular set X, as

BDra 0
(2.30) D =

(1-P)DgP  (1-P)Dg(1 - P)

SINGULAR CONNECTIONS DETERMINED BY BUNDLE MAPS

in lower triangular form. Consequently, for any invariant polynomial ¢,

(2.31) (D) = ¢(Dp®Dg) on X ~%,

Surjective Pushforward Case: Here we have that
_ﬁ
(2.32) D = aDgp on the bundle F over X ~ %,
since 1 — af =0 on X ~ 3. Therefore,
(2.33) B, F is gauge equivalent to Dyt KLY CE over X~ %

where Dy-. = PDgP is the connection induced on K+ C E by the connection

Dpg. In particular,

(2.34) $(D) = ¢(Dgr) on X~

The injective and surjective cases overlap in the equirank case

Remark 2.35. The Equirank Case. Suppose E =+ F is a bundle map of
equirank bundles so that a is invertible on X ~ X. Then, the singular pushfor-

ward connection D on F is given by:
(2.36)(Pushforward) D= aDgfi = aDga™! on X ~ 3.

That is, on X ~ ¥, the connection DonFis gauge equivalent to the connection

Dpg on E. In particular, if ¢ is any Ad-invariant polynomial on gl,, then:
(2.37) $(D) = ¢(aDpa™") = ¢(DE) on X ~ %.

Consequently, qS(ﬁ) on X ~ ¥ automatically extends to all of X as a d-closed ('™
form. This proves that (;5(-50) = ¢(Dg) on X, and so Condition B is satisfied.
Now, if furthermore Condition C is satisfied, then the Chern current (;5((3)) on
X is given by

(2.38) #(D) = ¢(Dp)+ Resy(D)[Z].
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and formula (1.13) becomes
(2.39) #(DF) — ¢(Dg) - Resy(D)[Z] = dT.

Similarly, the singular pullback connection is defined by

—

(2.40)(Pullback) D = a'Dpa

on X ~ 3%,

(—
and we see that ¢(Dy) = ¢(Dp) on X. In particular, Condition B is again
automatic. Furthermore, assuming Condition C, we have

(2.41) $(D) = ¢(Dr)+ Resy( D)),

and formula (1.13) becomes

(2.42) $(Dp) — ¢(Dr) - Resy(D)[E] = dT.

3. The Universal Case.

In this case we will discuss the pullback and pushforward connections as-
sociated with the “universal bundle map”. In particular, it will be shown that
in this case Condition B is always valid, i.e., the limiting characteristic form on
~ 3 always extends across the singular set as a d-closed L, form. Indeed we

will show that there is a certain blow up of Hom(E, F') along ¥ where (the lift
of) the limiting form always extends stoothly.

Let E and F be complex vector bundles over X with connections DEg and

Dp as above. We consider the vector bundle

7 :Hom(E, F) — X

and the pullbacks
E=7*FE and F =x*F

with their pullback connections

DE and DF

THE UNIVERSAL CASE

respectively. Over Hom(E, F) there is a tautological or universal homomor-

phism

(3.1) a:E—F

which at a point a € Hom(E,, F;) above ¢ € X is simply defined to be a. Note
that given a smooth bundle map a : E — F', i.e., a cross-section of Hom(E, F),

we have that

(3.2) o*E=F and o*F=F

as bundles with connection, and that

a*(a) = a.

(3.3)

Thus, every homomorphism is a pullback of the universal one .

Suppose now that there are metrics (-, ) p and (-, given on E and F (not
necessarily compatible with the connections), and pull them back to E and F.

Then there is also a universal adjoint homomorphism a* : F — E.

Definition 3.4. Using the universal homomorphism « we define, as in Sec-
* . P— .
tion 2. the universal pullback connection Dg(a) on E and the universal

-
pushforward connection Dp(a) on F.

The Injective Case, Assume that rank E < rank F. The singular set
¥ C Hom(E, F') of the universal homomorphism « : E — F is the complement
of Hom*(E, F) = {a € Hom(E, F) : a is injective}.

A partial desingularization of ¥ C Hom(E, F') can be used to verify Condi-
tion B. Let
(3.5)

pr : Hom™(E, F) — G,(F) be defined by pp(a) =ima, where p = rank F.

We blow up Hom(F, F') along ¥ by setting ﬁom(E,F) equal to the closure of
the graph of pr in Hom(E, F') x G,(F), namely

(3.6) Hom(E,F) = {(a,P) € Hom(E,F) x G(F) :ima C P}.
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Note that ﬁomEE,F) is a smooth submanifold of Hom(E, F) x G,(F),
since projection of Hom(E, F') onto the second factor G,(F) is a smooth fiber
bundle whose fiber above P € G,(F) is the set of all @ € Hom(E, F) with
ima C P, i.e. the fiber is Hom(E, P) (cf Lemma 9.9). The projection onto the

first factor

(3.7) p: Hom(E, F) — Hom(E, F)

E, of course, a proper map. Also, p is a diffeomorphism over Hom>(E, F'). Let
3 denote p~!(X). Above a singular point & € X, the fiber p~!(a) C 3 consist
of all pairs (a, P) with ima C P.

The universal homomorphism E - F can be lifted to Hom(E, F) from
Hom(E, F2 The lifted universal homomorphism remains singular with new sin-
gular set ¥ instead of . However, the target bundle T' over ﬁom(E,F) ~¥is
effectively desingularized. It is just the restriction to ﬁom(E, F) of the pullback
to Hom(E, F') x G,(F) of the canonical p-plane bundle over Gp(F). For sim-
plicity of notation we let T' denote the canonical bundle on Gp(F) as well as it’s

pullback to Hom(E, F') x G,(F'), as well as it’s restriction to ﬁom(E, ).

Proposition 3.8. Injective Case. Suppose rank E < rank F.

. -—_) jod < ~
B The Iift of ¢(D) {Hom(E,F)~E to Hom(E, F) ~ ¥ extends across X to all of
Hom(E, F') as the d-closed smooth form ¢(Dg @ Dyp.).

. H o et ~
) The lift of ¢( D) lHom(E,F)~E to Hom(E,F') ~ ¥ extends across 3 to all of
Hom(E, F) as the d-closed smooth form ¢(Dr).

Proof. O\Ler Hom(E, F) ~ 3, we have that gb(B) = ¢(Dg ® Dp1), by (2.23).
Lifting to Hom(E, F) ~ X, the bundles T(= py(T)) and T(= p%(T+)) extend
as smooth bundles over all of ﬁom(E, F). In addition,

(3.9) TeTt = F over Gp(F),

so that the connections Dy and Dp. induced on T and T+ by the Dy connection
are smooth on all of G,,(F') and hence on all of ﬁom(E, F) C Hom(E, F)x G,(F).
Thus ¢(Dg @ Dp.) is a d-closed C* form on all of ﬁom(E, F.

THE UNIVERSAL CASE

Similarly, by (2.26),

¢(5) = ¢(Dr) on Hom(E,F)~ %,
and when pulled back to ﬁom(E, F) ~ 3. this form extends to the pp pullback
of the smooth d-closed form ¢(Dr) over Gp(F). O

Theorem 3.10. Injective Case. The smooth forms ¢>(ﬁ) and ¢(5), on
Hom(E, F) ~ % extend by zero to be d-closed L) . forms on all of Hom(E, F').

Namely,
311)  $(Do) = pud(Dp @ Drs) and ¢(Do) = pud(Dr)

are the L -parts of the ¢-Chern currents.

loc

Proof. This follows directly from Proposition 3.8 and the following useful fact.

Proposition 3.12. Let f : M — N be a smooth proper map between oriented
manifolds where m = dim M > dim N = n. Assume that the critical set C =
{z € M : rank(df) < n} has measure zero. Fix a differential p-form ¢ on M
with Li (M) coefficients, and let fle) denote the L (p — m + n)-form on
N — f(C) obtained by integration over the fibre. Then the coeflicients of ff (7
are Li . across f(C), and thereby [ fT/) determines a current W on all of N.

Furthermore, f f Y = fu(v), the current push forward of ¢ by the map f. Hence,

() - T

Proof. We assume without loss of generality that N is an open subset of R", and
that ¥ has globally L], -coefficients. Fix e > 0 and let x. denote the characteristic
function of the open subset N, o {¢ € N : dist(z, f(C)) > €}. Set Xe = xof .

Then since f is a smooth bundle map over N, we have

in particular, we have that

f(Xe) = XE/f'l,/) for all € > 0.
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since 1 is a current of finite mass, so is f.(4). In particular, the coefficients Theorem 3.16. Surjective Case. The smooth forms ¢ lHom(E Fy~s & and
of the smooth form ffz/) on N — f(C) are L} across f(C). Now, since ' is

extend by zero to be d-closed L}, forms on all of Hom(E, ).
closed and has measure zero in M, we know that hm Xeth = i

(—.—‘
¢)( D ) ‘Hom(E,F)NE
Namely,

in the mass norm.
It follows by continuity that

1y (317)  #(Bo) = pud(Drcs) and §(Do) = pud(Dr & D)
/f@b lim /¢ lim f(Xey) = fu(4). DO

are the L] -parts of the ¢-Chern currents.

The Surjective Case. Assume that rank ' > rank F. The singular set 3 C

Hom(E, F') of the universal homomorphism « : E — F

Hom™(E,F) = {a € Hom(E, F) : a is surjective}. Let

'3 the complement of 4. Smoothing Singular Connections.

The key to smoothing a singular connection D is the Lemma 2.2 which says
that both of the formulas (2.3) and (2.4) define a connection for any pair of bundle
maps « and . Because of this Lemma it suffices to smooth the bundle map

defined by (2.9). This is most naturally accomplished with an approximation to

(3.13) pE : Hom™(E, F) — G,_(E) be defined by rE(a) = kera.

We blow up Hom(E, F') along ¥ by setting ﬁom(E,F) equal to the closure of
the graph of pp in Hom(E, F) x Gp—q(E), namely,

_ the identity map.
(3.14) Hom(E, F') = {(a, P) € Hom(E, F) x Gp—y(E)  kera D P}.

~ Definition 4.1. By an approximate one we mean a function x : [0, o] — {0, 1]
Projection p of Hom(E, F') onto the first factor Hom(E, F) is

a proper map which
is a diffeomorphism when ¥ = P H(Z) and X are excluded.

which is € on the entire closed interval [0, co] and satisfies
Lifting the universal homomorphism and the other data from Hom(E, F') to

Hom(E F) has the advantage that the kernel bundle I = kera C E defined

on Hom(E F) ~ % extends smoothly as a bundle to

x(0) =0, x(00) =1, and x' 2 0.

all of the submanifold
Hom(E F'). Infact, this extension of K is just the canonical bundle over Gp—q(E)

pulled back to Hom(E, F) x Gp—¢(F) and then restricted to Hom(E F).

Note that xs(t) = x (%) approximates 1 as s — 0. The smooth function p
with domain [0,00] defined by p(t) = $x(t) will be called an ap;l)roxnnate
reciprocal. It has the property that %p (%) = %x (%) approximates 7 as s — 0.

Given a bundle map «, we define the family §,, s > 0 of approximations
Proposition 3.15. Surjective Case. Suppose rank B > rank F.

The lift of ¢(D) lHom B Fy~n O rom(E )~ 3 extends across 3 to all of
Hom(E F) as the d-closed smootb form ¢(Dyea).

to the “inverse of & based on x by setting

(4.2) Bs = p (";2") o= 5P (gﬂ_> '
The Iift of ¢( D) lHom(E Fy~s t0 Hom(E’ F)~ ~ % extends across 3 to all of
Hom(E F') as the d-closed smooth form ¢(Dr @ Dp).

Note that, since T+ = kera*
The proof of this proposition and the next theorem are similar to the corre-

. 1
sponding proofs in the injective case and hence are omitted. (4.3) B, vanishes on T,
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whileony =a(z) € T,

(4.4) By = x(%#)e

which vanishes if € K = kera and converges to z if ¢+ € K+,
Also note that

(4.5) af, = X(%) B = X(“‘D‘)_

52

In the injective case a*a is invertible on X ~ ¥ so that § = (a*a)~'a*. Therefore

g2

(4.6) Bs = x <a;z°'>ﬁ = X (0‘“’> (e*a) ta*,

In the surjective case aa* is invertible on X ~ ¥ so that B = a*(a*a)™!. There-

fore

(4.7 Bs = Px (O;{) = a*(aa*) "1y (%—‘f)

The smooth behavior of the family of approximations f,

marized as follows.

fs to By = f is in the C° topology on X ~ X.

Across the Singular Set: The family of bundle maps f, is smooth for

0<s<+4ooon X with_ =0.In particular, convergence of 3, to B, =0isin

the C'*° topology on all of X.

R h—d
connection D (under «), namely

(4.9) D =aDpf+Dr(1—af)=Dp - (Dpa — aDg)B = Dy — Dy(a)B

is smoothed by the following smooth family Bg, of smooth connections on F,

. over the entire manifold X including & = sing o, (0 < s < +o0):

(410) D, = aDpB,+Dp(1—af,) = Dy —(Dra—aDg)B, = Dp — Dy(a)Bs.

Note that

(4.11) D_ = Dp,

=)

since f_ =0, at s = +o0.

to B can be sum-

Outside the Singular Set: The family of bundle maps f, is smooth for
0<s< +ooon X ~ % with fy = 8 and B., = 0. In particular, convergence of

Definition 4.8. The Pushforward Family BS. The singular pushforward

SMOOTHING SINGULAR CONNECTIONS

The Pullback Family D.. The singular pull back connection D (under @),

namely

(412) D = pBDpa+(1—fa)Dp = Dy + f(Dra — aDp) = Dp + fDnu(a),

(_-.- .
is smoothed by the following smooth family D, of smooth connections on K,

over the entire manifold X including ¥ = singa, (0 < s < 4o00):

(4.13) D, = f.Dra+(1—B.a)Dp = Dp+By(Dra—aDp) = Dp+ BsDu(a).

Note that

-]}
il

(4.14) Dg,

oo

since f = 0, at s = 400.

We shall adopt the following terminology. The approximate 1, denoted x,

_) (—
provides an approximation mode for the singular connection D or D based

on x. There are several specific approximation modes, or examples of an approx-

imate 1 whick have specific advantages. By far the most important is algebraic

in nature with geometric interpretation which is provided later.

Example 4.15. Algebraic Approximation Mode. Let

t
(4.16) \(1) = 111 t € [0, +oo).
Then
(4.17) x(52) = aalata+s)T = (atat ) et
and
(4.18) Bs = (a*a+s)la* = a*(aa® + %)

Therefore, we have the following.
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Pushforward in Algebraic Approximation Mode.
(4.19)

35 = Dp + (aDg — Dra) a* (aa* + 52)_1 = (SQDF + aDEa*) (aa* + 32)_1 .

Pullback in Algebraic Approximation Mode.
(4.20)

(53 =Dg+ (a*a + 32)_1 o (Dpa—aDg) = (a*a + 32)_1 (SZ_DE + a*Dpoz) .

The special formula tx'(t) = x(¢)(1 — x(¢)), or

(4'21) X’ (%) 01;2& = X (as*za) <1 - X (a‘;a)) )

which is valid in the algebraic approximation mode, is particularly useful.

Example 4.22. Transcendental Approximation Mode. Let

(4.23) x(t) = 1—-¢et t € [0, 00].

This approximate 1 does even better at approximating 1 as ¢ — o0, and roughly
speaking allows certain Chern currents to be approximated by Gaussian distri-

butions.

Example 4.24. Compact Approximation Mode. Assume y : [0,00] —
[0,1] is C°° and

(4.25) x(t) =1 for t>¢, > 0.

This approximation mode is necessary for obtaining Thom forms. Actually, 1 —y

is the cut off function which provides the compact support of the Thom form.

Remark 4.26. Special Compatibility Assumptions. Consider the case
where E -5 F' is generically an injective isometry, i.e. a*a = 1. Note that
if a*a =1 on a dense subset, it holds everywhere, and we have & = §J. Then in

the algebraic approximation mode,

- 1 * *
D, = DF+-1W'(O£DEOJ — Dpaa™),

SMOOTHING SINGULAR CONNECTIONS

since s = a*(aa”™ + 32)—1 = (a*a + 52)_10* = Tjrl—ﬁa*. Note that P =
a(e*a)le* = aa* 1 F — T = ima is orthogonal projection. In addition,

assume that Dg and Dp are compatible, i.e., assume that
aDgpa* = PDgpP.

Then

(4.27) D, = Dp— (1- P)DpP,  0<s < +oo,
cf. [BoC] page 87.

Remark 4.28. Pushforward and Pullback are Dual. Since a connection

Dy on a vector bundle V induces a connection Dy« on the dual bundle V*, the

original data
Dg Dp

(4.29) E — F

induces dual data.

(4.30) F* = B
< ) >F ( ) >E'

Here & denotes the metric-independent dual map as opposed to the metric-

dependent adjoint map a*.
Consider the induced families of connections on F' and on F™* given by

_.’
(4.31)(pushforward) D.r = Dr—(Dra—aDg)Bs
and
(_- s ~ o~
(4.32)(pullback) Ds,F‘ = Dp+ + 3 (CL'DF* — Dg- CM)

. .
where 3, = p (Osza
ie.

) ‘2—; Since this is dual to f, the two connections are dual,

7

— * LS
(4.33) (DS’F> = Dy pe.
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5. The Gauge and the Transgression.

This section collects together the explicit local formulas for the gauge po-

tential w; and the curvature matrix Q, associated with the two approximating

families of connections D, and D ,.

Suppose e is a local frame for E and f is a local frame for F', both expressed
as columns. Then the equations Dge = wpe and Dpf = wpf define gauge
potentials wg for Dg and wp for D, respectively. The map a determines a

matrix a with respect to the given frames; that is ae = af defines a matrix
_ 7 _ y P
a = (a]) by ae; = Zaffj. Similarly, #,f = bse defines the matrix b, for

J
0 < s < oo, and Af = be defines the matrix b. Note that ba is the matrix form of the
map af. Finally, let Da denote the matrix form of D(a), i.e., (D(a))(e) = (Da)f.

Lemma 5.1. Pushforward. The singular connection D has gauge potential

W given by:
(5.2) W =bwga+ (1-ba)wp —bda =wp — b(da+ awp —wga) = wp — bDa
while the approximating smooth connection Bs has gauge potential

(5.3) W = bswgpa+(1—bya)wr—byda = wp—bs(da-’r-awp—wga) =wp—b,Da.

Proof. Since D(a) = Drpa—aDpg € P(A'T*®Hom(E, F)), it suffices to compute
that

(Dra —aDg)(e) = Dr(af) — a(wge) = daf + awp f —wgaf. 0O
Lemma 5.4. Pullback. The singular connection D has gauge potential &
given by

(___
(5.5) W = awpb+ wp(l — ab) + dab = wg + (awp —wga+da)b=wg + (Da)b
while the approximating smooth connection (53 has gauge potential

—
(5.6) wy= awpbs+wp(l1—aby)+dab, = wg+(awp—wpa+da) by = wg+(Da)b,.

THE GAUGE AND THE TRANSGRESSION

Proof. The argument is analogous to the one above. [

Remark 5.7. In the injective case (rank B < rank F' and aa® invertible on

X ~ %)

(5.8) by = a*(aa*) "'y <%‘2:> .
In the surjective case (rank E > rank F' and a*a invertible on X ~ %)
(59) bs = X (_a;_za) (a*a)—la*'

In the algebraic approximation mode
(5.10) b, = a*(aa* +")7" = (a¥a+s") "

in both the injective and surjective cases. For the proofs see (4.6) and (4.7).

To summarize the notation, we let

(Daj(e) = (Da)f
(Da™)(f) = (Da")e.

Bf = be Bsf = bse
fre=tf =i
define the matricies a, a*, b, b*, by, b*, and Da, Da*. We also let the matrix

corresponding to the bundle map P, = af}, be denoted by P, the same symbol

ae=af

(5.11) a*f =a"e

as the map, and similarly for P = af.
(5.12) P, f=PFf Pf=Pf.
Our hermitian inner products define matrices

hr = ((fhf])F)

The following relationships are immediate. (We assume that rank E <

(5.13) he = ((ei ej)s)

rank F' in the formulas containing (aa*)™?!).

b* = hgb'hz' b* = hpblhy'
b, = a*(aa*)"'x (%*)

(5.16) P =ba = a*(aa*)_la P, =bea= a*(aa*)_lx (“3“;) a

(5.17) Da = da + awp —wga Da* = da* + a*wp —wpa®.

(5.14) a* = hpa'hy'
(5.15) b=a*(aa*)"!
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The notation

Note that a* aZ* L Da =0 and a* ai,, L d(Da) = 0. Since “Ws=wp—bsDa

(5.18) Xs = X (asa;) = ab, it follows that
: —a* L @L8 = (a*22 L db,) (Da)dy
will also be used. @ 3w - MsTT = (a Bar & 3)( a)%
*_0
Let a* = denote the vector field that replaces da* by a*. This is essentially which equals
the (0,1) Euler vector field in Remark 5.24 below. Let L denote the operation 2by(Da)ds = -2 ds

of contraction.

by Lemma 6.19. O

Lemma 5.19. In both the injective and the surjective cases, one has that

Remark 5.24. Euler vector fields. Let 7 : V — X be a smooth complex
vector bundle with almost complex structure J. Then there are two real Euler
vector fields on the total space of ¥, € and Je. The field € exists on any real
bundle and generates the flow ¢;(v) = e'v given by scalar multiplication by el
The field Je corresponds to the flow :(v) = e'*v = cos(t)v + sin(t)Jv. These

give rise to the complex Euler vector flelds:

g
da*

(5.20) %bsds = —a*

2
L db, 4.

Proof. Note that, in the injective case, a*g% Ld (a*(aa*)_l)

= g* ai* L (da*(aa*)”l — a*(aa*)" " (daa* + ada*)(aa*)_l) = 0.

€10 = %(e—i]e) €,1 = %(e—’riJe).

Using power series to differentiate y (‘ISL;) in by = a*(aa*)"1y (a—“‘—) yields

g2

Suppose that (fi(z),..., fa(2)) is a local framing of V defined in a coordinate

(5.20). The proof in the surjective case is similar. [J
patch U on X. Then we have a diffeomorphism Y (U) =, U x C" given by

P iti 21, ~war . Lo .
roposition 5.21. Pushforward. The transgression integrand can be ex- S zjfi(x) — (®;z1,. .., 2a). In these coordinates on V' we have that
pressed as
5} d
(5.22) o g o g flo = gy md f = 2
: ¢(5;wsds; Q) = —a"3n L¢(Q,)%, ‘ “

Notice that €; oL (dz;) = z; and €L (dz;) = 0.

Consider now a hermitian inner product h on V. Then h corresponds to a

and hence the transgression form T, is given by

°o complex antilinear isomorphism

* - 2
(523) T’_g = —/a TIB‘L(ZS(Q&)%—‘

3

h:V = V™

Since h commutes with scalar multiplication by real numbers and since ho J =

Proof. Since

—J o h, we see that under this diffeomorphism,

® —
oL (Da) = ¢(a" L T

it suffices to prove that

Sl)
o

h.(e10) = € and h.(en) = €10

where €} ; and € ; are the complex Euler vector fields on V*. Now under h, the lo-

cal framing (fi(z),...,fa(z)) of V corresponds to a local framing
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(hofi(2),..., hufn(a)) of V*. Let (zf,...,2%) be the linear complex fibre co-
ordinates on V* with respect to this framing. Then the equations above can be

rewritten as

é) . 0 _0 . 0
h*(25;> :zﬁ and h*zg—z——

To fit this discussion into the above context, let V = Hom(E, F) and note
that V* = Hom(F, E).

6. The Fundamental Case - Injective Conformal.

Assume that rank £ < rank F' and that E —% F is injective outside it’s

singular set (i.e., we are in the injective case). In addition, assume that:

(6.1)

a*a = |a*ldg

is a scalar multiple, |a|?, of the identity map on sections of E. This situation will
be referred to as the injective conformal case. It has wide applications and

forms the working hypothesis for most of the subsequent discussion in this paper.

(There is incidentally a dual “surjective conformal” case which can be treated
analogously, but the details of this will not be presented here.) In this section

we explicitly compute the curvature for the pullback and pushforward families in

this case.

The formulas will be valid for any approximate one y. For general bundle

maps it is often better to restrict to algebraic approximation mode.

However,
the general approximate one is particularly well suited to the injective conformal
case.

In the following we let R = D? denote the curvature operator associated to

a connection D. In a local frame f, we have Rf = Qf where Q is the curvature

matrix of 2-forms.

Theorem 6.2. Suppose E -2 F is injective conformal and that y is a general
2 |2
approximate one. Let y, = y (J%2L> and x\, = y' (J%g—) Consider the pullback

THE FUNDAMENTAL CASE - INJECTIVE CONFORMAL

family 53 = Dg + xsefl(%el of connections on E and the pushforward family
D.= Dp — Xs%: of connections on F. Then the curvature is given by:
s — o o

2 d|a|? a*Da
‘R 1 ]af® ST
(6.3) Ry = (1- xa) R+ xs Ro + X, 12 o TaP
a*(Da)a*(Da)
- Xs(1 - XS)——_W——’
where
o _ a'Rea (D) (1-25) (Da)
(64) RO - |Q"2 lO.’I2 9
and
— of? dla]? (Da)a*
(65) ﬁﬂ = (I_XS)RF+XSR0_X{5J;2[- |O.’l2 —Ta|—2—“
(1= x )(Da)a*(Da)a*
— As s ‘0.’14 y
where
— (Da)(Da*) 3 aa® aRpa
(6.6) Ro = <Rp T eE 1 o) T TP

: 2
Remark 6.7. The matrix forms of these equations are as follows (let |af

aa* = |af?)

*® 2
- / lal? (Da)a dla/l
(6.8) ?2—3 = (1—,\“3)QE+XSQO_X31?L_ |al? |al?
Da)a*(Da)a*
+ xs(1 - xs)(———;-—a
|al
where
o  aflpa* (Da) (1 B W) (Da®)
(69) QO - la"z la|2
and 12
— ) la}? a*(Da) dlCL
(6.10) Q, = (1—x8)QF+sto+xg%zL—‘(;|2— [a]?

a*(Da)a*(Da)
+ Xs(l - XS)—('—————’
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where

a*Qra

|al?

(6.11)

o - ) (- 252).

The matrix form of Da is

(6.12) Da = da+ awp —wga

while

(6.13) Da* = da* + a*wp —wpa*

is the matrix form of Da*. The gauges are given by

(Da)a*
|a)?

(6.14)

—
and Wy =wp — ys———

—
ws:wE+Xs |2'
a

a*Da
l

It is possible to give a straightforward verification of these curvature formula

in matrix form. This is left to the interested reader.

Proof. First note that

R = D = (Dp e D00
|a|?
~ Dy EE | (PP daf’ a*(Da)
|af? |af? Tl af?
! w dlaf® a*(Da) o o*(Da)a*(Da)
*s? el af? ’ B '

Substituting

d|al)? _ (DaMa

|of? |of?

o*(Da)
laf?

(6.15)

which follows from the conformal hypothesis, and D?a = Ry(a) where H =
Hom(E, F'), into this equation yields the equation (6.17) in the next result.

THE FUNDAMENTAL CASE - INJECTIVE CONFORMAL

Proposition 6.16. Suppose E -2 F is injective conformal

o Rula) | (D) (1- ) (Do)

H
RS - RE + XS 2 + XS 2
(6.17) || |l
g jgﬁdlalz a*(Da) 1o a*(Dcv)a*(Doz)‘
PN e T T X T

Setting xs = 1 (and hence x', = 0) yields

OZ*RH(CI’) (DOZ*) <1 —_ %) (DOZ)
o 7 o]

so that (6.17) can be written as (6.3).

(6.18) Ro = Re+

This completes the proof of the pullback portion of Theorem 6.2 except
= .
for verifying that the two formula (6.4) and (6.18) for R are equal. Since
Dg(a) = Dpa — aDg, note that
Ry(a) = D4ya = Dy(Dpa—aDg)

= DF(DFQ' - aDE) + (Dpa - CI’DE)DE

= D%a—aD% = Rpa-—aRpg.
That is,
(6.19) Rp(a) = Rrpa—aRg.
Therefore
a*Rp(a) a*Ry(a)
5.9 AR g AT
(020 [aP P P

which verifies that (6.4) and (6.18) are equivalent.

Proposition 6.21. Suppose E -2, F is injective conformal. Then

| ,'* D , D K .
F e S (DO (e
. o o
o ,midla'lz (Da)a™ (Da)a*(Da)a*
— A = el = X)) n :
laf? ol ||
Setting xs = 1 (and x, = 0) yields
Ru(a)a®

—Eo = Rp—

(6.23) | (Pa)Da’) (1 = ““") ,

af aP eF

so that (6.22) can be rewritten as (6.5).
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Proof. Similar to the pullback case
N 2
R, = B! = (pr -, 00
|af?

(D?a)a* N (Da)(Da*) dla|? (Da)a*

:D%‘_Xs

P TP T e Tap
_ o tepp dlaf? (Daja® | (Daa*(Daa®
STl e T af

Substituting

dle|*(Da)a* = —(Da)d|alta* = —(Da)(Da*)aa™ — (Da)a*(Da)a*

and D?a = Ry(a) into this formula yields (6.22). O

To complete the proof of Theorem 6.2 we must show that

Ry(a)a* Rrpaa* aRga*
24 - —_
(6.24) M aF " aP

to conclude that the two formulas (6.6) and (6.23) for ﬁo are equivalent. How-
ever, (6.24) follows immediately from (6.19). O

Remark 6.25. A third proof of Theorem 6.2 is outlined as follows. To be specific

we discuss the pullback case. First verify directly the formula for eﬁo. Then note

— —
that Dy = (1 — xs)Dr + xs Dy is a convex combination of connections and use

the general identity

(6.26) (1-2)B+2C)* = (1-2)B? +2C* — (1 - 2)(C — B)?,

valid for any pair of non commuting operators B and C' and any scalar variable

Z.

7. Curvature and the Algebraic Approximation Mode.

— —
The curvatures R, and R, are computed in this section without the con-

formal assumption, but assuming the algebraic approximation mode. Actually,

the first three propositions are valid for any approximate one y.

CURVATURE AND THE ALGEBRAIC APPROXIMATION MODE

Proposition 7.1. The connection 753 = Dg + B, Du(a) has curvature
12 B = R+ fRal)+ (D05 + .Da)s, ) (D)

———}
The connection Dy = Dp — Dy(«a)f, has curvature

(1.3) R, = Rr - Ru(a)fs+ (Da)<D(ﬂs) " m(m)m).

Recall that in the injective case 3, = X (as;’) (a*a)"'a* while in the sur-

jectivercase B, = a*(aa*)"'x (asazv* )
Proof.
2
o
R, = D= <DE +ﬂs(Da)>
= D+ A(D%) + (DB.)(Da) + fu(Da) (D)

= Rp + f.Ru(a)+ (DB, + Bs(Da)B,) (Da)
verifies (7.2). The proof of (7.3) is similar and omitted. O

Since Ry(a) = Rpa — aRg the formulas may be written as follows.

7.4. Injective Case. Set y, = X(“*") = fB,a and P, = aff,. Note that x; — 1

52

and P, — P = a(a*a)_la* outside the singular locus, as s — 0. Then
(7.5) R, = (1—xs)Rp + BRra+ <Dﬁs + ﬁs(Da)ﬂs>(Da)

(76) —ﬁs = Rr(l - Pa) + QRE/BS + (DQ’) <D/33 + ﬂ‘g(Da)ﬂS)‘

3

7.7. Surjective Case. Set \, = X (“‘f) = afly and P, = (,a. Note that

ys — 1 and P, —» P = a*(aa*) Lo outside the singular locus, as s — 0. Then

—

(7.8) R, = (1- P,)Rg + B.Rpa+ (Dﬂs + ﬂa(Da)/L)(Da).

Il

(79) 7{)3 RF(]. —/\/3)+C\’REﬂ3+(D0.’)(D,65+,H3(Da)ﬂs>-
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Lemma 7.10. In the algebraic approximation mode one has

(7.11)

DBy + B,(Da)B, = s*(s* + a*a)_l(Da*)(32 + aa®)7h

Proof. In the algebraic approximation mode

(7.12) B, = (52+a*a)—1a* = a*(sz—i—aa*)_l.

Using the first equality, we have

DB, + Bo(Da)Bs = (s* + a*a)_l(Da*) — (s + oz"‘a)_l(Doz*)oz(.s2 +a*a) o
— (s +a*a) e (Da)(s* + a*a) et + (87 + a*a) " ta¥(Da)(s? + ata) lat
= (s* + a*a) Y (Da*) (1—a(s® + a*a)—la*) .

However, 1 — o.z(s2 +o*a)a* =1~ (2 + aa*) aa* = s2(s? + aa*)"l. O

Note that in the algebraic approximation mode

af,
ﬁsa’ =

a(s* + a*a)la* = aa*(s? 4+ aa*) !

(7.13)

(s + a*a)a*a = a*(s? + aa®) la.

The following main result is an immediate consequence of 7.4, 7.7 and 7.10.

Theorem 7.14. In the algebraic approximation mode

S 2,2 * \—1 2 —
Ry=3s(s"+a"a) 'R+ (s* + a*a) 'a*Rra

(7.15) + s*(s* + a*a) " (Da*)(s? + aa*) Y (Da),
.—.—)
R, = RF52(52 + aa*)“l + O.’RE(I*(SZ + aa*)_l
(7.16) + s*(Da)(s® + a*a) ™ (Da*)(s? + aa*) L.

To compute the limit as s approaches zero, outside the singular locus, we

must distinguish between the injective and the surjective case.

UNIVERSAL FORMULAE AND A UNIVERSAL COMPACTIFICATION

Proposition 7.17. Injective Case. Let P = a(a*a)ta* denote orthogonal
projection from F' onto the target bundle T = im «, defined outside the singular

set. In the algebraic approximation mode

(7.18) Ro = (e*a)'a*Rpa + (a*a) " (Da*)(1 - P)(Da)
and
(7.19) T{)g = Rp(l—-P)+ (Da)(a*a) Y (Da*)(1 - P) + aRp(a*a) ta*

Proposition 7.20. Surjective Case. Let P = o*(aa*) 'a denote orthogonal

projection from E' to K1 where K = kera is the kernel bundle of o defined

outside the singular set. In the algebraic approximation mode

(7.21) Ry = (1= P)Rg + (1 - P)(Da*)(aa*)"'(Da) + a*(aa*) ™' Rra
and
(7.22) ﬁg = ozREa*(ozoz*)_l + (Da)(1 - P)(Doz*)(oza/"‘)'1

Of course, in the equirank case

— . — _
Ry = ¢ 'Rrpa and Ry = aRga L

(7.23)

8. Universal Formulae and a Universal Compactification.

In this section we will derive some formulas for the pullback family of con-
nections under the universal homomorphism. It will be shown that in this setting
the algebraic approximation mode has a natural “compactification”. More specif-
ically, the approximating families of connections will be shown to arise from a
simple construction which extends smoothly to a fibrewise compactification of
the space Hom(E, F'). As a consequence, we will see that in algebraic approxi-

. T . . . )
mation mode our families of connections are intimately related to MacPherson’s
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Grassmann graph construction (cf. [BFM]). This gives some philosophical

preference to this particular method of approximation.
We shall adopt the notation of Section 3 where E -+ F' denotes the universal
—
homomorphism over Hom(E, F'), D or D, denote the singular pushforward

connection on F induced by «, and D or (f)—a denote the singular pullback

connection on E induced by «a.

Definition 8.1. Using the algebraic approximation mode we define, as in Sec-

tion 4, the universal approximating families

(8) (ﬁa,s = (a*a+s*) Y (s*Dg + @*Dra) on E
ﬁ)a’s = (s’Dr + aDga*)(aa* +s2)™' on F.

Using the universal adjoint homomorphism we can define connections D o+

on E and (Ba¢ on F. In the algebraic approximation mode, we get approximating

families

R — 2 * * 2y—1

Dass = ("D + a"Dra)(a*a + s°) on E
(8.3) -
D

oty = (aa*-}-sg)“l(sQDF—f—aDEa*) on F.

Proposition 8.4. Over Hom(E, F)

— — — —
Da,sgDa‘,s on E and Da,sgDa‘g, on F.

where “2” denotes gauge equivalence.

Proof. Define h : E — E by h = a*o¢ + s%. Then ho Sa’g oh™! =
Similarly, if & : F — Fis given by h = aa*+s?, then ﬁ‘ﬁa"soﬁ‘l = _ﬁ)a,s. 0O

Remark 8.5. In terms of local frames and local coordinates this universal point

of view is equivalent to considering the matrix-valued function a defined by ae
af as an independent variable on the total space of Hom(E, F). For example,
the gauge (see (5.6) and (5.10))

(8.6) W, = wp+(da+ awp —wga)a*(aa* + s*)7!

(—.—
for D, (where a is matrix-valued function on the base manifold) can now be

considered as the gauge for 50,’3 where a is the fiber variable on Hom(E, F).

(8.9)

UNIVERSAL FORMULAE AND A UNIVERSAL COMPACTIFICATION

This universal construction can be compactified in the vertical directions of

the total space of Hom(FE, F') as follows. Let

(8.7) G (E®F) - X

denote the bundle over X whose fibre above ¢ € X is the Grassmann manifold

of p-dimensional linear subspaces of E, @ F,. There is a natural inclusion
Hom(E,F) C Go(E® F)

which associates to the homomorphism « : E; — FY its graph, Py «f graph a =
{(e,a(e)) : e € E,} C B, ® F,. Let E = 7*E and F = o*F denote the
pullbacks over G,(E @ F') of the bundles E and F. (Restricted to Hom(E, F) C
G,(E ® F) they agree with the bundles above). Then there is a tautological
or universal p-dimensional subbundle U C E & F whose fibre at a point
P € Gp(E; ® F,;) above z € X consists of the vectors in P. Over the open set
Hom(E, F) C G,(E @ F), the universal subbundle U is just the graph of the
universal homomorphism «.

Consider now the flow ¢, : E® F — FE @ F defined by

1/)3(6,]() = (Seaf)
This induces a flow U, : GL(E® F) — G,(E @ F). For each s, we let

(8.8) for s € R,

Us = ¥3(U)

denote the pullback of the universal bundle via ¥,. At a p-plane P C EQ@F, the

fibre of U, is

(US){P} = \PS({P}) = ¢3(P)'
If P lies in the open chart Hom(E, F') C Gp(E, F), i.e. P = graph «, then the
fibre of Uy is just graph %ax Assume as before that there are metrics given on E

and F. Then for each s, there is an orthogonal splitting
EQF = U, 0oU
here are induced connections on these subbundles defined as follows. Let

pry :E®F — U, and prf:EEBF—»U;L

enote the orthogonal bundle projections.
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UNIVERSAL FORMULAE AND A UNIVERSAL COMPACTIFICATION

Definition 8.11. The connections Dy, on Uy and Dyr on UL
. s 8

induced from the Proof. The first part follows from (8.12) and (8.13). The second follows from

direct sum connection on E @ F are given by
84. O

DU, = prgo DE@F and DU_L = pr;]‘ 1) DE(BF

operating o ti L : C . .
P g on sections of Us and US" respectively. Suppose now that ¢ and ¢ are adjoint-invariant polynomials on gf, and ply

respectively (where ¢ = rank(F)). Then by Theorem 8.14 we see that

¢(‘ﬁa,s) - ¢(ﬁa-,s) ~ #(Du,)

4 (Bas) = 0B ) = 9002

Now the bundles U, and U;- together with their connections are globally defined

| Over the open dense subset Hom(E, F) C G(E®F), the splitting U, @ UL
1s gauge equivalent to the splitting E @ F. Specifically. : :
maps |

consider the family of

g E®F —EgF

defined over Hom(E, F') by
(8.12) = (s
Is T S '

One sees easily that

on G,(E @ F). Consequently, we have

gs(E@{O}) = U, and gs({0}®F)

Let v, denote g, restricted to E = E ® {0} and let 4, = g, restricted to F =
{0} @ F. Straightforward calculation reveals the following import

1 Dg ¢
G O< 0 DF)O{/g =

(8.13)
(( Ba,s (e"a+5%)"s(a* Dy —DEQ*))

aa” +52) 7 s(Dpa — aDg) D.. s

Ut

3

i

Corollary 8.17. For all invariant polynomials ¢ and v as above, and for all
s> 0, the forms ¢ <(ﬁa)3> and ¥ <—D)a,3> extend smoothly to all of G,(E®F).
Consequently, integration over the fibre of the map 7 : Gp(E®F) — X gives a
well-defined smooth forms . <*ﬁa,5)> and w3 (f)’a> on X.

ant fact

Theorem 8.14 has an interesting consequence that will be useful in Chap-

ter I11.

Theorem 8.14. Over the o
. pen subset Hom(E, F) ¢ G (E® F ider
bundle isomorphisms o consider the

s B a. Yot .
v —Us and 3,:F — U} Theorem 8.18. For each s > 0 there exists a smooth form 7, on G,(E®F)

defined for s > () by

with

73(6) = se + Q’(@) and 7, =sf —-a*
¥s(£) ! (f). o(Dg)e(Dr) = c(Dy,)e(Dys)+drs on Gp(EDF).

Then

(8.15) v loD =D - —1 I
U, 0% = Doy and 570 Dyiod, = D, . foreover, on the open subset Hom(E, F') C G,(E ® F), we have

If we set 6, = v, 0 (a*ax + )71 and 53 =7s 0 (xa* + s2)1
(8.16) §7 oDy, 06, =D

, then

— —
a*,s and S“l oD 0 — Iy C(DUs) = C(DC",S) and C(DU;L) = C(DO‘>3)'
38 U;L 63 D

a,s:




BUNDLE MAPS AND SINGULAR CONNECTIONS

respect to U, @ Us‘L in the form

Dy,
A21

A12
Dy,

(8.21) Dg & Dr

(52

. _ 1 .
Since Aa; = pry o D ® D o pr, is a tensor (ie., Ao1(fo) = fAz (o)
functions f on X and smooth sections o), we see that
D A
D(y U, 12
) <yA21 DUal )

defines a smooth family of connections for 0 Sy <1 Let r

gression form for this family with respect to the total Chern polynomial. Then

(8.22) ¢(D(1)) — ¢(D(0)) = dr, on G,(E®F).

g _ . .
ince D(1) = Dg @ Dy and D(0) is upper triangular with diagonal entries Dy
Corollary 8.17. O

We finish this section with two remarks concerning the constructions above

Remark 8.23. The parameter s in (8.8) can be taken to be complex. If E

and F' are holomorphic bundles over a complex manifold, then the flow ¥, ;
5 g 18

holomorphic. The discussion and theorems continue to hold in this case with s2
replaced in the formulas by [s]2. S

R : ' i
emark 8.24. The main constructions above can be reformulated entirely in

terms of a change of metric as follows. For each s > 0, consider the metric

() = 67 { Vet () r
on E@® F over G,(E @ F). With respect to this there is an orthogonal splitting

(8.25) E®oF = UgU*

where U = Uy is the tautological subbundle. With respect to the blocking (8.25)

the direct sum connection can be written in the form: ,

(8.26) Dr® Dy = <D8U By
By Dy, )’

Proof. The direct sum connection DE @ Dr on E ® F can be blocked with

for smooth

denote the trans-

and Dy, equation (8.19) follows. The identities (8.20) are a special case of

UNIVERSAL DESINGULARIZATION

Theorem 8.27. Over the open dense subset Hom(E, F') C G,(E @ F), there

are gauge equivalences:

o]

— s -
D Da,s and Dy, = Dacys.

3
U

Proof. The flow ¥, defined above, lifts to a natural action (¥5)4 on the bundle
E @ F given by (¥,).(e, f) = (se, f). Note that

(1) (To)u(Us) = (Ta)u((¥s)'V) = U,

(2) (¥,) preserves the direct sum connection Dg @ Dy,

(3) (T)uv, (Ty)w) = (v,w), for all v, s € (Ts)s-
Hence, under the connection-preserving automorphism (U,)« of EQF, the split-
ting Us @ U;- of Theorem 8.14 is carried to the splitting U @ UL+, The result
|

now follows from Theorem 8.14.

The universal setting will play an important role in the general theory. If

one can first carry out the program, outlined in Section 1 above, in this universal

case, then the general problem reduces to finding analytic-geometric conditions

on the section
a: X — Hom(E, F) so that the current equations established in the universal

case (over Hom(E, F)) can be pulled back via a to analogous equations on X.

This first serious application of this principle will be given in Chapter III. More

general residue theorems will be proved in this manner in a subsequent paper.

9. Universal Desingularization.

In this section we show that the blow-up of Hom(E, F) introduced in §3
extends to the universal compactification Gp(E @ F) D Hom(E, F'), and that the
lifts of the limiting characteristic forms on ~ ¥ extend to all of this space as
smooth d-closed forms. In particular, Proposition 9.11 below generalizes Theo-

rems 3.10 and 3.16 to the compactification. These results give insight into and

ontrol over the limiting characteristic currents.

Let E, F and G,(E @ F) be as in the previous section. We consider the open
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Corollary 9.5. Let D & Dy be the direct sum connection on F = T @ T+
over Gp(F) obtained by projecting the pullback connection Dy onto the factors.

dense subsets

H ={PeGEOF): POF = {0} = Hom(E,F) Let ¢ and ¢ be adjoint-invariant polynomials on gl, and gl, respectively (where
R ={PeEG(EGF):PNE = {0}} = G(EQF)-%. ¢ = dim F'). By Corollary 8.17 we know that qS((ﬁa,g) and 5(_D)a,s) extend to

forms ®, and E’s defined smoothly on all of G,(E @ F). Then over the subset R,

we have that

Let H* = Hom™(E, F') denote H N R. This is the set of graphs of all injective
homomorphisms from E to F. The complement H — H* = ¥ corresponds to all

singular homomorphisms.

(9.6) lim @, = pp{¢(Dr)}  and
Note that the natural projection pp : E@®F — F determines a projection L -
(9.7) lim 8, = pp {#(DpeDr.)}

(9.1) pr R — Gu(F),

where pr is the projection (9.1).
with the property that for grapha € H* C R, we have pp(graph(a)) = image(a).
Over Gp(F') the pullback bundle F has a canonical splitting

Proof. By Theorem 8.14 we know that over the open dense subset H =
Hom(E, F) both &, = ¢(Dy,) and 3, = N(DU’_L) for all s > 0, where Dy,
and Dy are the connections defined on U, and U respectively by project-

ing D @ Dr via the orthogonal decomposition E® F = U, @ U, Applying

F=ToT

where T' is the p-dimensional tautological subbundle.

Lemma 9.2 gives the result.
Lemma 9.2. Over the subset R the decomposition E@® F = U, @ U;- extends

smoothly to s = 0, where

Our next observation is that there exists a natural blow-up éP(E G F) of

* X G,(E® F) along ¥ to which the map pr extends smoothly. It is defined as usual
(9.3) Up =pp(T) and Uy =E® pa(TH). S N _ o (p |
by taking the closure of the graph of pp in G(E @ F') X G,(F'), namely

Over the subsct IT the decomposition W& F = Us @ U* extends smoothly | (o) GE@F) = (1) € G,(B® F) x Gy(F): pr(P) T
: 7p = s Tp : C .

to s = oo, where

(9.4) Uw=E and UL =F.

Lemma 9.9. The subset C:'I,(E @ F) is a smooth submanifold. Projection onto

the first factor in G,(E & F) x G,(F") induces a projection

Proof. We show that U, extends smoothly on R to s = 0. It will suffice to (9.10) P C:'I)(E@F) — G(EQF)
prove this in the case where X = {pt} by the local triviality of the flow on the
bundle. The flow ¥, is algebraic, and at each point {P} € G,(E®F) there exists

a unique limit

which is a diffeomorphism over R.

Proof. One checks that projection onto the second factor of Gp(E® F') X Gp(F)
s a smooth fibre bundle py : ép(E ® F) — G,(F) whose fibre above II is the
et of all P with pp(P) C II. Thus, C':P(E @ F) is a submanifold. The second

assertion is obvious. [

lin%Us = pr(P).

It is a general fact that algebraic maps with well-defined limits extend alge- ,

braically. This proves the first part of the Lemma 9.2. The second is obvious. [ f
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10. On the Functoriality and Uniqueness of the Transgression.

teristic forms

Among the main results of this paper are the proofs of the existence and

¢ <BE) IHX and Z/.?(BF)

associated to the universal singular connections on the complement H* of ¥ in

HX
uniqueness of the transgression (including independence of approximation mode)

in a wide range of important cases. However, there are also some soft general

H. In general these forms do not extend smoothly across ¥.. However, the liftings

of these forms via the projection p of (9.10) do extend smoothly to H %! p~ 1 (H)
In fact they extend smoothly to all of G,(E & F)

facts concerning the transgression which are important for the theory. We present

these here together with some results on the functoriality of the transgressions

(when they exist). At the end of this section, we give a guide to hard results

about the transgression which are proved in subsequent sections.

We begin by presenting a very general construction which yields transgres-

we have

Proof. As seen from Corollary 9.5 (or directly from (9.1) and (9.3))
that 7

sions, double transgressions, etc.

Basic Construction 10.1. Let V be a vector bundle over a manifold X, and let
Dy, y € Y be a family of connections on V' smoothly parameterized by a manifold
Y. Let 7 : X x Y — X denote the projection. The the family D, canonically
determines a connection D on the pull-back bundle V = n*V as follows. Fix a
point yg € Y. Let Dg denote the canonical pull-back of the connection Dy, to ‘7,
and let A be the Hom(V/, ?)—Va.lued 1-form on X X Y which is zero on TY and
equals Ay def Dy, — Dy, on X x {y}. Then we set D =Dy + A.

Suppose that wy is the gauge of Dy in a local frame for V on X, and let &

¢ <5E) ‘HX =pp{¢(Dr)} and ¢ (BF> le = pi{¢(Dg @ Dy )}.

However, the bundles p}T, peT+, and E, together with their connections, are

defined smoothly over all of @P(E @F) O

— ~
Theorem 9.12. The smooth forms #(Dg) ’Hx and gb(_D)F) le extend by 0 to
be d-closed forms with L} -coefficients on all of G,(E@® F).

denote the gauge of D in the pull-back frame on X X Y. Then one sees easily

that at a point (@, y)

Proof. This follows directly from Proposition 9.11 because of Proposition 3.12
’ .

w:wy.

The corresponding curvature form is given by

Q = Qy + dy(wy)

Remark 9.12. Over H* = HomX(E, F'), and hence over p“l(Hx) C ép(E @
F'), the bundles U, converge smoothly to the bundle U, = p7(T), because of
Lemr'na, 9.2. This limiting bundle py(T) is a smooth bundle on all of éP(E ®F).
Despite these facts the family U, 0 < s < oo connecting Uy, = E x {0} to
go = pr(T) obviously cannot provide a smooth path from E to T over all of uation
e ' vide a - ~
»(E @ F). The problem is over % = p~!(%). For example, if rank B = 1 then 10.2) dT9(D)) = (IN)¢(D).
Us =E x {0} 0 < s < co over &, which does not equal ph(T).

where d, denotes the Y'-component of exterior differentiation.

Suppose now that v is a compact, oriented smooth arc joining points a to b

in Y. Set ' = [X x 7]. Then for any invariant polynomial ¢ we have the current

pplying the push-forward 7, to this equation we obtain

10.3) dT = $(Dy) — ¢(D,)  where T = m(T¢(D)).
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I3 . —) _)I (3 X1
Example 10.4. Let v =[a,b] CR =Y. By formula (10.2) we have that Lemma 10.7. Fix an approximation mode x, and let D, D be the families

of push-forward connection on F' and F' respectively which are constructed from

Q = Q +odt

the data above. Let Ty , and Té),s be the transgression forms associated to an

where - denotes J/0¢. Let x be the characteristic function of [a,b]. Then T can

invariant polynomial ¢. Then
be expressed as the fibre integral

Té),s = f*Td),s
T = (X¢ /¢ wt, Qt)dt

for all s > 0. (The analogous result holds for the pull-back connections on E and

E'.)

Let us return to the basic construction above, and replace v by a general
rectiflable p-chain ¥ in ¥'. Then setting I' = X x ¥ and choosing ¢ as before we
see that equation (10.2) continues to hold. Applying , to this equation gives

(10.5) dR = m,[0%¢(D)]

Proof. Fix local frames for E and F' and pull them back to local frames for E
and F'. Theh wg = f*wg and wpr = f*wp. Hence from the formulas in §6 we

see that W' = f*Ws, and so 6; = f*ﬁs for all s > 0. The result now follows

where R = m,(£4(D)). This procedure allows us for example to relate transgres-

from the universality of the formula above for the transgression. [
sion forms.

Let Ty 4, Ty , be as above, and denote by ¥ the singular set of a and by
5 = f~1(2) the singular set of o/. Then over X — % and X' — %! the limits of
Ts s and T(; , exist in the C™-topology as s — 0. From the above we have that

x-z) :

Example 10.6. Let D, ; be a 2-parameter family of connections, 0 < s < 1 and
a <t <b, with D, = D, and D, b =Dpforall 0 <s <1, Thenthetwof
transgressions Ty and Ty determined by D, ,+ and Dy ; satisfy

lim T¢ R l e = I (il—{% Ty,s

‘<
s—0 X

T1 To = dR with R // (.4)3 ot gtwst, Qs’t)dsdt

where

8 7 f — : !
Corollary 10.8. Suppose T' = lim Ty , exists in Li (X) and T' = ggr%) T, ,

3—0

$(4,B; C) = 22 4(C + 54+ tB)
Suppose now that we are given basic data

DE .DF

s=t=0

exists in L1 (X"). Then T' = f*T in the sense that f* (T IX—E) extends by

¥ !
zero across &' to be the L]l0 -form on T".

E % F
<’)E (»)F

over a manifold X, as in (2.8) above. Let f: X' — X be a smooth map, and

consider the induced data

This result has content for us since in subsequent chapters we shall give

elementary criteria which assure the hypothesis of 10.7. Specifically, these criteria
Will always be in terms of the “atomicity” of a. (See IL.1, I1.7, IIL.1 for definitions
and discussion.) Hence, the maps f with f*T" € Li,. will be those for which f*a
is atomic. This is discussed in I11.3.26.

We now consider what happens to the transgression form under a change

-DE’ DF'

!

E X,

<’)E’ (,)F’

over X', where E' = f*E, Dp/ = f*Dp, etc.

approximation mode. Let y, and x, be two approximate-ones. Then x, =

¢ (1 —t)x, is also an approximate-one for all 0 < ¢ <1, and this gives us a
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. —
2-parameter family D, s > 0 and 0 < ¢ < 1, of push-forward connections o

F. For each fixed s > 0, consider the smooth form

1
(109) Us = (Xo,; _Xl,a)/qs(aI;IDza ; Qs,t) dt
0 II. Complex Line Bundles

where x, , = x,(a*a/s?) and where a represents « in the chosen local frames fo

FE and F.

Lemma 10.10. Suppose x, and X, are two choices of approximation mode, an

let Ty 4,5 and Ty, 4,5 be the corresponding families of transgressions constructe
above using x, and x, respectively. Suppose that the limits Ty = lim T

— . . 12 —-*0 Xo,
T; gl_r% Ty, ,4,s exist in the space of currents on X. If lim U, = 6, then there i

a current R on X such that e

In this chapter we illustrate the nature of our results by examining the el-

ementary but important case of complex line bundle maps. This chapter also

presents a theory of real codimension-2 divisors which further refines the divisor

theory for atomic sections developed in Harvey-Semmes [HS]. An interesting fea-

ture of the theory in [HS] is that it even enables one to define a (codimension-2)

Ty —-Ty = dR.

divisor for certain sections which vanish on sets of real codimension-one.

This chapter contains several interesting applications. There is a C'*® gener-

alization of the classical Poincaré-Lelong formula. A new proof is given of certain

geometric formulas of Sid Webster [W1, 2, 3] in CR geometry, and some new

Proof. We apply the general form of the basic construction. Let ¥ = (0, oo] %
b

H
[0,1] and let D .+ be the above family of connections parameterized by Y. Let
Yo =1[8,00]x[0,1]]CY and I, = X x X, and define

formulas of Levine type are derived and proved. In the last section we combine

our results with the kernel-calculus of Harvey-Polking [HP] to obtain a new proof

R, = m(T,¢(D)).

of the Riemann-Roch theorem for vector bundles over algebraic curves.

Computing the right-hand-side in (10.5) gives For clarity of exposition this chapter is self contained.

dRS = 1—1’\(1 ’¢’3 - TX0:¢)5 + US'

B ; ‘ _ 1. Line Bundles With A Global Atomic Section.
y assumption gﬂ dR, = T; — Ty. The result now follows from the fact that

has closed range. [J

Consider a complex-valued smooth function g € C*°(X) on a real oriented

manifold X. In this section, the zero set of g is defined, as a codimension-2

Remark 10.11. (Uniqueness of the transgression). Lemma 10.10 gives

general criterion for establishing that, up to a coboundary urrent, under very mild assumptions on g.
?

’ e the transgression is in
ependent of the choice of approxi i i
pproximation mode. However, in the cases considered

below we obtain the much stronger result that the transgression is completely in-

dependent of approximation mode — not just up to a coboundary. These results
appear in 11.5.6, II1.3.15, and V.1.37.

Consider coordinates w = u + iv on the complex numbers C. Note that the
dw
w

cal and imaginary parts of 517; are given by

e — = o= df + 5 dloglwl, on C,
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where » to denote the current defined on all of X by (1.7). Note that if g and h are weakly

atomic, then the product gh is weakly atomic and

—vdu + udv

df =
(1.2) o

(1.8) dlgh) = 9 + %}—l as currents on X.

. . . gh g 1
The fundamental equation of complex analysis can be written as
The zero current, or zero divisor, denoted by Zg4, or Div(g), of a weakly

atomic function ¢ is defined by

dg
(1.9) 2y = d(i%ﬁ _g_>

(1.3) | d<2—jﬁ %) = [0 on C,

where [0] denotes the §-current or point mass at the origin. The objective of

this section is to give meaning to the pullback, ¢g*([0]), of the current [0]. The

strategy is to first give meaning to the pullback 5i-g* (42) = T %‘1, of the | Note that by (1.7)
potentia, ﬁ% for [0], as a current and then define the pullback g*([0]) by

Z, is a real current of codimension-2.

taking the exterior derivative of # %ﬂ.
A differential form with coefficients that are locally integrable functions will

. - ic functi . one has
be referred to as a locally integrable form or Ll -form. This is a well defined For weakly atomic functions g1, .., gy,

conecept on a smooth manifold.

(110) Zg1--~gp = Z91+“'+ng

Definition 1.4. A complex valued function g = u + v € C'OO(X) is atomic if by (1.8) above. Furthermore, one has

d
(1.5) % € L (X). (1.11) Z, = 0 if g is real valued,

The tunction g is weakly atomic if because ¢*(df) = 0 outside the zero set of g, and the zero set of g is a set of

measure zero.

X —vdu + udv : h
(1.6) g (df) = ——— € Li(X) and loglg| € LL.(X) | |
Definition 1.12. Suppose E is a smooth complex line bundle on X. A smooth
section s of E is weakly atomic if for each local frame ¢ for E the function a,
defined by s = ae, is weakly atomic. The zero current or zero divisor denoted

y Z, or Div(s), is defined to be the global current given locally by

Div(s) = d<5% i‘f)

a

See the proof of Lemma 1.2 [HS] for the fact that atomicity implies weak atom-
icity.

If g is weakly atomic, then

2mi

dg .
(1.7) T i 5= dlog|g| + 5= g*(df)

Since d (42) = 0 for || > 0, (1.8) implies that Div(s) is independent of the

2w
the zero set of g. When g is weakly atomic, the same expression igg- will be use

is well defined as a current on X, and agrees with the smooth form -2 igﬂ outsid

oice of local frame.
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The properties of zero divisors for weakly atomic sections are the same as

for zero divisors of functions. For example,
Div(s) is a real current of codimension-2,
Div(s1 ®...®s,) = Div(s;)+ -+ Div(s,),
and

Div(s) = 0 if s is a real section of the complexification of a real line bundle.

Remark. The Geometric Meaning of Atomicity. The assumption that a
function (or section) is atomic is an extremely weak hypothesis. In a later sec-
tion conditions which insure atomicity are discussed. The assumption of weakly
atomic allows codimension-1 zero sets with “folds” as well — see Corollary 7.3

and it’s proof.

Remark 1.13. Atomic Bundle Maps. Prescribing a global section s of a

complex line bundle F is a special case of prescribing a bundle map a. The

bundle map associated to s is the map a : C — F from the trivial bundle G,

which is determined by the condition that a(l) = s. Conversely, prescribing
a bundle map «
a complex line bundle, since a is a global section of the complex line bundle
Hom(E, F).

A bundle map o : E — F'is (weakly) atomic if for each pair of local frames,
e for £ and f for F', the function «, defined by ae = af, is (weakly) atomic. The
zero current or zero divisor, denoted by Z,, or Div(a) is defined to be the
global current given locally by:

da
D. 7 v = l 1 -
iv(a) G -

(L14)

If a bundle map a : E — Fis interpreted as a section a € Hom(E, F), orif a
section s of F'is interpreted as a bundle map a : C — F, the notions of atomicity
and of zero divisor remain the same. However, the main result presented below

is not the same for sections as for bundle maps (cf. Remark 6.11).

E — Fis a special case of prescribing a global section of

THE PULL BACK CONNECTION

2. The Pullback Connection.

Suppose a : E — F'is a bundle map of complex line bundles with connections

Dg and Dp respectively.
(__ . .
The pullback connection D = a0 Dp o« on E is defined outside the

singular set of . If ¢ and f are frames for E' and F, respectively, then Dge = wge,
Drf = wrf, and De = we define (local) gauge potentials, and ae = af defines

i - — (de
a (local) complex-valued function, a. Since (oz loDpo a) e = ( =+ wF) e, the

gauge potential for the pullback connection D = a~! o Dp oo is given by:

_da
(2.1) w = :%—wp.

The difference of the two gauges, %ﬁ + wr and wg, namely,

da
T = — 4+ WFp —WE,
a

is a well defined global 1-form, outside the singular set of a.

Remark 2.3. This global one form 7 has a nice interpretation involving a
considered as a section of H = Hom(E, F). The connections Dg and Dy in-
duce a connection D on the line bundle H = Hom(E, F) by the formula,

Dyo=Dpoo—ooDg, for o asection of H. One can easily compute that:
4) Dpa = 1o

lefines the same global one form 7 as (2.2).

A current is Federer flat if it can be expressed locally as a+df3 where a and

A are in L} _, ie. a and § are forms with locally Lebesgue-integrable coefficients.
o . o . N

Jsing a partition of unity it is casy to see that this is equivalent to requiring that

. c ol
e current be of the global form « 4 df, with a and 8 in Lj,..

i‘0positi011 2.5. Ifa : E — F is a weakly atomic line bundle map, then the
obal one form 7, defined locally by (2.4), extends across the singular set of a

- a well defined global current which is Federer flat.
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Proof. By Definition 1.4, the real part of 2—:; % belongs to L _, while the
da

imaginary part of 3L is the exterior derivative of —%log]a[, which also
belongs to L, . Therefore, the right hand side of (2.2) is a well defined Federer
flat current. Since % changes by a smooth one-form under a change of the frames

e and f, (2.2) defines a global Federer flat current. [J

Proposition 2.6. A bundlemap o : E — F is weakly atomic if and only if both
of the globally defined objects

(2.7) log|a|®* and Re (5%7)

belong to Li. (X).

loc

Proof. If ae = af defines a, then | a 2= L))i | a [*. Therefore, log S
B

(e,e
Li(X) < log |a|’€ IL (X) and, by applying (2.2) and (1.7) with ¢ = a, we
loc loc

see that Re g7 € L (X) <= a*(df) € L} (X). O

loc

Remark 2.8. Suppose {, )g and (, )p are hermitian inner products on E and
F' respectively. There are smooth global one forms ag and ar measuring the
compatibility of the connections and the metrics. If p = {e;e)E and ¢ = (f, f)F,
then

(2.9) ap = —?p +wp +op, ap = —;q— +wF + @p.

Therefore, the imaginary part of 2%”.7’ can be expressed as

(2.10) 2Im =7 = — 5 (dlog | a | +arp —ap).

3. Smoothing the Pullback Connection.

Let « : E — F be a map of hermitian line bundles with connections Dg
and D, and metrics {, )p and { , ), respectively, and let y : [0, 00] — [0, 1]
be

(.ﬁ
D =a"'oDroaon E can be approximated by a smooth family of connections

any choice of approximate one. (See 1.4.1). Then the pullback connection

(3.1) D, = fy0Dpoa+(l—f,a)o Dy

SMOOTHING THE PULL BACK CONNECTION

. . ~1 :
where the approximations 8, to @™ are given by

B, = X(ag;a) a L
E — E multiplies a section of E by a globally

(3.2)

The bundle map a*a |
defined function. If e and f are frames for E and F respectively, if p = (e, e E,
q={f,f)r, and if ce = af, then o™ f = (aq/p)e. Therefore (cf. (2.9)),

. 2
(a*a)e = (Jal g/p)e, or a’a'=|al.

Consequently the bundle map x (“;“) is just multiplication by the function
(3.3) X, =

This function x, will be called the approximation to one based on x. Since

v(0) = 0, we see that

(53 converges smoothly to Dg as s — +o0.

Since y(oo) = 1, we see that outside the singular set of a,

—
— -1 /
D, converges smoothly to Do = a” Dpa as s— 0.

The gauge potential for 55, denoted by wy, is given by

da
(3.4) wy, = wp+ 7y, where 7 = —a—-f-wp—wE,

while the curvature is given by

Q, = dws.

Example 3.5. Algebraic approximation mode. If x(t) =t/(1 + 1), then
\ - lalPq/p
VT TP/t

xample 3.6. Transcendental approximation mode. If x(t)=1-e

XS

—t

3
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4. Chern Currents.

Recall that the Chern form ¢(D) of a complex line bundle E with connection |

D is defined as follows. Each local frame e for F defines a (Iocal) 1-form w b
the equation

The form w is called the gauge potential

e’ = be is another local frame for E, then

b N , _db
b W e orw_?

D¢’ + w.

Since ﬂ is d-closed the local expressions dw and dw' agree on overlapping domains

and so the curvature form
Q = dw
is a globally defined 2-form on M.

Given a polynomial #(t) € C[t] in one indeterminate, the ¢-Chern form,

¢(D), is defined by
(D) = ().
—i-t then the normalized curvature ¢

It ¢(2) ¢(D) =
Chern form. In the following formulae, it is convenient to let
1 = -0

denote the first Chern form.

Now suppose @ : E — Fis a map of complex hermitian line bundles with

connections Dy and Dp, respectively, and set ¥ — {’L € X :a, =0}. Suppose

—
D, is the smoothing of the pullback connection &= o Dp o ba,sed on the

I ¢(D,)

approximate-one y. Let Q, denote the curvature of the connection D

has a weak limit as currents, then this limit must be of the form

(4.1) H(D) = lim¢(0,) =

3—0

¢ (QF)+ S,

where S is a current with support in the singular set of «, since D converges
o Dr o a outside X and o

d-closed form across 3.

to a~ °©Dpoa) = ¢(Dr) extends as a smooth

Q is called the ﬁrstk

Definition 4.2. If the limit in (4.1) exists weakly in the space of currents on
e 2.

X, this limit </>((5)) = ¢(Qp) + S will be called the ¢-Chern current of the

pullback connection on F.

5. The Transgression Current.

(.——
The standard transgression formula for the family of connections D, says

that

dT, = ¢(QE) — ¢(Qs),

(5.1)

where

T, / ¢ (we; Q) dt,

. _ Q) =
and where ¢(a ; ) is defined by 1.1.16. Note that if ¢(§2) = Q", then o ; 1)1 :
( na§)" 1. If the limit hm T, exist weakly as currents, then this limit will be calle

=0

T.
the ¢- transgressxon current or the ¢-potential and will be denoted by Tg.

Lemma 5.2.

(s (Qr = QE)x.) — ¢(S25)

QF—QE

T, =
here T is given by (2.2) above.

proof. Since both sides of (5.3) are smooth across the singular set of a, 1t suffices

‘k~verify (5.3) on the set where a # 0. By (3.4), we have

!

4) “r= T
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Therefore,

7. = [ e

= / ¢ (rx! 5 Qe+ (Qr — Qp)x, — 7dyx,) dt

= T/ QS(X: ; QE’*‘(QF“QE)XL) dt

since 7 A 7 = 0. Now under the change of variables z = y, we have

[¢]
$(1;

x!

/g b0 5 U+ (U — Qp)y,) dt = O+ (O — Op)a) da.

0

This integral equals ¢ (Qg + (Qr — Qp)z) “divided by”? Qp — QE, yielding

Xs

(5.3). O

Theorem 5.6. Suppose aw: E — F is a bundle map of hermitian line bundles

with connections Dg and DF respectively. Suppose (l_)s is a smoothing of the

pullback connection D =a!

oDrpoa basedon the approximate one y. Let
¢(t) € C[t] be any polynomial. Then if the bundle map a is weakly atomic, the

¢-transgression current Ty exists. In f;

onverges to Ty in the Federer flat
topology and .

(5.7)

In particular, Ty is independent trics, (, Yp and (, )p, and of

the choice of smoothing family

one x).

ént of the choice of approximate

Proof. By (5.3) T, is equal t
smooth forms and whose cons
for k > 1,

mial in x_ whose coefficients are

nce it suffices to prove that

THE TRANSGRESSION CURRENT

in the Federer flat topology, as s approaches zero. Observe now that the prop-
erties required of x(t) in 1.4.1 are also valid for x(t)*. Therefore, it suffices to
consider the case k = 1.

By the hypothesis that a is weakly atomic we see that Re 27T17‘ € LIDC(X)

Therefore, by the Lebesgue Dominated Convergence Theorem

Re 51 converges to Rezb7 in Lj,.(X),

27rz

as s approaches zero. It remains to prove the analogous statement for the imag-
inary part.

To do this we first note that by the hypothesis on o we have log | a |*€
Li . (X) where | a |?=| a |* ¢/p. By equation (2.10), Im 5
differ by a (global) smooth form. Therefore, it suffices to show that

s and —7-dlog | a |

x.dlog | a|> converges to dlog|a |’

in the Federer flat topology. Set v =| a |* and note that if h(t) satisfies

then by (3.3)

Let us choose

h(t) =

h(g) = /"’%X(t)ﬂ - /01,\(t)d—t+/£x(t)?

/w——/ (1= x(t
[

d
+10g5‘%

oo o dt
/ (1= x()) ————logs +log<,o+/ (l—x(t))—t—.

2
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Consequently,

> dt
(5.8) hs = logp + (1—x(t)) 7

has the same exterior derivative as h (;‘%), ie.

(5.9) dhy = x, dloge.

(One can also easily verify directly that (5.8) implies (5.9)).
1

loc

Since h, decreases to logy € Li (X), the Monotone Convergence Theorem

1
loc

implies that h, converges to logy in L} (X). Hence dhs; = x,dlog converges

to dlog ¢ in the Federer flat topology. [

Remark. This proof could have been shortened slightly by only considering

unitary frames, i.e., p = ¢ = 1. Then | a |*=| a [?, for example.

Remark 5.10. Functoriality of the Transgression Current. Suppose f :
X' — X is a smooth map between manifolds, and let E' = f*E, Dp =
[*Dp, F' = f*F,... ,a' = f*a be the pullbacks of the line bundles, connections,
etc. given over X. Fix any approximate one x. Then the family of smooth
transgression forms T for this induced family is given by T} = f*T; for s > 0 (cf.
1.5.25). Suppose now that a is weakly atomic and assume that the induced section
o' = f*a is also weakly atomic. Then the transgression currents 7' = liné T, and

T = lil’f(l) T! satisfy
83—

(5.11) T = f*T

whenever this equation makes sense. For example suppose a and o' are both
atomic, and let X = {¢ € X 1 a, =0} and ' = {a’ € X' : !, = 0} = f~1(D).
In this case T' and T" are L;, -extensions of well defined, smooth forms in X — &
and X' — %' across ¥ and X' respectively. Equation (5.11) asserts the equality of

two smooth forms in X' — X' (which possess an L = extension to X').

74

THE MAIN RESULTS - FIRST VERSION

6. The Main Results—First Version.

— L e .
The ¢-Chern current ¢(( D)) for the pullback connection D =a™ o Dpoa

can be computed from Theorem 5.6.

Theorem 6.1. Pullback. Under the hypotheses of Theorem 5.6, the ¢-Chern
current, 45((‘5)), of the pull back connection D=0a"lo Dr o a exists (in fact,

¢(((5)) = lirréqS((Eg) exists in the Federer flat topology) and equals:

62)  6(D) = Ime(D) = g0 + oL ERE iy

Furthermore,
—
¢(D) - 6(Qp) = —dTy
or equivalently,

(6.3) H(r) — $(25) + 27ri¢(9513 = ?Z(SE) Div(a) = —dTy,

In particular, ¢(t) = ?zi?t yields

(6.4) LQp— £Qp + Div(a) = 7 dr,
where
da .
(6.5) T = — +wp—wg Isa global current.
a

Proof. To begin note that (6.4) is just the special case of (6.3) where ¢(t) = %t

and Ty = #7. This special case, (6.4), is obtained by taking the exterior

derivative of (6.5). Define

=y $(2r) — $(Q2g)
(6.6) Resg(D) = —2m a0,

Then (5.7) says that Ty = 527 R.esd,((ﬁ). Taking the exterior derivative of this
equation and using (6.4) yields the general case (6.3).
Observe now that by (5.1) the ¢-Chern current is given by

#(D) = lmg(D,) = ¢(Qp) - dTp.

Since the ¢-Chern current exists, d)(((ﬁ)) = ¢(Qr) + 5 (see Definition 4.2). Now
(6.3) implies that S = — Resdﬁ)Div(a), completing the proof of (6.2). O
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Remark 6.7. Pushforward. The pushforward connection on F'

1

—
D =

aoDgoa™

can be analyzed in a similar manner, where

—

D,

aoDgBs+ Dpo(l—af,)

provides the smoothing family (based on y as before). The local gauge potential

for Bg is given by

—
We = Wp—TX,,

with the same 7 given by (6.5) above. The curvature of 33 is given by
Qy = QF—(QF—QE) X, -*—’i'dX5
If o is atomic then the ¢-Chern current exists and is given by

s(D) = $(2r) = () 1y,

#(Qp) — 27 Sy—c

Furthermore

$(D) - ¢(2r)

with the same transgression current Ty as above. Combining these equations

dT,

gives a second derivation of equation (6.3).

Remark 6.8. Atomic Sections. Suppose s is a global weakly atomic section

of a complex line bundle F' with connection Dp. Then the one form 7, defined
by Dps = 7s outside the zero set of s, extends as a Federer flat current, also
denoted by 7.

1 _An—1
= __ZWiTQF .

Note that 7 = % 4+wp, andlet T
Then as in (5.7) with E = C trivial and ¢(t) = (55¢)" we have
(6.9) —dT = Q% — Q%7 Div(a).
This formula can be verified directly by differentiating T' using the fact that

1
T 2m dr

(6.10) Qp — Div(a).

Note that (6.10) is the case of (6.9) when n = 1.

THE MAIN RESULTS - FIRST VERSION

Remark 6.11. Bundle Maps Versus Sections. If a bundle map o : £ — F
is considered to be a section of H = Hom(E, F'), then

ﬁH = QF —QE
and (6.9) becomes

~ ~ n ~ ~ n—1
(6.12) —dT = (QF - QE> - (QF - QE)
This is not the formula (6.3) of the Main Theorem. That is, Theorem 6.1 for |

bundle maps is not a special case of the result (6.12) for cross-sections.

Div(a).

Remark 6.13. Global self intersections. Considerations purely of local anal-
ysis might tempt one to define
[a=0]Ada = [a=0]Ada = 0,
since [a = 0] = &y(a)4daAda. However, this would imply that Div(a)ADiv(a) = !
0, i.e., that all global self intersections vanish. In this context note the following.
First, the limit
imQ, = Qp — Div(a),

3—0

does not involve the connection Dg on K. Moreover,

lim Q2 =

3—0

ﬁ% — (ﬁE + ﬁp) A DiV(a'),
so that formally

Div(a) - Div(a) (ﬁp - QE> - Div(a),

which need not be zero.

Remark 6.14. Residues. Formula (5.7) expresses the transgression current as
Ty = %‘1 A B+« where 3 and v are smooth forms. Whenever we are given such a
decomposition, we can define the residue of Ty to be the form 24 la:O' (See

Chapter III, Section 1.) This justifies the terminology adopted in (6.6).
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Remark 6.15. Approximate identities and safety disks. Given any ap-
proximate one y as in 1.4.1, an approximate identity [0]; can be constructed for
the origin in the complex plane. Let x, = x (%;) Define [0]; = (2%” %X,)-
Then [0], = d (3% x,) = —% @y, = sy’ (1F) 28 = L (18f) { detn,
where () = x'(1).

Let p15 : C — C be the map p,(2) = z/s. Then [0], = pf (L ¢(lal?) -;— da A da)
is the standard formula for the approximate identity at the origin in C
based on the function L Lp(]a|2). Note that [ 1¢(|a|?)sdada =

fooo 027r71r o(r?)rdrdf = fo )2rdr = x(00) — x(0) = 1. The standard fact
about approximate identities is that [0]s converges to [0].

For example, if x(t) = 147, then [0]. = i (le IQii‘i‘)lz while if x(¢) =1—-e7t,
then [0]. = %e_%ﬁ—;—d—“—e’\zﬂ.

Since 2—%%){{ converges to 2—1;%“ in I _(C), it’s exterior derivative [0]c must
converge to d (2—};%) as currents. This proves the following equation of currents

on C:
(6.16) d (# 515) [0]

Consider now the function
1 for t>1
xt) = {o for 0<t<1.
Then the associated current [0]. is given on a test function ¢ by the mean value
[0]e(¥) = 2“ W(ee’®)df. Again one obtains a proof of (6.16) using this choice
of x. In fact thls is just the classical proof of the Cauchy Integral formula for a
disk, based on the usual safety disk argument. However, non-smooth functions
of this type are not acceptable as approximate ones in our theory. We
can explain this as follows. Let x be any (smooth) approximate one and let [0],

be the associated current as above. Then for each k > 1 we have that

1
k 1
(6.17) }111(1) . [0]E = —k[O].

Using this formula, one can give a direct proof of the formula for the ¢-Chern
current ¢(D) of the pullback connection. However, for the discontinuous choice
of x given above we have x¥ = x so that (6.17) is not valid. Thus the classical
geometric arguments employing a “safety disk” or “tubular neighborhood” of

a = 0 can not be used to compute general Chern currents.

CONDITIONS WHICH INSURE ATOMICITY

As it stands the results of this section are incomplete. Two important ad-
ditional ingredients are needed to provide more substance. First, we will give
geometric conditions which ensure that a section is atomic or (equivalently) that
a bundle map is atomic. Then we will discuss conditions which ensure that the

divisor is just integration over “submanifolds with multiplicities”.

7. Conditions Which Insure Atomicity.

Let E be a complex line bundle over a connected manifold X. In this section
we give some easily verified geometric conditions on a section s of F, which
guarantee that s is atomic. The results apply immediately to maps between line
bundles. We shall consider three cases: where s is holomorphic, real analytic and
.

For the first result we assume that F is a holomorphic line bundle over a

complex manifold X.

Proposition 7.1. The Holomorphic Case. A holomorphic section s is atomic

if (and only if) s is not identically zero.

First Proof. Suppose s is a non-trivial holomorphic section. Choose a local
holomorphic frame e so that s = ae defines a local holomorphic function a.
Then log |a|* is pluri-subliarmonic. It is a standard fact that log|a| and all first
partial derivatives are locally integrable. In particular, %‘i = dlog|al? is locally

integrable, so that s is atomic. O

It is remarkable that a similar result holds in the real analytic case. Here we

must, of course assume that £ and X are real analytic.

Theorem 7.2. (Harvey-Semmes [HS]) Suppose ¢ is a (complex valued) real
analytic function.

a) If g is not identically zero, then log|g| € L{. _.

b) If codimg ¢~'(0) > 2, then -—-‘1 €Ll

e (1€, g is atomic).

Corollary 7.3. The Real Analytic Case. A real analytic section s is weakly

atomic if (and only if) s is not identically zero.
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Proof of Corollary. Consider a complex-valued real analytic function g. Lo-
cally g can be factored into prime factors. It suffices to show that each factor is
weakly atomic because of (1.10). Thus we may assume that ¢ is prime and that
the real codimension of ¢~!(0) is one by 7.2.a. By 7.2.b it suffices to prove that
g*(df) € L .. Let § denote the holomorphic extension of g to the complexifica-
tion of the domain of g. Then § is prime so that its zero set Z is irreducible. In
particular, if & vanishes on Z then % is a multiple of §. Now let ¢ = u +4v with u,
v real-valued. Since u vanishes on ¢7'(0) and ¢~!(0) has codimension-one, the
holomorphic extension @ of u must vanish on Z. Thus @ is a multiple of g, say
@ = ¢§. Therefore (1—¢)u = i¢v, which implies that either u is a multiple of v or
v is a multiple of u. The multiple must be a unit since ¢ is prime. Consequently,
replacing g by a unit times g we may assume that g is real-valued. Therefore
g*(d#) is identically zero and hence it is certainly in L{, . (note that Div, = 0 by
(1.7) and (1.9)). O

Second Proof of Proposition 7.1. Apply Corollary 7.3. [

Theorem 7.2 follows from the next result. This result can be considered
the C°° case. Under very mild and geometrically reasonable restrictions on the

vanishing of a smooth function g, it insures that g is atomic.

Lemma 7.4. C* Case. (Harvey-Semmes [HS]) Suppose ¢ € C®(U) is a
complex-valued function defined on an open subset U in R™ and set Z = {zeU :
g(z) = 0}. Assume that:

(i) g vanishes algebraically, i.e., for each compact set I C U there

exist constants ¢ > 0 and N such that:
lg(z)| > edist(z, Z)N for all zeK.

(i) Z is of Minkowski codimension strictly greater than one in
the sense that for each compact set K C U there exists an € > ()
such that the upper Minkowski content of Z N K in dimension

m — 1 — € is finite.

Then g is atomic. In fact, %‘1 is locally integrable.
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Proof of Theorem 7.2. If g is real analytic, then g must vanish algebraically.
This important result is due to Lojasiewicz [L]. Furthermore, an irreducible real-
analytic subvariety has Minkowski codimension equal to its codimension as a

real-analytic variety. See, for example, Federer [F] for a proof. O

8. Divisors of Atomic Sections.

Suppose Z is the zero set of a smooth function g or a smooth section s. Let
RegZ = {z:Z is a codimension-2 Lipschitz submanifold near w}
denote the set of of regular points of Z, and let
SingZ = Z ~RegZ
denote the set of singular points. Let {Z;} denote the family of connected

components of Reg Z.

Proposition 8.1. Suppose that s is an atomic section. Then

(8.2) Div(s) = an[Zj], on X ~ SingZ
j=1

where each nj Is an integer and where [Z;] is the current defined by choosing a

continuous orientation on Z;.

Remark 8.3. Orientation. First note that if nj = 0 then Z; need not be
orientable. We shall adopt the following conventions. The orientation of a com-
ponent Z; with nj # 0 is chosen so that n; > 0 is positive except in the following

two cases.
Each zero-dimensional submanifold, (i.e., a point p) is canonically oriented

by defining [p] to be “evaluation of degree-zero forms at the point p.” Thus
Point Divisors Div(s) = an [pj']——z m;[p;]  with n; >0 and m; > 0.
If X is a complex manifold then each complex submanifold of X has a

canonical orientation. Thus if each Z; is a complex submanifold, then

Holomorphic Divisors
Div(s) = Y n;(2}]—m[2;] withn; >0 andm; > 0.
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Proof of 8.1. A current of the form o 4+ df with a, 8 € Ly, is said to be
Federer flat. These currents have many exciting properties. First, note that
if ¢ is atomic then %9: has been defined as a Federer flat current. Therefore the
exterior derivative is also Federer flat. Thus Div(g) is a Federer flat current. In
a neighborhood of a regular point of Z, the codimension-two flat current Div(g)
is supported in a codimension-two submanifold Z. By a theorem of Federer [F]
this implies that the current Div(g) must be of the form ¢[Z] where ¢ is an Li.
function on Z. However, since Div(g) is d-closed, the function ¢ must be d-closed
on M and hence a constant. Thus Div(g) = c[Z] near a regular point of Z.

To show that c¢ is an integer first consider the case where the ambient mani-
fold is of dimension two. Then Div(g) = ¢[p] where p is a point. In this case it is
standard that ¢ is the multiplicity of g considered as a map from R* to R?. The
general case can be reduced to this case by considering real two-planes transverse

to Z. O

Proposition 8.4. Suppose that s is an atomic section. Assume that the singular

set of the zeros of s is neglible in the sense that the codimension-2 Hausdorff

measure of Sing Z vanishes. Assume also that the current ) n;[Z;] given by

(8.2) on X ~ Sing Z has locally finite mass in X. Then

Div(s) = an[Zj] on X.

Proof. The mass of Y n;[Z;] on a compact set K C X is ) |n;|vol(Z; N K)
which is assumed to be finite. Thus, the current ) | n;[Z;] has a natural extension
by zero to all of X. This current Y n;[Z;] on X is Federer flat (see [F]). Since
Div(s) is Federer flat, the difference Div(s) — ) n;[Z;] is also a Federer fla
current. This current is of codimension two and supported in the set Sing Z
whose Hausdorff measure in codimension-2 is zero. A useful theorem of Federer

[F; 4.1.20] says that this difference must vanish. O
If g is a real analytic function, then (see [F] for example)

at most a finite number of components Z; of Reg Z,

intersect a given compact set K C X,
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and

each Z; has locally finite volume in X.

In particular }3n;[Z;] has locally finite mass in X, for any choice of integer
multiplicities n; associated with the oriented components Z; of Reg Zg4. Therefore

the previous Proposition applies to prove the following.

Corollary 8.5. If s is a real analytic section which is not identically zero, then

(8.6) Div(s) = Z n;jlZ,;] is a real analytic chain of real codimension-2.

In applications, it is important to remember that many of the components of
the manifold points of the zero set of g make no contribution to the zero divisor
of g. For example, any component of real codimension-one does not occur on the
right hand side of (8.6). Furthermore, no component which is non-orientable can

appear on the right hand side of (8.6), even if it has codimension-2.

9. The Main Results—Second Version.

The main results are obtained by summarizing the previous sections. For

simplicity attention is restricted to the polynomial ((t) = 53—t yielding the first

w
Chern form.

Theorem 9.1. C* Case. Suppose s is a smooth section of a complex line
bundle E and let D be a smooth connection on E. Assume the following:

(i) The section s vanishes algebraically (i.e., to finite order).

(i1) The zero set Z of s has Minkowski codimension greater than one.
(i) The set Sing Z has Hausdorff measure zero in codimension-two.
(iv) The current Div(s) has locally finite mass.
Then Div(s) is of the 1?01‘{11 Div(s) = ) n;[Z;], where the n;’s are integers and the

Z;’s are oriented codimension-2 components of Reg Z; and we have the equation

2) s dr = an[zj]—cl(DE)

vhere 1 is the locally integrable 1-form defined by Ds = Ts.
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Theorem 9.3. Real-Analytic Case. Suppose s is a real analytic section of
a complex line bundle E with smooth connection D over a connected manifold
X. If s is not identically zero, then Dgs = 7s defines a Federer flat current 7 of

degree one on X such that

(9.4) s dr = Y nj[%;] - (D),

where Y n;[Z;] = Div(s) and Z,, Z,,-- are the irreducible components of the

zero set which are orientable and of real codimension-two.

The holomorphic case is a subcase of the real analytic case. However, it is
well known and much easier to establish. Just recall (Proposition 7.1) that s is
atomic and that Div(s) = ) n;[Z;] is a holomorphic chain.

On a holomorphic line bundle E each hermitian metric <, >p determines
a hermitian connection as follows. Given a local holomorphic frame e, let h =

le]% =< e,e >p, and set

w = Ologh = ?ﬁ
h

If ¢’ = ce is another local holomorphic frame, then &' = |c|?h and hence w' =
Ologh! =w + %. Hence, our metric on E determines a global connection D by
requiring that De = we. The next result is sometimes called the Poincaré-Lelong

formula.
Theorem 9.5. Holomorphic Case. Suppose s is a holomorphic section of a

holomorphic line bundle E with hermitian metric <, >p and associated connec-

tion D. Then

(9.6) 7 00loglsly = ) n;lZ,] - (D).

Proof. It suffices to show that the global 1-form 7 defined by Ds = 7s satisfies
7 = 0log|s|%. By (6.9), 7 = % +w. On the other hand, dlog s> = dlog |a|2h =
da 1 o since s = af, |s|% = |a*h, h = |f|%, and w = logh. O
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Remark 9.7. Smooth Sections with Poles. Each of the three results: 1)
Theorem 9.1 for C* sections, 2) Theorem 9.3 for real analytic sections, and
3) Theorem 9.5 for holomorphic sections can be easily generalized to include
“meromorphic” sections. That is, if a section s can be expressed locally as je
where both a and b satisfy the same hypothesis as in one of these three results,
then the conclusion holds with Div(s) = Div(a) — Div(b) since the logarithmic
derivative of § equals %“ - %

In the real analytic case (as in the holomorphic case) a and b are uniquely
determined up to a never vanishing factor by requiring that ¢ and b be relatively
prime. Consequently, the codimension-2 zero divisor ) n;[Z;],n; € Z and

the codimension-2 polar divisor ) m;[P;],m; € Z are each globally defined.

Theorem 9.8. Suppose s is a (real-analytic) meromorphic section of a complex

line bundle E with smooth connection Dg. Then we have the equation

(99) #dT = Z”j[zj]—zmj[Pj]_cl(DE)-

where the n;’s and mj’s are integers and where the Z;’s and P;’s are oriented

components of real codimension-2 of the zero set and polar set of s respectively.

Remark 9.10. The Argument Principle. Applications will be discussed
elsewhere. However, we briefly mention the simplest possible case of Theorem 9.1.
Suppose the bundle F is trivial and D = d is the trivial flat connection so that
c1(Dg) = 0: Then a section is just a smooth complex-valued function f on the
manifold X. Suppose X is a real oriented surface, compact with boundary 0X.
Further, assume that f has isolated zeros of finite order n; at p; for y =1,..., N.
Then we have (cf. Lemma 7.4 and (6.9)) that
df

T = =€ L (X),
7 oc(X)

and equation (9.2) becomes

N
(9.11) d E;—g =Y njlp]  on X
o J':l
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Green’s Theorem transforms the local formula (9.14) into the global formula

N
o 4 S n
2w - J?

i=1

aX

(9.12)

for a smooth function f with isolated zeros of finite order. (This, of course, is
just the usual argument principle when f is a holomorphic function.)

For a real analytic function f the Argument Principle (9.12) holds in great
generality, as a consequence of Theorem 9.8. As long as f is not identically zero
the local version (9.11) holds. Assume that none of the divisor points p; lie on
the boundary of X. If f does not vanish identically on any boundary component,
and 0X is real analytic (this can be weakened), then one can show that ii}t restricts
to 0X as a current (which is Federer flat) and that the Argument Principle (9.12)
is valid. Note that the zero set of f is even allowed to have components of real

codimension one, but these “folds” do not contribute to the divisor.

10. Some Applications to Complex and CR Geometry.

The results in this chapter on line bundles have many interesting applica-
tions. A number of these are in fact concerned with bundles of higher rank.
We present here two such examples which illustrate well the possibilities and
techniques and which also have independent interest.

Our first application is related to the construction of Levine forms in complex

geometry. It shows how our theory for line bundles and divisors can be applied

through the process of “blowing-up”. Let E — X and F' — X be a pair of smooth
hermitian vector bundles of rank p and ¢ respectively, and consider the inclusion
of projectivized bundles P(E) C P(E @ F'). Note that the linear projection
7 E®F — F with kernel E does not descend to a map of projectivized

bundles. However it does extend over the blow up

P(E@F) X {(4,B)eP(E®F)xx P(F) : n(4)C B}

which was introduced in 1.9.8. Here “Xx” denotes the fibre product over X.

This space is easily seen to be a manifold, and the map

p:P(EQF) — P(E®F),

SOME APPLICATIONS TO COMPLEX AND CR GEOMETRY

defined by projection onto the first factor, induces a diffeomorphism over the
subset P(E @ F) ~ P(E).

Let U denote the universal line bundle over P(E ¢ F) and L the universal
line bundle over P(F). We denote by U and L the pullbacks of U and L to
P(Ea F). Note that at a point (A4, B) € p(E @ F), A is the fibre of U and B
is the fibre of L. Since n(A) C B over f’(E @ F'), the projection 7 : A — B

defines a map of line bundles

w:U— L.

which vanishes exactly to first order on P(E) def p 1(P(E)) = P(E) xx P(F).
In particular 7 is atomic and Div(w) = [f’(E)]

Suppose connections Dg, D are given on E and F respectively. These
connections induce connections Dy and Dy, on U and L. Let u = £ Quy and

¢ = (11, denote the first Chern forms of Dy and Dy,. Then by Theorem 6.1 we
have that

(10.1) (—u—[P(E)] = dr
and
€TI — un n R en - uTl
2 Tyt - — = +d{ ——
(10.2) " — - [P(F)] 5=d T

for all n. Let us consider the case where n = ¢ = rank(F"). Note that the form

(1 — 9

<o TE€ L (P(E @ F))

is smooth on P(E G F)~P(E) P(E® F) ~ P(E) and has an L] -extension
to P(E @ F') which we also denote by £=+"7. Note also that the fibre integral of

¢ —

=01 4
{—u +

over the fibres of py : P(E) = P(E) x x P(F) — P(E), given by restricting p,

is the same as the fibre integral of €97, and

(Po)x(C"1) = (1)1
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Thus the pushforward by the projection p : f’(E@F) — P(E®F) of the current
equation (10.2) yields

(103) 00— ey(Dy)" = (-1 [P(B)] = d (Z——q - un)

l—u

as an equation of currents on P(E @ F). Of course u = ¢;(Dy) is smooth on
P(E® F).

In the case where ' and Dp are trivial we have that

and with ¢;(Dy+) = —¢1(Dy), equation (10.3) becomes

(DY - [P(B), = (1= (G0

U

If E and F are holomorphic bundles, and if Dg and Dp are holomorphic

connections induced by the hermitian metrics, then for ¢ € E, y € F, 7 can be

|y |?
T:“"g{w '

Hence in this holomorphic case (10.3) yields the equation

written as

01— ¢;(Dy)? — (1) P(E)] = 90A

where | |2
def ;L1 —ul Yy
A = ! log
ELel +Tul?

2 {— vy

} e IL.(P(E® F))

is the generalized Levine form and ¢ is the codimension of P(E) in P(E® F')
(See [GSII] where this is discussed for the case where X is a point.)

Note. Downstairs on P(E@® F') the closed 2-form £ is only L . Pushing forward
equation (10.2) by p shows that, for each n < ¢, €™ is cohomologous to ¢;(Dy)".
However, for €9 this is not true as we have just seen. When taking powers > ¢
of £, the singularities enter non-trivially into the calculation of the cohomology

class of the form.
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Our second application is concerned with questions in CR geometry. It stems
from work of Lai [Lai], Webster [W1,2,3] and of Wolfson [Wo] on (real) surfaces
in complex 2-manifolds and related matters.

To begin suppose that j : V < F'is a real subbundle of rank n in a complex
bundle £ of rank n over a manifold X. Let J denote the complex structure on
the fibres of F'. Then the set of totally real points is defined as {z € X
Ve N JpV, = {0}}. The complementary set

Ser = {¢€X : dim(V, N J,V;) > 0},

will be called the set of CR-singularities. We shall construct a complex line
bundle map whose zero set is precisely Yog.
Let i¢ : Vo — F denote the complexification of the inclusion of V' into F'
given by
ic(u+iv) =u+ Jo.

where Vo = V ® C. Note that the map i has non-trivial kernel precisely along

t

Ycr. Equivalently, the divisor of the n't exterior power

(10.4) AN AT G AL Ve — ARF

has

Spt(DiV(z\)) = Y0oR.

Proposition 10.5. Let::V — F be areal rank n subbundle of a complex rank
n bundle F over a manifold X. Suppose that V and F are provided with (real
and complex) connections Dy and Dp respectively. Assume that the induced

bundle map A in (10.4) is weakly atomic. Then
ci(Dp)—Div(A) = do
with o € Ll (X).

loc

Remark. Rather than assume that ) is weakly atomic, the geometric hypotheses
of Theorem 9.1 will suffice.
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Proof. Since ALVe = (A"V) ®r C, the first Chern class of the bundle AZVe

is exact. Now the Proposition follows from Theorem 6.1. [0

This result is a localized version of a result of Webster [W3]. Moreover,
the type of singularities allowed by the hypothesis of weak atomicity is vastly
more general than those considered in [W3] where one assumes regular first order

vanishing.

Remark. The current Div(\) does not depend on a choice of orientation on V'

or even on the orientability of V.

Example. Surfaces. Suppose f: X — M is an immersion of a real oriented
surface X into a complex surface M. Let V =TX and F = f*TM, and consider
the bundle embedding

df :TX — f*"TM.

given by the differential of f. In this case the ¥¢r consists of the points of

complex tangency, i.e.,
Yor ={z € X; fiT: X is a complex subspace}.

The divisor of the map A = A?(df)c, which is supported in Ycgr, can be

computed geometrically. To simplify matters let us make the following

Assumption 10.6. At each point of complex tangency the given orientation
on X agrees with the canonical complex one, i.e., all the tangency points are

“complex” as opposed to “anticomplex”.

Suppose now that p € X is an isolated point in the support of Div()\) with
multiplicity m. In a neighborhood of p the submanifold X can be considered
as the graph of a function w(z) where (z,w) = (z + iy,u + ) are complex
coordinates on M with p corresponding to (0,0). By 10.6 the given orientation
on X agrees with the one induced by considering X as the graph of w(z). In the
frame (1,0w/dz), (i,0w/dy) for TX, the map i has the matrix form

1 i
dw  Ow
dz Ay

"———'ﬁ
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so that A = A%i¢ has matrix form —10w/0z. Therefore

Div (A) = Div 88_1;)

For example if w = |z|?, then p is a point of multiplicity one and is called an
elliptic point, while if w(z) = 2% — y?, then p is a point of multiplicity —1
and p is called a hyperbolic point. In particular, if A is atomic with isolated
zeros, and if Nenjp and Ny, denote the number of elliptic and hyperbolic points

counted to multiplicity, then under Assumption 10.6 we have that

/’ ci(Dr) = Nenip — Nuyp

generalizing a result of Webster [W3].

Remark. At anticomplex tangencies the same calculation holds with a reversal

of sign. This yields the general geometric formula for the divisor.

Remark. With the addition of a hermitian structure on ' O V one can con-
struct many other complex line bundle maps and apply the main results of this
chapter. This yields other Webster formulas (cf. [MW], [W1], [W2], [W3], and
[Wol).

11. Riemann Roch Theorem.

As an application of Theorem 9.5 we give a local proof of the classical
Riemann-Roch Theorem in the spirit of Sibner and Sibner [SS] but avoiding the
use of Cech Theory. The special case of Theorem 9.5 required for Riemann-Roch
is described as follows.

Consider a Riemann surface X and the diagonal A C X x X. Let L = La
denote the holomorphic line bundle associated with the divisor A in the product
space X X X, Let o denote a holomorphic section of L on X x X with divisor A,
(Recall that ¢ is unique up to multiplication by a never vanishing holomorphic
function on X x X). Choose a hermitian metric || || on L. The Poincaré-Lelong

formula says that

(11.1) T = [Al—ei(|| l|l) on X x X,




where ¢;(|| |[z) is the 1°* Chern form of the hermitian connection on L and

1
(11.2) T == Olog ||o|%.

The derivative of the map ¢ : A — L can be used to establish that the normal

bundle to A is isomorphic to L |A and hence under the natural embedding ¢ of

X as the diagonal A in X x X,
Tx isisomorphic to L |, .

In particular, the hermitian metric || ||z on L can be considered as an extension

of a given metric on the Riemann surface X, and

el le) = el llry)

only depends on the metric on X. Let Ky = T% denote the canonical bundle on
X.
We must show how (11.1) implies

Theorem 11.3. Riemann-Roch. Suppose V is a holomorphic vector bundle

of rank n on a compact Riemann surface X. Then the analytic index
X(Ov) = dimHO(X, Ov) - dlmHl(X, Ov)

is equal to the following combination of Chern numbers

(V) — g a(fyx).

Proof. Suppose P and @ are operators on I'(A** @ V) of bidegree —1, 0 and

0, 0 respectively which satisfy
5\/OP+P05V = I-Q.

Assume () is trace class and can be written @ = ZQP? where Q™7 maps sections
of AP9 @ V into sections of A7 @ V. Then the alternating sum formula (cf.

Proposition 2.4 in [AB]) says that the analytic index is given by

(11.4) x(Oy) = B(=1)1Tr Q1.
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Here Tr () is defined, for operators @) having a smooth kernel A(z,y), to be the
integral of A(z,y) over the diagonal.

Now the idea of the proof can be explained quite simply as follows. Use
oT = [A] = e1(]| |z) to construct P and @ satistying OyoP+Poldy=I-Q

with ) “sufficiently topological” so that we can deduce
(11.5) (1)1 Tr Q% = ey (V) — -g e (Kx)
by integration over the diagonal.

Remark 11.6. Kernels. Given an operator ) from sections of AP ® V to
sections of AP ® V' there are two different ways of using a kernel on the product
space X X X to induce the operator. Both ways are crucial to this proof. First
we describe the kernel A(y,a) used to compute Tr @ in the alternating sum
formula (11.4). Let Y denote the first copy of X in the product X x X. Let
7wy : Y X X — Y denote projection onto the first factor and let 7x : ¥ x X — X
denote projection onto the second factor. Let W = A? ® V. The kernel A(y, )
is a distributional section of the bundle 73 A™ ® Hom(#3 W, 7% W), where m =
dimg X. Then
) = [ Awos)
v
and
Q = /tra,ceA(:v,m),
A
where trace A is with respect to Hom(W, W).
The second way of using a kernel B(y,z) to induce the operator @ is moti-

vated by the desire to have the operator equation
(11.7) doP+Pod = I—-Q
correspond to the kernel equation

(11.8) T = [A]-B  on X xX,

(The equation (11.8) has certain significant advantages over (11.7) — even though

they are equivalent.) The kernel B(y,z) is a distributional section of the bundle
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A*(Y x X) ® Hom(n} V, 7% V). By definition, B determines an operator on a
section s of W = AP ® V by formal integration over the fibre of the map wx

as) = [ B Asw)
yeY

This is rigorously defined to be the current pushforward of B(y,z) A s(y) under
the projection wx. For example, if B = kh with k a distributional section of
A*(Y x X) and h a smooth section of Hom(#} V, 7% V) then

o)) = | [ Kua)ast) | (w)a),

yeY

where the section s has been chosen of the form s = ¢ ® v with ¢ a section of A*
and v a section of V. By convention all differentials in the z variables must be
moved to the far right before the y integration is preformed. See Harvey-Polking
[HP] for a complete development of this kernel calculus. Since W = A? @ V, the
bundle 73 A™ ® Hom(73, W, 7% W) is bundle isomorphic to the bundle

7y AT @ (13 AP)* ®@ 7% AP @ Hom(ny V, 7% V)
which in turn is isomorphic to
1y A" TP @ n%x AP @ Hom(7i V, 7% V).

However, the kernels A(y,«) and B(y,x) are not the same under this canonical

isomorphism, but are related by
(11.9) Bly,x) = (~1)?A(y,2).

In particular, the alternating sum formula becomes

(11.10) x(Ov) = /traceB.
A

The proof of (11.9) is omitted.
Note the following two facts: (A) The kernel corresponding to the identity

operator on forms is [A], integration over the diagonal. (B) If B is a kernel on
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X x X, of bidegree (k, k—1) where k = dim¢ X, and Q is the associated operator,
then the kernel 8B corresponds to the operator o0 @ + @ o 0.

Given a kernel B(y, z) which for each fixed p maps sections of ) ; AP?®V into
q
itself let BP(y,«) denote the part of the kernel inducing this action on ) ; AP4@V.

q
Also, let Iy denote the identity section of the bundle Hom(7} V, 7% V) over the
diagonal A.

This second version, (11.10), of the alternating sum formula combines with
(11.13) of the next lemma to complete the proof of Riemann Roch for X a

Riemann surface.

Lemma 11.11. There exists a fundamental kernel Ty satisfying the current

equation
(11.12) ETV = [A] RIy— Ky on X x X,

where Ky is a smooth kernel of bidegree 1, 1 which is Hom(n} V, 7% V')-valued.

Moreover, K?, = I'\'?,’O + K ?,’1 satisfies

s - n
(11.13) i*(trace ) = el Iv) = 5 el [xx);
where ¢; denotes the first Chern form.

Proof. The section Iy of Hom(7}V, 7% V) over the diagonal A C X X X can
be extended to a section I over X x X using the metric on the bundle V over X,

as follows. Let
U = {(y,2) € X x X : dist(y,z) < p}

where p is the convexity radius of the metric. For each (y,z) € U let yy,» denote
the unique arc-length geodesic on X from y to =, and let 7(y,z) : Vy — Vs for
(y,z) € U denote parallel translation along ~y,,.. We then let f(y, z) denote any
smooth section of Hom(n% V, 7% V) over X x X which agrees with 7(y,z) on a
neighborhood of the diagonal.

We define

Ty =TI
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A*(Y x X) ® Hom(n3 V, 7% V).
section s of W = AP @ V by formal integration over the fibre of the map wx

By definition, B determines an operator on a

as) = [ Bw) st

yey

This is rigorously defined to be the current pushforward of B(y,z) A s(y) under
the projection mx. For example, if B = kh with k a distributional section of
A*(Y x X)) and h a smooth section of Hom(#} V, 7% V) then

Qlp ®v)(z) =

[ Hwa) o) | (o),

yeY

where the section s has been chosen of the form s = ¢ ® v with ¢ a section of A*
and v a section of V. By convention all differentials in the z variables must be
moved to the far right before the y integration is preformed. See Harvey-Polking
[HP] for a complete development of this kernel calculus. Since W = A? @ V, the
bundle 73, A™ ® Hom(#} W, 7% W) is bundle isomorphic to the bundle

7y A" ® (73 AP)* @ 7% AP @ Hom(ny V, 7% V)
which in turn is isomorphic to
1y AT TP @ % AP @ Hom(ny, V, 7% V).

However, the kernels A(y,z) and B(y,z) are not the same under this canonical

isomorphism, but are related by

(11.9) B(y,») = (-1)PA(y,=).

In particular, the alternating sum formula becomes

(11.10) W(Oy) = /traceB.

A

The proof of (11.9) is omitted.
Note the following two facts: (A) The kernel corresponding to the identity

operator on forms is [A], integration over the diagonal. (B) If B is a kernel on
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X x X, of bidegree (k, k—1) where k = dimg X, and @ is the associated operator,
then the kernel @B corresponds to the operator 9o @ + @ o 4.
Given a kernel B(y, z) which for each fixed p maps sections of ) APY®V into

q
itself let BP(y, ) denote the part of the kernel inducing this action on ), AP4®V.

q
Also, let Iy denote the identity section of the bundle Hom(#} V, 7% V) over the
diagonal A.

This second version, (11.10), of the alternating sum formula combines with
(11.13) of the next lemma to complete the proof of Riemann Roch for X a

Riemann surface.

Lemma 11.11. There exists a fundamental kernel Ty satisfying the current
equation
(11.12) Ty = [Al® Iy — Ky on X x X,

where Ky is a smooth kernel of bidegree 1, 1 which is Hom(n} V, 7% V')-valued.

Moreover, KY, = (?,’O + K?}l satisfies
o - n
(11.13) *(trace Ky) = eu([l lv) = 5 ex(ll Hlwx)s

where ¢; denotes the first Chern form.

Proof. The section Iy of Hom(n§ V, 7% V) over the diagonal A C X X X can
be extended to a section I over X x X using the metric on the bundle V over X,
as follows. Let

U = {(y,2) € X x X :dist(y, 2) < p}

where p is the convexity radius of the metric. For each (y,z) € U let 7y, denote
the unique arc-length geodesic on X from y to z, and let 7(y,z) : V;, — V, for
(y,a) € U denote parallel translation along v,,,. We then let f(y, z) denote any
smooth section of Hom(73V, 7% V) over X X X which agrees with 7(y,z) on a
neighborhood of the diagonal.

We define
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with T given by (11.1). The formula (11.2) implies that

o1y = [A]@I\/——I{V on X xX

where

Ky = TQOT+c(L)®T

since [A] ® I= [A] ® Iy is independent of the extension T.
It remains to show two things. The first is that (¢;(]| [|2) ® I)°, the part of
c1(L) ® I acting on A%* @ V, satisfies

3 T n

1 (trace(cl(H ||L)®I)O) = -3 ar(l flxx)
The second is that T' @ 01 extends smoothly across A with
(11.14) i*(trace(T@@Ef)o) = a(] Iv).

Now we observe that

i*(tracecl(H ”L)®I~) = ni"(a]| ||z)) = —n el l5x ),
i (trace(ea(| ) © 1)) = mi*(ea(] 2)")
i* (trace(ea(|] 1)@ D) = na* (el 1))

where the isomorphism Tx = L 'A is used in the first equation. Thus it suffices

to prove that

(11.15) (e[ 1)) = *(eall 1))

—~

in order to conclude that i*(trace(ci(|| [|2) @ I)° = —Ze1(|] ||k« ) as desired. We

may choose the metric on L invariant under the switch s. Then s*ci(|| ||1) =

c1(]| lz). Then one can show that ci(]| ||)* = s*(ca(]] [2)°) (say using local
holomorphic coordinates) which implies (11.15).

Let Qv denote the curvature of the bundle V, ie., ¢;(]] |[v) = %Tr Qy.

The second equation (11.14) follows from

(11.16) i*((T@Ef)O) - oy
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Pick a local holomorphic coordinate z for X. Then

with p never zero.

We will show that 8T vanishes on A and hence need only consider the term

1 dly—2z) == = =
L V=) 057 i 79T
2mr y—v

First, note that

1 [dy—z) =+\" dy =~
(11.17) L (M=) o57) = L Y gaT
’ 2m y—z 2t y —
Choose a local holomorphic frame vy, ..., v, for V. Then (11.17) applies to v can
be rewritten as
1 = {s ~
-0 (o (Twnto) - (@) )
2m y—

Therefore, the desired equation (11.16) follows from the next result.

Lemma 11.18.
dy

@ (f(y, z)o(y) — v(m))

Yy —a
extends smoothly across A aud pulls back by the inclusioni: X - A C X x X
to

Dv = wv.

Proof. Fix any point 2 € X and a real tangent vector £ € T, X. Let (%) denote
the arc-length geodesic on X with 7(0) = ¢ and y'(0) = £. Our first assertion is

that

(11.19) Dev = lim v(v(t)) — I(,y(1)v(2) lim T(’)’(t),m)v(y(t)) —v(w).

{0 t -0 t

To see this set

w(t) = I(z,v(t))v(z)
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and write v(y(t)) = A(t)w(t) where A(t) € GL,(C) for each t. Then

Dv dA Dw dA
D = — = —_— —_— - —
¢v dt VUt a7 (0v(@)

1=0 =0

Dw

since by the definition of w, 57 = 0. However,

il

lim 2 (o(3(£) ~ w(t) = lim (A1) ~ Dw(t) = T (0)u(z),

0t

This proves the first equation in (11.19). For the second we apply
I(z,v(t))I(g(t), =) = Idv,q to the first and regroup before taking the limit.

We now consider the V,-valued function f(y) = I(y,z)v(y) — v(z) defined
for y in a neighborhood of @. Equation (11.19) immediately implies that

(11.20) Dv = d, {f(y,w)v(y)—v(l‘)}

y=g

where dy, denotes the exterior derivative with respect to the y-variables.
Since D is a canonical hermitian connection, the complex linear extension of

Dvto T, X QC =T @T%! is purely of type (1,0), i.e., (11.20) can be rewritten

as

(11.21) Dy = 9, {T(y,)o(y) - v(e)}

y=z

We now consider a coordinate neighborhood U € X and let & = z; + iz2 and

Y = y1 + ty2 denote the local holomorphic coordinate on U. Then (11.21) can be

written as

0 ,
Dv = ATty en(y) ~v(@)} | dy

y=z

The result now follows from Taylor’s Theorem applied to the function f(y) at

the point‘ y=z 0O

III. Sections of Vector Bundles

In this chapter we develop our theory in the case where E and F' are complex
vector bundles and rank(E) = 1. When E = C is trivial, bundle maps C — F
correspond to cross-sections of F. We begin with this case. In Section 1 we
present the concept, introduced in [HS], of an atomic cross-section of a vector
bundle. If the bundle is oriented, then each atomic section y has an associated
divisor Div(y), which is a d-closed integrally flat current on the base manifold.
If ;u vanishes non-degenerately, Div(y) is the current associated to the manifold
of zeros of p. The majority of Section 1 is devoted to proving a basic technical
result concerning residues of forms, which plays an important role throughout
the rest of the paper.

In Section 2 we fix a complex bundle with connection F' — X and examine
the singular pushforward connection under an atomic section p. It is shown that
if 1 is atomic, then for every Ad-invariant polynomial ¢ on gl,(C), the Chern

= .
current ¢(( D)) exists and has the form

—. — — .
¢(D) = ¢(20)+ Resy( D) Div(n),
where d)(ﬁo) is L],. across the singular set of p and satisfies
—
dp(29) = 0 on X,

and where Res¢(5) is a smooth d-closed form on X, called the residue form,
which is independent of p.
In Section 3 we show that the characteristic current qS((B)) is independent of

N
the choice of approximation mode. We also show that the residue form Resy( D )
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is in fact a Chern-Weil characteristic form, i.e., it is written as a universally
determined polynomial in the curvature of the given connection on F. Detailed
computations of this residue form are carried out in Section 7. The results of
Section 3 are proved by careful computation of the transgression forms for the
family ¢(33) and their limit as s — 0.

In Section 4 we examine the case of the top Chern class. This leads to a C*°
generalization of the Poincaré-Lelong formula. More specifically, for each atomic

section yu there is a family of transgression forms r, € L _(X) such that

cn(Bs) — Div(p) = dr

and

lin%rs =0 in L. (X).

Thus the Chern form ¢,(Dr) and the divisor of p are cohomologous. Note also
that as s — 0, cn(ﬁ)g) — Div(p) as flat currents on X.

Here our theory also produces, for each approximation mode, a family 7,
s > 0 of canonical representatives of the Thom class of F. In fact we produce
explicit universal classes ¥ in the equivariant cohomology of C” such that 7, =
w(%s) where w is the equivariant Chern-Weil homomorphism. The family 7 has

the nice properties:
lirr(l) 7s = [X] (The zero-section of F)

and
Te ‘X = ¢p(DF) (The Chern Euler form) for all s.

In compact approximation mode the support of the Thom forms is compact
in each fibre. In algebraic approximation mode, the Thom form extends to P(C®
F) and determines the Thom class as an element in H?*(P(C @ F), P(F)).

In Section 5 we prove a ' version of the Grothendieck-Riemann-Roch The-
orem at the level of differential forms. As above, the construction is completely
canonical in each approximation mode. Furthermore, the result holds for a large
class of subcomplexes of X, not just for smooth submanifolds.

Section 8 extends our results to general atomic maps o« : F — F where

rank(E) = 1. Interestingly, these results cannot be obtained from the section
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case by twisting with E*. The formulas at the level of forms and currents are

different.

In an appendix we discuss generalized Bochner-Martinelli kernels from the
point of view of Chern-Weil theory (cf. Berndtsson [Be]) and use them to prove

some basic results for atomic bundle maps.

1. Atomic Sections and Divisors.

Suppose V is a smooth real vector bundle of rank m over X. A smooth
section v of V is locally of the form v = ue with €' = (e1,...,em) a local frame

for V and w = (u1,...,un) a smooth R™-valued function.

Definition 1.1. (m > 1) A smooth section v is said to be atomic if for each

local frame e the vector valued function u satisfies:

[yl
forall p=|I|<m—1.

1 .
u” (iL) has an L _ extension across the zero set of u, toall of X,

This extension is unique because the zero set of u has Lebesgue measure zero

([HS; 1.2]).
Now let
m . y;dyl/\-"/\cl/?;j/\---/\dym
1.2 fly) = —1yT L
(1.2) (y) ;( ) W

denote the solid angle kernel on R™, and let v,, denote the volume of the unit
sphere in R™.

In order to correctly formulate the notion of the divisor of a section of V,
the bundle V must be oriented and only frames compatible with the orientation

are allowed.

Definition 1.3. Suppose v is an atomic section of V, so that, for each R™-
valued function u determined by v = ue from a local frame e compatible with

the orientation,

w*(8(y)) € Lige(X).
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The divisor of v, denoted by Div(v), is defined by the current equation

(1.4) Div(v) = d(v,;'u*(8)) on X,

Le., the exterior derivative of the potential v;,;'u*(6) € L} (X).

loc

"This notion of divisor is independent of the choice of local frame compatible
with the orientation on V' (Theorem 2.11 [HS)).

The remainder of this section is devoted to the proof of a result (Theo-
rem 1.10) that is of crucial importance for our understanding of Chern currents.

A smooth form on V' ~ X which is invariant under multiplication by positive
scalars in the fibers of V will be called homogeneous (of degree zero). In local
coordinates y € R™ = V, in the fiber, a homogeneous form is the sum of terms
of the form ¢ (:z:, l—g—|> %ﬁ; with p = |I] and ¢ a smooth family of forms on U
parametrized by TyLI € S™ 1 onU x §™1 UoPen X

Lemma 1.5. Suppose T is a homogeneous form on V ~ X which is of degree

< m — 1 in the fiber differentials. Suppose that v is an atomic section of V. Let
Z={z € X :v(z)=0}. Then:

a) T extends (uniquely) as an L (V) form across X C V.

b) v*(T) extends (uniquely) as an L} (X) form across the zero set
ZCX.

Proof. a) Note that |y|™? € L, (R™)if p<m — 1.

b) This follows directly from the definition of an atomic section and the fact

that Z has Lebesgue measure zero. [

Remark 1.6. Because of this Lemma, we shall use the notations T € L2 (V)

loc

for the unique extension of T' € C°(V ~ X), and v*(T) € Li (X)) for the unique
extension of v*(T") € C°(X ~ Z).

The objective of the remainder of this section is to compute the exterior
derivative of the currents T' € Lj, (V) and v*(T) € L}, (X).

Since T' € C*°(V ~ X) is homogeneous, the form L € C®(V ~ X) defined
by L = dT on V ~ X is also homogeneous. Moreover, if T has degree < k in
the fiber differentials then L = dT has degree < k + 1 in the fiber differentials.

ATOMIC SECTIONS AND DIVISORS

Under the hypothesis that both T' and L = dT are of degree < m — 1 in the fiber
differentials, both T and L have unique L}, (V) extensions across X C V, so that

loc

(letting T' and L denote these unique extensions):
(1.7) dT' = L+S on V,

where S is a current with support in X C V. The current L € L{ (V) will be

called the L, _ part of dT and S will be called the singular part of dT.

First we consider the easy case of codegree at least two, where there is no

singular part.

Lemma 1.8. Suppose T' is a homogeneous form on V ~ X of degree < m — 2

in the fiber differentials.
a) The L] extensions, T € L{, (V) of T'€ C®°(V ~ X) and L € L{ (V) of

L =dT € C®(V ~ X) satisty the current equation
dT = L on V.

b) If v is an atomic section then the Llloc extensions v*(T) € Llloc(X) of
v (T) € C°(X — Z) and v*(L) € Li, (X) of v*(dT) € C°(X ~ Z) satisfy the

current equation

dv*(T) = v*(L) on X.

Proof. For the purpose of clarity in this proof let T € Li (V) denote the ex-
tension of T' € C°(V ~ X) etc. Choose an approximate one x(t) which vanishes
identically in a neighborhood of 0 € R. Then T = 21_% % <l%l> T converges in
L{ (V) by the Lebesgue dominated convergence theorem. Therefore,

dT = lim (x (lﬂ) AT + ' (M) Jﬂihllﬂllfp)

e—0 € €

Note that d71" and %T are homogeneous of degree < m — 1 while y (Jﬂ> and

€

X' (Jié-l> J%l are bounded independent of y and e. Therefore lirrtl) X (J%l) dT = dT
converges in Li (V) and lirr(l) X (%l) l%l%”l-lT = 0 converges in Li, (V). That is
dT = gﬁ“, or in different notation d7'= L on V.

The proof of part b) is similar and omitted. O
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Now we turn to the more difficult case where T has top degree m — 1 in the
fiber differentials. Pick a metric on V and let .S denote the unit sphere bundle in

V', with projection 7 : .S — X.

Definition 1.9. The residue of T along X C V is defined by

Res(T) = m(T),

or in terms of fiber integration

Res(T)

Note that Res(T") is a smooth form on X. We shall prove that Res(7T") does
not depend on the metric chosen for V.
The next result extends Lemma 1.8 by allowing the higher degree m — 1,

however the special case Lemma 1.8 will be used repeatedly in the proof.

Theorem 1.10. Suppose T is a homogeneous form on V ~ X of degree < m—1
in the fiber differentials. In addition, assume the homogeneous form L = dT' on
V ~ X is also of degree < m — 1 in the fiber differentials. Then

a) dT = L + Res(T)[X] on V.

If v is an atomic section of V' then

b) d(v*(T)) = v*(L) + Res(T) Div(v)

on X.

In particular, note that Part a) implies that the residue of T' independent of

the metric chosen for V.

Proof. It suffices to prove a) and b) locally in the base X. Thus we may assume
that V = X x R™ = R™ is trivial. Recall the standard fact that

(1.11) d(f:HF(vy)) — [X] on X xR™,

ATOMIC SECTIONS AND DIVISORS

and the definition that

(1.12) d(%ﬂ—ﬁf{?}) = Div(u)

is the divisor of the atomic section u of the trivial bundle R™. Suppose we can

prove that

(1.13) T—R.es(T):}:G = da+pf on V~X

with @ and A homogeneous, and both a and § of degree < m — 2 in the fiber

differentials dy,...,dym. Then Lemma 1.8 is applicable and equation (1.13)
extends across X to the equation of L], (V) currents on V,

(1.14) T — Res(T)-6 = da+p

and, by part b) of Lemma 1.13, this equation pulls back to an equation of L (X)
currents on X

—

(1.15) ar(T) - Res(T) 2 (6) = d (w(a)) +u*(B)

Finally, taking the exterior derivative of (1.14) yields

(1.16) dT — Res(T)[X] € L, (V).

Here we use (1.11) to compute the exterior derivative of Res(T)%ﬂu*(G) modulo
L. (V) and use Lemma 1.8 to compute that df = c?B € Li.(V).

Note that part a) of Theorem 1.10 is an immediate consequence of (1.16).

Thus it remains to prove (1.13). The homogeneous form
¢ = T— R.es(T):/l—ﬁ

satisfies the same two conditions as T', namely that both ¢ and d¢ are of degree

< m —1 in the differentials dy1,...,dyn. In addition, ¢ satisfies the condition

(1.17) Res(¢) = / é=0.

7~ t(z)

These three conditions on ¢ will be used in the proof of (1.13).
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The form ¢ can be expressed as

(1.18) b = W An+y

where n = y - ;%I_QS and ¥ = y - }%L (% /\qﬁ). We shall prove (1.13) by
verifying that both ¢ and %}%l;— A7 can be expressed as da + § with a, 8 of degree
< m — 2. Since 7 and ¥ are both homogeneous and killed by contraction with
the euler vector field y - 5% they both are pull backs of smooth forms 7 and % on
the sphere bundle X x S™~! under the projection y — I—yLI of R™ — {0} onto the
unit sphere S™!,

First, we show that v is of the form da + f with degree @ and 8 < m —2. For
z € X fixed, both ¢ and 1 have the same integral over the unit sphere since d|y|?

restricts to zero. Thus fsm—l Y, = 0. Consequently, we can solve the equation

dgm-1a& = 3 on X x §™!

with a (smooth) solution @. Here dgm-1 denotes the S™~! partial exterior de-

rivative.

This implies that

Y = da+f on X xSm1

where f is smooth and of degree < m — 2 in the differentials on S™1. Pulling
this equation back to X x (R™ — {0}) yields
P =

da+f on X x(R™~ {0})

where a and 8 are homogeneous and of degree <m — 2 in dy,, ..., dyn.
Now consider n = y - 5% L ¢. Note 5 is homogeneous and y - 5% Ln =0so
that 7 is the pullback of a form 7 on the sphere bundle S. The form 7 has degree

< m — 2 in the fiber differentials dy, ..., dy,. The equation

0 = Lyosoy(#) = d(y-ZL6) +y ZLdp
implies that

dn = ——y';%l_d¢ is of degree <m —2 in dy,...,dynm.

ATOMIC SECTIONS AND DIVISORS

Let H denote the harmonic projection operator on S™~ ! and let K denote the

operator that satisfies

doK+Kod = I - H

operating on differential forms on the sphere $S™~!, based on the L? decomposi-
tion of a form. Then
(1.19) 5 = d(K() + K(d) + H(7).

Note that K(7) and I{(d7j) are smooth differential forms of degree < m — 3. Let
7 denote the pullback of () to V ~ X and let § denote the pullback of K(d7)
to V ~ X. Since 77 has degree < m — 2 the only possible harmonic is a constant.
Thus (1.19) pulls back to

(1.20) n =

dy+o6+c on V ~ X,

with v and 6 of degree < m — 3 in dy1,. .., dyn. Therefore

(1.21) M/\Ti = d<M/\7+clog‘y[2)+M/\5.

Jyi? [y[? [y

Both of the homogeneous forms %’; A v and éljfi-l; A 6 are of degree < m — 2 in

dyi,...,Ym. This completes the proof of a modified form of (1.13), namely
(1.13)' 6 = da+ﬂ+ci|1yill;.

The extra term cﬂlyg—’lzIi is of degree < m — 2 in dyi,...,dy, and can be
absorbed into f unless . = 2. In this special case the extra term edlog |y|*> can
be absorbed into a since log |y|* € Li, (V). This completes the proof of part a).
The proof of part b) is similar and omitted. The fact that u*(log |y|?) € L (X)
must be used. This fact is a consequence of the fact that it’s exterior derivative
v () e LX) D
Corollary 1.22. The current L € L} (V), extending dT € C®(V ~ X), is
d-closed on V' if and only if Res(dT') = dRes(T) = 0 on X, in which case v*(L) €
Ll (X) is also d-closed.

loc
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Proof. Note that L € C®(V ~ X) is homogeneous and of degree < m — 1 in
the fiber differentials; and that dL € C*®°(V ~ X) is equal to zero. Therefore,
Theorem 1.10 can be applied with T' replaced by L to obtain

(1.23) dL = Res(L)[X] on V.

Since d commutes with pushforward, Res(dT) = m.(dT) = dmy(T) = dRes(T).
That is

(1.24) Res(L) = Res(dT) = dRes(T).

Finally, if one of the equivalent conditions, say Res(L) = 0, is valid and v is

atomic then by Theorem 1.10

(1.25) d(v*(L)) = Res(L)Div(rv) = 0 on X. O

The example where V =R™ = X x R™ and T
is an arbitrary form on the base, is instructive. Here both of the homogeneous
forms T and dT = v,,' 7*(da) A 8(y) are of degree m ~ 1 in the fiber differentials,
while Res(T) = « and Res(dT") = da.

This corollary will be used later to show that in some important cases Res(T")

(1l

ylm*(e) A 6(y), where a

is d-closed even though dT' is not identically zero.

Remark 1.26. Note that the condition Res(dT) = 0 is independent of the
section v, but implies that the L (X) part of dv*(T') is d-closed for all atomic

sections v.

2. The Singular Pushforward Connection D on F.

Suppose u is a smooth section of a complex vector bundle F' of rank n. Note

that u can be equivalently described as a bundle map C -2 F where al = p.
Assume that F has a connection Dy and a metric (, )r; and consider the trivial

connection d on C. The push forward singular connection (see (1.2.11)),

D = aodofi+ Dpo(l—af),

THE SINGULAR PUSH FORWARD CONNECTION B ON F

*

is a smooth connection on F' outside the zero set of u. Here f = |3|2 where

|a|* = a*a and a*(v) = (v, ). Note that D may also be expressed on a section

v by the formula

Dv= Dpv — <|V’|'L2L>DFN.
M

Note in particular that yu is 3—parallel.

Let x(¢) denote a given approximate one. Throughout this chapter we shall
use the notation x, = x (l%sz) = (%ﬁ) and x! = x' (%‘f—) =y (LZI;) Recall
from (1.4.9) and (1.4.6) the family (0 < s < +00) of smooth connections

ﬁ
D, = aodofily;+ Dro(l—af,)

_._)
where 3, = x,3. On a section v, D, can be reexpressed by,

—5311 = DFV—X.s(IV’l'LZL)DF/L'
@

We shall adopt the following notation. Given a local frame f for F, let

p = uf define u = (uy,...,u,), and let u* = hpu'. Set [u|* = uu*. (This is more

convenient). Also let

Du = du+4uwp and Du* = du* —wpu®.
—
The local gauge for D is given by
— u* u*Duy
(2.1) W= wF—W(uwF—i-du) = wF—W,

because of (1.5.2) and (1.5.15). The local gauge for —D—)s is given by

u* u*Du

(2.2) U‘g = Wp — Xs ]'ul2 (U»U)F-'—du) — wF_XSW?

because of (1.5.3) and (1.5.15).

The case we are considering, of a section ;¢ = a1, is a special case of the
fundamental injective conformal case of Section 1.6. Therefore, the following
formula for the curvature ﬁ)s of the connection D « 18 a special case of a formula
in Remark 1.6.7. Alternatively the formula for 2, can be computed directly using

the formula (2.2) for the gauge w;.
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—_ — . s
Lemma 2.3. The curvature {1, of D, is given by:

— o2 dlul? uv*Du u* Duu*Du
(24) Qo = (1= xa)r +xs Lo — x4 ———,Iu||2 TE +xs(1—xs)_——]u|4 ;

where

Du*Du

Juf?

u*u

[ul?

(2.5) Q = (1- Qp —

Moreover, lim 2, = Qq, outside the singular (zero) set of y, in the C* topology.
3-~+0

Suppose that ¢ is an invariant polynomial. Let qS(Bs) = ¢(Q;) denote the

¢-Chern form of the connection Bs. Recall the standard transgression formula

for the family of smooth connections -Bs (0 < s < +400),

(2.6) $(Dr) - ¢(D,) = dT,,

where

o — i w*Du  — ad
/s Py 5 Q,)ds = _/8 ¢ Wa 2, 5;)\3

The next result provides the key to the main Theorem 2.30 of this Section.

(2.7) T, = ds.

Proposition 2.8. Suppose u is an atomic section. The transgression current

T = lim T converges in Li, (X). That is the integral
3—0
_ / y
0

Proof 1. First we sketch a direct proof. It suffices to dominate the first factor,

u*Du  — 15,

. Zd
(2.9) T P ; Q 55 Xods

converges in L] (X).

u*Du_—>

(2.10) ¢

of the transgression integrand in (2.7), by an L{ (X ) form independent of s

because then this factor can be discarded from the integrand leaving the positive
second factor “%X <h;—;) which integrates to

(2.11) —/:o }%X (F)ds = x ().

THE SINGULAR PUSH FORWARD CONNECTION B ON F

Note that x (%‘;) is bounded and converges to one almost everywhere.

Since both x, = x (J%i) and X’%z =y (J—EE> 14 are bounded indepen-

32 32
dent of u and s, the formula for the curvature given in Lemma 2.3 can be used in

conjunction with the hypothesis of atomicity to dominate (2.10). This works be-

cause ¢ “l‘u'DQU ; —S—?S is of degree < 2n—1 in the fiber differentials du, ..., du,,
diy,...,du,. To verify this fact we need Lemma 2.20 below. This Lemma implies
that

o 0 uwDu — _ o,

'au*l—fﬁ T Qs

w*Du .
so that the degree of ¢ 0y

[u]?

must be <2n—-1. O

Proof 2. This proof is in essence the same as the first proof but takes advantage
of an explicit formula for T in Proposition 3.17 which shows that T}, is a polyno-
mial in s = y <E;—li> with coefficients that are L (X) forms independent of s.
Since x, is bounded uniformly in v and s and y, converges to one almost every-
where, the Lebesgue Dominated Convergence Theorem implies that 7 converges

to T in L, (X), as s = 0. [

This explicit formula for T, yields an explicit formula for T as well, which

shows that T is independent of the choice of approximate one y (see Theo-
rem 3.15).

The two proofs just presented rely on facts presented below. These facts
are most easily derived by first working in the universal case and then “pulling

down” by the atomic section f.

Remark 2.12. The Universal Case. All the calculations above are valid of
course in the universal case introduced in 1.3. Via the canonical isomorphism
Hom(C, F') 2 F, there are certain simplifications here of the universal construc-
tion. Let m : F — X denote the bundle projection and consider the pull backs:
F =7*F and Dy = 7*Dy of F and its given connection to the total space of F'.
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Thus we have the fibre square

F=nF —— F

l !

F — X

Let X C F denote the set of O-vectors in F. Then the bundle F comes equipped

with a “tautological” atomic cross-section g which vanishes to first order on X

and has

Div(p) = [X].

This section g is defined at a point v € F, = n~*(z) by
b(o) = v

under the identification Fy, = (7*F), = Fr(y) = Fi.

We denote by D the singular pushforward connection on F associated to
the tautological cross-section g, and we let Bs denote the smoothing family
constructed via the fixed approximate one x. The formulas derived above are
valid in this case. In fact they can be pulled down via any atomic cross-section
p: X — F to give the corresponding formulas on X.

For what follows we begin by working in the universal case. Thus we have
the equation

¢(DF)"‘¢(BS) = dTy on F

and each of the formulas above are valid for the gauge & ,, the curvature (_l)s and
the transgression T on the total space of F'. Note however that u = (21,0, Un)
can now be interpreted as linear fibre coordinates on F' (with respect to a local
framing). '
Fix € > 0 and let p denote the restriction of 7 : F — X to the e-sphere
" bundle in F, so that for each z € X,

pNz) = {veF,:|v] = €}
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Definition 2.13. The residue form Resqg(_D—)) is defined to be minus the residue

of the transgression potential T, i.e.,

RGS¢(3) :—/ T = —Res(T).

This fiber integral is the same as the current pushforward

Resp(D) = —pu(T).

Universal Theorem 2.14. The ¢-Chern current qS((B)) of the pushforward
singular connection D associated with the canonical section pof F =7a*F is

given by

— — -
(2.15) d(D) = (o) + [X]Resy(D) on F.
The equation
(2.16) #(Dp) — (o) — [X]Resy(D) = dT  on F
is the limiting form, as s approaches zero, of the equation

._)

(2.17) #(Dr)— ¢(D,) = dTs. on F

The Li  -form ¢(ﬁg) is d-closed on F', and the residue Res¢(B) is a smooth
d-closed form on X .
Remark 2.18. Compact Support. These equations imply that

—

#(D,) — ¢(Do) — [X]Resy(D) = dRs  where Rg=T — T,
and
R, = T — T, converges to zero in Lj,.(F).

Note that if x is an approximate one with compact support, i.e., x(t) = 1 for ¢

large, then R,, and hence dRg are compactly supported in the fibers of F'.
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Before giving the proof some lemmas are required. First, note that (2.17) is

just the standard C'*° transgression formula. Also note that, on F' ~ X,

i u*Du — 9]
= — —_— s ), ) =y.d

converges as an integral of C°° forms and that on F' ~ X equation (2.16) becomes

(2.19) #(Dp) — (o) = dT  on F~ X,

which is just another special case of the standard C'* transgression formula.

Lemma 2.20. The transgression integrand is given by

w*Du — 9,

0 d w9
—_ —Xsds = U
‘u|2 ) 38 asx

Ou*

¢ Lo(,)%

Proof. Note that

w oL g(,) = ¢<u*

and that, by the formula (2.4) for 68

2 2
gXadS = —J%—X'sd%z

the lemma follows. [

Corollary 2.21. On F' ~ X, the transgression Ty is a homogeneous form which
is of degree < 2n — 1 in the fiber differentials.

In fact because of Theorem 3.15 in the next section Ty is the sum of terms
of bidegree k, k — 1 in the differential one forms Duy,..., Du, ; Du},..., Du¥.

THE SINGULAR PUSH FORWARD CONNECTION B) ON F

Lemma 2.22. Both

0 — .
ual_ﬂﬂg):o and ut o

Lé(o) =0

so that

¢(ﬁ>0) is of degree < 2n — 2 in the fiber one forms du, d.

Proof. Consulting the formula (2.5) for 5_2)0 we see that ﬁ)o is of the form PX,

where P =1 — f‘u‘l’é, and where ¥ = (_))F — %’%IQD—”. Thus u* ai‘ LY = —“‘:LID;‘.
x_ 0 ey x 0 - . . . .

Therefore u*575 L @ = 0 and hence v 7.7 L #( o) = 0. Since ¢ is an invariant

polynomial ¢(Ro) = ¢(PE) = $(SP). The proof that wl L ¢(EP) = 0 is

similar and omitted. 0O

Corollary 2.23. On F ~ X,

—

dT' = ¢(Dr) - ¢(20)

is a homogeneous form of degree < 2n — 2 in the fiber differentials.

Proof of Theorem. Because of Corollary 2.21, Theorem 1.10 applies to T yield-
ing the current equation (2.16) on tot F. Because T, converges to T in L, (F)
by Proposition 2.8, dTs must converge, weakly as currents, to dT. Therefore,
(2.17) and (2.16) imply that the ¢-Chern current ¢((—ﬁ)) = lim QS(BS) exists and
is given by (2.15). 0

Because of Corollary 1.22, it remains to prove that
Res(dT) = 0
which is an immediate consequence of Corollary 2.23. O

Remark 2.24. Alternate Formula for Res¢(ﬁ). Recall Remark 2.18. Ap-

plying 7, to the equation in this Remark we obtain

(2.25) Resy(D) = m (¢(D.) - ¢(20) ),
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since m4(dRs) = dmi(Rs), and 74(Rs) = 0 because Rg = T — T is of degree

< 2n in the fiber variables. In terms of fiber integration this yields

(2.26) Resy(D) = / #(D,),

since ¢(ﬁo) is of degree < 2n in the fiber variables.
Note that the residue form Res¢(ﬁ) is independent of

1. the radius € of the sphere bundle in Definition 2.13,
2. the parameter s > 0 in equation (2.25) or (2.26),

3. the choice of approximate one y.

The main result of this section, Theorem 2.30 below, can be viewed as the
“pullback of the Universal Theorem 2.14 by an atomic section p of 7. Of course

the equation
#(Dp)— ¢(Ds) = dTy, on F

of smooth forms pulls back by any smooth section p of F' to the equation
#(Dp)—¢(D,) = dT, on X,
also of smooth forms. Similarly
__+
H(Dy) — ¢(y) = dT on F~X
is an equation of smooth forms which pulls back to the equation
_}
(2.27) $(Dp)—¢(Qy) = dT on X ~ Z.
If 4 is atomic then by the key Proposition 2.8, T = lir% T, converges in

L (X). Therefore, the ¢-Chern current qS((B)) = lirr(ll d)(BS) exists and satisfies

loc

(2.28) $(Dr) - ¢(D) = dT,

as an equation of currents on X.
Since the homogeneous forms T and dT = ¢(Dg) — ¢(ﬁo) on F' ~ X are
both of degree < 2n—1 in the fiber differentials (Corollary 2.21 and Lemma 2.22)
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the exterior derivative of T' = p*T can, alternatively, be computed using Theo-

rem 1.10, yielding the equation
(2.29) #(Dp)— ¢(—§_2)0) + Res(T) Div(p) = dT of currents on X.

Combining (2.28) and (2.29) gives formula (2.32) below and completes the

proof of the following main theorem.

Theorem 2.30. Given an atomic section p of a hermitian bundle F' with connec-

tion Dp, the ¢-Chern current qS((B)) = lin%(qﬁ(—ﬁs)) of the singular connection

D of F (obtained by pushing forward the trivial connection d on C) is given by

(2.31) <f)((3)) = gb(ﬁ)g)-i—R.esd,(ﬁ)Div(u) on X,

¢(60) belongs to Li,. and is d-closed on all of X.

Therefore,
— —
(2.32) H(Dr)— (o) —Resy( D) Div(p) = dT on X.

—
The residue form Resy( D) is a global smooth d-closed form on X which is inde-
pendent of the atomic section .

This equation (2.32) of currents on X is the limiting form, as s — 0, of the

equation ‘
-
(2.33) o(Dp)—¢(Ds) = dTs
of smooth forms on X.
Note. We shall prove in the next section that the form Resy is in fact a polyno-

mial in the curvature of F'. It is therefore entirely determined by its cohomology

class, which will be computed in section 5.
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3. The Transgression.

In this section we derive an explicit formula for the transgression potential
T for the pushforward connection 3, given an invariant polynomial ¢. It is
convenient in formal calculations to adopt the universal point of view, which we
shall do throughout.

Recall that by definition,

(3.1) T,

1l

7¢ <ws : ?2’) ds.

8
The transgression integrand can be rewritten in many forms. For example, sub-

stituting for w, we obtained (2.7)

— v*Du — 0
2 vs; Ns) = =9 = Qs ) =X,
(32) o0 70) = o (s ) g
while in Lemma 2.20 we obtained
w*Du  — 9] 13} — g2
. s ] —xeds = ut = 0,4,
(3.3) o( ) s = ut gL 4T )4

In order to obtain an even more convenient formula for the transgression

integrand we need a lemma.

Lemma 3.4. Let

Duu® B uDu*
—— and a = ———
Juf? |uf?

denote scalar one forms and ¢ and v any scalar functions. Suppose u* 82‘ LA=

0. Then

+ *Du .
(3.5) ¢ <% ; A+(tpa'+1/)d/)L——) = ¢ (ulull)?u : A).

Jul?

a =

Proof. Since wa + & is a scalar one form,
(36) ¢ (A+(patp@)HBE) = (4)+(pa+pa)g (4B 5 4).

Contracting u* 32+ into the L.H.S. of (3.6) yields 3 times the L.H.S. of (3.5)
while contracting u*gi—, into the R.H.S. of (3.6) yields % times the R.H.S. of
(3.5). O
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To apply this Lemma define

(3.7) A(z)

ll

* Du*D * Duw* D
(=) +a (1= 1) (QF‘ Tu’|—zu)+m(1—m>—“ |151€* )

and note that

0 _
(3.8) wos LA(xs) = 0

.
because (1 —_ i‘ c

Tul?

) ©* = 0. The curvature can be expressed as

) o2 dlul® w*Du

Xo's Tupp Tup

(3.9) O, = Alxs) -

Corollary 3.10.

¢ (u(u[Dzu ) 68) = ¢ (uI:,l|)2u ) A(Xs))'

Now define
(3.11) Az) = (1_$|u,:|'z)QF—m2;;‘%.
Then
Alxs) = Alns) — ,\'s% —xs(1— xs)il%%%
(3.12) _u*Du o* Dy

= A s) — XNsQ@ —"81—/5'
(Xs) = Xs@0 ME Xs(1—x )a—lul2
so that Lemma 3.4 implies that
(313) (%R ) = ¢ (4B A).

Therefore, Lemma 3.3 has the following consequence.
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Corollary 3.14.

o(h 1 3) = o (5
Theorem 3.15. Suppose u is an atomic section of F'. The transgression T is
given by the formal integral

1

*D

pe [o(E2 ) a

0 |ul

Du*Du

utu
11— Qp —z———
< o 12> Juf?

In particular, the transgression T Is independent of the choice of approximate

A(xs)) :

where

Alz) =

one X.

Proof. Corollary 3.14 yields the formula

T, = —/:ogb("ffﬁ“ ; A(xs)) %xsds

for the transgression at time s > 0.
2
The change of variables s — @ = x (%—) in the integrand for T yields the

next

(3.16)

Proposition 3.17. The transgression Ty is given by the formal integral
X N «
T, = ‘/(; ¢ (ulullj.zu ; (1 — |u|2) Qp —z D|uu|2Du> dz.

Now the integrand is a polynomial in & and this is the sense in which the
The coefficients of this

polynomial are homogeneous of degree zero in v and independent of s.

integral is formal. Therefore T is a polynomial in x,

We now recall Corollary 2.21 which states that

(3.18) T, is of degree < 2n in the fiber one forms  du;, du;.

The hypothesis that y is atomic, combined with (3.19) ensures that when T}
is considered as a polynomial in ys, the coefficients of this polynomial are L (X)
forms. Since y, = x (l;sz) is bounded and converges to one almost everywhere,
the Lebesgue dominated convergence theorem implies that T, converges to T in
Ll (X)as s — 0, where T is given as in Theorem 3.15. This completes the proof
of Theorem 3.15. O

THE TRANSGRESSION

Remark 3.19. The Chern Forms (/J)(BS) The formulas in this section can

also be used to simplify the Chern forms ¢(_)3) Note that with & and & defined

as in Lemma 3.4

(3.20)
4 2 2 =
Q, = A(x,) — y, 2l dlel v Du

Xo o7 Tul” TTu]?

IJ_L_I_LuDu.

Xo s Tal” “Tul?

Alxs) + Xs@5RE = xs(1 = xs

Therefore,

BA(G)) = X0 (422 5 Alxy)
= (AG)) — X (38 5 M),

because of (3.13). Consequently, because of (3.6),
(3.22)

¢(§)s) = ¢(A(Xs))+ (Xs ullill;‘

(3.21)

- 2 d 2 *
- Xs(]- - XS)pﬁfé_ - X;%—ﬁlz_) ‘b(u]u?zu ) A(XB))'

Theorem 3.23. The residue form Resd,(_ﬁ) defined in 2.13 is a polynomial in

the curvature of F. Thus, the residue map factors as
T, — €7(X)
TN 7w
Iar, (0
where r is an additive homomorphism of degree —n and where W is the standard

Weil homomorphism.

Note. Determination of the map » amounts to a determination of the cohomol-

ogy class of the residue universally, i.e., over BGL,(C).

Proof. From 2.13 and 3.15 we see that Resy is given pointwise on X by the

following universal invariant function applied to the curvature and connection of

B
/ /01 ¢(u*Du ; Az))dz.
juj=1

(3.24) Resy( D)
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We want to show that in fact this can be expressed purely in terms of the cur-
vature. Let (Du)1,...,(Du)n, denote the components of Du = du 4+ wwp. Then

the integrand in (3.24) can be written in the form
(3.25) p(uDu; A@)) = > ers(Du)r(Du*)y,
[11,] 71 <n

where the sum is over strictly increasing multi-indices and where each coefficient
cr,7 i1s a polynomial in Qr and z. From Corollary 2.21 we conclude that the

coefficient c(1,... n),(1,...,n) of top degree is zero. Hence

Z / cr,7(Du)r(Dv) s

T I€2n 1) =1

= > er 7(du)r(du) g,

TFF1T|=2n=11 10,

#(u*Du ; A(2))

|uj=1

since in each (Du)r(Du*); with |I| +|J| = 2n — 1, only the leading term
(du)r(du*)s is picked off by the fibre integral. Consequently, no terms in wp

occur in this expression, except for the curvature terms in the ¢y 5. 0

Remark 3.26. Functoriality of the Transgression. Suppose f: X' — X
is a smooth map between manifolds, and let F' = f*F, Dp = f*Dp, p' = f*p
be the induced bundle, connection and cross-section. Suppose that both p and

' are atomic. Then the transgression current is also induced, i.e.,
T = f*T

in the sense that on X' ~ spt(Div(x')) this is an equation of smooth forms having
an L -extension across spt(Div(u')) (cf. 11.5.10).

Note that given an atomic section p, there are conditions on f required
for f*u to be atomic. For example, if f and p are real analytic, then it suf-
fices that the zeros of p' = pr o f have the proper dimension. This means that
codim (f~1Z) = codim(Z) where Z is the zero set of yi. In the case where f and

p are only smooth, one must require that f be sufficiently transversal to Z. In

particular if every point of Z is a regular value of f, then f*u is atomic.
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4. The Top Chern Current and Universal Thom-Chern Forms.

In this section we examine our main theorems in the special case of the top
Chern class. This immediately yields several interesting results. For each atomic
section y, the associated Chern current will be the divisor of y, and we obtain
a C'°° Poincaré-Lelong formula ((4.4) below). When applied to the tautological
section of F = 7*F over F' we obtain, for each choice of approximation mode
and each s > 0, a representative 75 of the Thom class of F' which is written
canonically and universally in terms of the connection on F'. In fact for each x !
and s we produce an explicit class in the equivariant cohomology of C™ whose ‘
image under the equivariant Weil homomorphism is 75. The family 75, s > 0
turns out to differ only by pullback under homotheties and so depends only
midly on s. However, as s — 0 we show that 7 — [X] which is of course the
canonical singular representative of the Thom class. The family also has the
pleasant property that for each s > 0, the restriction of 7, to X C F is the
Chern-Weil representative of the top Chern class in the given connection.

To begin we assume as above that F, {, ) is a hermitian bundle of rank n
with connection D (which is not assumed to be compatible with the metric), and |
we fix an approximate one y. Throughout this section we shall focus exclusively

on the invariant polynomial |
y n
- — det = (L
¢, = det = (h) det,
and for any atomic section p on F' we shall call the associated Chern current

det( D) = lmdet(D,) = limdet (3-8,
s—0 s—0 i
the top Chern current of the singular pushforward connection. Our first series
of results concerning this current is as follows. Proofs are postponed until after

the statements and discussion.

Theorem 4.1. The top Chern current &vet((—ﬁ)) of the singular connection D
determined by an atomic section u of F is equal to the divisor Div(u) of the

section. That is,

det(D) = Div(p).
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This result implies, in particular, that the top Chern current depends only

on the section , it is independent of the connection Dp on F, the metric {, )r

on F, and the approximate one .

Theorem 4.2. The standard transgression formula gives the equation

(4.3) det(Dp) — det(D,) = do,

of smooth forms on X. These potentials o, converge in L} .(X) to an L _ form

o, and hence in the limit equation (4.3) becomes

(4.4) det(Dp) — Div(p) = do.

These two Theorems are particularly important in the universal case as they
provide a universal formula (cf. [MQ]) for a Thom form. The canonical section

p of the pullback bundle F over F'is atomic.
Definition 4.5. For s > 0 fixed, the Thom-Chern Forin 75 is defined by
. = det(D.)

where ]—j)s is the connection family associated with the canonical section of F on
the total space of F. This form is determined by the connection D, the metric

{, )¥, and the approximate one x.

Consulting the local formula (2.4) for (_l)s and setting v = 0 yields

(4.6) *1s = det(Dp)

where ¢ : X — F is the inclusion map. That is, the restriction of each Thom

Form 75 to the zero section X = i(X) C F' is the top Chern form or Euler
form det(Dy) of (F,Dr) on X.

This form 75 has the usual properties justifying the label “Thom form?”.
Namely, in addition to (4.6) we have that

T is d-closed,
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and in Lemma 4.13 below we shall prove that each fiber integral is convergent

/Tszl,

a1

and

or equivalently, the pushforward by 7 : F' — X of 75 (considered as a current) is
equal to the degree-zero current 1 on the base manifold X. That is, m,(7s) = 1.

Because of Remark 2.24, this fiber integral is just the residue Res¢(l_))) when
¢ = det.

Remark 4.7. If the approximate one x is chosen to be of compact type, i.e., if
x(t) = 1 for ¢ large, then the Thom form 75 is compactly supported in the
fibers of .

Theorem 4.1 and Theorem 4.2 applied to the canonical section g of F = 7*F
yield a universal equation of currents on the total space F. Let [X] denote the

current of integration over the zero section X C F.

Theorem 4.8. The canonical section p of the bundle F = #*F over F' is atomic.

Moreover,
cigt(DF) - [X] = do on F
is obtained as the limiting form of the equation
(fct(DF) — 7 = dog on F

where 7 is the Thom-Chern form

— (=
7o = det| Dg

Corollary 4.9. The zero section [X] and the Thom-Chern form 7, = det (#QS)

are cohomologous, that is, setting ry = o — 05,

s — [X] = drs on F,

and

in L, (F).

limry = 0
s—0
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Remark. The main results (Theorem 4.1 and Theorem 4.2) can be interpreted

as follows. Any smooth section p : X — F can be used to pullback the second

equation in Theorem 4.8 on F' to the equation
det(Dr) — det (5;??) = do, on X.
If i is atomic, then as s — 0 this equation has limit
det(Dp) — Div(p) = do on X.

One may also take this limiting equation (4.4) as a definition of the term by

term pulling back of the first universal current equation in Theorem 4.8.

Remark 4.10. The Thom isomorphism. These results yield canonical rep-
resentations, at the level of differential forms, of various versions of the Thom
isomorphism. Suppose for example that the approximate one x is chosen so that
x(t) = 1 for t > 1. Then o has support in the s-ball bundle U,(F) = {v € F':
|v] < s}. Suppose X is compact and let 7 : F — X be the bundle projection.

Then the map
B EN(X) — ELRI(F)

cpt
from forms on X to forms with compact support on F', given by
hs(p) = 7P A TS
induces an isomorphism

iy HY(X) — HEP™Y(F).

cpt

Integration over the fibre m, clearly inverts this map since m,(7s) = 1. Letting s
go to zero yields the canonical version of this map
fg: EN(X) — EXLEN(FY,

cpt

now into currents with compact support on F', given by

io(p) = @[X].

126

THE TOP CHERN CURRENT AND UNIVERSAL THOM-CHERN FORMS

If on the other hand we choose the algebraic approximation mode x(t) =
t/(1 +t), then by Theorem 1.8.14 and its corollary we see that 7, extends to
a smooth d-closed form on P(C @ F) = F U P(F). Furthermore at “infinity”,
P(F), this form is zero. (To see this note that along P(F'), 75 = det(Dggy+)
where C @ V= has the direct-sum connection, trivial on C, and where 7*F =
V @ V4 is the canonical splitting over P(F).) Hence, 7 represents a class in
H?*™(P(C @ F),P(F)) which, as we have shown, is cohomologous to the zero

section [X].

Remark 4.11. The Gysin map. Consider an embedding j : ¥ — X of a
compact oriented-manifold Y into our manifold X. Then there is a natural map
JiiEY) — E:;;T”(X)', from forms on Y to currents with compact support on
X, given by

ale) = elY].

(Here m = dim X —dimY".) Suppose now that the normal bundle N to Y carries
an almost complex structure and give it a complex connection. Let 73 be the
family of Thom forms in compact approximation mode (as in 4.10). Identify N
with a tubular neighborhood of ¥. Since 7, has compact support, it extends by
zero to a d-closed form with compact support on X, and we have 75 — [Y] = drs
where rs — 0 as s — 0. Thus we get a smooth Gysin map ji, : E¥(Y) —
EXHM(X) defined by

cpt.

Jrs(e) = 7o ATy

where # + N — Y is the retraction of the tubular neighborhood. Note that

Jrs — jras s — 0 and that j , and j induce the same maps

i HY(Y) — HX™(X)

cpt

in de Rham cohomology.
Remark 4.12. A generalized Gysin map. The standard Gysin map now
generalizes as follows. Let a be a atomic section of a complex bundle F' — X with

connection. Assume a vanishes on a compact set Z = spt(Diva). Choose x with

x(t) =1fort > 1andlet 7, = (Tet(ﬁs) as above, Then for any neighborhood
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U of Z there is an so with supp7, CC U for all s < sq. Hence we get a map
Jra: EX(U) = EXF2"(X) (where n = dimg F) given by

cpt

Jts(e) = AT,

8*—{—271

oo (X)), from forms germed on Z to

Letting s — 0 gives a map ji : £5(X) —
currents on X, defined by

ni(y) = #-Div(a).

By 4.2 they induce the same generalized Gysin map

gis Hy(X) — HXEP(X).

cpt

In the next chapter we shall generalize the constructions in 4.10, 4.11 and
4.12 by replacing the complex bundles with any real oriented bundle with an

orthogonal connection.

Proofs of the main theorems. Theorems 4.1, 4.2 and 4.8 are immediate spe-

cial cases of Theorems 2.14 and 2.30, once the following two Lemmas are estab-

lished.
— —
Lemma 4.13. If ¢ = det, then Resyg( D) = 1.

Proof. Let A(u) = %dul Adiy A A %dun A du, denote the standard volume

; _-> . [ .
form on C™. The part of det | 5§, | of degree 2n in du, du is given by

L — . )
deg,, det (—;—W Qs> = alyn—ly [u]? dA(x)

8 g2 |u|2n N

See, for example, equation (3.21). Since vol(S?"~1) = (TILI})—!, polar coordinates

yield

(4.14) / det 2—’“63 = /nx(rz)"_lx'(rz)dr2 = 1,
ueCn 0

so that by Remark 2.24

o and rg.
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Lemma 4.15. The top Chern current (Tel((ﬁ)) has no L] _ part, i.e.,

Proof. Note that det (1 - ru‘—lg) = 0 and consult the formula (2.5) for _Q)o. O

The geometric secret of this proof is that outside the zero set, D is a smooth

connection which admits a parallel cross section.
Theorem 4.2 and Corollary 4.9 have many applications. For example they

can be used to compute the residue Res¢(—ﬁ) whenever ¢ has det as a factor.

This has important consequences described in the next section.

Proposition 4.16. Suppose ¢ = I/J&Et with ¢ a Ad-invariant polynomial. Then

the L11OC part of the ¢-Chern current vanishes and

.—)
R.GS¢( D ) = 1/)(DF)
Moreover,

(4.17) $(D.) - [X]p(Dr) = d((D)rs).

Proof. The equation 7, — [X] = dr,, when multiplied by ¢(33), yields equa-
tion (4.17) since ¥(D,) | = »(Dr). Since ¢(Qo) = (R o)det(Fo) = 0 by
Lemma 4.15, the formula RCS¢(6) = W*(QS(E)S)—gﬁ(ﬁg)) reduces to Res,ﬁ(ﬁ) =
ﬂ*(¢(—ﬁs)) Therefore (4.17) can be used to compute Res¢,(ﬁ).

Proposition 3.17 implies that », is the sum of terms of bidegree k,k — 1
.y Duyy Duf,...,Du}. Also, 9(D;) is a
In particular, ¥(D,)r, cannot have a part of
bidegree n,n and hence must have fiber integral zero over the fibers of F - X
Therefore pushing forward the current equation (4.17) by = yields the formula

for Resd,(l—))). O

in the differential one forms Dugy,.

sum of terms of bidegree k, k.

The next part of this section is devoted to obtaining some elegant explicit

algebraic expressions for the Thom-Chern form 7, and the various potentials o,
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Theorem 4.18. The Thom-Chern form 7 for F' determined by Dr, {, ) and
X is given explicitly by

S\ n Du*Du
7o = (55)" (1= x,)det (QF—XS———MZ )

i\ u*Du Du*Du
+ (21_7\’) (Xﬂ(l_Xs) {gj;i_) [u]? d t( ; QF_Xs”—“’—).

Juf? Juf?

Proof. Consider, the frame fi,..., f, for F' and the dual frame f},..., f* as
elements of the grassmannian algebra A(F* @ F'). Let A(f) = ff A fi A
FX N fa denote the volume form. Then, for any matrix A, the determinant can

be computed from

1 * n

LUPAR = det( AN,
Consequently, the equation

det(4 ; BIA(S) = o (f*AF(F*BF)"

can be used to compute det(A ; B). Let v = ) ujf; denote the tensor that

contracts into a form by replacing each f}* by ;. The identity

- — tut Du"D
L 9. = 1-x ) <VL (f*QFf_Xsil#Pg»

u2 * v>l<-D
+ <Xs(1 - Xs) - IJ—L) %M

Xas2 Mk

(4.19)

follows from the formula (2.4) for Q,. This identity (4.19) can be used to prove

the Theorem 4.18, because
(f*ﬁsfy = P (DY) = al L (R
and, modulo the 1-form f*u* € A(F*),
PR = prorf - I20 P g

Juf?
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Corollary 4.20. Algebraic Approximation Mode. In the algebraic approx-
imation mode the family of Thom-Chern form 75 on F' determined by Df and

{, )r is given explicitly by

s2 d f Du*Du
T, ——de —_—
s |u|2-{—s2 |u|2+52 ’
Equivalently,
n
IR N f*Du*Duf
(421) Ts/\ = (ﬂ) [u]?F 32 <f QFf - I'Ualz +82
n—1
If a and b are elements of a ring, let 2=t~ denote the expression akpn—1-k,
£, p ;
'=0

Theorem 4.22. The potentials o, o and vy = o — o4 are given explicitly by

the algebraic formulas:

o frurDuf (S = X f 2PN — (£ )"
|.U|2 frDuDu Du* Du f

[x]?

(4.23) oA = —L (%)

nt \ 2w

and,

a fru*Duf ("Qpf - f* Du Duf)n (f*Qrf)"

4.24 N = ! ]
( ) a n! (JTr) ’”’2 f* Du‘DUf
and

oa fru*Duf JE __,S‘Bn_An
(4.25) A = A (g LDl (A4 (- x)B)

l? B
where 4 = [*Qrf — f*n D“f aud B = f* Du* Duf_'f‘

ful® [u]?

First, we express og and o as formal integrals.

Lemma 4.26. The potentials o and s arce given explicitly by

Ne o, .
(4.27) o = / det <“|U[l)2u ; QpF —a D]“u|?“> da
0
1
(4.28) o = / det (“lulDQ“ Qp — 2 Di' 12Du) dux.
0
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Proof. Because of Proposition 3.17
Xe — *
oy = / det( Mz ;O ——:EDluulzD“ MI?Q}:‘) dz.
0

Therefore, to prove (4.27) it suffices to show that

(4.29)
det (“l:f')z” : QF—mD—luél—zgﬁ MQQF) det< el QF—rDI |D").
The completely polarized polynomial det( ,..., ) has the special prop-
erty that if P is orthogonal projection onto a one-dimensional subspace then
det(PA, PB,C,...) = 0. It suffices to consider P = (1) 8 in 1 X (n—1) block

form; in which case the verification is straightforward. Applying this fact with
P = ﬁ and noting that u* = Pu* yields (4.29) completing the proof of (4.27).
The limiting form of (4.27) is (4.28). O

Proof of Theorem 4.22. The transgression integrand in (4.27), times A(f),

equals

*u*Du u* n-l

Now the formulas in Theorem 4.22 follow easily. O

Remark 4.30. Universal Thom forms in equivariant cohomology over
GL,(C). The formulas above can be succinctly expressed, as in [MQ], by stating
that they represent universal Thom forms in equivariant cohomology. Our first
reformulation, however, will differ in spirit from [MQ]. Recall that our construc-
tion employs a metric, but applies to any GL,(C)-connection, not just metric-
compatible ones. This will be reflected in what follows. In the subsequent remark
we will specialize to the case of unitary connections.

Our main observation here is that the formulas in 4.18 and the interest-
ing special case 4.20 determine elements in the equivariant cohomology group
HE'((C™)* x C™) where G = GL,(C). More explicitly, let W = (Ag*) ® (Sg*)
denote the Weil algebra of ¢ = g€,(C) with standard generators w;; and £;;

for 1 < ¢, j < n. Let (u1,...,un) denote standard coordinates on C" and
(uf,...,u}) the dual coordinates on (C™)*. Write
uy
u = (u,...,up) and uw*=| :
Un
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as always, and let G act from the right on C™ and (C™)* by U ug and u* —

g~ lu* respectively. Set Du; = du; + Z ujwj; and Du} = duf Z wiju} in
j=1 7=1
W @ E*((C™)* x C™) and as above write

Du=du+uw and Du*=du*—

We now recall briefly the de Rham model of equivariant cohomology ([AB],
[MQ], [BV]). Let Y be a manifold with a smooth right G-action. Then the
algebra W @ £*(Y) has a natural Weil structure extending the standard one
on W, where by an algebra with Weil structure over G we mean a graded
differential algebra (A, d) with a Lie group homomorphism L : G — Aut(A d)
and a graded Lie algebra homomorphism ¢ : ¢ — Dergeg=—1(.A) satisfying the
standard identity

doiy +iyvod = Ly

for V € p. The “contraction operators” iy on £*(Y') are given by standard
contraction with the associated generating vector field VonY. Fora general
algebra A with Weil structure over G, let AY C A denote the G-fixed elements
and set Apasic = {a € A% 1 iya = 0 forall V € g}. Note that d(Abasic) € Abasic-

Then by the equivariant forms on Y we mean the graded differential algebra

def
gG(Yr) = {‘I[ ® g* )}basic’
and by the equivariant deRham cohomology H{(Y) of ¥ we mean the co-
homology of ££(Y").
Returning to ¥ = (C")* x C", we consider the G-invariant function |u|* =
|Suju}| = |uu*| and fix an approximate one y(¢) on [0,00]. For each s > 0 we

define

2N\ u¥D
wy = w—x (L) S ew e er(cmy x o)

fuf?

and set 2, = dw, — %[ws,ws].

Proposition 4.31. Universal Thom forms. For any choice of approximate

one x, and any s > 0, the determinant of {2, gives an equivariant cocycle

(4.32) To = det(Q) € E&p oy ((C™)* x C).
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These forms are mutually cohomologous. Fach is given explicitly by the formula
in 4.20 by replacing wy with w and Sy with Q.
In particular, if x(t) = ¢/(1 +t), then
2~ Du*D
¢ _ga(a- 221

(433) R e R v

Proof. Note that ¥, is manifestly G-invariant and that the standard argument
shows that d5, = 0. Hence to see that %, is basic it remains to show that
1vSs = 0for V € g. Since iy {2 = 0 by definition, it suffices to note that iy Du = 0
and iy Du* = 0 and then apply formula 4.18. However, ity Du = du(V)+uw(V) =
4 y(exp(—tV)) [t:O tuw(V) = —uw(V) + uw(V) = 0. (Recall that w(V) is the
realization of V as an n X n-matrix.) The equation iy (Du* —wu*) =0 is similar.

To see that ¥, and ¥, are cohomologous, consider the universal version of

os given by setting Qp = Q in the formula (4.23). Then

dlos—0g) = 39 —%F,. O

Suppose now that F — X is a smooth n-plane bundle with connection Dg
and write F' as the standard quotient F' = P(F') X C"/GL,(C) where P(F) is

the complex frame bundle of F'. Then Dp determines a homomorphism
W®E((CM)* x C") — EX(P(F) x (C™)* x C™)

of algebras with Weil structure over GL,,(C). This induces a g.d.a. homomor-

phism on basic forms
(4.34) E&L.(c)((CT)* X C™) — EX(F* @ F).

A choice of hermitian metric on F' corresponds to choosing a complex anti-

linear isomorphism & : F' —— F*. Let
I'y:F—F'oF

denote the graphing map: I'y(v) = (h(v), v). Pulling back forms induces a g.d.a.

homomorphism

(4.35) EX(F* @ F) — E*(F).
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Composing (4.34) and (4.35) gives a g.d.a. homomorphism
(4.36) E&1L,(0)((C")" x C") == £*(F)

called the Weil homomorphism associated to the metric A and the (not neces-
sarily compatible) connection Dp. This extends the usual Weil homomorphism:
€&, (o) (Pt) — E*(X).

We now have the following, whose proof is evident.

Proposition 4.37. For any choice of approximate-one, the image of§ , under the
Weil homomorphism is the Chern-Thom form of Proposition 4.17. In particular,
if x(t) =1 fort > 1, then §, determines a form in Sczlft(F) which represents the

Thom class in HZ)\(F'). Furthermore, if x(t) = t/(t + 1), then S, determines a
form which extends to P(C @ F') = F UP(F') and vanishes on P(F). It thereby

determines the Chern-Thom form in £*"(P(C & F), P(F)).

Note. There is an advantage in formulating the Thom class in £*(F* x F'). One
can restrict the class to any family of cones I' C F* x F. Examples are given
by graphs of other bilinear and sesquilinear forms on F. However, the theory of
kernels in several complex variables provides other examples which are even more

interesting.

Remark 4.38. Universal Thom forms in equivariant cohomology over
Upn. In the special case where the connection is metric compatible, the above
discussion simplifies and our formulas are seen to determine universal Thom
classes in H r, as follows. Fix the standard hermitian inner product on C" and
let C" — (C")* x C™ be the graph of the metric as above. This is compatible

with U, — GL,(C) and we get a restriction homomorphism
(439) géLn(C)((Cn)* X Cn) — g;}"(cn)
For s > 0let By = {ve C": |v] < s}.

Proposition 4.40. Let x be any approximate-one such that x(t) =1 fort > 1.
Then under the restriction (4.39) the universal Thom class ¥, of Proposition 4.31

determines an equivariant cocycle

T, = det(9,) € EF (C™,C" — B,).
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Given any complex n-plane bundle F' — X with a unitary connection, the Weil

homomorphism
&y (C",C" = B,) — E*(F, F — B4(F))

(where B(F) = {v € F: |v| < s}) carries ¥ to the Chern-Thom form of 4.15

which represents the Thom class

5. € H(F,F - B.(F)).

Proof. Inlight of the discussion above it suffices to observe that spt¥, C B,. O

Proposition 4.41. Let x(t) = t/(1 +t). Then the formula in 4.17 determines

an equivariant cocycle
52 —~ Du*Du 9
Ty = ———=det | Q= ———— | € EF(CM).
T s ( lu|2+32> 0.(C")

This form extends to an equivariant cocycle on P™ > C™ which vanishes on P!

and so determines a relative cocycle
Y € 512]: (P",P"_l) .

Given any complex bundle F — X with a unitary connection, the Weil homo-

morphism

&y (PP ) — &(P(Co F),P(F))

carries % ; to the Chern-Thom form 4.15 which represents the Thom class

[rs] € H*" (P(C® F),P(F)).

In a similar vein our formulas for o and rg determine universal equivariant

currents. The details are straightforward.
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5. The Rectifiable Grothendieck-Riemann-Roch Theoremm—Version 1.

In this section we use our results on the Chern-Thom form to prove a ver-
sion of the Differentiable Grothendieck-Riemann-Roch Theorem for Embeddings
(cf. [AH]) at the level of differential forms. We also extend this result from sub-
manifolds to certain embeddings of subcomplexes. Not only do our methods
take place at the level of differential forms, but we actually produce for each
embedding j : ¥ < X and bundle E — Y with connection, a canonical family
of closed differential forms representing ch(j1E) which converge to the current
71(ch(E)UTodd™"(N)) = ch(E) A Todd™*(N)[Y], where N is the normal bundle
to j. The support of this family squeezes down to ¥, and the Todd™!-factor falls
naturally out of the residue computation.

In this section we shall only deal with complex normal bundles and the
standard Thom class in K-theory. The more general results for Spin- and Spin®-
embeddings (and their corresponding Thom classes in KO- and K-theory) will be
treated in the next chapter.

To begin we assume as above that 7 : F — X is an n-dimensional complex
vector bundle with connection D over an oriented manifold X. Let R = RF
denote the curvature operator D? determined by this connection. We define
extensions A*R and A*R of this operator to A*F by setting

(A*R)(vi A---Awv) = RuyA- ARvy  and
k
(A R)(or Ao Avg) = Y o1 A ARvj A= Ay
i=1
for vy,...,v € T(F).
We extend D to the full tensor algebra of sections of F, as usual, by requiring

that D be a derivation that commutes with contractions. Then the corresponding
curvature operator RMF on ARF s easily seen to be equal to A*R. Furthermore,

we have RF" = —(R)*, so the curvature of A*F* is given by
(5.1) RMT = _)\FR* = — (A*R)"

The following classical algebraic identity is of fundamental importance. For

completeness; a proof is given at the end of this section.
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Lemma 5.2. Let V be a finite dimensional complex vector space. To each

A € End(V), let \*A € End(A*V) denote the induced derivation. Then

* 3t I-— 6—A
(53) tI‘Aeven {6—>\ A} - tI‘Aodd {8 A A} = det {'—A—} det A
for all A € End(V).

This identity signals the importance of the Todd polynomial defined by

LA

4
e 2x

Corollary 5.4. Let RM be the curvature of the bundle AF* = OF_ AFF*
induced from the curvature R of F as above. This map preserves the splitting
AF* = A®vem @ A°49 into even- and odd-degree forms, and the following formula

holds

AF* AF* I— R
(5.5) trpeven {ef ) — trpoda {elt } = det{———-—};—}det(R)

Equivalently, the following identity between characteristic forms holds on X
(5.6) ch(Dpevenpe) — ch(Dpoaaps) = Todd™! (Dr)cn(DF).

Furthermore, let E be any other complex vector bundle with connection Dg
and curvature RE = (Dg)* over X. Let RAF)®E (enote the curvature of the
tensor product connection on (AF™) ® E.This map also preserves the splitting
(AF*) @ E = A** @ A°Y into even- and odd-degree E-valued forms, and the
following identity of differential forms holds on X ‘

(5.7)

* s ¥ " . . I— —R
trpeven {eR(AF )®D} — trpodd {eR( . )QE} = tr {eRE } det {—%} det(R),

or equivalently

(58) Cb. (D(AevenF*)@E‘) — ch (D([\oddFt)®E) = ch (DE) Todd_l (DF) Cp (DF) .

Proof. Note that
trax {GRAF‘} = trpx {6_(RAF)‘} = trps {6_(RAF)}.

where the first equality is just 5.1. O
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Using these beautiful formulae we can now apply our Chern current theory to
derive generalizations of the Grothendieck-Riemann-Roch Theorem and certain
formulas of [BGS1, 2] for smooth embeddings.

Theorem 5.9. Rectifiable Grothendieck-Riemann-Roch — Version 1.
Let F' be a complex vector bundle with connection over an oriented manifold
X. For each atomic section pi of F, the following identity of d-closed forms and

currents holds on X :
(510) ch (DAevenF*) — ch (DAoddFt) = TOdd~l (_DF) DiV(/L) + dT ' |

-form given by T 4 Todd! (Dr)o, where o is the Chern-

Thom transgression from the previous section. Moreover, for any “auxiliary”

where T is the L1

loc

complex bundle E with connection Dy over X, there is the identity
(5.11)
ch (D(Aevenfw)@E) — ch (D(AoddFt)@E) = ch (DE) r_[\Odd_1 (DF) DIV(/,L) + dT’

where T = ch(Dg) Todd ™ (Dp)o.
Furthermore, suppose that 33 is the family of pushforward connections on
F associated to a choice of approximate one y, and let I_))S’A‘p be the family of
connections induced on A*F* by 33. Then
(5.12)
-— - —1 .
ch( D g (pevenpeyor) — ch( D s,(Aeddprygp) = ch(DEg) Todd™ (Dp)Div(p) + dR,

where R, Is a family of L -forms on X such that

loc

lim R, =0  and lim Ry, =T  in L (X).

Eimade ol
In particular,

(513) lillg] {Ch(-ﬁsyl\cvcnpt) — C]](__D_)Syl\odd}:w)} = TOdd_l(DF) DiV(lL)

If x(t) =1 for allt > 1, then

(514) ' Spt {Ch(BB,Aevant) — CII(BS’AoddFt )} C Us

and spt(R,) C U,, where U, = {z € X 1 |u(z)| < s} for all s > 0.
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Proof. Applying (5.8) to the connection D, gives the equation
(5.15) (D s aevenroran) — ch(Dy (rosaryon) = ch(Dp)Todd ™ (D,)rq
where 7, = &gt(-ﬁg) As remarked after Corollary 4.9

7, = Div(p) + dry

where ry = 0 — 0, is an L{ -form on X. Theorem 4.2 and Proposition 4.16 now

apply to yield the main part of the theorem. In particular, if we define

._)
(5.16) R, = ch(Dg)Todd (D ,)rs,
then
— def
limR, =0  and lim R, = ch(Dg)Todd ' (Dp)o = T
3—0 8—00

in Lt _(X). Finally, if x(¢) = 1 for ¢ > 1, then

loc

spt(r,) C U,
for all s > 0. This proves (5.14). O

Remark 5.17. Localization at Div(a). The main formula in Theorem 5.9
can be reformulated purely in terms of the zeros of a as follows. Suppose that
Z is an integral current on X with the property that Z = Div(a) for an atomic
section p of a complex bundle F' defined only over some neighborhood U
of |Z| = spt(Z) in X. Fix an approximate-one x such that x(t) = 1 for t > 1,
and choose a metric on F' so that U, C U for all s < 1. Then the family of forms

4
K(S) d__e_f ch(Bs’Aevan‘) - ch(Ds,AoddFt)

has support in U; and extends by zero to a family of smooth d-closed forms

defined on all of X. It has the property that

lim K(s) = Todd™}(Dpr)Z.

s—0
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Suppose now that the embedding
J 2| —-U

admits a retraction p : U — |Z| which is proper on U, C U. Then we can define

a Gysin map in K-theory

i Kepe(|2]) — Kepi(X)
by

I(u) = (A F*  p*u)
where ¢, @ K 5 (U) — Kcpi(X) is the map induced by inclusion i : U «— X, and
where

AL F* = grpsvenpr _ v podd pw ¢ Koo (U)
is determined by identifying A®Y"F* with A°dF* oyer U — |Z| by the map
(nA)+(uA)*. Recall that there is also a Gysin map in cohomology
It Hirnam(12]) — HiE W (X)
from the cohomology of forms germed an |Z| to the cohomology of currents on
X, given by
ne) = ¢z

From the preceeding discussion and Theorem 5.9 we have the following

Corollary 5.18. Localization. Let Z be a current on X which arises as the
divisor of a section of a complex vector bundle F defined in a neighborhood U of
|Z| = sptZ which admits a retraction p: U — |Z|. Then

Ch(j!(l)) = [Ch (BS,A'&"E“F‘> —ch <B3,A0ddF¢):l

for all s < 1 (with x and D as above). Furthermore, for any complex bundle E

on |Z|, pulled back over U and endowed with a complex connection, we have

. - —
ch(j(E)) = [Ch (Ds,(Am"F*)@E) —ch <Ds,(A°ddF*)®E)] .

Taking the limit as s — 0 of this family of d-closed forms in X gives the equation
(5.19) ch(ji(E)) = ji (ch(E)Todd " (F)).

141




SECTIONS OF VECTOR BUNDLES

Remark 5.20. An alternative method for localizing the main formula in 5.9 is
the following. Let U D |Z| be as above and choose a neighborhood Uy of |Z]
such that Uy N (X — U) = §. Let ¢ € Cs°(U) be any smooth function such that
Y =1onU;and ¢ = 0on X —U. Let T' be the transgression from Theorem 5.9.

Taking d of ¥T" then gives a formula
chepy (A1 F* @ E) = ch(Dg) Todd™" (D) Div(a) + d(yT")

where chepy (A1 F* ® E) is a smooth differential form with compact support

in U such that

chep (A1 F* @ E)Ju, = {ch (Dpowenpyan) — b (Dgposs pyon)} lun:

Remark 5.21. The relation to Grothendieck-Riemann-Roch. Corollary
5.18 constitutes a promotion to the level of differential forms, of Atiyah and Hirze-
bruch’s “Differentiable Riemann-Roch” Theorem for embeddings with complex
normal bundle. Their result can be recovered by considering the current Z = V]
associated to a compact oriented smooth submanifold ¥ C X whose normal bun-
dle p: N — Y carries an almost complex structure. Under this assumption we
can identify N with a tubular neighborhood ¥, and after writing Y as the divisor
of the tautological cross-section of p* N, the theory applies.

We recall for the reader how this result can be rewritten to resemble the
theorem of Grothendieck. Suppose that the manifolds X and Y are compact
and almost complez. From the Grothendieck viewpoint we should begin with a
smooth embedding

jiY = X
which respects the almost complex structure. Then the normal bundle N to Y

is complex and there is a splitting
TX|y = TY @ N.

We fix a direct sum of complex connections on TY @ N and extend it to a complex
connection on all of T'X. From the multiplicative property of the Todd series with

respect to direct sums, we have that

TOdd(DTx) Yy = TOdd(DTy>TOdd(DN)
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or equivalently that

Todd (Dpx)

v Todd™ (Dy) = Todd (Dry)
We now fix a tubular neighborhood U of ¥ in X , and choose an identification
U=nN Dy

of this neighborhood with the normal bundle. Under this identification ¥ be-
comes the divisor of the tautological section of 7* N , and we can apply the theory.
Namely, Let D = 31 be the pushforward connection with support in U; C U as
above. Then given any bundle E with connection over Y, we pull E back to U

via p. Multiplying (5.11) by Todd(D7yx) then gives the following equation
{Ch (D(Aevenpn» )®E) —ch (D(Aoddpt)@E) } A Todd (DT,\’)
(5.22) = ch(DEg) A Todd(Dry)[Y] + dT

where T is a canonically defined L} form on X.

Now associated to the proper embedding j : ¥ < X there are the Gysin

maps
B K(Y) — K(X) and ji: HY) — H*(X)

defined above. Let ch : &' — H* he the transformation of multiplicative theories

. 1 -~ > . e 0 . M 3
given by the Chern character. Then in passing from currents to cohomology:.
?

equation (5.22) becomes
(5.23) ch(HE)uTodd(X) = {(chE)u Todd(Y)}

which is the C*°-form of Grothendieck’s Theorem for J. It can be restated by
asserting that the following diagram
. Jt o
K(Y) —— R(X )
ch - )/\Todd(Y)l lch( - )ATedd(X)

H*(Y") — H*(X)

commutes. For this reason it is sensible to consider Theorem 5.9 as a gener-

alization of this result to divisors of atomic sections. In particular, using the
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localization argument above we get a Grothendieck-Riemann-Roch Theo-
rem for any subcomplex ¥V C X of a smooth triangulation of X which
can be expressed as the divisor of a section of a complex vector bundle

defined in some neighborhood of Y.
In the next chapter we will generalize this to embeddings with spin or Spin®-

structures on the normal bundle as in [AH].
Proof of Lemma 5.2. We first note that for all A € Hom(V, V) we have that
(5.24) A = AR (4,

To prove this set L, = ¢*4 in Hom(V, V). Both ¢, = A*L, and 1, = e A are
l-parameter groups in GL(A*V), and d¢,/dt|i—o = dip;/dt|,—g = \*A.

The case dimgV=1. Suppose that dim¢V =1 and A =aldon V = A'V. By
o 1
definition, A\’4 = 0 on C = A°V. Thus, Ale? = e} 4 =T and Aled = X 4 =

e?l. In particular,
tr (e’\OA> — tr (e’\lA) = tr (AOeA) — tr (AleA) = 1—e"
which completes the proof when dime V = 1.

Definition 5.25. Given L € Hom(V,V) and t € R, we set

Tr(L) = Y tr (A*L) ",

k>0

Lemma 5.26. Given L, : Vi — V4 and Ly : V; — V3, we have for all ¢ that

TI‘t(Ll @Lg) = Tl‘t(Ll)TI't(L2>.

Proof. Note that

MVien) = ) Ao (W)
it+j=k
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and therefore

Tr (AM(Ly @ Ly)) = > Te(AL)Te(ALy). O
i+j=k

Suppose now that A is diagonalizable with eigenvalues ay,...,a,. Applying

5.28 to the eigenspace decomposition V = P Vi, we see that

mn

Ty (eA) = H(l +e%t) = det (1 + teA) ,

i=1

and in particular, if det 4 # 0,

_,—A
Tr_, (e*A) = det (1 — e_A) = det {_IdTe-} det 4.

Since invertible diagonalizable endomorphisms are dense in Hom(V, V), equation
(5.3) is established and Lemma 5.2 is proved. O

6. Bundle Maps E -2 F where Rank E = 1.

The results of this chapter easily extend from the case C %5 F to the case
E % F where rank E = 1. We present here brief statements of the modified
results. Most of the proofs are omitted.

Fix F, Dp and y as above. Consider a bundle map a : F — F where F is
a complex line bundle with connection Dg. Given local frames e for E and f for
F,w=(uy,...,u,) is defined by a(e¢) = uf, and « is atomic is each such v is
atomic. The divisor of a is defined by Div(a) = Div(u).

Let Bs be the family of smooth approximations to the push forward con-

—ﬁ
nection on F, and let Q 4, Ty, etc. be defined as usual.

Proposition 6.1. Suppose E - F' is atomic. The transgression is given by

X . u*Qpu N .
62) T.= / b <% Qpta <_L; o, Drulgu» do,
0

Jul?
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and converges in L, (X) to

! *Q U - *
u*Du , U NE _utu __ Du*Du .
(6.3) T = /0 ¢ <_—lu|2 ; Qp + o (———lulz EQr — P )) da.

In particular, the transgression T is independent of the choice of approximate

one Y.

Formula (2.4) is valid for ﬁ)s provided that in this formula —ﬁ)o is replaced

by

(6.4) 60 = (1 _ u_‘g_) (QF _ Drz:PDu) 4 u*QEu’

Jul lul2

i.e., the term y—‘lf—iﬁlﬁ is added to 60. The proof of Proposition 6.1 follows exactly

as the proof of Proposition 2.8. The extra term E:h%gﬁ is harmless.

Define the residue form on X as before by setting

(6.5) Resy(B) = = T = —p.(T),

p—l

where p denotes the restriction of 7 : Hom(E, F') — X to the e-sphere bundle

and T is the transgression in the universal case. Note that with this definition

Res¢(3) is smooth.

In the universal case we adopt the notation of Section 3 in Chapter 1. In

particular, recall the blow up
P ﬁom(E,F) — Hom(E, F)

and the target bundle T C F over ﬁom(E,F), obtained by pulling back the
universal line bundle over P(F) to ﬁom(E, ).

Universal Theorem 6.6. The ¢-Chern current qS((B)) of the pushforward
singular connection associated with the canonical bundle map E =5 F over
Hom(E, F) has Li  -part equal to p,¢(Dg @ Dr1) and singular part equal to
Res¢(ﬁ)[X] where the residue form is smooth and d-closed. The equation

(6.7) H(Dr)— pudp(Dg & D) — Resd,(l_)))[X] = dT, over Hom(E, F)
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is the limiting form, as s — 0, of the equation
(6.8) $(Dr) — $(D,) = dT,  over Hom(E, F)

and the potentials T, converge to T in L}, (Hom(E, F)).
Furthermore, the residue form Res¢(3) is a universally determined polyno-
mial in the curvatures of E and F\, i.e., the strict analogue of Theorem 3.23 holds

in this case.

The residue can be computed by utilizing the algebraic approximation mode.
Consider Hom(E, F) as an open dense chart in the compactification P(E @ F)
and let 7 also denote projection from P(E @ F') to X. Then it will be proved in

the next section that
(6.9) Resy(D) = md(Dys)

where U is the universal bundle on P(E® F).

If B - F is atomic, then the results of the universal Theorem 6.6 can
be successfully pulled back from Hom(E, F') to the base manifold X. As before
[X] pulls back to Div(a) and the residue form Resd,(ﬁ) is independent of the
bundle map a. Moreover, the L;. _-form ¢(~§0) = p«¢(DE® Dr1) on Hom(E, F)
pulls back to a d-closed L] -form on X, which we also denote by ¢(§)0) =
p+®(DE ® Do)

Note that because of (6.4) and 1.2.19, the L -part of the ¢ Chern current

loc

can be expressed as

00 e pre = o (e (- ) (o 25) - )
Atomic Theorem 6.11. Suppose E -+ F' is atomic. The equation

(6.12) $(Dp)— §(D,) = dT, on X

has limiting form (as s — 0)

(6.13) $(DF) — ped(Dg @ Dps) — Resy(D) Div(a) = dT on X,

so that the ¢-Chern current exists and has Lj, (X )-part equal to p,¢(Dg® Dp.)

loc

and singular part equal to R.es¢(3) Div(a).
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Remark 6.14. The Total Chern Form. The special case of the results of
this section where ¢ is the total Chern polynomial, denoted ¢, are summarized

in this remark. First, one calculates that
(6.15) Reso(D) = 1
exactly as in the case F = C. The universal equation (6.7) can be written as
(6.16) ¢(Dr)e(DE) ™" — puc(Drr) — o(Dg) ' [X] = d(c(Dg) o)
on Hom(E, F') where the degree 2n part is given by
(6.17) cn(DF) — cp1(Dr)er(Dg) + ... (=1)"ci(Dg)" — [X] = dy
on Hom(E, F). If E == F is atomic then (6.13) can be written as
(6.18) ¢(Dp)e(DE)™" — puc(Dps) — ¢(Dg) ' Div(a) = d (c(DE)”la*(a))
on X, and hence
(6.19) cu(Drp) — cam1(Dr)ei (D) + ... (=1)"e1(Dg)" — Div(a) = d(a*(y)).
The equations
o(Dp) —c(D,) = doy  on Hom(E,F)
o(Dp) — ¢(Dg)e(D7r) — [X] = do on Hom(E, F)

yield
«D,) - e(Dg)e(Dys) — [X] = dr,

with rs = o — os. Equivalently,

(6.20) oD )e(Dg)™! — ¢(Dps) — (D) [X] = d(ree(Dg)™).
Taking the degree 2n-part of this equation yields an equation

(6.21) s — [X] = dvs on Hom(E,F)

where 7, is the degree 2n — 1 part of rsc(Dg)™! and where

(6.22) 7 = c(Dy) = ca_1(D,)er(Dg) + ... (=1)"es (Dg)",

since ¢(Dp1) has no degree 2n part. This form 7, is a Thom-Chern form for

Hom(E, F'). One can establish that
(6.23) a1, converges to Div(a) on X

if & is an atomic bundle map from E to F'.
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Remark 6.24. Tt is natural to define the total Chern form of the difference
Dy — Dg to be

(6.25) «Dp —Dg) = o(Dp)e(Dg)".

If, more generally, ¢ is any polynomial in n variables ¢1,...,Cq then it is natural
to define

(6.26) ¢(DF—DE) = ¢(01(DF——DE),...,CT,(DF—DE)).

This yields a definition of the ¢-Chern form ¢(Dr — Dg) for all Ad-invariant

forms ¢.

Remark 6.27. The Top Chern Form for H = Hom(E,F) — the Direct
Approach. Consider H = Hom(E, F') as a hermitian vector bundle with con-
nection Dy (induced by the connections on E and F'). The results of Sections 2,
3, and 4 can be applied directly to H, yielding an easy proof of the results of
Remark 6.14, independent of the constructions of this section.

Let _D—)S’F denote the push forward family — from E to F, and let ﬁs)H
denote the push forward family — from C to H, all over H = Hom(E, F'). Local
frames e for F and f for F induce a local frame for H with fiber coordinates
given by u = (uy,...,u,) defined by a(e) = uf at a point a € H. The gauge for
Dy is given by

(6.28) WH = WF —WEg

where, in this equation, wr is a one form times the identity m X n matrix, since

we are assuming that £ is of rank one. One can easily check that

(6.29) wor = Wi - x4,
by (2.2). Therefore
(630) E’S,H = Us,p—wE.

Since Wp A Wy p+ @y p A wrg = 0 (because E has rank one
) ) ?

(6.31) Qo = Qur—Qp.

)
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As an immediate consequence the Thom form 7, for H = Hom(E, F') is given

by
n - .
. \n — .
(6.32) 7o = (55)"det(Qpe = Qp) = > (=1 e (D, r)e(DE).
i=0
In particular, this Thom form for H, obtained as a direct application of Section 4,
equals the Thom form of (6.22). The results of Sections 2, 3, and 4 yield
Theorem 6.33. If E - F is atomic then
cn(DF — D) — Div(e) = da*(o)

with o*(0) € L, (X). Moreover, this is the limiting form of the pull back by a

of the universal equation
(6.34) cn(Dp — Dg) —71, = do,

on H = Hom(E, F). Here
Xs
(6.35) o, = (#)n/det (“ILLI;“ QO — Qp — mD—i‘uI?—“) de.

0

Proof. The proof of the formula for o, is all that remains. Use the formula

(6.31) for S_l)s)H, replacing p by QF —QE in Proposition 3.17 and in (4.29). O

7. Residues.

In this section we carry out explicit computations of the residue form
Resd,(_ﬁ) discussed in previous sections. We already know from 3.23 and 6.6
that R,eng(—ﬁ) is written as a universal polynomial in the curvatures of F and F.
The polynomial is determined by the cohomology class of the residue (on, say,
the classifying space of the bundles). Therefore the main point of this section

will be to give explicit universal computations on this residue class.
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At the end of the section we shall prove a general theorem concerning the
decomposition of characteristic forms in terms of the tautological splitting of a
bundle V when pulled-back over its projectivization. The main point of this result
is the explicit form of the transgression. When V = E @ F, the theorem gives
direct and parallel proofs of the main results in this chapter without recourse to
3.23 or 6.6. This theorem also has independent interest.

We now fix E and F as in the previous section and we work with pullbacks
E and F of these bundles to the total space of Hom(E, F). Since Res¢(3) is
independent of the choice of approximation mode, we shall use the algebraic one.
This enables us to use the results of Section 1.6 on compatification.

The residue form is defined by

(7.1) Resg(D) = —pa(T) = —/T

where p is the restiction of 7 : Hom(F, F) — X to the unit sphere bundle. One

also has the alternative formula, (¢f. Remark 2.24).
(7.9) Reso(B) = =, (4(5.) - o) = [ oD

for any s > 0. Now consider the compactification, P(E @ F), of Hom(E, F') and
let U denote the universal line bundle on P(E ® F). From Chapter 1.6, we know
that, over the subset Hom(E, F) C P(E @ F), there is an isomorphism

(7.3) (F, D) = (UL, Dy)
of bundles with connection. Thus

—ﬁ
(7.4) $(D1) = ¢(Dyu).

Since the form ¢(Dy.) extends to be a smooth form on P(E @ F) and since
P(E® F) ~ Hom(FE, F) is a subset of measure zero, this proves the next result.
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Theorem 7.5. Consider the bundle map 7 : P(E & F') — X. Let
E@F = UsU~

denote the direct sum decomposition given in 1.6. Furnish U and U+ with the
connections induced from the connection Dg @ Dp on E® F. Let Dy and Dyj.

denote these induced connections. Then for any invariant polynomial ¢

(7.6) Reso(D) = 7 (6(D0s)) = [ #(Dus),

In particular, the cohomology class of the residue on X is given by the formula
(1.7) [Resqs(ﬁ)} = m$(UL)
where ¢(UL) € H*(P(E @ F); R) is the ¢-characteristic class of U over P(E @

We shall say that ¢ is integral if it corresponds to an integral cohomology
class under the canonical identification Iy, (o) = H*(BGL,(C); R) given by
the Chern-Weil homomorphism.

Corollary 7.8. If ¢ is integral, then the residue class [Resd,(ﬁ))] is an integral
cohomology class, i.e., it lies in the image of H*(X; Z) in H*(X; R).

The remainder of this section is devoted to computing m¢(U~L) explicitly in
terms of ¢, ¢(E) and ¢(F'). (This will yield exact formulas for Res¢(6) in terms
of Qg and QF.)

We begin with a general algorithm for computing m(U1). (In most impor-

tant cases this algorithm can be considerably simplified, as we shall see). From

the equation
(7.9) E@QF) = UpUt
we have that

(7.10) c(UL) = o(U) 'n*(e(E)e(F)).
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Let us set

so that

(7.11) () = (1=t = Sk
k=0

Then (7.10) implies that

(7.12) c(UY) = Y c(E)e;(F)th

i+jth=e |
for £ =1,...,n, where E = 7*F and F = 7*F. We now express ¢(UL) as a
polynomial in the Chern classes:

d(U*) = (e (U, ..., ea(UY)).

Using (7.12) this can be expanded in the form

BUY) = Y Ap(c(B), (F))et

k>0

where each Ay is a polynomial in ¢; (E), ei(F),. .., cn (F). It follows that

(7.13) mp(U*) = 3" Au(e(B), o(F))m(th).

k>0

To compute the general residue formula, it remains only to compute m(t*).
Proposition 7.14. One has that
(i) m*)=0 ifk<n,
(i) m@E") =1 and
(iii) m(t"**) = the component of c(E)"e(F)™! in degree 2k.

Proof. Equation (i) is trivial since m is zero in degrees < 2n. Equation (ii) is a

direct consequence of the elementary fact that

a(V)MPT] = 1

153




SECTIONS OF VECTOR BUNDLES

where A is the tautological line bundle over P". To prove (iii) note from (7.10)

and (7.11) that
Zt‘ — (e B)e(F) (U,

Applying m gives
Zm Y = (B e(F) T m(e(U)
k=0

since m((7*a) - b) = amb. Applying (ii) to the component in degree zero in this

equation gives

(7.15) mea(UL) = 1.

Hence,

(7.16) D om(tmE) = o(E)e(F)7 0
k=0

We have proved the following.

Theorem 7.17. For any Ad-invariant polynomial ¢ on the Lie algebra gl,,, the
—_} » I3 3 . . .
residue form Resgy( D) is given pointwise as the polynomial in Qg and Qp com-

puted by combining (7.13) and 7.14 above.

This result extends, of course, to formal series of Ad-invariant homogeneous

polynomials on gl,. Note that we have recovered the basic facts that
Rescn(_ﬁ) = Res(cl)n(ﬁ) =1

In many important cases the function ¢ has properties which make the cal-
culation of Res¢(5) considerably easier. The first example is that of the Chern
character. Given 9 € £*(X), let {¢},, denote the component of degree m, i.e.,

% =3 {¢}m with {th}m € E™(X).
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Theorem 7.18.

oo

+
RCSCh(D Z ,,l_f)_]‘)l DE) C(DF)_I}zk

Proof. Applying ch to (7.9) gives
m*(chE) + w*(chF) = ch(U)+ ch(U™),
by the additivity property of the Chern character. Applying m then gives

mch(UL) = —mch(U) = Z %im(tk).
k>0
Applying 7.14 and 6.6 gives the result. [J

Theorem 7.19. Let 74,(A) = tr{(4 4)*) for A € gl,,(C) be the k" “trace- -power”

function. Then

R.esrk(—ﬁ) = (—1)k+1{c(DE)_1c(Dp)_1}2k

Suppose now that H = H(c) is a multiplicative series of Chern classes asso-
ciated to the formal power series
ha) = 14 aye + apa® + ... € R[[2]].
(See [Hi], [MS] or [LM] for definitions and discussion.) Let
Wl (=) = T+ b+ b +... € R[]
be the modified inverse series determined by h(a)h ™ (a r) =
Theorem 7.20.
Res(D) = H(DpHIDF) S by i{e( D) 1e(Dp) Yo
k>0
Proof. By the multiplicative property of H we have
T {H(E)H(F)} = HUHHU) = HUYA(-1).
Hence,

H(UY) = »*{H(E)H(F }Zbk

Applying m gives the result. O
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Note that H(Dg) = h(c1(DEg)) = (£ QE).
A basic example is given by the Todd series Todd which is associated to the

polynomial
@

1—e 2’

td(z) =

— l1—e = 1 k—1
td 1(—w) = — = Z—':c .

Corollary 7.21. Let u = ¢1(Dg) = £ QE.

1—e* - - -
ResTOdd(ﬁ) = *‘_TTOdd(DF)Zm{(l_“) 'e(DF) l}zk
k=0
1—¢e*

hiaid —
- TOdd(DF) Z m{ReSch(D )}Zk

—U
k=0

A second example is given by H = e’ which has associated formal power
series h(z) = e®. Note that in this case h™1(—z) = e®.
Another set of examples for which the residue is easily computable comes

from the following. Consider a polynomial

¢(+,t) € lav, ]

in one indeterminate ¢ with coefficients in the ring of Ad-invariant polynomials
on gf,. Given bundles E, F — X with connection as above, we can construct

the Chern-Weil form
#(QF,Qp) € H*(X).

All the results of this chapter hold with ¢ replaced by ¢(-,Qg).

Suppose now that T, T are the bundles over the blow-up p : ﬁ(E OF) —
P(E @ F') defined in 1.3. Then we have the following generalization of Theo-
rem 4.16. o
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Theorem 7.22. Let ¢(-,t) € Iay, (t] be as above. Suppose that whenever F' ——

X s the tautological bundle over the Grassmannian of n-planes in C¥ | for some
N, the class

HE ST E) = 0

in H*(f’(E @ F)). Then for any pair of bundles with connection FE— X
over any manifold X (where rank(E) = 1 and rank(F') = n), we have that

Resy(ap)p(,05) = ¥(0r,08) Resy(. a,)

for all (-, t) € Iy, [t]

Remark 7.23. Consider the example

n

e+, 1) def Z cnﬁk(—t)k,

k=0
where ¢, is the polynomial corresponding to the £** Chern class. This has the
property that
AFE) = c,(E*®F).

It follows that
(EBTHE) = cy(B*Q(EDTY)) = en(CHTY) = 0
and the Theorem applies. In particular when E is the trivial line bundle, we

recover Proposition 4.16.

Proof of 7.22. On P(E & F) we have the equation of smooth forms

* e —_— . .
P {¢(Ds; DE)¢(D87 DE)} —(Dp & DTi,DE)¢(DE S5 DT*>DE)

(7.24) = p"{(¢( D, Dp)¢(D,, D)} = $(Dp ® Dy, Dg)d A

= {¢(D,, Dp)p(D,, D)} — dA
where A = (Dg® Do DEg)A. Applying p, to the top line gives Resyo[X]+dS.

Hence - (7.24) that Resyg[X] is cohomologous to
w(BS,DE)qS(BS,DE) on P(E @ F). On the other hand, our hypothesis that

equation shows



SECTIONS OF VECTOR BUNDLES

$(Dp @ Dy, D) = dA implies that ¢(Q0,Q5) = pu$(Dp ® Dpu,Dp) =

dp, A 4l 44" Hence the equation

$(D,,Dp) — ¢(Do,05) = Resy[X] + dS'

and the fact that
Y(D.,Dg)l = (Dp,DEg)

imply that
¢(BS,DE)¢(_5S,DE) = ’L/J(DF,DE) RGS¢[X] +(l.§'
where S = 1/)(—53, Dg)(S'+ A’). We conclude that

[Resyyg] = [¥(Dr)][Resy]

in H*(X). The result now follows from 6.6. 0O

The detailed results above on residue forms can be given a direct proof
without using Theorems 3.23 or 6.6. To do this one begins with Theorem 7.25
below, sets V = E @ F and carries through the formal arguments above. (See
Remark 7.29).

This next result concerns the splitting of characteristic forms of a vector
bundle V' with connection, when they are lifted to the projectivization. The
main point of the theorem is the detailed structure of the transgression current.

The result is of independent interest and quite useful.

Theorem 7.25. Let V be a complex vector bundle with connection Dy, over a
manifold X and let 7 : P(V) — X denote the projectivized bundle. Suppose V
is furnished with a hermitian metric (not necessarily related to the connection).
Denote by U the tautological line bundle over P(V') with connection Dy induced
from Dy via the splitting
™V = UeU™
Then for any Ad-invariant polynomial ¢ on gl,(C) there exists a transgression
form S on P(V) satisfying

(7.26) $(Dv)— ¢(Dy ® Dy.) = dS  on P(V)
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with the property that S can be expressed, as a sum over k, of forms which are
of bidegree k, k — 1 in the fiber 1-forms Du;, Duj fori, j=1,...,n.
Consequently, if ¢ is any form on P(V) which is of type k,k in these fibre

1-forms, then

(7.27) To(1hS) = 0.

Corollary 7.28. (cf. Bott [Bo]). Under the hypotheses of Theorem 7.25,

T (c(Dy)™") = o(Dy)7.

Proof. Note that by (7.26),
o(Dv) — e(Dy)e(DF) = dS.
Multiply the equation by ¢(Dy)~'ce(Dy)7!, take 7, and apply (7.27). DO

Remark 7.29. Using Theorem 7.25 one can give direct proofs of the results
7.17—7.21 above. To do this, set V = E ¢ F and apply argument parallel to

those above. We leave this to the reader.

Proof of Theorem 7.25. Let P : V — U denote orthogonal projection. The

family of connections on V given by
D, =Dy —=2(1-P)DyP for 0<z<1

has initial connection Dy and terminal connection Dy = Dy — (1- P)DyP.

Blocking D; with respect to the decomposition V = U @ U~ yields

p. — (DPv PDv(1-P)
Lo Dyu.

Since D is in upper triangular form

¢(D1) = ¢(Dy @ Dy.)
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for any invariant polynomial ¢. Consequently,
¢(D1/) — ¢(DU D .DU.L) = dS
with

S = —/1¢<D2;R£>da:.
0

To complete the proof we calculate this formula for S.
Write D, = Dy — B where B = (1 — P)Dy P, and note that B? = ( since
P(1— P) = 0. Therefore

R, = (DV — HJB)Z = Ry — .’L‘(BDV + DvB).
Note that
B = (1 — P)Dvp = (1 — P)(DvP — PDV) = (1 — P)D(P),

where by definition D(P) = DyP — PDy. Since P = P? we have D(P) =
D(P)P + PD(P), and therefore

B = D(P)P.

This implies
BDy = D(P)PDy.

Since
DyB = Dv(l — P)Dvp
= {Dv(l — P) - (1 — P)Dv}DVp + (1 — P)R}/P
= —D(P)Dvp + (1 — P)Rvp,
we have

BDy + DyB = (1 - P)R\/P — D(P)D(P)

This proves
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Lemma 7.30.
R, = Ry —az(1 - P)Ry P + a:D(P)D(P)

and

D, = —(1- P)D(P).

To prove Theorem 7.25 it will suffice to show that D, is of bidegree 1, 0
and that R, is a sum of terms of bidegree k, k in the fibre 1-forms Du;, Duj.
We shall calculate in homogeneous coordinates V ~ Z — P(V). Over V ~ Z,
the bundle V has a canonical section c¢. Consider the associated bundle map
C -5 V defined by a(1) = c. The image of a is the subbundle U of V. The
orthogonal projection P is given by P = %‘I_; where |a|* = a*a. To prove our

assertions it suffices to show that

(7.31) B = (1-P)D(P)=(1- P)(i)lz—l)ﬁi
and that
(7.32) D(P)D(P) = 9’%‘2@(1 - P)% +(1- P)LDQ'—E‘?Q—*)(l -p).
Both follow from the formula
D(P) = DyP-PDy = (1- py 20 alba?) | _ py

|af? |af?

*

. This completes the proof of Theo-

o]

which is an easy consequence of P =
rem 7.25. [

Remark 7.33. Setting @ = 1 in (7.30), and using (7.32) yields

Ry = P (RV_;_ M(l _p)M) P,

|af? |af?

and

Ry, = (I—P) <Rv+ %) (l—P).
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Remark 7.34. If u is a homogeneous coordinate for P(V) with respect to a
local frame for V, then S is given by the following formula.

(7.35)
5= /‘f’ e (1- 1) 5 v - oo (1- 1)

Cu*(Du) _ w*u ) (Du')u ( _u u)) (Du*)(Du) ( u*u)) .
B (1 |u|2> T~ T Dk e ) | de

If we apply Theorem 7.25 to the case where V = E @ F with direct sum

connection, then formula (7.26) becomes
(7.36) $(Dp @ D)~ ¢(Dy @ Dy1)
on P(E @ F). Here we allow E to be of any rank. When ¢ = ¢!, this gives the

following,.

Proposition 7.37. Let ¢ denote the total Chern polynomial. If rank ' > 1,
then
m{e(Dys)7'} =
In particular, when rank E = 1 and rank(F') > 1 we have that
-
Res.-1(D) = 0.

Proof. By 7.25 we have
e(Dg)e(Dr) — o(Dy)e(Dyr) = dS
which implies that
oDy ) =e(Dy)e(Dp) " e(Drp)™" = d((Dys)  e(D) " o(DF) 1 S) % dr,
By 7.27 we have that
mdTl = o(Dg)'e(Dp) 'dm, (o(Dy2)™'S) = 0.

Furthermore, since dim P(E® F') = rank(E)+rank(F')—1 > rank(E) = rank(U),

we have that
ﬂ*{C(DU)C(DE)_IC(DF‘)_l} = c(DE)_lc(DF)"lw*c(DU)
Hence, m{c(Dy)" '} =0. O
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8. The Singular PullBack Connection D on E.

Throughout this section assume that E -2 F is an atomic bundle map
of hermitian bundles with connections and that rank(F) = 1. The special case
C -5 F where a(l) = p is a section of F is of particular importance. The
objective is to compute the Chern currents associated with the singular pullback
connection D on the line bundle E. One consequence is that the divisor of [ can
be expressed as (—1)" times the singular part of the Chern current C?((D)) (See
Corollary 8.18 below).

The pullback family of connections (5 on I is defined by

*D
(8.1) Dy = Dp+xs al jf,
with
. * Doy
(8.2) D = pp4+ ¢
|a]?

As we shall see this case is formally like the line bundle case of Chapter II.

The power functions ¢,,(t) = (#t)m generate all invariant polynomials so we
m

o=
need ouly consider 5= 81, ] . Equivalently we need only consider cl(t) =

(1+ it)*l, the inverse of the total Chern polynomial c(t) =1+ %t. The

residue has a particularly nice form with this choice.

Theorem 8.3. Suppose E - F' is an atomic bundle map from a line bundle
E to a rank n bundle F. The Chern current c"l(((ﬁ)) = lirr(l] c_l((ﬁs) of the

. . ‘__ I3 .
singular pullback connection D on E is given by

—~1
(8.4) (DY = (1+ﬁ?z"(,> + «(Dp)"'e(Dg)~! Div(a),

—1

where the L} part (1 + #(5“) € Ll (X) is d-closed. The transgressions

T, converge in L{ (X) to T ¢ L{ (X). The current equation

(8.5) co(Dp) ' — (‘((ﬁu)*l — ('(Dp)_Jc(DE)_l Div(a) = dT
is the limiting form of the standard transgression formula
(8.6) o D)™ —e(D )™ = dT,,
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. (_ B — .
Proof. The singular pullback connection D on F has gauge Let &, denote 01(53), € denote ¢;(Dg), and £ denote 5=$8. The transgression
- Duu* (uwp — wpu + du)u* (uwp + du)u* - T, for ¢, is computed as follows. T, =
W=WEg+——7p = wWe+ =
|ul? uu* uu* oo oo
i\™m - S m—1 1 sm—1_
in terms of local frames e for E and f for F where ae = uf defines u = (2_7?) m/sts ds = 2_17?7'7”/53 Xsds
(u1,...,un). Since u is atomic the singular gauge % has an L} _extension to X ; s s .
which will be denoted by (8.11) _ _#Tm /(E + ol — &)™ dy
— (vwp + du)u* ~ 0
w = e _
0 uu* ;. (E+xs(f—e))m—em
= —ﬂT = — .
£—e

The matrix form of a*Da is the global L (X) one form

loc

Duw*  (wwp — wgu + du)u® Consequently when ¢ = ¢™!, one derives the equation

T = = Wwqg —WwWEg
|uuf? uu* ’ ' (8.12) T i (et x(l—e)™t —e!
. 5 — _ﬁT 0 — .
just as |af* = (@, a)g,, = uu* = |ul? is a global C function. The pullback tTe
family of connections (Bs on E has local gauge Using the equation x,(¢ —e) = (¢ + xs(¢ — €)) — e one can rewrite (8.12) as
(8.7) Wy = wp+ X7 = wg+ Xs(wo — wE). (8.13) Te = F=xeme e+ xs(0—e))h.
The curvature at time s = 0 is given by ' Since ey = e + x,(¢ — €) modulo 7 this simplifies to |
‘u ' i -1 -1
(8.8) g, = wruwt D (1- ) Dw | Ty = Foxame ']
' TP Juf? ’ _— . _
Hence, the limiting transgression, as s — 0, is given by
while the curvature at time s > 0 is given by
8.14 T = jtrete?
o oy Juf? dlu? Duu® (8.14) e ’
(89> Q, = Xs(l_Xs)QE+XSQO+X3 37 Tuf? W

and the residue is defined by

It will suffice to work in the universal case. We set o
(8.15) Res.-1(D) = —pu(T).
.
e = ¢(DEg), e, = 0(53) and £ = 14+ £ Q,
The proof of the Theorem is easily completed using the formulas presented

and note that e = e. Taking the exterior derivative in (8.7) gives above, except for the residue calculation

(8.10) es = et xs(€~e)+ ghdx,T | (8.16) Res,(D) = o(Dp)~'e(Dp)~".
Since w, = ,7 the formula for the transgression can be integrated. We first In order to prove this it is convenient to use an alternate to the residue formula
7

carry this out for the m'" power function dm(t) = (E;t)m and then take a sum. (8.15).
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Remark 8.17. Alternate formulas for Res(»B). First note that

m m

—2%?2—3 - 537??2‘0 _[X]Resm(ﬁ) = dR_g on HOI’II(E,F)

where Res,, def Resg,,. Assume that x is a compactly supported approximate
one (i.e. x(t) = 1 for ¢ large). Then R, and Q7 — QF vanish for J’—;J; large.
Consequently we may use 7 : Hom(E, F) — X to push forward this current
equation on Hom(E, F') to a current equation on X. Since m(R,) = 0 and
74 ([X] Resm(ﬁ)) = Resm(ﬁ—) we obtain the following alternate formula for the

residue form

m m
Resm((ﬁ) = T, L?L) — —'—(ﬁ

Using the fact that [ (#Q())m = 0, we can rewrite this in terms of fibre inte-
-1

Resm((_D—) = / (#(@—3) )

T

gration as

Actually, this alternate description is equally valid for any approximate one
m

— =\
Q, -1 5= Q¢

x. One must verify that the fiber integral of o

at infinity in Hom(E, F').
Let U denote the tautological line bundle over P(E & F'). Since E, (l_)s and

U, Dy are isomorphic over Hom(E, F') C P(E @ F') as bundles with connections
(see 1.6.14),

]
T converges

()" = (FW)"

extends as a smooth form to all of P(E & F') and

Resm((ﬁ) = m(c1(Dy)™).
where 7 : P(E® F) — X.

Combining this formula and Proposition 7.14 yields the residue formula 8.16,
and completes the proof of Theorem 8.3. O

APPENDIX A THE BOCHNER-MARTINELLI KERNEL AND CHERN-WEIL THEORY

Corollary 8.18. For m < n, the residues Resm((ﬁ) = 0 and, for m = n, the
residue Resn(éﬁ) = (—1)" so that

(m < n) a(De)™ = e (Qo)™ = dTy,
and
(m =n) e1(Dp)" = ei(Ro)" — (~1)"[X] = dT,,

as equations of currents on Hom(E, F). Moreover, for all m > 0,

{m —e™m

7
2w 6—6

Proof. Resm((ﬁ) is equal to (—1)™ times the degree 2m — 2n part of c(Dg)~1
o(Dp)~ ' forallm=0,1,..., by (8.16). The formula for T,, is just (8.11). O

Appendix A The Bochner-Martinelli Kernel and Chern-Weil Theory.
Suppose u = (u1,...,u,) € C" are coordinates for C" and let Au) =
%clul Adiuy A--- A %dun A du,, denote the standard volume form on C". The

Bochner-Martinelli potential or kernel is defined to be

(A.1) B — -1 'l_lvaiﬂl_/\(u)

wh ]u|2n

If n =1 this is just the Cauchy kernel =L 4%

2wt
Suppose u = (u1,...,u,) is a smooth function on a manifold X with values
in C". The pullback of B via u will be denoted by B(u), or sometimes simply
by B as well. This will also be called the Bochner-Martinelli potential (or
kernel). Note that if v is atomic, then B(u) € L} (X), i.e., B(u) has a unique

loc
extension across the zero set of u as an Lllo . form.
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Alternate Expressions for Bochner-Martinelli Related

to the n*® Power of the First Chern Form c;

Consider the pullback case of Section 8. Suppose Dg and D are flat, i.e.,

there exist local frames which are parallel. In these frames we have

(A.2) w, = Xsdlzir;'
Let
f= Rk
so that
df = —Ap 4 Sl = S (mod ).

Thel’l (US = Xsﬂ’ w.‘? = X‘Sﬂ) and
Qs = xodB+dxsf = x,df  (mod &,).

Therefore the transgression 7, for the n't power, is given by
T, = (£)" /QSQZ‘lds = (£)" xs8(dp)"

and

T = ()" B(dp)" .

Definition A.3. Suppose k is a smooth function on X which takes values in the
set of positive definite hermitian n x n matrices. Define u* = ht' and |u|? = uu*.

The transgression obtained above,
(A4) B(u,u*) = (#)" ﬂ(dﬂ)”“l,
will be called the Bochner-Martinelli kernel based on the metric h.

If the metric A is the identity matrix, so that u* = @' we define
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Lemma A.5. The Bochner-Martinelli kernel B(u) can be written in the form
B(u,d'), ie.,
i \n duut(dudut)"_l n e
B(u) = — (g) = (#) a(da) L

P

Proof. First note the standard fact
nlA(u) = (%dudﬂt)n.
This implies

— n
B(u) = lﬂ—a—L < i _dudu ) ,
n

2 |u|2

and the Lemma follows since da = — dl"udl’}t (mod ). O

Remark. Utilizing the complex structure on C”, the Bochner-Martinelli kernel

B can also be written as
(A.6) B = (5-)" 0log|u|?(801og [u>)" 1,
since @ = Jlog |ul|*. Note that --90log |u|? = s-da is real.

Remark A.7. The Solid Angle Kernel. If « = 2 + iy € C™ has real and
imaginary parts z and y, then 2Re ﬁa—aﬁ = 3:% + yaiy is the real euler vector field
on R*™ = €". Consequently (A.1) implies that the real part of the Bochner-

Martinelli potential is equal to the normalized solid angle kernel

ReB = VOI(S"_I)_I@.

Here \ e
- L tidt A AdE A Adl,

0 = (—1)~1 4 J

]Z:; ltIZn

defines the solid angle kernel in real coordinates (ty,...,t2,) € R*". The

imaginary part of the Bochner-Martinelli kernel is exact. That is

mB = —d (5 logluf* (;:8Dlog )" = ~d (& log ul (da)"™").
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Because of Corollary 8.18, if we assume X is point then
(A.8) dB(u,u*) = [0] on C"

or if we assume that u(z) is an atomic function then B(u,v*) € Li. (X) and

(A.9) dB(u,u*) = Div(u) on X

In particular, B(u,u*)—B(u), considered as an L}, (C™) form, is d-closed. There-
fore, it is d-exact. There is an explicit formula for a form whose exterior derivative
is B(u,u*) — B(u). Before exhibiting this formula we make an important gener-
alization.

The Bochner-Martinelli kernel can be replaced by other kernels such as the
Cauchy-Fantappia kernel. This fact is of considerable importance in complex
analysis.

Let v* € (C")* denote a column vector whose transpose is (v}, ..., v%). Let

a
(n—1)! ’U*W L /\(u, U*)

" (uv*)n

(A.10) B(u,v*) =

and let ) _
AMu,v™) = %dul Adv} Ao A %dun A dv,.

We have simply replaced «! by v* in the Bochner-Martinelli kernel. (Here v*

*

is an independent set of variables, however, v* may also be considered another

n-vector valued function. )

Remark A.11. Formulas for B(u,v*). The various alternate expressions for
B(u,u*) have counterparts for B(u,v*).

The expression
nl\(u,v*) = <%dudv*>
for A(u,v*) yields

n duv*(dudv* )" !

Al (i

(A.12) B(u,v") (55) (o
It follows that

. dun*

(A.13) B(u,v*) = Wﬂ((la)"_l with o = W ,

uv*
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since
dudv*

uv*

da =

(mod a).

The next lemma and it’s corollary provide the foundation for the kernel

approach to the study of several complex variables. See, for example, Harvey-

Polking [HP].

Lemma A.14. Suppose a and § are arbitrary smooth one forms. Then the

following fundamental identity holds: |
(A.15)

a(da)"™ ' =B(dA)" " =d | af Y (da)(dB)* | ~(f—a) Y (da)i(dB)".

Jthk=n-2 J+k=n—1

This can be written symbolically as:

(A.15)
alda)m=1 nt _ g (apld®) = (@Bt o (d)" — (df)"
(da) B(dp) l( ] o= dp ) (8 a)_——da—dﬂ .

First Proof. Note that

d(a ABA D (da)j(dﬁ)k>

Jt+hk=n—2

= (l<a ABA((da)* % + ('(la')"_g(dﬁ) 4o+ (dﬂ)"_2)>

Il

B /\((da)”_1 + (da)" 2 (dB) + - + (da)(dﬂ)”—2>

- /\((da)"-ﬂdﬁ SR (dﬁ)”“)
=a(da)" = BdF)" T +(B-a) Y (daY(df)*. O

jtk=n—1
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Second Proof. Let oy = (1 —t)a +tf. Then

—Cg— (Ut(dat)"_l) o(do )"t + (n — V)oyds(doy)"?

dt
= néy(do)" ™ — (n - 1)d<atr'ft(dat)"“2>

= n(B — a)(do)" ! = (n — 1)d<a A ﬁ(dat)"“2)

Now integrate both sides using

L dp)™ — (da)™
jC WKdUO"hddt = E—E%Biréﬁ;l—ﬂ ]

Third Proof. The identity

i (op ((day= - (apy )

_ (- a)((da)" _ (dﬂ)n> + (da — dg)<a(da)"—1 - ﬂ(dﬂ)""1>

can be divided by da — df to yield (1.15"). O

Corollary A.16. An Algebraic Identity Fundamental for . Suppose u,

v*, and w* are arbitrary n-tuples of functions with u a row and v*, w* columns.

t
Se duv® and f = duw™

uu* uw*

o =

Then

(A.17) a(da)" ' = BB = d|anBA D (da) A(dB)*

jtk=n—2
on the set where uv* and uw® are non-zero.

Actually, to obtain the usual formula take the bidegree n, n — 1 part of this

formula, or equivalently, replace the exterior derivative d by 0 wherever d occurs

in the formula.
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Proof. It remains to show that
(A.18) (B—a)A(da) A(dB)* =0, ifj+k=n—1.

The complex euler vector field

0
Ur—

f Ou

I

has the property that
fLa = 6Lpf =1, and fLda = 6LdS = 0.

Now

a A BA(da) A(dB)F =0

since it is of degree n + 1 in duy, ..., du,. Contracting this equation with the
euler vector field § yields (A.18).
Alternatively, note that

L (da)" = 0 implies (da)" = 0

since (da)" is of top degree n in du and apply (1.15"). O

This Lemma A.14 can be used to give an alternate proof that the notion of
divisor of a section is independent of the choice of frame, at least when the bundle
is complex. First we repeat some definitions in slightly altered form to suit the
complex bundle case so that what follows may be considered as an independent
second approach to divisors.

Suppose g is a smooth section of a complex vector bundle F of rank n.

Definition A.19. The section y is said to be atomic if, for each local frame fs

the vector valued function u, defined by = uf, is an atomic function.

Remark A.20. One can easily show that if u, defined by & = uf, is atomic then

4 defined by p = f under a change of frame f = gf is also atomic.

Definition A.21. Suppose that p is an atomic section of a complex vector
bundle F. The zero divisor, or zero current of y, denoted by Div(y), is
locally defined to be the zero divisor of the vector valued function u determined
by a local frame f, i.e., Div(u) = dB(u).
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Because of Remark A.7, concerning the real and imaginary parts of the
Bochner-Martinelli potential, this notion of divisor is the same as that in Defini-

tion A.21, so that the independence proof in [HS] is applicable.

Proposition A.22. Suppose p is an atomic section. The zero divisor of u is

independent of the choice of local frame.

A lemma is needed before proving this Proposition.

Lemma A.23. Suppose u is an atomic function and that h, g are GL,(C) valued

smooth functions with h positive definite. Then each of the three potentials

duii!

[uf?

i) B(u)= (f—)n a(da)*™!  where a =

™

n duhit  duu* . B
i)  B(u,u*) = (3%)" B(dB)"~! where f= = —— and u* = hii!

whut uu*

i

dvv d(ug)gtat

o2 uggtat

i) B(v) = (#)n ¥(dy)*~!  where vy = and v = ug,

belongs to L{_ and has the same exterior derivative, namely, Div(u), the divisor

of u.

Proof of Proposition A.22. Suppose f is a local frame and f = gf is a change
of frame. Then p = uf defines v and p = vf defines v = ug. Lemma A.23 says

that B(u) and B(v) have the same exterior derivative. [J

Proof of Lemma. First note that, since u is atomic,
a A ﬂ Z dCl) dﬂ) € Llloc(X)7
jHhk=n—2
a(da)" ' € L} (X), and B(dB)" ' € Li (X).

To show that a(da)™ ! and B(dB)"~! have the same exterior derivative it suffices
to verify that

(A.24) a(da)"™' = BBt = d B D (da)(dB)*

jtk=n—-2
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holds as an equation of currents on the entire manifold X. Of course, outside the

set © = 0, this is just equation (A.17).

Choose an approximate one, say x. Since u is atomic, the Lebesgue domi-

nated convergence theorem implies that

s—{0

lim (J—E> a(da)* ! = a(da)"™' in Lige(X)

lim (J—L)" AdAY"™! = B(dB)"™" in L (X)

8

iy (%) ap Y (daY@p) = ap 3 (daP(@B) in Ii(X).

Jtk=n-2 jtk=n—2

Therefore, if we can show that

(A.25) limd (y (45))ap S (dayi(@)t =0 in L (X),

Jtk=n-—2

2
then (A.24) is valid. However, the equation d (\/ (%—)) =X (LL) J—ZLJ—L—
) / 3 s ‘LL| ?
implies that the limit (A.25) is zero a.e. (since (lim tx'(t) = 0), as well as implying
that the convergence is dominated.

To show that
AAR)" ™" € Ly (X)) and  y(dy)" ™' € Lio(X)

have the same exterior derivative we must use the full formula (A.15) with «
replaced by 7. Exactly as in the above proof one can establish this as an equation

of currents on the entive manitfold X. Note that

udgg'a!

v =44 it h = gg'.

ula!

In this case the error term

cE=1) Y (1Y (dB) € Li(X)
JtHhk=n—1

does not vanish. However,
d{y(dy)""") —d (BdB)"™) = do
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so it suffices to prove that do = 0. Again, using an approximate one Y, and the
fact that f§ — v = 4d99'%" ,he can show that

what
do € L, (X).
However, outside the set of measure zero {u = 0},
do = (d7)" - (dB)".
Finally, outside u = 0, both
@By =0 and (dv)" =0,
because, for example

g _
U%L(d’}’) —-—-0,

where v = ug. O

Alternate Expressions for Bochner-Martinelli

Related to the Top Chern Form c,.
Recall that
d
det(A; B) = — det(t4 + B) l,_, = ndet(4,B,...,B)
where det(Aq, ..., An) is the completely polarized determinant.

Lemma A.26. The Bochner-Martinelli kernel may be expressed in the form

—t —t
(A.27) B = (L)"%det (y—dﬁ- M).

2mi [ul2 7 |ul?

Proof. The volume form may be expressed in terms of the matrix di‘du by
(A.28) nlA(u) = det -%dafdu ,

and we have

ﬂéa—_- L det (dﬂtdu) = det (ﬂtdu ; dﬂtdu) .
a

Hence, formula (A.27) for B is a consequence of the definition (A.1). O
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In a similar fashion the expression
n!A(u,v*) = det (—%dv*du)

for A(u,v*) yields

(A.29) Blu,v*) = g 2 det (L0v, d7du
n

uv* uv*

In particular, the Bochner-Martinelli kernel based on the metric

{, >F can be written as

1 u*du  du*du
A.30 B u, *N — _1_. —det{ — + Z—~
( ) (u,u ) (zm)m ¢ lul2 ) |u|2

Compare this with Theorem 4.22 and its proof to see that —B(u,u*) is the

transgression potential for ¢, in the flat case.
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IV. Real Vector Bundles

This chapter is the analogue of Chapter III for the case of real vector bundles
with orientation. Given such a bundle V — X and a choice of approximation
mode, we associate to each orthogonal connection on V a canonically defined

family of Thom forms 75, s > 0 such that

[ x(Dv) when rank(V) is even
X0 when rank(V) is odd,

Ts

and
limr, = [X].

80
As in Chapter III there is a family of L] _ transgressions rs such that 7, — [(X] =
drg and rg — 0 as s —» 0. When rank(V) is even, the form 7 is constructed via
the Pfaffian. When rank(V') is odd the construction is more subtle.

As in Chapter III, our methods produce explicit formulas for universal Thom
classes in the equivariant de Rham complex E$o, (R™). For each choice of an
orthogonal connection on a bundle V' as above, these classes map to our Thom
forms under the equivariant Chern-Weil homomorphism. The formulas for these
classes are simple and quite pretty.

An interesting fact concerning approximation modes emerges in this Chapter.

For real orthogonal bundles, the “most natural” choice of approximate one is
1
) = 1— ——.
x(®) VIti

This mode has several nice features. Let g be a section of V and suppose Dy

_._)
is Riemannian. Then the family of pushforward connections D, in this approx-

imation mode is Riemannian for all s. Furthermore, we have DTﬁ-l = 0ie, I_#&I
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is parallel in its singular pushforward connection. It is also this approximate
one which allows us to make the link between Thom forms in even and odd
dimensions. Finally, this approximate one is related to the Grassmann graph
construction just as x(¢) = ¢/(1 +¢) is in the complex case.

In Section 5 we establish the Atiyah-Hirzebruch “Differential Riemann-Roch”
Theorem canonically at the level of differential forms. In this formulation the A-
form drops straightforwardly out of the calculations. The result is extended to

singular subcomplexes with “spin normal bundle”.

1. The Pfaffian and a Universal Thom Form.

Suppose 7 : V — X is an oriented real rank m vector bundle with metric
compatible connection Dy, (,). The purpose of this section is to describe a
method of constructing a family of Thom forms for V' which only depends on
the metric connection Dy, (,) (cf. [MQ]); and then to show that the pullback of
this family of Thom forms by an atomic section has initial value the divisor of
the section and terminal value the Chern-Euler form associated with the metric
connection Dy, (,).

To begin we recall some definitions. For each local oriented orthonormal
frame e for V the local gauge wy determined by Dye = wye and the local
curvature 2y, determined by Qv = dwy — wy A wy, are both skew matricies.
Also note that

(1.1) e’Qve is a globally defined section of the bundle A*V@A?T*X on X,

In fact, e'Qye is just the curvature operator Ry = D% if the metric is used to
identify A%V with the skew part of End V.

Consider the even case m = 2n. Suppose 4 is a skew 2n X 2n matrix. Let
e1,..., e, denote an oriented orthonormal (local) frame for V and let A =
e1 A Aean € APV denote the unit volume element. Recall the definition of
the pfaffian of A

(1.2) Pf(A)X = nl (3¢'4e)”
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Since V is oriented the unit volume form ) for V is globally defined, and hence
Pf(A) is globally defined independently of the choice of oriented orthonormal
frame e.

The Chern-Euler form of the orthogonal connection Dy will be denoted
by x(Dv)). When m = rank V = 2n, it is defined by

(1.3) x(Dy) = Pt (72Qv) or equivalently X(Dv)h = 4 (Z—;etﬂve)n.
For m = rank V = 2n — 1 we set x(Dv) = 0.

Normalization is different in the real case. Here, we let Pf = X, l.e., the
normalized Pfaffian is defined to be the Euler polynomial,

A Thom form 7 on the total space of V' is conventionally defined to be any
smooth form of degree m which is d-

V', and satisfies

(1.4) T = /T=1.

=1

closed, has compact support in the fibers of

We find it convenient to relax the condition of compact support in the fibers
of V and only require that

(1.5)
Along each fiber 7 ~'(z) the form r belongs to L'(7~!(z)) and / T=1.
x=1(z)
The Thom form 7 restricted to the base X = Z C V, is denoted by x and called
the euler form for V determined by r.

Let s denote the homothety by s € R in the fibers of V. Each Thom form
7 determines a family of Thom forms by (s > 0)

(1.6) 7o = (1)(7)

This is a global geometrization of the notion of an approximate identity (or
approximate point mass) in the fibers of V.

We will construct such a family of Thom forms 7, whose associated Euler
form is exactly the Chern-Euler form of Dy.

Now suppose that y is a global section of V. The formula for the singular
connection D in Section 2 of Chapter III becomes D = Dy — A with Av =
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%Dv,u. This connection is not metric compatible. The skew symmetrization
u°

Dy — %(A — A") is metric compatible. However, we will consider the singular

connection Dy —(A— A?) which has the property that it is both metric compatible

and has a parallel section, namely I‘E#-I Specifically, we define the Riemannian

singular pushforward connection on V by setting

v Dy p,v
(1.7) Dv = Dyv— {82 Dyp+ B

Ore easily checks that B(;L/l,ul) = 0 outside the zero set Z = {z : p(z) = 0}.
Consequently, the Chern-Euler form satisfies

—

x(D)) =0 outside Z.

(1.8)

If € is a local orthonormal frame for V, then the singular gauge w, defined outside

Z, 1s given by

(1.9)

where ;1 = ue defines the R™-valued function v = (u1,...,um), u’ denotes the

transpose, and

t t
Du = du+uwy and Du' = dul —wyul.

Let x(¢) be any approximate one (see Definition 1.4.1) and let x, = x (Jﬁl—>
Then for 0 < s < +o00,

D 3
(110) l—j)sl/ = Dyv —Xs %T,le DV/U"“XS( |‘;;j2u> s

with gauge

t t
(1.11) W, = wy =X (% - %) :

defines a family of connections on V' which are smooth across the zero set Z. The

family is also smooth across s = co with Dy, = Dy

The standard transgression formula applied to this smooth family now says

that

(1.12) X(Dy) - x(B,) = do,
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where

o0

(1.13) oy = (—U”/Pf <§17§az‘ %5’) ds.

Let V denote the pullback of the bundle V over itself. All of the formulas

above remain valid with » now interpreted as a linear fibre coordinate on the
total space of V.

Definition 1.14. (m = 2n even). The forms =

of V defined by

(1.15) A= L (_4_158@36)

= X(ﬁs) on the total space

n!

will be referred to as the family of Thom forms associated with the metric
connection Dy, {,) on V.

Theorem 1.16. The Thom Form. Consider the total space V as the base :
manifold of the bundle V obtained by pulling V' back over itself. The family,

s, of Thom forms associated with the metric connection Dy, {,)

on V is given
explicitly by:

2 n
(1.17) A = (5" (- ) <e‘§2ve — 2y, (1 - X) (Due) )

P fuf?

n . w2\ dlu|? (ue ue ’ we)2\ "1
e (37 (I\‘é(]‘/\s)(l‘%)",\‘ij‘;lz“)—?lﬂlf%(e‘Qve—zxs(1~3§‘—)%> ,

Note that 74 is compactly supported in the fibers of V if x is chosen to be a

compactly supported approximate one, i.e., if X(t) =1 fort > .

The solution to the differential equation

(1.18) :1'(1—.’1')(1—%) = a2’ ¢
given by
(1.19) X(t) = 1— ! = t

VIFT 414 iF1
is an approximate one which will be referred to as the real algebraic approxi-
mation mode. This choice has three different motivations. The first motivation

is formula (1.17). The second and third motivations will be discussed later.
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Corollary 1.20. Real Algebraic Approximation Mode. If x is given by
(1.19), then the Thom form is given by

_ 1=yt S8 4 , _M "
(1.21) A = H($) W(eﬂxe [z +s2) °

The family of transgression forms o defined by (1.13) in the universal case
will be called an approximate spherical kernel and the limit o = lim o,

5—0
(which will be shown to exist) will be called the spherical kernel.

Theorem 1.22. (m = 2n even). Each form 7, has the properties of a Thom

form, in fact

(1.23) 7 1s d-closed and /TS: 1,

=1

and the Euler form associated with 7, is the Chern-Euler form x(Dvy) of Dy.

The approximate spherical forms o4 converge in Li, (V) to o and
(1.24) do = x(Dv) - [X] on V
is the limiting form of the equation (as s — 0)
dos = x(Dv)—Ts on V.
In particular,
do—os) = 75— [X] and limo —os = 0 in L (V)

so that

(1.25) limrs = [X].

s—0

Before proving the previous two Theorems we explicitly compute the spher-

ical kernel.
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Lemma 1.26. (m = 2n even). The transgression form o is given by

Xs
Tt (ue ue _—2 "
(1.27) o) = (n31)! (Z_T” ( !)1(L|D2 )/(etﬂve—Qw (1—%) (Due) ) dz.

Juf?

0

Proof. Since Pf(ﬁs)/\z ! (etﬁse)",

27 n!
oW, . Y o 4 n—
(1.28) Pt (79? ; Q5> A= 2,‘(:_1)! (et aas’e> (etﬂse) L
Therefore, the transgression form o given by (1.13) equals
n . W ey -
(1.29) osA = (=1) 2"~2"(r}—1)!7r" /(etaas’e)(etﬂse)n tds.

3

Now the formula (1.11) for @, implies

(1.30) 0w, _ (_w'Du  Du'u) 9x
Js [u]? |u|? ] Os
so that
(1.31) ol 0U36 _ (ue)(Due) (_?K
Js [ul? ds’

. —
Consequently, we need only compute e*Q ;e modulo the 1-vector we. Direct

calculation yields

(1.32) e'dw e = eldwye — QXS%U—E) mod ue
and
’ 2
(133) €W, AT e = ety Awye— XWVeDUE) L X p e hed
P TP
so that
2
(1.34) el'f,e = e Qye— 2y (1~ 9) (Due)® mod ue.
Jul?

Inserting (1.31) and (1.34) into the equation (1.29) for o and then using the
. . k73 2 . .
substitution z = y (J—I—> in the integral (1.29) yields the Lemma. [

g2
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Since fol (2.1: (1 — %))p de = 221"(42;:—2:—)7, Lemma 1.26 has the following corol-

lary.

Corollary 1.35. The Spherical Kernel. lin% os = o converges in L (V)
with the spherical kernel o given explicitly by
(1.36)

1 & P! (ue)(Due)?Pt!

n— ' t n—p—1
o\ = — (_1) p(n—p—l)!(2p+1)!22"—2p_l |U|2P+2 (6 Qve) .

n
™

Thus the part of o of top degree 2n — 1 in the 1-forms duy, ..., dus, is

(1.37) Ton_1 = Vol(Sgn_l)—lﬂ(u)
where
2n -~
oy updug A Adup A A dugg
6(u) = —1)kt
() k;( ) e

denotes the solid angle kernel on R?".
Moreover, the potential o — o, (as well as 7,) is compactly supported in the

fibers of V if x is chosen to be a compactly supported approximate one.

Proof. Note that

2n—1 _
vol(S ) = ———(n_ ]
and that .
%)—— = (2n — 1)16(u)A.

Since 0 — 0, is an integral from 1 — x, to 1 it follows that ¢ — o, is compactly

supported in the fibers of V. O

The homogeneous form o was discovered by Chern [C1, 2]. Note that o is
independent of the choice of approximate one .

Let pe : Se(V) — X denote the e-sphere bundle contained in the vector
bundle 7 : V — X. Corollary 1.35 implies the first half of the next result
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Lemma 1.38.

(1.39) (pu(e) = [ o=-1

(1.40) To(Ts) = /Tszl

Proof. The second equation follows from the first as in Remark 2.24 of Chap-
ter III. O

Proof of Theorem 1.22. The previous Lemma shows that 7, has the properties
of a Thom form. Since 33 restricts to X C V to be the connection Dy, the form
Ts = \(_ﬁq) restricts to X C V' to be x(Dvy).

As noted in Corollary 1.35, the explicit formula (1.20) for o implies that o
converges in L{ (V) to . The remainder of the proof of Theorem 1.22 is similar

to previous proofs in Chapter III and is omitted. [

In preparation for proving Theorem 1.16 we compute the curvature of the

. —
connection 1.

- . . -2 . .
Lemima 1.41. The curvature ¥, of the counection D, is given by

— ¢ t . 2
L, =0y —\, (TT Qv + szrl“,,,';) + 23 (1-%) (",',},’2” - l,);‘{;‘)
Ji]i dlu)? (:1'1)11 Du’u) )

/
TN W T T T

(1.42)

Proof. The gauge &, of D ix given by

(143) 73 = Wy —\O “'ll(,*l'(,‘ o= uI‘UID?ll . Dllilll?u
Therefore,
(144) ﬁs = QV — Xs ((10‘ - [wv, 0']) — /\/30’2 —_ d/\'so"
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Now

2 " 2
(1.45) dys = X\ 4E

ul? "

To complete the proof of (1.42) we must show that

(1.46) do — [wy,o] = ”—llﬁTﬂz—L + ~—V—Q|u’|‘2“ - 202,

Since dDu = uQyv + Duwy and dDu! = —Qyul + wy Dut, we have

do —wyo — owy =

2 t t HuQly +Duw —Qyu' 4wy Du)u
d|u| a,+duDu+Dudu+u(uv+ v) ¢ Vlu|2 )

L ful? [u]? []?
t t t t
_wyu'Du 4 wyDu'y _ u Duwy Du'uwy
Wit t Tl AT
t t 2 t [2 Q t 2
. utuQy Qyu'n _ dlu] Du'Du _ u'uQy dyulu 9o
Rt T e O 2Ty iz +

To verify the last equality note that dlu|? = duu' = udu® = Duu' = uDu' since

uwyut =0, and use the fact that DuDut = 0. O

Corollary 1.47.

2
etﬁse = e'Que— ZXSQLE—)&—?V—E) — 2y, (1— 4¢) (Due)”

(148) X ] JEE d u|2 !ue)!Duel)uI
+2<X“’ (1_ ZA) — Xs 52 ) Jul? |u]? :

Proof. Use (1.42) and
e!(u'Du — Dutu)e = 2(ue)(Due),

and
e(u'Du — Dutu)?e = d|u|*(ue)(Due) — [u*(Due)®. O

Proof of Theorem 1.16. Let

2
(1.49) A = eQve—2x, (1- %) B
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The previous corollary implies that

—

(1.50) et N,e = A mod wue.

Now

(ctﬁse)" = Zlez(ueL(e’ﬁge)") = nizrz (uel_etﬁse)(etﬁ)se)"_l

i

.—)
n |Zr2 (uel e’ Q2 e)A™

The proof is completed by verifying that

Tul® 5 ) Tal” Tl

ne (el ¢! T ye) = 5 (uel A) + 2(,\,5(1_%)(1_%)_){,@)%@)@, a

A section p of a real vector bundle is said to be atomic if, for each local
oriented frame e, the R™ valued function u(z) defined by p = ue is atomic, i.e.,
if %{ € Lj,. for each I with |I| < m. The divisor of u, denoted Div(y), is

defined to be the exterior derivative of the L{  potential c,,u*(), where § =

i dul/\-n/\(ﬁ‘/\'--/\dum
3 (~1yit duaenly

al is the solid angle kernel and ¢! is the volume of

the unit sphere in R™. In [HS] it is shown that this is a meaningful notion of
divisor, i.e., Div(x) is independent of the choice of oriented frame e. Note that

the frame e is not required to be orthonormal (cf. Remark 1.52).

Theorem 1.51. (m = 2n even). Suppose ;1 is an atomic section of a real
vector bundle V' of rank m = 2n. For each choice of metric and metric-compatible

. . _) . _) .
connection Dy the associated Chern-Euler current x((D)) = hII(l) x(Ds) exists
S—

and equals Div(p). For each s, X(Bs) = p*(7s) is the pullback of the Thom
form by the section p. Moreover, the transgression currents u*(os) converge in
L (X) to p*(o) and the equation

(1.52) x(Dy) —Div(p) = du*(o) on X

is the Iimiting form of the equation

(1.53) (Dv)— () = du*(os)  on X.

The proof of this Theorem is similar to earlier proofs and hence is omitted.
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Remark 1.54. Divisors and Chern-Euler Currents. Let g be an atomic
section of a real oriented bundle V' with metric { , )y and metric-compatible
connection Dy. Then (without using the results of the paper [HS]) one can use
the formulas above to show that with respect to an oriented orthonormal frame
the Chern-Euler current exists and equals
(1.55) lim (D) = cmd(u™(8)).
However, given another pair DIV, (, )IV it is not automatic that the Chern-Euler
current of the family D’ is the same.

Pick g € T(Hom™(V, V)) a global section so that {, v = {g( ), g( ))’V Then
Dy = g Dy is compatible with the original metric { , )v and the gauge &v
for ﬁv in the frame e is exactly the same as the gauge wj, for D’V in the frame
e/ = ge. Consequently, X(D’V) = X(BV)- However, the family g_lD;g is not
the same as the family D, except at 8 = +o0o0. The construction of the family
of connections depends not only on the metric (which is the same for Dy and
EV) but also on the section p. Consider the section v = g7 p as well as g. One
can check that the family for ﬁv, based on v and { , )y, is the same as the
family ¢g~1D.g, where D), is the family for D’V, based on g and ( | ),V Hence
gi_I.I(l) X(—ﬁg) = lgr(l) x(D;) if and only if

(1.56) d(u*(9)) = d(v*(6))

1

where v = u@, and ¢ 'e = Gf defines the matrix G. This equality is precisely

the result proved in Section 1 in [HS].

Remark 1.57. Real Rank Two Bundles/Complex Line Bundles. Let
wy = <0 —,0>. Then Du = du + uwy = (du; + ugp, dus — uqp), and hence
p

0
u! Du’ Du'v _ 0 e_p
E T WE T \p—g 0 )

Therefore, if @, = <p0 ——603) defines p,, we have that

(158) Ps = (1'—X3)P+X39
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since W, = wy—Xs <”|lu|D2“ — Dﬁ‘{;‘). Let _ﬁ)g :</<? h(;c“’) and Qv =<2 _OR)
define k, and &, i.e., &, = dp, and k = dp. Note that x(Dy) = 517;&. Now (1.58)
implies that the Thom form 7, = %fcs is given by

(159) Ts = (1~Xs)%ﬂ_xg%‘%§%(p_0)'
The equation (1.58) can be rewritten in terms of the spherical kernels
(1.60) 05 = 3=xs(p—0) and o = =(p—9),

which are globally defined. Namely

(1.58") pPs = p— Xs0.
The equation (1.59) becomes

(159’) Tg = (1 - Xs)X(DV) - dXsU

with all entries globally defined. Of course, each oriented real rank 2 bundle V

with an inner product is naturally equipped with a complex line bundle structure

J. Note that ‘]61:62,J€2:—61 or J = (1) —01

can be reinterpreted as exactly those occuring in the complex line bundle case.

so that the above formulas

Now we present the second motivation for the real algebraic approximation

mode x(t) =1 - Ttlff Note that in this case

[u|*

|u]2+32+3\/]u[2+32

Xs =

so that the connection _ﬁs defined by (1.10) is given by

— * *
1.61 D, = Dy — —Pea—aDa
(' ) v ]a|"’+s"’+8\/la‘|2+s2

where R -2+ V is defined by a(1) = g and R "V is the adjoint map. Recall
that y(v) = (—a*(v), sv) defines a bundle isomorphism v : V. — U;- over the
set V = Hom(R, V). Here U, is the homothety of the universal line bundle over
P(R® V) defined by (1.8.8) and U is the orthogonal hyperplane bundle. Let
(1.62) g = (aa® +52)%.

In the next theorem and its proof let U, UL abbreviate U,, UL,

3
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Theorem 1.63. Relation to the Grassmann Graph Construction. Over
the open chart V = Hom(R, V) C P(R®V) the bundle map yog™l:V s Ulisa

bundle isometry which pulls back the projected connection Dy to the coqnection

—D—)g given by (1.61). That is

._) p— —
(1.64) D, = gv ' (Dys)yg™"

Proof. First note that
vg T (w) = (—a*(aa” + 32)_%1), —s(aa™ + 32)-%1)) eERBV

has norm squared equal to |v|? so that yg™" is an isometry. Recall from Chapter I
that

9>y Dysvg™® = Dy — (5%
Therefore, since |—D°—L = Da(a*a+s?)"'a* = Daa*(aa* +s*)7! = Daa*g™?,

o> +s?
(1.65)
- - - - —1
g’)f_lDUyyg_l = g_leg —g 'Daa*g !'= Dy+g 1Dg—g 1Daa*g™t.

Next we calculate that

Daa* — aDa™
VP + (Va5 +5)
(1.66) 1 a(a*Da — Da*a)a™

T3 (a4 P o o)

g_ng — g”lDaa*g_1

and that
(1.67) a*Da — Da*a = 0.

These equations, (1.66) and (1.67), combined with (1.65) immediately imply that

Daa* — aDa*

- \ﬂalz + 52(\/|oz|2 + 52 +s)

(1.68) gy '(Dys)yg™' = Dv

as desired.

The matrix form of the expression a* Da — Da*a is Duu! — Dutu = (du +

t_ ¢
wwy Jut — u(dut —wyut) = duu’ — udut — 2uw,ut, and we have that duu® = udu

and uw,u = 0. This proves (1.67).

192

ODD RANK REAL VECTOR BUNDLES

To prove (1.66) first note that aa* + s? = s2 (1 — “O") + (Ja|?® + SZ)?,,U; S0

[o]?
that
- . oot Nl aa® I S
(169) g = 8§ (1 '0!2) -+ |a}2 452 o = a4 la|2+32+saa .
Therefore
Dy = Daoa* + aDao* 1 dla]?aa*
(1.70) Vel +s2 +s 2y/laff + $(V/]af + 57 +5)
' _ Daa* + aDa* 1 aa*Da + aDa*aa*
Ia{2 + s2 + s 2 \/IQIZ + 32(\/|al2 + 52 +S)2'
By (1.69),

N 1 aa*

aa =

1 .
1.71) g7t = = (1—@a )4 L oo )
(1.71) ¢ s ( lor] > Va2 +s? lal s sy/]a? + s2(y/[a? + % + )

Therefore, by direct calculation

E 3
(1.72) Daa*g™ = —Q—aa—.
JlaF v
Finally, using (1.70), (1.71) and (1.72) a tedious direct calculation verifies (1.66),
completing the proof of the Theorem. O

2. Odd Rank Real Vector Bundles.

Now consider the case of an oriented real vector bundle V of odd rank m =
2n — 1. The Pfaffian no longer exists, and it is natural to define the Chern-
Euler form x(Dyv) of any connection to be identically zero. Nevertheless, for
each orthogonal connection Dy on V there does exist a canonically constructed
family of Thom forms 75 as in the even-rank case above. The purpose of the
section is to construct this family.

Consider the bundle V = R @V equipped with the direct sum metric and
connection. Let eg denote the global parallel frame 1 for R. Consider the spher-
ical potential & for v (of even rank 2n). Since V has the global section eg,
the Chern-Euler form x(Dg) = 0 so that & is d-closed outside of the zero set
X C RO V. Moreover, the fiber integral of & over the e-sphere bundle contained
in R®'V is —1. Let sep denote a general point in the fiber of R.
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Definition 2.1. (m = 2n—1 odd). Suppose s > 0 is fixed. First restrict —2&
as a differential form to the affine subbundle {s} x V C V. Then pull back to V
using the obvious identification of {s} x V with V. Let 7, denote this smooth

2n — 1 form on V. This family {75} will be called the family of Thom forms

on V associated with the metric connection Dy .

This terminology is justified by the next result. Recall that P(T7) is oriented

since the fibres are odd dimensional projective spaces.

Lemma 2.2. 7, extends to be a smooth d-closed form on the compactification

P(R®V) of V. Moreover, with m : V — X extended to 7 : P(R ® V) — X, one

has that
(1s) = /Ts =1.

Va

Proof. The transgression form —24 on V= R ® V is homogeneous of degree

zero in the fiber and even, i.e., fixed by the antipodal map. Therefore —2& is the
pullback of a smooth d-closed form 7 on P(17)

In the affine chart {s =1} xV C P(I7), the form 77 is obtained by restricting
the homogeneous form —2& to the hyperplane s = 1, so that this =y is just the 7
of Definition 2.1. Thus 7y has a smooth d-closed extension to the compactification
P(R® V) of V. The integral of 71 over the fiber of V, or equivalently over the
fiber of P(R® V'), equals % the integral of 7, over the fiber of the sphere bundle
inV. Finally, in homogeneous coordinates, %T]_ = —0, and —& has integral one
over the sphere in the fiber of V. D

Now, we define a spherical potential o for the family 75. Let R, denote the
submanifold (with boundary) consisting of all teg with s < ¢. Let p, : R, @V — V
denote projection onto the second factor V of R, @ V. Define o5 by the fiber

integral

(2.3) o= =2 [6 = =2p.(6)

-1
Ps
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and define the spherical kernel o based on the metric connection Dy by

(2.4) o = 9 / & = —2(po)a(5).

1
Po

We shall see that this integral converges in L (V)i hrn os =0 in Li (V).

Theorem 2.5. (m = 2n — 1 odd). The family of forms 7 and o5 defined
above satisfy:

(1) Ts |y = (DV) "0 or equivalently hm s = x(Dy) = L)
(2) lir% s = [X] since /Ts =1
Ve
(3) dos = x(Dy)— s onV
(4) lir%) os = o converges in L (V).

The limiting form of equation (3) is
(5) do = x(Dy) - [X] on V.
Also note that

(6) dlo —os) = 75— [X] on V.

Proof. Inspection shows that 7, is odd, i.e., 7 pulls back to —75 under the map
minus the identity on the fibers of V. Thus, the euler form Ty IZ associated to 7y,
vanishes, or equivalently, hm 7s vanishes. This proves 1). Condition 2) follows

from Lemma 2.2 and the fact that lun 7s = 0 outside X C V.

Condition 3) is immediate from the definitions of o5 and 7 (and x(Dy) = 0)
and Stokes theorem applied to the fiber, s < ¢ < oo, of Ps-

Consulting the formula (1.34) (or 1.20) for &, the Lebesgue dominated con-

vergence theorem implies that g = —9 [ & converges to —2 J &in LL..(v). O

pit Pyt
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Now we explicitly compute 75 and ¢. With u replaced by (s,u) =

(s,u1,...,u2,—1) and e replaced by the column obtained by transposing (e, e) =
(eo,€1,-..,€an—1) the formulas (1.27) and (1.36) for & become

(2.6) &) =

1
2 n~1
_ daco+Du : _ 2 (dseot Due)? V"1
(n_2.1)! (4_7:)" (seo+u|z)|(z+s-ig e / <€ Qve — 2z (1 2) [u[Z+s2 dz
0
n—1 2p+1
. p! (seotue)(dseo+Due) to A-p-1
=7 ) (0" e (u[T+snypFr (e Ove)
p=0

Restriction of —2& to ug = s constant yields two formulas for 75. Let A =

e1 A+ Aeqgn_1 denote the unit oriented volume element for V. Then A = eg is

the unit oriented volume element for V.

1 n—1
n we z Due)?
A = - whm ()t / (etQ"e —2e(1-3) |(u|2+s2) d

0

not s(Due)??t(e!Qye)n~ P!

| nepe1 p!
= Y VT A (Jul? + s2)pH1
p=0

Setting 1o = s and integrating over the fiber 0 < s < 400 of pg by using the

formula (2.6) for & yields

(e o)
n-l 2p 2p+1d e
— e 2p!(2p+1)(—1) (ue)(Due) t n—p—1 u seq
= Z (D" e EE T e (¢ $2ve) i“L‘—-O»_(|u|2+s2)p T
p:O 0

— 1(=g)egT (p,()QJ;)z!Ll equation (2.8) implies that the

. [e ] dt
Since fo @FnrFt — 2 P!

spherical kernel for odd rank m = 2n — 1 is given by

n—1
—1/2 (—1\n—1 Ue [ 4 (Due)2
(2.9) oA = Gy (%) Ta] <e {lve — 2

Again, for odd rank, this kernel ¢ was discovered by Chern [C2].

ODD RANK REAL VECTOR BUNDILES

Example 2.10. Real Line Bundles.

1 uds — sdu

95 — - WS sdu
7 7 |ul? 4 52
1 sdu
= _95| = L__seu
Ts T ls T |ul? + 52
oo
/ o 1u?2 |u|ds 1 u
g = — 20 = ———— —_— s = =,
2ulm J |ul? + s2 2 |u]

Remark 2.11. Compactly Supported Thom Forms. As noted in the last
Section, for even rank bundles, the spherical kernel o is independent of the choice
of approximation mode y, but the Thom form T, depends on the choice of the
X In particular, a choice of compactly supported x gives a compactly supported
Thom form (see Theorem 1.16). In this Section, there is no reference to an
approximation mode y. The Thom form 7, of Theorem 2.5 does not have compact
support in the fibers of V. (However, note by Theorem 1.63 that T, extends to
the bundle P(R. ¢ 1) obtained by compactifying the fibers of V.)

A new Thom form with compact support can be constructed as follows.
Choose (t) € o R) () >0, and () =1lina neighborhood of zero. Define
e =0 (J'—:Lz> Then o) = ¢ 05+ (1=, )0 is smooth. Since oc—ol = Yo(o—0os)
has compact support the new Thom Form T, = —do] has compact support. Note

that o = I ol and that

§—I)
[’ -
dlo —al) = 7, —[X].
50 if we replace oo o Ty 0. ol 7, in Theorem 2.5 the Theorem remains

valid.

Remark 2.12. Alternate Approach to Compactly Supported Thom
Forms. Choose \ to be a compactly supported approximate one, i.e. x() = 1

for t > ¢y, If ¥ is of odd rank. cousider 17 = R, & V" of even rank and the formula
(2.13) d(6 —6,) =7, — [X]

on the total space of V. Letn:V — V' denote the natural projection. Push

the current equation (2.13) forward to V. That is if we define

Ts = MG —G,) and T, = m(F).
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Then

(2.14) dry =7, —[X] on V

as desired. The explicit calculation of 7,(7,) as a fiber integral using formula
(1.17) for 7, yields a formula for 7, similar to the Thom form 7/ obtained in
Remark 2.11, but not with X = 1 — % as one might hope but with a complicated
expression for 1. Since m,(7,) yields a complicated explicit formula for 7, we
have emphasized the approach of Definition 2.1 and Remark 2.11 in this Section
on odd rank.

Remark 2.15. A third justification for distinguishing the real algebraic approx-
imation mode is provided by the inductive procedure of this section. Suppose V
is of even real rank 2n with metric connection Dy. Then the spherical kernel for
R @V of odd rank given by (2.9), restricts to the hyperplane uy = s to yield a
Thom form in even rank. This Thom form is precisely the real algebraic Thom
form of Corollary 1.20.

General SO, Invariant Polynomials

For the sake of completeness the remainder of this section is devoted to

briefly examining the ¢ Chern current for a general SO,,-invariant polynomial ¢

(m even or m odd). As a corollary of Lemma 1.41 we have

Corollary 2.16. If ¢ is any SOm-invariant polynomial on #0,,, then

(217)  §(Fa) = #(AG) — X b (2be - P a(y,))

where

(2.18) Alz) = Qv —z (%ZI%L +QVI“T'|%) + 2z (1 _ %) (u‘Du _ Du‘u)2'

As a consequence of Corollary 2.16, we have that

ey ul® u'Du u'y
(2.19) u-Z L) = —ZXLL;l—QS( e A(Xs))

ODD RANK REAL VECTOR BUNDLES

because
t t
(2.20) ugpLA@) =0 and u.ZL (4he - Due) o
Since
8, QO ds* _ 8w,

(2.21) UL Q85 = Fads
the transgression integrand satisfies
(2.22) $(2eds; Q) = oy elg (£Du _ Dutu . 4 d®

. 5g 45, s | T 4AXg oz ¢ [l = [u? (Xs) 57

Therefore, using the change of variables = = y (%,‘;) the transgression T, can be

expressed as follows.

Proposition 2.23.

T, = -2 / ¢ (402 - Bt Ale)) do

Using this formula for the transgression 7 it is easy to verify that lirré T,=T
converges in Ly, (X) if the section x of V is atomic, and to deduce other results

paralleling the results for a section of a complex bundle which were described

before. The statements and proofs are left to the reader.
However, the next related result will be used to prove the second version of

the rectifiable Grothendieck-Riemann-Roch theorem presented in Section 5.

Theorem 2.24. Suppose ¢ and ¢ are SOy,-invariant polynomials on H0g,, TE-

lated by ¢ =1 - x, where x(2) = Pf (—%Q) is the Euler polynomial. Then

(2.25) Resy(D) = 9(Dy),
(2.26) the Li (X) part of <;5((_5)) vanishes, and
(2:27) #(D.) = $(Dv) Divip) = d((D.)r.)

where R, = ¢(33)T3 = 7,[)(33)(0 — 04) converges to zero in Ll (X) as s ap-
proaches zero.
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Proof. Note first that by Theorem 1.22 with r¢ = o — o5, one has

$(Ds) = p(D)x(Ds) = $(Do)m
(D )X] + dp(D)rs) = »(Dy)[X] + d(h(Do)rs).

_)
Then note that rs, and hence also rsy(Dsg), converge to zero on V ~ X.

Inspection of the formula (1.27) for o5 and o shows that rg is of odd degree in

Duq,...,Dug,. Inspection of the formula (1.42) for ﬁs shows that each entry

in this matrix is of even degree in Duy,..., Dugy,. Thus ¢(BS) is of even degree
in Duy,..., Dugy,. Therefore, rsz/)(_[—))s) is of odd degree in Duy,...,Duy,. In
particular, rs¢(ﬁs) is of degree < 2n in Duy,...,Du,. Thus by atomicity,

rs¢(ﬁs) is Li (V) dominated and therefore converges to zero in Ll (V).

This proves that the Chern current

$(D) = lim¢(D,) = v(Dy)[X].

s—0

O

Now the Theorem follows.

3. Universal Thom Forms in Equivariant de Rham Theory over SO,,.

The formulas derived above can be reinterpreted as determining universal

equivariant forms in €5, (R™) (as in Chapter II1.4). These results improve on

[MQ)] in that they apply to all dimensions, not just even ones, and they natu-

rally give forms with compact support. The terminology and derivation which

follow are in strict analogy with those of the development in Remark II1.4.30 and

Remark I11.4.38, and so we shall pass rapidly to the statements.
Let W = (Ap*) @ (S9*) denote the Weil algebra of s, with standard gen-

erators w;; = —wj; and §4;; = —Qj; for 1 <o < j < n. Let u = (uy,...,up)

denote the standard coordinates on R™. Let SO,, act from the right by u +— ug

and u' — g7 lu’. Set

Du = du+ uw.

Then given an approximate-one x and a number s > 0, we define

2 *D D 1
= v (B {0 - Pt e wo e

el Juf?
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and define

Q, = d, - LT, 7).

Proposition 3.1. (m = 2n). If m = 2n, then for each y and s > 0 the Pfaffian

—
of €14 gives an equivariant cocycle

4 = Pf <—%_§s> € gngﬂ(Rzn)

These forms are mutually cohomologous. In fact §4 = Pf (—2—17;9) — dog where

o 2 [P (o ) ar e e (RI

withw; = Ow|0t. Explicit formulas for ¥ and o, in terms of Q, w and y are given
in 1.17 and 1.27. These forms have the following properties. Let i : pt — R2"®

and w : R*™ — pt be the obvious equivariant maps and consider the induced

maps
"2 £50,,(R™) — E50,,(pt) = W and =, : %, (R™™) — S0 (Pt) = W.

Then

(1) *Ss =Pf(—=Q) foralls,
(if) lm%s =[0] in equivariant currents on R?",
(i) 1Te = 1,

. . def . . , . . .
(iv) limo, = o exists in equivariant forms with Li_-coefficients.

Proof. The proof that ¥ is an equivariant cocycle follows exactly the lines of
the proof of Proposition I11.4.31. The properties (i)—(iv) are translations of the
properties established in §1. The proofs given there carry over directly. [

Notice that the equivariant form o is smooth outside the origin in R?". It

is given succintly by

(3.2) o= (~1)" / PE (L s L0,) dt
0
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and explicitly by formula 1.36 reinterpreted in this universal context. We have

that
do = Pf(—5-Q)—[0] in &€&, (R*").

Proposition 3.3. (m = 2n —1). If m = 2n — 1 consider the embeddings
Js : R®1 s R2™ given by j,(x) = (s,a) and define

{:\:S d:ef ]'*(U) € géré—z—:-l(RZn—l)

3

where o is the spherical kernel in R®" given by 3.2 or explicitly by 1.36. Then
Vs Is a family of mutually cohomologous equivariant cocycles. In fact, let p :

i

[s,00) x R?"™1 — R?"~1 denote projection and set
{ — _
70 & ~3(p,)u(o) € 2L (R),

Then do, = —%4 for all s > 0. Furthermore if i : pt — R?*~! and 7 : R?"~! —
pt are the obvious equivariant maps, then
(i) *(%s)=0 foralls,
(i1) &_I}% ¥¢ =[0] in equivariant currents on R*" 7!
(i) 7T =1,
(iv) limo, = 0g exists in equivariant forins with L], -coefficients.

5—0

Proof. One argues as in the proof of 3.1. T[]

We now fix m (even or odd) and consider some special choices of y. If
x(t) = 1 for ¢ > 1, then spt(3s) € B, = {v € R™ : |v] < 1}. Furthermore, the
smooth forms r, ; = 0, — 0, for 0 < ¢ < s, and the L} -forms r, = 0y — 0, each
have support on B,. Note that dr, ; =35 — % and dry = T, — [0]. In particular,

we have the following

Proposition 3.4. Suppose x(¢) = 1 fort > 1 and let m be arbitrary. Then the

forms ¥ from Propositions 2.1 and 2.3 each determine an equivariant cocycle

(gs € gglom (Rm,Rm - Bs)
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where By = {v € R™ : o] < s}. Furthermore, given an oriented, real m-plane

bundle V' — X with an orthogonal connection, the Weil homomorphism
g;Om (Rm7 R™ — BS) - S*(Va V- BS(V))7

where Bo(V) = {v € V : |v| < s}, carries 54 to the Euler Thom forms of 1.16
and 2.5, which represent the Thom class

[7s] € H™(V,V — By(V)).

Similarly the Weil homomorphism carries the spherical transgression forms o, €

5;"0"7: (R™) over to the corresponding forms in Em=HV).

Proposition 3.5. Let y(t) =1 — 1/\/1+t. Then the equivariant cocycle 54 €
€50,,(R™) extends to an equivariant cocycle on P(R®R™) = R™ UPR™)

which vanishes on P(R™). It thereby determines a relative equivariant cocycle
s € €, (P(ROR™), P(R™)).

For a bundle V' with connection as above, the Weil homomorphism carries 5, to

a cocycle
€M (P(RaV), P(V))
which represents the Thom class

[rs] € H" (P(R@ V), P(V)).

When m = 2n, each % is given explicitly by the formula

n Du*Du
3.6 Te = (2)" ——— pt (Q _ ——_>
( ) (27r) /’UP ¥ 82 lu'z + 82

Proofs of 3.4 and 3.5 are straightforward and details are omitted.

Note. With a proper choice of embedding V =5 By(V) C V the Thom form
corresponding to any approximate-one y extends to a closed form on all of v
with support in B; (V).
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4. Thom Isomorphisms and Gysin Maps.

The Thom forms constructed in §§1 and 2 produce canonical representations,
at the level of differential forms, of various forms of the Thom isomorphism for
a real oriented m-plane bundle n : V — X with an orthogonal connection. As

noted in 3.4, if x(¢) = 1 for ¢t > 1, then spt(r,) C B,(V) and we have a Thom

map
(4.1) Qs EX(X) — ET(V,V = By(V))

given by
ns(p) = 7 (@) AT
which induces the Thom isomorphism

(4.2) i H*(X) =5 HY(V,V — By(V)).

Integration over the fibre =, inverts this map since m.(7,) = 1. Letting s — 0

gives the canonical version of this map

(4.3) o ENX) = EF™V,V - X)
defined by
(4.4) uolp) = ¢ [X].

If we choose x(t) =1—1//1+t, then we get a Thom map
(4.5) i EXNX) — ET (PR V), P(V))

defined by i1(¢) = 7@ A 7, where 7, is the extended Thom form defined in 3.5.

It induces the isomorphism
(4.6) i HY(X) — H*™ (P(Ra V), P(V)).

Suppose now that j : Y — X is a compact oriented manifold ¥ embedded

into an oriented manifold X, and let

i E(Y) — &MY

cpt
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be the Gysin map defined as in 111.4.11 by Ji(¢) = @[Y]. Then just as in I11.4.11
we can: identify the normal bundle to ¥ with a tubular neighborhood of ¥ in X,
transplant the tautological cross-section, choose x with y(¢) = 1 for ¢ > 1, and
obtain a smooth Gysin map

et E(Y) — £25™(X)
which converges to j, as s — 0. Each element of the family induces the Gysin

homomorphism

Jr HY(Y) — HI™(X).

Just as in II1.4.12, this discussion of Gysin maps generalizes to a current
which can be written as the divisor of an atomic section of an oriented real

m-plane bundle defined in some neighborhood of its support.

5. The Rectifiable Grothendieck-Riemann-Roch Theorem—Version 2.

In this section we use our construction of the Thom form to prove the gen-
eral version of the Grothendieck-Riemann-Roch Theorem [AH] at the level of
differential forms. More specifically suppose j : ¥ «— X is a proper smooth em-
bedding of real manifolds such that J¥w02(X) = wy(Y) (where wy = the second
Stiefel Whitney class). Then for any complex bundle E with connection over Y,
our methods directly produce a family of smooth, d-closed forms Ksy, 0 <s <1,
which represent ch(j(F)). Furthermore the family spt(K,) forms a shrinking

system of neighborhoods of ¥ in X and
lim K, = ch(Dp)A~Y(Dy)[Y] = ji(ch(Dg)A(Dy))

where NV is the normal bundle to ¥ in X. Thus K, gives a homotopy through
cohomologous closed forms from the Chern character of Ji(E) to the canonical
representative of jg(ch(E)A(N)). The residue ch(DE)A(DN) falls automatically
out of the calculation.

The process is sufficiently natural that it generalizes to embeddings of com-

plexes into X with “spin normal bundle”.
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To begin, let 7 : F' — X be a 2n-dimensional Riemannian vector bundle
with spin structure. Assume F is provided with a compatible (orthogonal) con-

nection D with curvature R = D?. Let (F) denote the complex spinor bundle

canonically associated to F and let Dg be the connection on B induced from the

one on F (cf. [H], [LM]). Via the metric and spin structure, we have
Skew End(F) & A*F — AgF < Ct(F) = Endc(B(F))

That is, any skew-symmetric endomorphism R : F' — F canonically determines

an endomorphism R : § — p via Clifford multiplication by the corresponding

9-form. Then the curvature RP = (Dg)* of § in its induced connection is given

by the formula

(5.1) RP = iR

(cf. [LM, pg 110]).
We now present an identity which is contained in [MQ]. A proof will be given

at the end of the section. To state it we need the following definition. Let V bean
oriented real inner product space of dimension 2n. To each A € Skew End(V) =

A%V, there is an oriented, orthonormal basis €1,...,€2n with respect to which A

can be diagonalized as
n

A = E ajegj_l/\ezj

j=1

where a; € R for each 7. Then

Pf(A) = dj...0n

and we define
~ - a;f4m

2 T | e LA

(52) (4) H sinh(a;/47)
=1

This function can be rewritten as a power series of Ado,, -invariant polynomials
on Skew End(V), and thereby extends to all of End(V). Let C¢(V) be the Clifford
algebra of V and denote by $(V) the irreducible complex “spinor” module over

.

Ce(V) of complex dimension 27. There is a canonical decomposition

(53) p(V) = prop”
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where the complex volume tform

acts by

w ’)3+ = Id$+ and w Iﬁ_ = —Id;g—.

Note. This splitting di
plitting differs from th i .
ey ... Eap. e one in [LM] where w is chosen to be

U8 gt] Cal 1C A€ i: on A : ) e E
- E) ‘/ o~ /\2 ‘} th d .
Sl\ew Ild( ) = ) € el ()m()Iphlsm A . $ — $ as abOVe

Lemma 5.4. Set ,&O(A) =A
. = A(-27A4). -
o (=2mA). Then for each A € Skew End(V') we have

(5.5) brg (e%A) ~ trg- (ez%A) = A;'(A)Pf(4)

Corollary 5.6.
ary 5.6. Let (F, D) and (B(F), Dg) be as above. Then the curvature RP

respects the splitting B(F) = $+ - .
= D . .
identity B B~ determined as in (5.3), and we have the

(5.7) trg+ {e_iRﬁ} — trg- {e_iRﬁ} = A;Y(R)PL(R).

In particular, we have the following identity of characteristic forms:

(5.8) ch(Dg+) — ch(Dg-) = A~Y(D)y(D).

Furthermore if E is any complex vector bundle with complex connection Dy, we

let Dgop = Dg ® 1+ 1® Dg denote the t
e the tensor prod ;
Then the following identity product connection on § @ E.

(5.9) ch(Dg+gp) — ch(Dg-ggp) = ch(Dg)A~Y(D)x(D)

holds in the space of differential forms on X .
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Proof. Plugging (5.1) into (5.5) gives the first equation. Replacing R by —%;R
gives the second equation. For the third we simply recall that for the tensor

product connection we have ch (Dg+ ® Dg) = ch (Dgs ) ch(Dg). O

We can now apply our theory of Chern currents to derive a generalization of

the Differentiable Riemann-Roch Theorem for embeddings.

Theorem 5.10. Rectifiable Grothendieck-Riemann-Roch—Version 2.

Let w : F — X is a smooth real vector bundle of rank 2n provided with a spin
structure and an orthogonal connection D. Let $% denote the canonical complex
spinor bundles associated to F' and provided with the induced connections Dgx .
Let a be any atomic section of F. Then for any complex vector bundle E with

connection over X, the following identity of d-closed forms and currents holds on
X:

(5.11) ch (Dg+gr) — ch (Dg-gr) = ch(Dp)A~(D)Div(a)+ dT

where T is a canonically defined Li -form on X.

Furthermore, fix any choice of approximate one x and let D « denote the
family of Riemannian pushforward connections on F' as in (1.10). Let I_D)j and
3; denote the connections induced on $1 and B~ respectively by BS, and set
Ds,E: D*® Dg on $* @ E. Then

(5.12) ch(D? ) — ch(D] p) — ch(Dp)A~ (D) Div(a) = dR,

where R, is a family of Lj (X )-forms such that

loc

limRy=0 and  lim Re=T in Li,(X).

8§ —0OC

In particular,

s—0

(5.13) lim {ch('ﬁj)_ ch(ﬁ’;)} = A~Y(D)Div(a).
If x(t) is chosen so that x(t) =1 for all t > 1, then
(5.14) spt {ch(ﬁ)j’E) — ch(T)’;E)} cU,

and spt(R,) C U,, where Uy = {z € X : |a(z)| < s} for all s > 0.
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Proof. Applying (5.9) to the connection Ba gives the equation

(5.15) ch(D¥p)~eh(Dy,) = ch(Dp)AY(D )x(B,).

By Theorem 1.51 we can write

(5.16) x(D,) = Div(a) + dr,

1

where r, is an L.

-form on X with

gi_r% rs =0 and lim r,=0¢ in L, (X).

§—rco

where o denotes the pullback by & of the singular Chern-Euler transgression form

o. Substituting (5.16) into (5.15) gives equation (5.12) with
def AU
Ry = ch(Dg)A™' (D ,)r,.
As s — oo, we know that 1&"1(33) — A‘l(D) in the C'*° topology. Hence
sli»H;oRS = Ch(DE)A—l(D)O' def 1

On the other hand by Theorem 2.21 we know that

LmA~Y(D)r, = 0 in Li (X)
and 50 Ry — 0 as s — 0 as claimed. Finally, if x(t) = 1 for all ¢ > 1, then
spt(x(D,)) C T,
for all s > 0 and therefore
spt {ch@’:) - ch@;)} cT,

for all s > 0 by (5.15). Multiplying by ch(Dg) gives (5.14). O

Note that for each choice of approximation mode, we have produced a smooth
family

def
Ka(s) = ch(DF) — ch(D]), 0<s< oo
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such that
Ka(o0) = ch(DF) = ch(Dg) and lim Ko(s) = A7'(D)Div(a).

That is, K4(s) gives a canonical homotopy from the fixed Chern-Weil represen-
tative of the Chern character of $* — 5~ to the canonical residue &_1(D) times
the divisor of a.

This homotopy is compatible with multiplication by ch(Dg) for any complex
bundle E with connection Dg over X. In particular, the family ch(DI;j)Ka(s),
0 < s < oo, gives a homotopy through smooth forms on X from the fixed Chern-
Weil representative of the Chern character of E ® (8% — $7) to the residue
ch(DE);‘S“l(D) times the divisor of a.

Remark 5.17. Localization at Div(a). Choose an approximate one x(t)
such that x(¢) =1 for ¢t > 1. Then by (5.14)

spt {ch(ﬁj) - ch(B?)} cU,

for all s > 0. In other words the family K,(s) is supported in smaller and
smaller “tubular neighborhoods” of spt Div(a). This allows us to localize the
construction as follows.

Suppose that Z is an integral current on X with the property that Z =
Div(a) for an atomic section a of a spin bundle F' defined only over some
neighborhood U of spt(Z) in X. Choose a metric on F' so that U, C U for all
s < 1. Then the family of forms

Ka(s) < ch(D7) - ch(D7)

has support in U, and extends by zero to a family of smooth d-closed forms
defined on all of X. It has the property that

lim Ka(s) = A™Y(D)Z.

s—0

Suppose now that there exists a neighborhood

1zl U cx

(5.19) h(i(E)) = ji (ch(B)A ().

THE RECTIFIABLE GROTHENDIECK-RIEMANN-ROCH THEOREM-VERSION 2

of |Z] = sptZ in X which admits a retraction p:U — |Z|. Then we can define a
map

it Kep(12]) — Kepu(U) C Kepi(X)
by
ME) = (p"E)- (B - $7)

where 8 and $~ are identified over U — |Z] by a. Recall that we have a natural
generalized Thom homomorphism

]! : H;ER]\&HI(’Z’) B H;:Rzl?a.m (X)
from the cohomology of forms germed an |Z| to the cohomology of currents on
X, given by
ae) = ¢Zz.
From the preceeding discussion and 5.10 we have the following
Corollary 5.18. Let Z be a current on X which arises as the divisor of a section

of a spin vector bundle F defined in a neighborhood U of |Z| = sptZ which admits
a retraction p: U — |Z|. Fix D and y as above. Then

ch(ji(1)) = [ch(DF) - ch(D])]

for all s < 1 (where [y] denotes the cohomology class of v). Furthermore, for

any complex bundle E on |Z|, pulled back over U and endowed with a complex

connection, we have

ch(ji(E)) = [Ch(Dj,E) — ch(D;E)].

Taking the limit as s — 0 of this family of d-closed forms in X gives the equation

To relate this to the more classical result, suppose that Z = Y |]is the current

associated to a compact oriented submanifold J 1Y < X whose normal bundle N

carries a spin structure. Fix a tubular neighborhood U of Y a déntiﬁcation




REAL VECTOR BUNDLES

U2 N -2, Y. Then the tautological cross-section a of p*N over N = U has
Div(a) = [V] and the theory applies. In this case (5.19) in the Atiyah-Hirzebruch
formula for embeddings j : ¥ < X with j*wo(X) = w,(Y) [AH]. Note that we
have obtained this formula at the level of differential forms.

In this case of a spin embedding j : X — ¥ (wy(N) = 0) the formula can
be rewritten slightly. Choose a Riemannian direct sum connection on TX |, =

TY @ N and extend to a connection on T'X over all of X. Then we have that
A(Drx)lY] = ADrx) |y [¥] = ADry)ADW)Y].

Hence, multiplying (5.12) by the form ,&(DTX) and passing to cohomology gives
the equation

ch(i EYA(X) = ji (chB-A(Y)).

This can be rephrased by saying that the diagram

K(Y) — Kep(X)

ch(-)&ml lch(m/\’)
HH(Y) —— Hi(X)

comimutes.

Remark 5.20. If in all of the above we assume that dimg F' = 0 (mod 8), then
$% are complexifications of real spinor bundles 8% and [B1] — [Fg] represents
the Thom class for KOcp(F'). One can tensor by real bundles with connection

and everything goes through. However, at the level of real cohomology little is

gained.

Remark 5.21. The Spin® case. Suppose we are given an oriented real 2n-
dimensional bundle F' with Spin®-structure, and let B(F) = Bt & B~ be the
associated complex spinor bundle. Associated to $(F') is an auxiliary complex line
bundle A — X with wqe(F') = ¢1(A) (mod 2). Choosing an orthogonal connection
on F and a hermitian connection Dy on A canonically determines a hermitian
connection on B(F'). Given an atomic section a of F' and an approximate-one y,

we obtain the family of connections 33 on F. With fixed Dy, we get a family of
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. =g
connections D¥ on $*, Applying the arguments as above leads to the following
analogue of (5.12). Let E be any complex bundle with connection over X and

let Di,S be the tensor product of Dgh and Dg on Si ® FE. Then we have
5.22 D+ A
(522)  ch(D/p)- ch(D g) = ch(Dp)ch (3D5) A7 (D) Div(a) = dR,
where R is a family of L} -forms on X such that lim R, =0.

8—0

Proof of Lemma 5.4. Write V as an orthogonal direct sum V = @ Vi, of

oriented 2-dimensional subspaces, each invariant under A and such that with
respect to an oriented orthonormal basis (e25-1,€a5) of Vi we have A(ey;_1) =

ajezj and A(ey;) = —ajez;_q. It is a standard fact that

- Py

and also that
A
tr$+(e )—trﬁ_(e U {tr$+ (e J)—tr;s (e J)}

where A; = A ‘;S(Vj) and B(V;) = ,‘Sj’ @ B is the canonical decomposition with
respect to the volume form ezj—1€25. (See [LM]). Hence it suffices to consider the
2-dimensional case. Now if V has oriented bases (e1,e2), then Clifford multipli-

cation by w = —ieje; is +1 on $% and —1 on $~. Hence,
(61/\62),$+:i and (61/\82) 'S_‘:—

Writing A = doajesjig A e2; and applying the above, we see that

brg+ (e%A> — trg- <e?1-*A) = f[ {e%‘lj - @‘%aj}

J=1

{S‘nh %/2) }al...an = A&o—l(A)Pf(A)‘ 0

il a;/2

|
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V. Cases of Basic Interest

In this chapter we focus attention on some cases of special importance. These
include quaternion line bundles, where the theory is in striking analogy with that
of Chapter I, and the case of generalized spinor bundles, with homomorphisms
given by Clifford multiplication. This latter case gives a different perspective on
work in Chapters IIT and IV. In particular, the natural construction of the Thom
class (via the pushforward connection) will extend directly to give an alternate
proof of the Differentiable Riemann-Roch Theorem at the level of differential
forms.

All the cases considered here fall under a general umbrella of hypotheses
which are presented in Section 1. The consequences of these hypotheses are also
established there. The subsequent sections then specialize to the diverse cases of

interest.

1. The General Rubric.

Throughout this scction we shall operate under a set of standing assump-
tions. The cases of real and complex bundles are parallel here, and our discussion
will largely apply to either case. As always, we fix vector bundles E — X and
F — X with connections Dg and Dp and with metrics, over a manifold X.

When E and F' are complex, the connections are assumed to respect the
complex structures but not (necessarily) the hermitian metrics. When F and F
are only real, the connections are assumed to be orthogonal, i.e., to be compatible

with the given bundle metrics.
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We assume that rank(F) < rank(F) and set
IC(E,F) = {a € Hom(E, F): ¢*a = |o|*1dg}.

This is a bundle whose fibre over z € X is the quadratic cone of injective con-

formal (linear) maps E, — F,. We are interested in studying the following

situation.

Basic Assumption 1.1. We suppose that there exists an oriented vector sub-

bundle V' C Hom(E, F') of real dimension m with the property that
V C IC(E, F).

(In the complex case we assume that V is a complex subbundle of rank n = m/2.)

The given metrics on £ and F' determine a companion subbundle V* =
{v* € Hom(F, E) : v € V} of Hom(F), E). Furthermore the connections on E and
F' canonically determine connections on Hom(E, F') and on Hom(F, F). Recall
that a vector subbundle V' C H of a vector bundle H with connection Dy is said
to totally geodesic if for all @ € I'(V) C T'(H), we have Dya € T(T*X ®V) C
I(T*X ® H), i.e., if covariant differentiation in H maps sections of V to sections
of V.

There is an important family of cases for which the embeddings of V' and
V* are totally geodesic, namely those with Property 1.2 which is defined below.
All the results of this chapter will be shown to have a particularly beautiful form

whenever this property holds.

Property 1.2. The embeddings V — Hom(E,F) and V* — Hom(F,E) are

given by a universal construction.

By a universal construction we mean the following. Consider, for sim-
plicity of notation, the case where V, E and F' are real bundles of ranks m, M
and N respectively. (The complex case is analogous). The data for a universal
construction consists of a linear embedding A : R™ < Hom(RM ,R") and a Lie

group homomorphism

¢ = (n,€): GL,, — GLp x GLy
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so that the diagram

A
R™ — Hom(RM RN)

g 2

A
R™ < Hom(RM RN)
commutes for all g € GL,, (where i, acts in the standard way on Hom(RM RN)).

From this data we associate to any m-plane bundle V with connection Dy, a pair

of bundles with connection:
E=P(V)x;RM and F=P(V)x;RM

where P(V') denotes the frame bundle of V. The equivariant embedding A deter-
mines a totally geodesic, linear embedding V' < Hom(FE, F'). Whenever (E,Dg)
and (F,Dp) are determined by (V,Dy) in this manner, we say that they are
given by the universal (), ) construction.

Note that under our general set-up a cross-section of V determines a bundle
map E' — F. Maps occuring in this fashion are well adapted to atomic theory
[HS], and many cases of interest do occur this way.

Suppose now that a € (V') is a smooth cross-section of V. We consider o
as a bundle map @ : E — F and let a* : ' — E denote its adjoint. Then by
Assumption 1.1 we have

(1.3) a*a = |of’ldg
and consequently
(1.4) (Da*)a+ a*(Da) = dla|*1dg,

where Da = Dpoa—ao Dg and Da* = Dyoa* —a*o DpF are the canonically
determined connections on Hom(E, F') and Hom(F, E) respectively.
We want to consider the pullback and pushforward connections on E and F'

given respectively by the formulae: (cf. 1.2.7)

*D /*
(15) (_EZDE+L2CI and ﬁ:DF- (DG!)CL
lo| laf?
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Let x(t) be a general approximate one. As before we set y, = y (%3) and

X, = x' (Jﬁ:ili) The approximating families of smooth connections are then
given by
(1.6) By = Do+ 0222 and T, = Dp -y, DU

|ae]? HE

Theorem 1.7. Suppose V satisfies Assumption 1.1. Fix a € I'(V') as above and
let x be any approximate one. Consider the pull-back family (_133 of connections
on E and the pushforward family 55 of connections on F. Then the associated
curvatures ‘ES = (l_)f and 72’3 = 53 are given by the following formulae:

2 ( Da®aa*(Da
R, :(1—X3)RE+XS‘§0+X;%_( a*)aa*(Da)

(1.8) RPN
3 X(l—x)—YIM“ a*(Da)a*(Da)
) =T ) T
where
s (e (Da*)(1- 99 (Da)
= o*Rp(a) ( ( |o|>
(1.9) Ro = Rp+ =5+ i
and
= — , le)? (Da)(Da*)aa*
Rs - (1 XS)RF"'/\SRO"}_X& $2 [a|4
(10 £\ (Daja*(Daja”
B 1 _lel® a)a*(Da)a
<xs( Xs) = X 32) a7
where
= Ru(a)a*  (Da)(Da*) aa®
N ¥ P

and where Rpy(a) = Rrpa — aRg denotes the curvature of the bundle H =
Hom(E, F).

Proof. Equations (1.8) and (1.10) follow from 1.6.3 and 1.6.5 by using the rela-
tion 1.4 above. Equations (1.9) and (1.11) come from 1.6.18 and 1.6.23 respec-
tively. O
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Observation 1.12.

(a) IV has Property 1.2, then Da and Da* use the connections on V

and V* and
Ry = Ry.
(b) If x(t) = 1%({ (algebraic approximation mode) then
o _
Xs(1—xs) — Xs 2 = 0

(¢) Ifrank B = rank F', then aa* = |a|? and we have

*

FRpo
B = CRra

a?

aRpa*

|af?

Note 1.13. Via (1.4) the equations (1.8) and (1.10) are equivalent to the fol-
lowing. (This is the form in which they appear in 1.6.2.)

(1.14)

— — ol? d|lal? a*(Da a*(Da)a™*(Da
Rs=(1—XS)RE+,\"3R0+,\’§I~§—2|—%——I(Q|T)—XS( — Xs) ( |O)[‘4( )
(1.15)

— — al? dlal? (Da)a* Da)a*(Da)a*
Rs:(1_X3)RF+X3RO+X’L‘SQ_I%'(_IEI)Q_—XS(1"X8)( )Ia(]4 )

We can now begin our study of characteristic forms and currents in this context.
For the moment we restrict attention to the pull-back case.

Let ¢ be an Adjoint-invariant polynomial on ¢{,(I) where n = rank(E)
and I{ = R or C depending on whether the bundles are real or complex. We
want to study the characteristic form ¢>(5 s) and transgression forms T with
dT! = ¢((53) — ¢(Dg). To do this we shall first pass to the “universal case”
by pulling back over V. Then before computing transgressions we shall replace
our connection family (53 by a gauge equivalent family (_]5’3 which, of course,
leaves ¢(<53) unchanged but produces a better behaved transgression, denoted
T} rather than Tj.

We now pass to the total space of the vector bundle 7 : V — X. Set
E=nFE F =7"F, V=7V C Hom(E,F) and furnish these bundles with
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the pullback connections and metrics. Let v € I'(V) denote the tautological
cross-section defined by v, = v. Note that if & : X — V is a cross-section of
V, then

a*(v) =
We let BS denote the pull-back family of connections on E associated to the
tautological cross-section v by the approximate one x(t). Note that
v*Dv
VP

where Dv denotes the covariant derivative of v as a section of Hom(E,F). By

(—
(116) Ds = DE+X3

(1.4) we have the equation
(1.17) div]> = (Dv*)v+v*Dv
We now perform, for each s > 0, a global scalar gauge transformation of

the bundle E by multiplication by a function of the form e™ for ry € C(V).

This gives a transformed family of connections

(1.18) (]3'5 = e"o 55 oe” ™ = ﬁs — drg,
and of course
(1.19) RL=(Dy? = (D, = R,

for all s. We set

where

r(t) = %/%x(r)dr.

[¢]

Note that if x(t) = /(1 4+ t), then e™ = 2, /]v]? + s2.

A straightforward calculation using (1.17) shows that

(1.20) D! = Dp+ xoz—s (v*Dv — (Dv*)v).

1
2lv?

Lemma 1.21. The family of connections 5'5 which is conformally gauge equiv-
alent to the pull-back family Bs (and therefore has the same curvature tensor),
has the following property. If Dg and Dy are metric compatible connections,

(_
then D} is also a metric compatible connection for every s > (.
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Proof. Under this assumption we have that Dv = (Dv)*. Therefore by (1.20)
we have that D — Dg is skew-adjoint.: 0

We now consider the (real) Euler vector field on V which generates the
scalar multiplication flow wi(v) = e'v. If e is a loecal framing for V over R and
v = (v1,...,0m) are the linear fibre coordinates with respect to this framing,

— .9 .0
then e = v au_vaau,-'

Lemima 1.22.
eL(Dv) =v and eL(Dv*) = v*

Proof. Fix a local real orthonormal framing e = (e1,-..,€m) of V, and let
v = (v1,...,Vs) be the linear fibre coordinates on V with respect to this fram-
ing. Extend the framing ey, ..., e,, to a local orthonormal framing ey, ..., epr of
Hom(E,F) D V. Let w;j = {Dei,ej)g be the matrix of connection 1-forms for
Hom(E, F') on X with respect to this framing, and let W;j = m*w;; denote the

lift of these forms back over V. Let & = n*e; for all ¢, so that v = )" v;é;. Then

m m M
Dv = D <Zv.ié,-> Zdv,e +ZZv,w1]e]

i=1 =1 j=1

Recalling that e = v - £ = ", 3 we see that el Dv = v.

For the second equa.tlon we consider the R-linear (C-antilinear) identifica-
tion V LN V* which is the restriction of the adjoint map (-)* : Hom(E,F) —
Hom(F,E). Then €},... e}, is a local orthonormal frame field for Hom(F, E)
such that e}, ... eX spans V* pointwise. Let w;; <De, ) ]> and set €} = w*e

At T * —_ .
and ©f; = m*w}; as before. Then v* =Y v;é&} and

m m M
Dv* = D<Z ) Zdve +Zva”é]

i=1 i=1 j=1

and we see that el Dv* = v* as claimed. O
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It follows immediately from (1.9), with a* replaced by v*, that €L (ﬁo = 0.
Note also that e (v*(Dv)v*(Dv)) = 0 and that e d|v]? = 2|v|?. Set

def

Alr) % Dv)v*(Dv)

vi*

(1—2)Rg+ m(ﬁo —z(1- :c)v (
for an indeterminate z, and note that
eLA(z) = 0.

From (1.14) and (1.4) we have

— dlv
R, = A(xs)+ X}
(1.23)

|
2
=
+

We now define

p= 1 * *
Wg = D; DE :ng{v (DV)—(DV )V}
and note that
eLw, = 0
From (1.23) we see that
— Pt « * 19}
(1.24) el Ry = X5 {v'(Dv)—(Dv*)v} = —s=(w,).
s2 Js
Consequently
. — Ow,
(1.25) (Z)eLg(R,) = ¢ s R, ],

the standard transgression integrand. In part, we have the transgression form

7 — _dt

(1.26) (R, - ¢(Rp) = d/el_qS(Rt)?.

g

We now make an important simplification
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Lemma 1.27. Set
1 * A k3
0 = —W{v (Dv) — (Dv*)v}.

Then 5
Lol g(Ry) = ¢(0;A(xs)) ().

Proof. Note that R, = A(xs) — ZX4d|v]*0, and since d|v|? is a scalar 1-form

$(R.) = p(A(x)) -

1
ZXAV A 605 A(xs)).

Contract this equation with e. Noting that eL A(y,) = €L ©® = 0 and that

e_d|vi? = 2|v|? gives the lemma. O

Proposition 1.28. For eacli s > 0, the smooth form

\ s
(1.29) T /¢(@; A(2))de
0
o V' satisfios the equation
(1.30) AT, = o(R,) - ¢(Rp).
The Huit
(1.31) T T
s -—{

exists in L} (V) and satistios the < quation
(1.32) dT" = (Rl — o(Rp) + Res(T)[X]  on V'

def . , .
where Resg = Res('TY) is defined as in I111.9.
3 r - | = .
When restricted to the subset V — X, each of T, d'T" and ¢(Ry) is a smooth
form which is homogeneous (1.e., invariant under multiplication by positive scalars

on V) and has degree < m — 1 in the fibre differentials.
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Proof. Note that T’ can be written-as
T, = = [ 903G () ds.

Applying (1.26) and 1.27 gives the first assertion.
It is evident from the definitions of A and © that the integrand ¢(©; A(z))
in (1.29) is a polynomial in ¢ whose coefficients are homogeneous forms on V.

Hence T! can be written as a finite sum
8

N
Tls = Z z/’l’»‘(XS)k
k=1

where each ¢y, is a homogeneous form (which is smooth on V — X). Furthermore,
by 1.27 we see that

(1.33) eL¢(0;A(z)) = 0.
Hence, each coeflicient 9 is of degree < m — 1 in the fibre differentials. In
particular, ¢ is in L{, (cf. IIL.1.5). Note that 0 < x, < 1 and x, — 1 a.e.

on V. Therefore by the Lebesgue Dominated Convergence Theorem, the limit

lim T = T" exists in L{,_ on V.

50

Observe that T!, — T' and (—Iis — (Eo in the C'"*°-topology on V — X. Hence
we have the equation

dT" = ¢(Ro) - ¢(Rp)

of smooth forms on V — X. Now from (1.9) we see that ¢(ﬁ0) is homogeneous
and (since eL ¢>(§0) = 0) has degree < m — 1 in the fibre differentials. Of
course ¢(Rpg) also has these properties since it is the pull-back of a form on X.
Consequently T" satisfies the hypotheses of Theorem I11.1.10, and equation (1.32)
follows from part a) of that result. O

Proposition 1.34. The smooth form QS(ﬁo) on V — X has an L} -extension

loc

across X which satisfies
(_
d¢(Ro) = 0 on V
Consequently, the smooth form Resy satisfies

(1.35) : dResy = 0 on X.
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Proof. Since ¢(ﬁ0) is homogeneous and of degree < m — 1 in the fibre differ-
entials, we know from IT1.1.5 that it extends across X as an L -form on V. We
denote this L] -extension by ¢((ﬁg)~. Of course qu(EO) =0onV — X, so to
prove that d(¢(§0)~> = 0 it suffices to prove that the residue of gb(ﬁo) is zero
(cf. II1.1.10).

We first suppose that V' is complex of dimension n = m/2. Fix a local frame
field for V' and let (Dv);, (Dv*);, j = 1,...,n denote the scalar 1-forms on the
total space of V' which appear as the components of Dv and Dv* with respect
to (the pull-back of) this frame field. Then at each point of V — X the ¢(§0)

can be written in the form

¢((EO) = Z T[’J(D’U)I(DU*)]
|I|>IJ|S77
H+]71<2n—1

where the sum is over strictly ascending multi-indices and where each rr,7is a
polynomial in Qpg, Qp. Observe that since deg ¢((ﬁ0), deg g, and degQF are
all even integers, we must have r; ; = 0 whenever |I| 4+ |J| is odd. In particular,
¢>((ﬁ0) is of degree < 2n — 2 = m — 2 in the fibre differentials. It now follows
from II1.1.8 that d(qﬁ(ﬁ@“’) = 0. This completes the argument in the complex
case.

The argument for real bundles of even rank is similar. Note that metric
compatibility implies that Dv* = (Dv)* = (3 (Dv);e;)* = > (Dwv)je¥, and so
(Dv*); = (Pv); for j =1,...,m. Consequently (ﬁ((ﬁg) has an expansion

#(Ro) = > rr(Dv)r
J[<m—1
analogous to the one above, where each ry is a polynomial in g and Q. Again
for reasons of parity we must have r; = 0 for |I| odd. Hence if m is even, then
(}S(ﬁg) is of degree < m — 2 in the fibre differentials, and II1.1.8 applies as above.
It remains to consider the case where V is of real and of odd rank. (Here the
argument must be different.) Let S(V) = {v € V : |v| = 1} denote the sphere
bundle with projection p : S(V) — X. Then by II1.1.10 it will suffice to prove

that
p
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This follows from the fact that u*qﬁ((ﬁo) = (f)(ﬁg), where p: V — V is given
by p(v) = —v, and the fact that y reverses the orientation of the fibres of p.

In this last case an alternative argument can be given by observing that,
when lifted to the blow-up f : V — V of V along the zero-section, qﬁ((f_{o)

extends to a smooth, d-closed form, say @. (See 1.3.)  Since V is orientable

when dim V is odd, we can then apply Proposition 1.3.12 to conclude that df,.¢ =
H
d(¢(Ro)~)=0. O

Remark 1.36. We introduced the conformal gauge change above precisely in

order to prove that T' is homogeneous and of degree < m — 1 in the fibre 1-

forms. This fact enabled us to apply the general residue theorem I11.1.10 for

atomic sections.

This brings us to the main result of this section.

Theorem 1.37. Suppose 7 : V — X is a bundle which satisfies Assumption 1.1.

Let o € I'(V) be an atomic section of V, and let ¢ be an invariant polynomial as
above. Let A(z) = a*A(z) and © = a*(0) be the forms obtained by substituting

a for v in the universal expressions above, and for each s > 0 define

XS
7 = [ 4(0; 4@
0
Then

dT) = $(R,) - ¢(Rp).

Furthermore T" = lirr(lJ T! exists in L{ (X) and is given by the formula

(1.38) T = /01 #(©; A(z))de = a*(T')

- which is independent of x. In particular, the characteristic current qS(((E)) =
lir% (i)((f_is) = dT + ¢(RE) exists and is independent of the choice of the approxi-

mate-one x used in the limiting process. Furthermore,

(1.39) $(Ro) — ¢(Rg) + Resy Div(a) = dT

A GENERAL RUBRIC

where qﬁ((ﬁo) is in L}, (X) and where Resy is the smooth, d-closed differential

form on X given as follows. Set

(1.40) T = /0 #(0; A(z)) dz,

and let p: S(V) — X be the projection of the unit sphere bundle S(VYy={ve
V : [jv|]| = 1}. Then the residue is given by the fibre integral

(1.41) Resy = /T’.
P

In the special case where rank(E) = rank(F'), we have the equation of cur-

rents and forms on X

(1.42) #(Rr) — $(Rg) + Resy Div(a) = dT.

Proof. Proposition 1.28 and the hypothesis that « is atomic together imply
that T, is a polynomial in x, = x(|a|?/s?) whose coefficients are Li -forms on
X. Since x, is bounded and converges to 1 almost everywhere, we have that
Ty — T'in L{,. as s — 0 by the Lebesgue Dominated Convergence Theorem.
This establishes the first assertion.

We now recall that the universal form (]5(§0) on V — X is homogeneous and
of degree <'m —1 in the fibre differentials on V. Since a is atomic, it follows that
(;b(‘—R;O) = a*(f)((ﬁo) is an Lj, -form on X (cf. IIL.1.5). Furthermore by (1.35) and
(1.39) we conclude that dgb((ﬁg_) = 0.

The remainder of the theorem now follows directly from 1.28 and I111.1.10. O

Observation 1.43. The residue Res, given in (1.41) is a smooth, d-closed dif-
ferential form which is given pointwise on X by a universal invariant function

applied to the curvature and connection of V. Specifically, at each p € X

(1.44) (Resg)p = / / $(0; A(2))iapda

jul=1 0
veV,
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where ¢(0; A(z))i0p denotes the coefficient of eL (dvy A+ Advy) in ¢(@; A(z)).
This residue defines a linear map

% Res .«
(145) IGLM - gX
from the Adgr,,-invariant polynomials on the Lie algebra glpys (where M =
rank(E)) into the closed differential forms on X. We have the following fun-

damental result.

Theorem 1.46. The residue (1.41) is a Chern-Weil characteristic form associ-
ated universally to the bundle E @ F with its given connection. In fact there

exists a linear map of degree —m :

. T* * *
p * IGL}\,I IGL];{ ® IGLAII’

where M' = rank(F'), such that the residue map (1.45) is given as the composition
p wEer
* * *® Kol
(147) IGL];[ - IGL)\{ ® IGLAII - SX
where WE®F s the usual Chern-Weil homomorphism.

Furthermore, if the embedding V' C Hom(E, F') comes from a universal
construction (i.e., if Property 1.2 holds), then the residue is a Chern-Weil char-
acteristic form for V, i.e., the residue map (1.45) factors as above

o' wVY
(1.48) Igy,, — 1&L,, — &
where WV is the Chern-Weil homomorphism for V.
The linear maps p and p' are topologically determined, and so therefore is

the residue map itself.

Proof. Suppose that V is complex of dimension n = m/2 and that the connec-
tion respects the complex structure. Fix a local frame field for V' and let (Dv);,
(Dv*);, 7 = 1,...,n denote the scalar 1-forms on the total space of ¥V which
- appear as the components of Dv and Dv* with respect to (the pull-back of) this
frame field. Then at each point of V' — X the integrand in (1.44) can be written

in the form

(1.49) $(O;A()) = > cr(Dv)(Dv*)s

;| J1<n
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where the sum is over strictly ascending multi-indices and where each cr,7is a
polynomial in Qg, QF, and z. By (1.33) the coeficient, ca,...n),(1,...,n) of top

degree is zero. Consequently, the fibre integral

[vlzl ¢(®, A(’L))d"l? = /vl:l CI,J(D'U)[(D'U*)J

[T+ <m—1

= Z /|v|:1 cr,7(dv)(dv*) .

1] Tj=m—1

(1.50)

contains no terms involving wg or wp. In other words the fibre integral (1.44)
is a universal Ad-invariant function in Qg and Qp. Hence it is produced in the
standard way from a series of homogeneous Ad-invariant polynomials on the Lie
algebra glpr X glpr. We have now established the existence of the linear map
p. This map is topologically determined since the universal Weil map &, ®
I, — H*(BGL,;, x BGLyy) is injective. This completes the argument in
the case of complex connections.

The argument for the case of real bundles with metric-compatible connec-
tions is similar. To begin we note that metric compatibility implies that Dv* =
(Dv)* = (22(Dv)je;)* = 22(Dv)jes, and so (Dv*); = (Dv); for j = 1,...,m.

Consequently we have an expansion

$(0;A(x)) = D er(Dv)r

| <m

analogous to (1.49) above. Proceeding from this point the argument is completely

analogous. [

Theorem 1.6 asserts that the residue form (1.44) is uniquely determined by
a topological determination of class at the universal level. In subsequent sections
we shall carry this out explicitly for a number of important cases.

We observe now that in the universal case (over the total space of V') equation

(1.39) can be rewritten as

(1.51) #(Ro) — p(RE) + Resy[X] = dT".
h

Using the equation dT', = ¢(R ;) — ¢(Rp) from 1.28 gives

(1.52) #(R.) — ¢(Ry) = Resy[X]+d(T, - T)
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where T, — T' — 0 in L{,_ as s — 0. We now observe that the forms d)((ﬁs) -
(;S((—R_o) and T! — T can be integrated over the fibres of 7 : ¥V — X. This follows
from Corollary 1.6.17 by restricting to the compactification of V C Hom(E, F)

in G,(E @ F). Applying 7, to (1.52) gives the following,.

Proposition 1.53. Alternative Formula for the Residue. The residue form

in the universal case can be written as

Res¢ = '/T*{Qb((ﬁs) - (f)((ﬁo)}

Proof. Note that m,d(T, — T') = dm. (T}, — T'), and that m.(T, — T') = 0

because T, — T' is of degree < m in the fibre 1-forms dvy, ..., dv,,. O

This Proposition has an important interpretation at the cohomology level.

Let H*

cpt
the fibre directions. If V is oriented, there is a Thom isomorphism

(V'; R) denote the deRham cohomology of V with compact supports in

i H*(X ; R) — H*'™(V ;R)
whose inverse
(i)™ = m:H*t(V ;R)— H*(X ; R)

is given by integration over the fibre. Suppose now that rank E = rank F and
‘— . .
choose an approximate-one y so that y(¢) = 1 for ¢t > 1. Then D, is a connection

on E = 7*E with the property that

— —

D, = DO:V_lo(DF)ov
outside the s-neighborhood (X), et {v € V: |v|] < s} of the zero section.

Consequently

$(R.)—(Rp)=0 on V —(X),

and thereby determines a class

() - 6(Rr)| € Ho (V3 R)
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This class is an invariant of the triple (7*E, n*F; v) in the following sense. Sup-
pose W : m*E — 7*F is a bundle isomorphism defined in V — (X); for somet > 0,
and homotopic over V — (X), to the map v. Suppose D' and D" are connec-
tions in 7*E and 7* F’ respectively with the property that D' = w=lo D" ow in
V = (X):. Let R® = (D)2 Then the standard Chern-Weil argument shows
that

o . *
[¢(Rl) - ¢(R”)] = [¢(R3) - ¢(RF)] n HCPL(V ) R)
We denote this class simply by [¢(Rp) — #(Rp)].
Proposition 1.53 has the following important consequence

Corollary 1.54. The cohomology class of the residue form on X is given by

- [Resy] = m[¢p(RE) — ¢(Rp)].

If furthermore Property 1.2 holds, then both E and F are associated to the
bundle V', and the class ¢(Rg) — ¢(RF) is universally divisible by the Euler class

X(V) of V. In this case, the residue form is given precisely by the formula

Resy, = $(Rp) — ¢(RF),

x(V)

where the right hand side denotes the Chern-Weil representative of this universal

class for the connection on V.

Proof. The first assertion follows immediately from 1.53. To prove the second
assertion we consider the case of the universal bundle with some connection Vo —
Xo ~ BGL,, over a finite-dimensional approximation to the classifying space (i.e.,
the tautological m-plane bundle over the Grassmannian of oriented m-planes
in R™*" for n large). The universal construction comes from an embedding
R™ < RM x RV equivariant with respect to a homomorphism y = (5,¢) :
GL,, — GLjs x GLy. We define the associated bundles Ey = P(Vp) x4 RM and
Fy = P(V) x; RY with connections determined by the one already chosen on
the frame bundle P(V}) of V.

Now over the total space of ¥ we have already established the formula

[#(RE,) — ¢(RF,)] = ir[Resy)
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where 1y = (7rg)_1 is the Thom isomorphism and ¢ : Xy — V; denotes the inclusion

of the zero section. A basic formula for the Thom isomorphism is that
i*i[Resg] = x(Vo)[Resg).
Hence

[¢(RE,) — #(RF,)] = x(Vo)[Resy]

in H*(X, ;R). Since H*(BGL., ; R) is a polynomial algebra, and since the
inclusion Xg < BGL,, can be assumed to be k-connected for k arbitrarily large,

we conclude that there is a universal class

Resgly = PER)—9ER) o popar,, s Ry 13 (o).
x(Vo) "

Any embedding of bundles V' — Hom(E,F') which comes from the ¢-
universal construction is topologically a pull-back of the one given by the bundles
Vo, Ey and Fy over BGL,, by the map fy : X — BGL,, which classifies V.
Hence the associated residue has cohomology class f{;{Resg]o. By Theorem 1.46
we know that Resy is actually given pointwise on X by the Chern-Weil represen-
tative of this class, i.e., by applying the Adgqr,,, -invariant function corresponding

to [Resg)o to the curvature of the connection on V. O

Remark 1.55. The non-orientable case. Suppose that V is not orientable
and let p: X — X be the 2-sheeted covering space corresponding to the first
Stiefel-Whitney class

w1 (V) € HY(X;Z,) 2 Hom(m (X),Z,).

The pull-back bundle V= p*V on X is orientable and the deck transformation
g: X — X lifts to a bundle map

~ gv ~
V —— V
~ g ~
X — X

which is orientation-reversing on the fibres.
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~ Any smooth cross-section « € I'(V) lifts to a g-invariant cross-section & €
I(V), and it is easy to see that

(1.56) 9+ Div(&) = —Div(a).

We can now apply Theorem 1.37 to the pull-back bundles p*E and p* F to obtain

an equation of currents
(—.
(1.57) #(Ro) — #(Rg) + Resy Div(a) = dT!

> —
on X. For any ¢ € Ig;  the forms ¢(R) and ¢(Rg) are constructed without
regard to orientations on either X or V. Hence,

7*$(Ro) = ¢(Ro) and  ¢*$(Rp) = ¢(Rn),

and for similar reasons

g*T/ — T/.

Consequently, we have that
(1.58) 9" (Resg Div(@)) = Resy Div(a)
and in particular by (1.56) that
(1.59) 9" Resy = —Res,.
It follows that the formula

(—
(1.60) ¢( Ro) — ¢(Rp) + Resy Div(a) = dT"

holds down on X, where the term Resy Div(a) is defined via the g-

invariance (1.58).

Remark 1.61. It should be noted that the transgression forms T! in Theo-
rem 1.37 are produced out of the canonically modified family of connections —ﬁ’s

Let us consider the transgression T given by the unmodified family —53. Since
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T-Z)’S = ﬁs and —B’S — Bg = —dr,, we see directly from the standard formulas

(e.g., 1.1.18) that

(1.62) T, —T, = 745((17‘1; Q)dt = d]ogb(f't ; Qq)dt.
Since drs = x,dlog |v| this :an be rewritten as

(1.63) T - T, = 7dlog lv|e(1 5 Q)x, dt.

From (1.63) we see that

(1.64) T'=T, if ¢(1; ) =0.

We also conclude that if a is atomic then T = lim 7 exists and, since d has

s—0

closed range, there exists a current K with

(1.65) T'-T = dR.

2. Quaternionic Line Bundles.

In this section we consider the quaternionic analogue of the case discussed
in Chapter II. The results are in striking parallel with those of the complex case.

Throughout this section we suppose that E and F' are quaternion line bundles
over a smooth manifold X (with scalar multiplication from the left) and that £
and F' carry connections, D and Dp respectively, with respect to which scalar
multiplication by any quaternion is parallel.

We consider the bundle

V £ Homu(E, F) ¢ Homg(E, F)

of quaternion-linear maps from E to F. V is a real bundle of rank 4. However

it does not in general carry a quaternionic structure, nor even a natural complex
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structure. Note that for a € I'(V), we have that Do % Droa—aoDgis also
a section of V' by our assumption of quaternion compatibility for Dg and Dp.

Suppose @ € I'(V) is an atomic section, i.e., B -%, F is an atomic quater-
nionic bundle map. Consider the Llloc(X) one form with values in EndH(E) given
by

(2.1) T=a!oDa.
Similar to the complex line bundle case we may consider
Do = ar

as defining 7. However, in the complex case Endg(F) is canonically isomorphic
to C.

If E and F' are furnished with metrics with respect to which scalar mul-
tiplication by unit quaternions is a pointwise isometry then one easily checks
that

(2.2) a*a=la’ldg and aa* = |af’ldp,
so that o' = a*|a|™?. Thus

a*o(Da)
2.3 = — " 7

For some of the results we must assume that the connections Dg and Dp are

wetric compatible. The pull back family of connections on E is given by
; —
(2.4) D,=Dp+ T

Note that for each fixed 0 < & < oc the counection 658 is quaternionic.,

For the sake of simplicity we shall only consider the pullback family. The
pushforward family is defined by —D-)g = Dp — xs7' where 7' is defined by 7/ =
(Da)a™t = LDI%I)z(i, or Da = 7', and is a one form with values in Endg (F).

For quaternion line bundles there is essentially one topological invariant.

The classifying space is BH* = P®°(H) = lim P"(H), the infinite-dimensional
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quaternion projective space (with the weak limit topology). The cohomology is
a polynomial ring

H*(P=(H); Z) = Z[u]

where the generator u € H*(P*°(H) ; Z), called the instanton class, arises as

(2.5) u=x(éu) = c2(lu) = —ip(€n),

the Buler, second Chern, and -—% (first Pontrjagin) classes respectively of the
universal quaternion line bundle é&g — P°°(H). Now Chern-Weil theory gives
an explicit isomorphism of H*(P*°(H) ; R) = Rf[u] with the Adyx-invariant
polynomials on Homg(H, H) =~ H. The integral generator above corresponds to

the polynomial

(2.6) wY) = tr(Y?)

1672

for Y € Homu(H, H).
H .
The standard transgression applied to the family D, on E yields

(2.7) uw(R,) —u(Rg) = dT,
where
(2.8) 87T, = — / te(Dy; Ryt

Theorem 2.9. Let E and F' be quaternionic hermitian line bundles over a man-
ifold X, furnished with quaternionic hermitian connections Dg and Dp. Let
e = u(Rg) and f = u(RF) be the Chern-Weil representatives of the instanton
classes of these bundles. Suppose a : E — F is an atomic section of Homy (E, F').

Then T = lim T, converges in L (X). The instanton transgression T
8—0

satisfies
(2.10) f—e—Div(a) = dT,

and is independent of x and the metrics.
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Fix any polynomial ¢(u) € R[u]). Then the ¢(u)-characteristic current of the

pullback connection exists and equals

3—0 f_e

where the limit exists in the Federer flat norm topology and is independent of the

(211) lim ¢(u(R,)) = ¢(f)— Div(a) A {M}

function x as well as the metrics (, ) g and {, ) F used to define this approximating
family (—53. Furthermore,

(2.12) lim ¢(u(‘R.)) — ¢(e) = dT}

3—0

where Ty is the L -form on X defined by

(2.13) Ty = ﬂ’%:@z“

In particular, we have the current equation

(2.14) o(1) = #te) = Divta) 1 { AD=HIN g,

Remark 2.15. Quaternionic Poincaré-Lelong. If E is trivialized and given
the corresponding flat connection, then Homy(E, F) & I'(F'). In this case, for
a given section a € I'(F'), Equation (2.10) gives a quaternionic analogue of the

Poincaré-Lelong Formula, namely,

f—Div(a) = dT.

Proof. Once we have verified that the general rubric of Section 1 applies then

by Theorem 1.37

(2.16) lim qﬁ(u((ﬁs)) = ¢(f) — Div(a)Res,.

3—0

In particular, with ¢(u) = u

(2.17) f —e+Div(a)Res, = dT
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where Res, is (locally) constant. We shall give three different proofs that the

instanton residue equals minus one,
(2.18) Res, = —1.

This will verify equation (2.10).
Differentiating (2.13) and using (2.10) immediately yields (2.14). The equa-
tion (2.11) follows from (2.16) and the fact that

_HD - de)

(219) R.CS¢, = f —e

If Té, denotes the Chern-Weil transgression of Section 1 then by equation (1.42)
(2.20) #(f) — #(e) + Div(a)Res, = dTéS

Comparing (2.14) and (2.20) yields that Res, and —&f}}‘f—’(ﬁ belong to the same
cohomology class. Because of Theorem 1.46 this is enough to prove (2.19).
Consequently, the proof will be complete once we have verified that Section 1
applies and that the instanton residue equals minus one.
As noted above if @ € T'(V) then Da € T(V) is also a section of V =

Homyg(E, F') C Homr(E, F'). Consequently, V is totally geodesic in Homg (E, F).

Since a*a = |a|*Idg and aa* = |a|*IldF, our Basic Assumption 1.1 is satisfied.

In fact we have the following.

Lemma 2.21. The universal construction. Property 1.2 holds under the

hypotheses stated above.

Proof. Let H denote the quaternions and take the standard identification H =
R* by the basis (1,3, 4, k). Let H act on itself by scalar multiplication from the
left. Define

(2.22) A : H — Hom(R*, R*)

by associating to ¢ € H the linear map A, : H — H given by A;(r) = r - ¢. This
identifies H with Homg(H, H) C Hom(R*, R?).
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The restriction of A™! = 1/ to the multiplicative group H* Liyg_ {0}
gives a Lie group homomorphism A~! : H* = GI, (H) C GL4(R). Consider
the product homomorphism

(2.23) @=(A"A7  H x HY — GLy(H) x GLy(H).

The natural action of GL;(H) x GL{(H) on H = Homg (H, H) induces a homo-

morphism
Y H* x HX — GL,
given by
Pl (0) = 1995

for ¢ € H= R!. This action factors through an embedding
B HX x H*/R* < GL,

whose image is vhe conformal group in 4-dimensions.

It is easy to check that for any ¢ = (¢1,¢2) € H* x H*. the diagram
Yy g 11,4 > g

H ‘i> Hom( R' RY)

ol 8

H el Hom(R* R*)
commutes, where 3 (7) = A 0T o), is the induced action on Hom(R* RY).
Henee. the embedding (2.22) and the homomorphism (2.23) constitute the data
for a universal construction.

Suppose now that we are given a principal HX x H* bundle with connection.
Then E'eh Fis the bundle associated to the representation v and V C Hom(E, F)
1s the bundle associated to . Similarly, the bundle V* = Homy(F, E) is associ-
ated to the opposite representation . Hence. our set-up comes from a universal

construction as claimed. O

Because of Lemma 2.13 the results of Section 1 are applicable. Our first

proof of the remaining lemma is topological.

Lemma 2.24. Res, = —1.
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Proof. Since Property 1.2 is satisfied, this lemma follows directly from the uni-

versal topological formula
(2.25) x(V) = [f]-I[e]

This formula is rather well-known (See [BL] for example). It follows from the
observation that up to homotopy equivalence we may replace the homomorphism

P H* x H* — GL] by its restriction
Yo 1 Sp1 X Spr = Sping — SO;.

(This is the usual 2-fold covering). Restricting further to the maximal tori yields
the map '
o (eio’ eitp) <ei(9+go)’e1'(9—tp)) _

One now considers the induced map By, : BS! x BS' — BS' x BS! and the
pullback in cohomology to complete the calculation of (2.25), which comes down

essentially to:

1 1 . 1
X(V) = 1ga%1Xe = Jea(otag)(er —w2) = p—(et —a3)

[l
=
|
=

This proves the lemma and completes the proof of the Theorem if the trans-
gression T' is interpreted as the transgression 7" of the modified family (5’3 of
Section 1. However, Remark 1.61 and equation (1.64) are applicable so that the
transgression T of Section 1 equals the transgression T, defined by (2.8). Note
that if $(Q,) = (tx(Q2))? then (1 ; Q) = 2ptrQ,(tr(22))P~! which vanishes
since tr{2; = 0 by metric compatibility. O 0O

In order to explicitly describe the instanton transgression 7' it is convenient

to use the form 7/ = (Da)a™ as well as 7 = a=!(Da).

Theorem 2.26. The Instanton Transgression Form. For any atomic quater-
_ nionic line bundle map E < F, the instanton transgression form T is given by

the formula

(2.27) 167°T = —tx(7Rp) — tr(7'RF) + L tr(7®),
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Proof. We must compute i
oo . Z

(2.28) 16727, = —/2tr‘5fﬁ,,dt.

: =
Obviously D, = y,7, and by 1.6.3 (or V1.15 and V1.12¢) the curvature (ES is
given by

— _ a*Rra 2 g2
(220) o = (1= xa)Re+xe == = xa(1= 0o + x5k e

To complete the proof we need a lemima.

Lemma 2.30. Suppose 7 is an arbitrary Endg(FE)-valued 1-form. Then

tr(7%) = 0.

Proof. Locally, we may assume that 7 is an H-valued one form since, locally,
Endy(E) & H as algebras. Also, the trace equals four times the real part. Now

T=19+147 + jro + k7y with 7y, 7, 75, 73 one forms implies that Re7? =0. 0O

. . v (_-. . .
Computing (2.28) dircetly. using (2.29) and D = y,7, gives

v
167°T, =2 / n(r((l —rRp +va 'Rpa — x(l — :1')7’2))(1.1:
0
(2.31)
= 2(\w ~ S\ RE )+ ir(ra T Rpa) = 2(332 — 1) te(7?).
The trksr/\"gj%;%k—‘ll;r term drops by Lenuna 2.30. The term tr(7a™ ' Rpa) can
be rewritten as tr(7'Rp).
The atomic hypothesis implies that T, converges, in Li (X), to T defined
by (2.27). O
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Second Proof of Lemma 2.24. Consider the total space of V' = Homu(E, F).
Let p denote projection from the unit sphere subbundle of Homy(E, F') to the

base manifold. Because of the formula (2.27) for the instanton potential T

(2.32) Res, (D) = /T = 4—;—2 / tr(3).
p le}=1
Here 7 = v—'Dv is the form corresponding to the tautological section v of the
pullback bundle V of V = Homu(E, F') over itself.
The form tr(72) has a particularly nice expression. Let e and f denote frames
for E and F and let a(e) = vf define v € H. This gives the local identification
V = Homy(E, F) = H. Note that a7!(f) = v™'e. Let ai(e) = f, az(e) = 1f,

az(e) = jf and ay(e) = kf be the basic associated orthonormal frame for V.

Lemma 2.33. Let €= v—a% be the Euler vector field on the total space of V', and

4
let 7 = v—1Dv be the form corresponding to the tautological section v = 3 v;a;.
=1
4
Then Dv = 5 (Dv);a; defines local 1-forms (Dv); = dv; + 3 vpwgi, and
=1

Li(rY) = el ((Dv)l /\(Dv)zlf)\lgDv)g /\(Dv)”)i

Proof. In replacing endomorphism-valued forms by matrix-valued forms, minus
signs are sometimes introduced. For example, dvv™! is the matrix form of 7 while
—(dvv™1)? is the matrix form of 7°. Also, 7% has matrix form —(dvv™1)3 (cf.
1.6.3 and 1.6.8). For the sake of convenience, but only in this proot, we shall let
# = v~ 1Dv denote the operator version and let 7 = Dvv™! denote the matrix

version. In addition, for the sake of clarity, we shall give the proof with (Dv);

replaced by dv;. In fact, as a slight digression we shall describe several quaternion-

valued differential form identities on H. Define 7 = dvv ™! for v € H. Since trace
equals four times the real part we must show that

lRe’rg — L <d'l)1 /\d’l)g/\d’l);;/\dv‘;)'

o[

(2.34)

where 7 is the matrix version 7 = dov™!. Now Ret = 1(7+7) = %M—?ﬁfﬂ =

dlog |v] is exact. Define ¢ = Im7 = 3(r — 7), or equivalently 7 = dlog [v| + o.
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(The reader may wish to verify that do = dr = ¢? = 72 = 72 and that ——di”‘lg”’ =
v
77 = —2dlog [v| Ao — %, 77 = 2dlog |v| A o — %)

Direct calculation yields
dv ANdo ANdvo ANdv = —24dv; A dvy A dos A dog.

(Use that fact that e;e; + eje; = 26 with ey =1, e3.=1,e3 = 7, 5 = k. Also

note that dvdodvde is veal.) However,

= 717 — 17 + 7(7)? — 777

do A dv A dv A do
—€L
o[t

= 403,
This proves that

(2.35) 103 _ ~elduvy A duy A dog A duy
6 [o]4

Finally, note that ¢® = t1(7*) since 0 = do is purely imaginary. O

, —
The proof that Res, (D) = —1 can now be completed using this lemma.
— -1 . 1 el_(dvi A+ A duy)
Res (D) = tr(73) = — 1 4
(2 4872 / ) 22 / lu[t =-1

[ef=1 Jvj=1

because of (2.32). Lemma 2.33. and the fact that \'01(53) =272, 0O

Note. Each choice of frames . f induces a local isomorphism V 2 H via a(e) =
of, e € Ho This loeal isomorphisi is casily scen to be unique up to a conformal
map of H to H. Thus 17 is uaturally equipped with a conformal structure.
Morcover, for cach choice of merries {0 ) £, {0 ) p. compatible with the quaternion
structures, the induced metric on 1 C Homg (E. F) is always in this conformal

class. The form tr{7* ). restricted to the fibers of ¥ is conformally invariant.

The metrics on E' and F are necessary in order to define the pullback family

al?/s?)

depends on the metrics. However, the assumption that the connections Dg and

o
_ —1 : : :
Dy =Dg + xsa™ Da because the norm |al? in the expression y, = x(

DpF are metric compatible is not needed in the proof of Theorem 2.26. That is,
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lim,_, Ty = T converges in Lj (X) to the instanton transgression T given by
(2.27). Since 7 and 7' are well defined without the use of metrics, the instanton
transgression 7' is also metric independent.

The next result is in complete parallel with the complex case. In particular,

it is metric independent.

Theorem 2.36. Suppose E and F' are quaternionic line bundles over a manifold
X furnished with quaternionic connections Dg and Dp. Suppose E 2 Fisan
atomic section of Homy(FE, F'). Then the instanton transgression T' defined by
(2.27) satisfies

uw(Rg) — u(Rr) — Div(a) = dT,

as an equation of currents on X.

Proof. Because of the results of Chapter II1.1, it suffices to calculate that the
residue of T is -1 directly from the formula for T This was done in the second

proof of Lemma 2.24 presented above. []

Remark 2.37. Twisted Quaternionic Scalars. Motivated by examples such
as the tangent bundle to P!(H) = S$* it is natural to weaken the definition of
quaternionic line bundle by replacing H by a bundle A of H-algebras, which is not
necessarily trivial. An A-quaternionic line bundle F is a real rank 4 vector
bundle E equipped with an action of A, i.e., A is embedded as a subbundle
of algebras of the endomorphism bundle Endg(E). Consider a pair E, F of
A-quaternionic line bundles. The subbundle of Homg(E, F') consisting of A-

quaternionic linear maps (on each fiber) will be denoted
V = Homyu(E, F).

The natural invariant to use in extending the previous results is the Euler form.
Consequently, we must assume metric compatibility. That is assume E and
F' are equipped with A-quaternionic metric compatible A-quaternionic connec-
tions Dg, {(, ) and DI;, (, )r. Moreover, assume that the embeddings
A C Endgr(F) and A C Endg(F) induce the same connection D4 on A and
induce the canonical metric { , }4 on A determined by the algebraic struc-
ture of A. Let Dy, { , )v denote the induced metric compatible connection
on V = Homu(E, F) C Homg(E, F).
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Theorem 2.9 remains valid if the standard notion of quaternionic is replaced
by the twisted notion of A-quaternionic and the compatibility described above is
valid. The instanton forms must, of course, be replaced by the Euler forms, i.e.,

e = X(Dg) and f = x(Dp). In particular, the formula
(2.38) x(Dr) — x(Dg) — Div(a) = dT

extends the quaternionic Poincaré-Lelong formulas in Equation (2.7) and Re-
mark 2.15.

Actually, for the parts of the statement of Theorem 2.9 involving the family
of connections Dy, it is natural to replace the family (2.4) by a metric compatible
family, as was done in Chapter IV.

Because of the similarities with the standard quaternionic case the details
of the A-quaternionic case are omitted, except for a discussion of a key fact.

Namely, the Euler class of V is just the difference

(2.39) x(V) = x(F) - x(E),

in the A-quaternionic case. The topological argument used to establish (2.25)
can also be used to verify (2.39). In fact, this result is true on the level of forms,

yielding a direct proof of (2.38) and a third proof of Lemma 2.24.

Proposition 2.40. Suppose F and F are A-quaternion line bundles equipped

with metric compatible A-quaternionic connections. Then

(2.41) PRAQy) = PRQg) — PAQE).

Proof. It is convenient to have matrices acting on the left of frames, so we assume
that the A-quaternions act on E and F on the right. Choose a local orthonormal
frame I, J, I{ for Im 4. A fibre of E should have the orientation induced by the
complex structure I. Consequently, we choose oriented orthonormal frames e,
el, eJ, —eK for E; and f, fI, fJ, —fK for F. Note that I(eJ) = eJI = —cK.
Set

0 0% 02
Qa = | -0 0 -0l
Q4 QL o0
245




CASES OF BASIC INTEREST

ie.,

Ra(I) = Q%J+ Q4K  ete.

Let
Rrf = Qpfl+Q%LfJ - Q% fK

define the first row of the curvature matrix Qp. The remaining rows are deter-

mined by using the fact that
Ra(a) = Rpoa—aoRp for a € T'(A).

For example, with a = I we have

(Ra(D)(F) + L(Rrf) = QUf T + QUK +(Qp fT+ Q5 fT = QR FK)I
=—Qpf+ (0% - Q%) fJ+ (4 - Q%) fK.

Rr(fI)

Similarly, one computes Rp(fJ). Therefore,

0 QL Q2 Q3
o - |- 0 % -0% - (% -03)
—0F (24 -9%) o QY - 0f
0k 04 -0% 0 (0 -0b) 0

The curvature Qg is exactly the same as Qp except Q% should be replaced by
Li=1,2, 3.
Now we calculate 2y, Consider the local oriented orthonormal frame aq,
a1, az, ag for V = Homa(E, F') defined by ag(e) = f, ai(e) = fI, aq(e) = fJ,
as(e) = fK. Again, recall that Ry(a) = RF o @ — a o Rg. Therefore,

(Rv(ao))(e) = Rpf — ao(Rge)
= QpfI+ Q5 fT — Q%R fK — ag (Qpel + Qhed — QhekK)
= (Qp —QF) [T+ (QF - QF) f7 - (9% - Q%) FK.

‘Similarly,
Ry(a1) = —(Qp — Qp) ao + (4 — Q% — QF) ag + (=% + Q% + Q%) as,
and Ry(az) =+ (—Qh + QIF + Q%) ag. Thus
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0 QL Q3 - 3,

. — (2 - 2%) (0 - 02 - 0Y)
Vv = -
—(2p-9%) —(% -0l _g QL - ok — o}
—-(QF - 03) o —Q}—%‘f' 0
If |
0
-
Q = 1
-Q,
—Q
then
PIQ) = %1 + 0,5, + 0,5,
Consequently,

PHQv) = (% — Q) (24 - Qh — QL) 4+
= Q% (2 - ) - 0% (2 - Qh) +- -
= Pf(Qp) — PHQR). O |

3. Dirac Morphisms.

In this section we shall examine the important family of bundle morphisms
which arise from Clifford multiplication. They appear naturally in various con-
structions of the Thom isomorphism in K-theory, and they arise as the principal
symbols of the standard families of elliptic operators. In this context, our theory
is particularly nice. The formalism is elegant. The results are canonical and the
limit cwrrents are independent of any choice of approximation mode.

Given a vector bundle 7 : ¥V — X which is, say, complex or spini; there are
Thom isomorphisms 4 : K(X) — K., (V) and 4 : H*(X) — H%,(V), and a
diagram

K(X) LN Kep (V)
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which commutes up to a factor. In our study of the Euler class we established a
canonical “Chern-Weil” representation of this diagram with I{-Theory replaced
by bundles-with-connection and cohomology replaced by closed differential forms.
(See 1IL5 and IV.5.) However, in that approach the theorems and their proofs
were pulled magically out of a hat.

In this section we shall derive these results as a natual consequence of our
philosophy, by looking at the Chern character of the pullback connection under
Clifford multiplication. The commutativity factor in the diagram above will come
out as a fundamental residue.

We begin with some definitions. Throughout this section 7 : V' — X will
denote a smooth, real vector bundle of rank m equipped with a metric (-, -) and an
orthogonal connection D. We shall denote by C&(V) — X the associated Clifford
bundle of V with its induced metric and connection (cf. [LM]). Let S = Ste s~
be a bundle of Zy-graded modules over CA(V'), and assume S is furnished with a
direct sum metric and connection Dg+ @ Dg-.

By definition of C£(V) we have
vov = —|v]*1

forallv € V C C(V). Hence the composition V C C{V) — Hom(S*,57) sat-
isfies Assumption 1.1. We should assume further that the metric and connection

on S are adapted to this Clifford multiplication as follows.

Definition 3.1. The bundle S is called a Dirac bundle if

(a) (vs,s') +(s,vs') = 0 VveV and Vs,s' €5,
(b) Ds(pa) = (Dp)o +¢(Dso)

for all ¢ € T(CEV)) and o € T'(S). (See [LM] for more details.)

Example 3.2. Let S = C¢(V) with its metric and connection, and with the
standard even-odd grading C4(V) = Ceeve™ (V) @ Ceedd,

To begin we shall work on the total space of V. As in section 1 we set
V = n*V and S* = 7*S*, and we let D, Dgz denote the pullback connections

on these bundles. Note that there is a canonical embedding

(3.3) VCTV
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as the subbundle tangent to the fibres of # : V — X. The connection on V

determines a complement to this, i.e.; a splitting
(3.4) TV = VoH

Let v € I'(V) denote the tautological section as in §1, and consider the V-
valued 1-form Dv. As a linear map, Dv : TV — V is just projection along H

onto V, i.e.,

(3.5) Dv |,=Idy and kerDv=H.
If we choose a local orthogonal normal frame field (eq, ..., e, ) for V and lift it
to a frame field (eq,...,e,) for V| then v = > vje; where (v1,...,v,) are the

linear fibre coordinates. Writing De; = ) wjieg, we get the expression
k

m m m
(3.6) Dv = Z dvy, + Z VWi | e def Zkaek
k=1

j=1 k=1
in terms of the local gauge w. Of course, by definition we have
(3.7) D?’v = R(v)

where R is the (pullback) of the curvature of V. In terms of the local frame

above

m
(3.8) D*v = > vQey.

j,k:l

We recall that ¥V C Cl(V) is totally geodesic. Hence, by assumption 3.1.b

the inclusion
(3.9) V  Hom(S™*,S7) is totally geodesic.
From assumption 3.1.a we have that

(3.10) AR—
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O
Hence we have canonical connection-preserving identification V.— V* given by

—Idy, and in particular,

(3.11) (Dv)* = Dv*.

Whenever our map v : ST — S~ is given by a standard Clifford constructions,
Property 1.2 will hold.

We now fix an approximate 1 and consider the families of connections

(3.12) D, =Dsr+x,v ' (Dv) and D, = Dg- — x,(Dv)v"!

where v=1 = sz The corresponding curvatures are given by

dv[*

= Rt + st_lR(V) - xs(1 - XS)TQ + Xls T

~ - _ d|v|?
s = RS ROVT (1) 4

(3.13)

= =

def
where R* = R and where

€ — e 1 —
(3.14) i 2V(DV)“‘V '(Dv) and T lq:f——v—(Dv)v=(Dv)v L

vl

The expressions (3.13) can be rewritten using the equation

(3.15) R(v) = R ov—voR",

We now consider the expressions in the indeterminant = given by
1

(3.16) { At(z) =Rt +2vIR(V) — a(1 - 2)r?

A (2) =R™ —aR(v)v!' —z(l - 2)r?
These can be rewritten via (3.15) as

| Tz) =(1-2)RT+avioR ov—a(l —a)r?

A~ (z) =(1-2)R™+avoRTov™! — (1l —a)r2

Note the close relationship between A¥(z) and v7'A~(2)v since 7 = v=1r -1y,

From the main results in §1 we have the following.

DIRAC MORPHISMS =~

Theorem 3.18. Let 7: V — X be an oriented Rxem
connection and suppose S = ST @ S~

vector bundle with

is a Dirac bundle for V. as above. Fix an
approximate-one x and consider the families (3.12)

of puﬂback and pushforward
connections associated to Clifford multiplication v : §+ - ],,(Where St —

7*5%) by the tautological section defined over the total space of
Ad-invariant polynomial ¢ defined on gly (Whele N = rank S,

For each

characteristic currents hrn ¢(R+) and hrn ¢>(R ) exist and are

. In fact we have equatlons

$(R,) = p(R™) ~ ResylX] = dvt

(3.19) R 3
¢(R¥) — ¢(R,) — Resg[X] = dry
where
1
(3.20) rE d——g/qﬁ(‘ril ; Ai(.’c))dm

are Lllo .-forms which converge to zero in LllOC onV as s — 0. In particular we

have the current equation

(3.21) $(RT) — ¢(R™) — Resy[X] = dT
where

1
(3.22) T(‘é‘/¢(~r; A(z))de

1s an Lllon form on V' which is smooth on V — X. The residue is a smooth form

on X given explicitly by the fibre integral

(3.23) Res, = /T

where p: {v € V : [v] = 1} — X iy the bundle projection. If S is associated to
V' by a universal construction (i.c., Property 1.2 holds) then Resy is exactly the
Chern-Weil form

o _ RN —¢(R7)
(3.24) Res, = B
representing the universal class
$(S*) — é(S7)
3.25 —_—_—
(3.29) x(V)

defined in H*(BSO,).
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Remark 3.26. Suppose y is chosen with the property that x(¢) =1 for ¢ > 1.
Then (b((ﬁs) —¢(R7), p(RT) — qﬁ(-ﬁ)s), and r¥ all have support in the s-tubular

neighborhood

B wevV:p<s)cV.

Consequently if X is compact, then (3.19) is an equation between forms with

compact support.

Proof. The pullback case is a direct consequence of 1.37 and 1.50, with the
exception of the formulae (3.20) and (3.22) where ® has been replaced by .
This substitution is permitted because 7 = ® ( mod d|v|?).

By Remark 1.4.28, the pushforward connection on S~ corresponds to the
pullback via the map v* = —v : S~ — ST. (Note that since our connections are
orthogonal, the canonical isomorphisms (S)* = S*, given by the metrics, are
connection preserving.) Applying the pullback case to this map gives everything
but the explicit formula (3.20). For this we observe that ¢(+~! ; A= (2)) =
p(virlv; vIAT(2)v) = ¢(7 ; AT(x)) where A*(2) denotes the expression
obtained from A*(z) in (3.17) by interchanging Rt and R~. This completes
the proof. O

Theorem 3.27. Let 7: V — X and S = S* & S~ be as in Theorem 3.18, and
suppose that « is an atomic section of V. Fix an approximate-one y and consider
the families of pullback and pushforward connections associated to Clifford multi-
plication o : S* — S~ by a. For each Ad-invariant polynomial ¢ defined on gln,
the characteristic currents gb((‘ﬁj)) = Sllj,fg) ¢(<§j) and QS((E);)) = ll_r}% ¢(§)3_)
exist, are independent of x, and satisfy the equations

<]5((—E3) — ¢(R™) — Resy Div(a) = drf

H(RT) — ¢>(—ﬁs) — Resy Div(a) = dry
-forms which converge to zero in L} on X as s — 0. In

where r¥ are Li .

-particular we have the current equation
¢(R*) — ¢(R™) — Resy Div(a) = dT
where T = o*T is an Llloc-form on X and where Resy is the canonical residue

form defined in Theorem 3.18.

252

Proof. This is also a direct consequence of The

(—_-
- 1, then ¢(R,) —
ghborhood

Remark 3.28. If x has the property that x(t) = 1 f
#(R7), ¢(RT) — <;b(7%)3), and r¥ all have support in the

Uo(D) ' (e € X 1 |a(a)| < s}.

We now examine some important cases.

Corollary 3.29. The Spin Case. Let 7 : V — X be an oriented real 2n-plane
bundle with orthogonal connection. Suppose V carries a spin structure and let
$*E(V) denote the complex spinor bundles with connection canonically associated
toV. Let E be any complex bundle with a unitary connection, and consider the
Dirac bundle S = S* @ S~ where S* = §*(V)®c¢ E with the tensor product
connections. Then Theorems 3.18 and 3.27 apply. In particular, for any atomic

section a of V' we have the current equation
(3.30)  ch (Rﬁ.$®E) — ch (Rﬁ5®E) — ch(Rg)A~!(Ry)Div(a) + dT
on X, where ch(u) = tr(exp (ﬁu)) and where A denotes the A-series (cf. IV.5).

Proof. Formula (3.30) is a direct consequence of the standard fact from topology

that

h(FT(V)® E)— (- (V)®E) _ Aot
) = ch(E)A™(V)

which was established, for example, in IV.5 above. O

Remark 3.31. Corollary 3.29 is a restatement of the Rectifiable Grothendieck-
Riemann-Roch Theorem proved in IV.5. Notice that in this case the statement
and proof come naturally from our philosophy of considering the characteristic
currents associated to pullback connections. By contrast, finding the arguments

given in Chapter IV required considerable hindsight.
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Example 3.32. Consider the spin case in the universal setting of 3.18 where
a =v. Suppose x(¢) =1for¢ > 1and X is compact. Let ¢ = ch as above. Then
by Remark 3.28 each equation (3.19) can be written

(333) Chcpt,s = Ch(RE)A_l(RV)[X] + dI‘s

where chepy o def ch( R s)—ch(Rg-) (or ch(Rﬁ-+) — ch( ¢)) and r, are forms with

compact support on V. Thuschcp, , for s > 0 is a canonical family of Chern-Weil

representatives of the class
h[BE®E, Bo®E; v] € Hy (V)

where [}53 @EPc®E; V] € KCN(V) is the element determined by the iden-
tifying & ® E with BG ® E outside a compact set via the map v. As s —
0, the forms r, converge to 0 in L{_. Thus we have convergence chepy,s —
ch(RE):AS_l(RV)[X], as s — 0, in the flat topology on V. This gives the direct
proof of the commutativity of the diagram (up to a factor) mentioned at the

beginning of this section.

Example 3.34. If x(¢) = ¢/(1 + t) (i.e., algebraic approximation mode) each
equation in (3.19) can be written, in analogy with (3.33), as

(3.35) chpn, = ch(RE)&_l(Rv)[X]—Fdrs

where chy: , and r, are integrable when restricted to each fibre. This family is
absolutely canonical. As shown in Chapter I, the forms in (3.35) extend smoothly
to the compactification P(CH V) D V.

Example 3.36. If x(t) = 1—e™* (i.e., transcendental approximation mode), the
comments of 3.34 also apply. Here the characteristic forms look “Gaussian” in
each fibre. This family is closely related to the one constructed by Quillen via

superconnections [@)].

Remark 3.37. (The real case) Corollary 3.29 could be restated for a bundle
m:V — X of real dimension m, where S = ST @ S~ is the real Dirac bundle

associated to a Zj-graded Cl,,-module (cf. [LM]) and where E is a real vector
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bundle with connection. If m £ O(mod,4),ﬁ term is always zero. If

m = 4(mod 8), the fundamental real spinor bunc oincide with the complex
hen m = 0(mod 8), the
he complex ones. They
 KO-theory which
theory. Since the

onof the bundle, the

ones. In fact they carry a quaternionic structure
fundamental real spinor bundles complexify to g‘

determine a Thom isomorphism 7, : I O(X) - K

under complexification becomes the Thom isomorphlﬂ:'
Pontrjagin classes are defined in terms of the complexx ca

residues here are computable from the complex case.

Corollary 3.38. The Spin® Case. Let7:V = X be an or1ented real 2n—p1ane
bundle with orthogonal connection, and suppose V. carries a Spm -structure Let
,S'C(V) denote the fundamental spinor bundles with connection assoc1a;ted to 'V,
and let \ denote the complex line bundle with connection assocxated to the Spin®-
structure (cf. [LM]). Consider a complex bundle E with unitary connection and
construct a Dirac bundle S = ST @ S~ with S = ﬁg(V) ® E as in 3.29. Then
Theorems 3.18 and 3.27 apply. In particular for any atomic section @ of V. we

have the current equation on X :

(3.39) ch (R5$®E) —ch (RﬁE@E) = ch(Rg) e%”()‘),&"l(Rv)Div(a) + dT.

Proof. This is proved in direct analogy with 3.29. O

Remark 3.40. The complex case. A basic special case of Corollary 3.38
occurs when 7 : V' — X is a complex vector bundle with unitary connection.

The Spin®-structure is then canonical, and we have that

~ g def . -~ g def
DALV E ALY and g5 = @ ARy gy,
k>0 k>0

Clifford multiplication by the complex vector v is given by
v = vV Ap—vL

where (-)* : V' — V* is the hermitian metric. In this case the residue in (3.39)
has the special form

Resg, = ch(Rg)Todd™!(Ry)
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where Todd denotes the polynomial corresponding to the total Todd class. (The
derivation of this used the standard identity: A&_l(V) = exp(c1(V))Todd (V).
Hence Corollary 3.38 gives a direct derivation and proof of the Rectifiable GRR
Theorem II1.5.9 (in analogy with Remark 3.31 above).

Theorem 3.18 is equally interesting when the bundle V is not spin or Spin®.

Corollary 3.41. The signature case. Let 7 : V — X be an oriented 2n-
plane bundle with orthogonal connection, and let wg € T'(C(V)® C) denote the

volume element of V given by
wo = (=1)" ... e,
where ey, ..., es, is any local oriented orthonormal frame field for V. Set
Crr = (14+we)Cl(V)®C,

then +1 eigenbundles for left Clifford multiplication by we. Then Theorems 3.18
and 3.27 apply to any Dirac bundle of the form S = St @ S~ where

St = CrroE

and where E is any complex bundle with unitary connection. In this case we
have that
Rese, = 2"ch(Rgp)L(Ry)A™2(Ry)

where L represents multiplicative series of Pontrjagin classes associated to the

formal power series
z/2
tanh(z/2)"

In particular for any atomic section o of V we have the current equation on X :

ch(Roprgr) — ch(Romor) = 2"ch(Rp) L(Ry)A~?(Ry)Div(a) + dT.

Note. En(Rv) = (%)" Ln(Ry) where Ly is the classical Hirzebruch L-polyno-

mial.

Proof. This follows directly from 3.18 and the formulae in [LM, II1.12]. O

256

DIRAC MORPHISMS

Note. We have changed the convention for the sign of the volume form here
from that used in [LM]. Specifically,

wag = (-1)“5)0

where Oc denotes the volume form appearing in [LM]. As a consequence there
is a change in the sign (by (—1)") in our residue formulas from the formulas one

would expect from directly [LM].

Recall that Example 3.2 gives a standard construction of a Dirac bundle

associated to any real m-dimensional bundle V as follows. We decompose
Ce(V) — Ceeven(v) @ C.éOdd(‘/) o Aeven(v) ey Aodd(V)

where C¢*¥*"(V) and C¢°¢ are the +1 and —1 eigenbundles respectively for the
automorphism a : C{V) — ClV) generated by —Id : V — V. Let E be any

complex bundle with unitary connection over X and set

(3.42) St = Ct" (V)R E; §~ = CrPW(V)RR E.

Corollary 3.43. The even-odd form case. Consider the Dirac bundle S =
St @ S given by (3.42) above. Then Theorems 3.18 and 3.27 apply to this
bundle. If V is oriented and dimg (V') = 2n, then Resy, is the canonical Chern-

Weil representative of
[Resa] = (~1)"x(V)ch(E)A (V).

If dimgr (V) is odd, then Resq, = 0.
In particular for any atomic section o of V' we have the current equation on
X

ch (RAeven(V)®E) —ch (R,\odd(v)@E) = (-1)"ch(REg) x(RV)A_Q(RV) Div(a)+dT.
when dimg (V) = 2n, and
ch (RAEV&n(‘/)@E) —ch (R/\Odd(V)®E) = dT.

when dimg (V) is odd.
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Proof. To compute the residue formula we apply the splitting principle and
forrnally write V' as a sum of oriented 2-plane bundles V = V1 & ... @ V., with
i ZX(Vi). Let A_y(V ®r C) = Gl (V) ®@g C — C%(V) @ C. Then we

have

ch(St) — ch(S7) = ch(A_;(V ®r C) ®¢ E)
ch(A-1(V ®r C))ch(E)

H (1 - e*)(1 — e~ )ch(E)

- 1—[(6_1"/2 — eil?) (/2 e—z"/z)ch(E)
=1

= (=1)"(21...70)? (H 81“25/2/2)> ch(E)

We now apply 1.54 to compute the residue form.

If dimg V is odd, we replace V by V @ R with the direct sum connection.
The residue is unchanged but can now be computed by the formula above. Since
x(Rvgc) = 0 we get the result. O

The residue in 3.43 could be rewritten by using the identity: 1&2(1/) =
Todd(V @g C).
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VI. Further Applications and Future Directions

Much of this paper is devoted to quite specialized cases of bundle maps.
However, these cases have much wider applicability than is apparent at first. In
this chapter we shall briefly indicate how these applications are made. A full
development of the resulting geometric formulae is given in a separate article
[HL1]. A deeper analysis of the general theory for the case of arbitrary bundle
maps will be done in the sequel [HL2] to this paper.

1. The Top Degeneracy Current and Chern Classes.

Here we study the geometry associated to a linear family of cross-sections
of a bundle. To begin, fix a smooth complex vector bundle F —s X of rank n
with a connection Dp. Suppose we are given a set of k + 1 < n cross-sections

fts- -+, ik of K. This is equivalent to being given a bundle map

(1.1) a:CH L F

from the trivial (k+1)-plane bundle, where pj = a(e;) and e; is the standard j*0
basis element. Let P = P(CI"H) P(C**1) x X be the projectivization of the

trivial bundle C**! over X, and denote by U — P the tautological line bundle

with its standard connection (pulled back from the case where X is a point). Let

(1.2) m:P— X

denote the projection onto the base X. The bundle map « determines a bundle
map

(1.3) a:U -—F,

where P & m*F') by composing a with the canonical inclusion U —s QkH.
y P g
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Definition 1.4. The family of cross-sections « is said to be k-atomic if the
associated map @& is atomic. Under this hypothesis the associated degeneracy

current of the family is defined by
Di(a) = =, Div(a).
Note that
sptDg(a) C {z € X : po(z),...,px(z) are linearly dependent}.
One considers Dy to be the current which appropriately measures the degener-

ation of linear independence in the family o (just as Div(p) is the appropriate

measure of the vanishing of a section p).

Theorem 1.5. Let o be a family of k 4+ 1 cross-sections of F' which is k-atomic.
Then there is a L, current o on X, canonically defined for each choice of her-

mitian metric on F', such that
cn—k(Dr)—D(a) = do.

Moreover for each approximation mode there exist families of smooth forms 1,

and 0., 0 < s < oo, with
Cn—k(DF) —1/}.9 = dgs:

such that
lim ¢, = 0 and Iirr(l]og = o in L. (X).

Proof. From equation (6.19) in Chapter III we know that there is a canonically
defined L -form T on P such that

S (~1Yicaj(Dr)er(Dy) —Div(a) = dT.

j=0
Applying 7, to this equation and using the fact (Proposition III 3.17) that
: (-1)* if j=k
m{ci(Dy )} = .
@y = {7 T

gives the first assertion. For the second assertion, one applies parallel reasoning
to the family of pushforward connections D s induced by the bundle map U - F
over P. [
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2. Thom-Porteous Currents — General Degeneracy Currents.

Let @ : E — F be a map of smooth bundles with connections where
rank(E) = m and rank(F') = n. For each positive integer k£ = 0, 1,. .., min{m, n},
let

T Gmop(B) — X
denote the bundle whose fibre at @ € X is the Grassmannian of (m — k)-planes

in E, (oriented in the real case). Let
U— Gm—k(E)

denote the tautological (m — k)-plane bundle. Note that there is a natural inclu-
sion

7:U—=E

as a subbundle of E def K.

Definition 2.1. Given a bundle map a : E — F, let
a:U—0F

be the associated map defined by & = « 0 j. Then « is said to be k-atomic
if & is an atomic section of the bundle Hom(U,F) over Gp—(E). Under this
hypothesis there is a Thom-Porteous (or degeneracy) current of level k

defined on X by

Dr(a) = =, Div(a).
Note that the support of Di(a) is contained in the k" degeneracy locus

Di(a) def {@ : rank(a,) < k}.

Remark 2.2. The bundle Hom(U,F) has rank(m — k)n, and so the current
Div(a) has codimension 2(m — k)n (in the complex case and (m — k)n in the real
case) on Gm_i(E). It follows that Di(a) is a current of codimension

2(m — k)(n — k) (in the complex case and (m — k)(n — k) in the real case)

on X.
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Remark 2.3. When F and F are algebraic bundles over a complex projective
manifold, and a is an algebraic bundle map, the current D(a) is a positive
holomorphic chain, and hence an effective algebraic cycle. The class determined
by Di(e) in the Chow ring A*(X) is exactly the Thom-Porteous class defined by
Fulton [Fu].

Applying the theory in Chapter III to the section & and then pushing forward
by 7. gives a geometric formulae down on X. These formulae are examined in

detail in [HL1] and [HL2].

A case of fundamental interest occurs when one considers a smooth map

f:+ X — Y between manifolds. Associated to this is the bundle map
df : TX — f*TY.

Suppose T X and TY are furnished with connections and let k be as above. Then

our formulas are of the form
#(Drx,Dry) —Di(a) = do

where ¢ is a universal polynomial in the curvatures of 7'X and f*TY and where
o is a canonically defined L{ -form on X. A special case is given in the next

section.

3. Milnor Currents.

Let f: X — 3 be a proper holomorphic map of a complex n-manifold onto

a complex curve, and consider the complex bundle map
(@' ff7"8 — T*X.

This map is atomic provided that the zero set Z = {&¢ € X : df, = 0} has
dimension zero (cf. Chapter III, Sections 7, 8 and 9). In this case Z = {z € X :
dfy = 0} = {@1,®2,23,...} is a discrete subset of X and the Milnor current of

f is of the form

M ' Div((df)*) = Tmjlz;] with m; € Z.
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Suppose now that X and ¥ are provided with complex connections. Then ap-

plying the theory to the top Chern class gives a canonically defined L] -form o
oc

on X such that

(31) Cn(DT*X)_Cn—l(DT‘X)Cl(DT*E)“M = do

where ¢{(Drs5) really means f*e1(Dp+s). If we choose hermitian metrics on X
and ¥, and use them to identify 7% X with 7X and T*Y with T3, formula (3.1)

becomes
(32) (—1)n{cn(DTx) - C'n~1(DTX)c1(DTE)} —M = do.

The integers m; are the local Milnor numbers

m; = dilll{oz,‘/<ng"”’§Tf>}'
1 n

This discussion parallels Fulton’s in [Fu; 14.1.5] for the algebraic case. An im-
portant point is that the hypothesis that f be holomorphic can be considerably
relaxed here. For example, assume f is C almost complex, then the above

discussion remains valid if df vanishes to finite order at isolated points,

4. CR-Singularities and Pontrjagin Forms.

Let X be a smooth oriented manifold of (real) dimension n, and consider a

smooth map

fiX — k!

into complex euclidean (k 4 1)-space where k& < n. Suppose X is provided with
a metric and a (not necessarily compatible) connection Dpy. The differential of
[ gives a bundle map df : TX — C**'! which' extends naturally to a complex

linear map

dfc: TX ® C — G
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of the complexification of TX. Via the metric we get an adjoint map
(4.1) (dfe)*: C* ' — Tx g C.
We define the complex critical set of f to be the set

Cr(f) = {= € X :(dfc); is not surjective}.
If (dfc)* is k-atomic, then the degeneracy current

Cr(f) = D

is defined as in Section 1. Note that sptCr(f) = Cr(f).
Theorem 4.2. Let f : X — C**! be a smooth map of a real oriented n-
dimensional manifold where n —k = 21 > 0. Suppose that the associated map

(4.1) is k-atomic. Then for each connection Dpyx on X, there is a canonically

associated L -form o with the property that
pi(Drx) = (=1)'Cr(f)+do

where pi(Drx) is the I'" Pontrjagin form of the connection.

Proof. This follows immediately from Theorem 1.5 and the fact that ca(Drxec)
= (-1)'p(Drx). O

Example. Consider an immersion j : X — C? of an oriented 4-manifold for
which (dfc)* is 2-atomic. Then
P1(Qrx) = Inifei] +do

where @1, 3,... are the points of complex tangency of X, i.e., where j,TX is
a complex subspace of C3. The integer multiplicities n; are computed from the

local geometry of the immersion. (See [HL1].)

FOLIATIONS

5. Foliations;

Let F' be a real n-dimensional foliation of a complex n-manifold X, and

consider the associated bundle injection
TR TX.
This map extends to a complex linear map

jo:TeF — TX
of the complexification Tg F def TF® C. Suppose that the associated map of line
bundles

(5.1) AE Ao ANTOF — ATTX

is atomic. Then we have the current

Cr(F) €' Div())

of complex degeneracies of the foliation F', whose support is

sptCr(F) = {z € X :T,F is not totally real}
= {¢ € X : dimo(ToF NiT, F) > 0).

Theorem 5.2. Let F' be a real n-dimensional foliation of a complex n-manifold
X and suppose the associated map \ in (5.1) is atomic. Then for each complex

connection on X there is an L} -form o such that

loc

CI(DTX) — (CT(F) = do.

Further formulas can be obtained by considering other Thom-Porteous cur-

rents associated to j¢.
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6. Invariants for pairs of complex structures.

Let V — X be a smooth real vector bundle of dimension 2n, and suppose

that J; and J; are two almost complex structures on V. Associated to these we

have two splittings
Ve = VeV, = oV,

where Vi, = {v —iJpv € VR C : v € V} for k = 1, 2. Consider the complex

bundle map
p:Vh— Vy

given by restricting the projection Vo @ Vo — Va to the subbundle V;. Let
(6.1) A= Agp: AgGVI — ALV,
be the associated map of complex line bundles. Then assuming that A is atomic
we can define the characteristic current
(6.2) Cr(J1,J2) & Div())
which is supported in the set
Cr(Jy,J2) = {o € X :ker(J; + J2) # {0}}
of points where there is a non-trivial subspace which is simultaneously J;-complex

and Jy-anticomplex. Applying the theory in Chapter 11 gives the following result.

Theorem 6.3. Let V — X be a smooth vector bundle with two complex struc-
tures J; and Jp. Let Dy and D, be connections such that Dy(Jy) = [Dy, Jx] =0
fork = 1,2. Then if the map X defined in (6.2) is atomic, there exists o € Lj (X)

such that the following equation of forms and currents holds on X
Cl(D2) - Cl(Dl) = (C’I'(Jl, Jg) + do.
Thus given any ¢ € C[t], there exists o4 € L}, such that
: ea) — ole
d(e2) — d(er) = ﬂ_g___fl(_l_)«:r(Jl,Jz)erad,

where e; = ¢1(D1) and e3 = ¢; (D).

Similar formulas can be derived by considering hiygher Thom-Porteous cur-

rents associated to the map p: Vi — V5.
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- M. R. HERMAN - Sur les courbes invariantes par les difféomorphismes de I’anneau,

Vol. 2.

SEMINAIRE BOURBAKI, volume 1985/86, exposés 651-668.
JOURNEES ARITHMETIQUES, Besancon (24-28 juin 1985).

- M. KAROUBI - Homologie cyclique et K-théorie.

Singularités d’équations différentielles, Dijon, mai 1985.
SEMINAIRE BOURBAKI, volume 1986/87, exposés 669-685,
Théorie des variétés minimales et applications (Minimal Submanifolds). Séminaire Palaiseau.
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- COLLOQUE PAUL LEVY sur les processus stochasthues (22-26 juin 1987, Ecole Poly-
technique, Palaiseau).

- 0. MATHIEU - Formules de caractéres’ pour les algebres de Kac-Moody générales.

SEMINAIRE BOURBAKI, volume 1987/88, exposés 686699
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I. DOLGACHEV, D. ORTLAND - Point sets in pro;ectlve apaces and theta functions.

H. CLEMENS, J. KOLLAR, S. MORI - Higher dimensional complex geometry.
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- P. de la HARPE, A, VALETTE - La propriété (T) de Kazhdan pour les groupes localement
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- Y. FELIX - La dichotomie elliptique-hyperbolique en homotopie rationnelle,

SEMINAIRE BOURBAKI, volume 1988/89, exposés 700-714.

- Théorie de Hodge (Luminy, juin 1987).
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-THEORIE DE LHOMOTOPIE, (Luminy 1988), H.R. MILLER, J.-M. LEMAIRE;

L. SCHWARTZ, éditeurs.
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-G. MALTSINIOTIS - Privildge numérique uniforme.

- Courbes modulaires et courbes de Shimura.
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-SEMINAIRE BOURBAKI, volume 1991/92, exposés 745-759.

- Méthodes semi-classiques, volume 1, Ecole d'été (Nantes, juin 1991).

-A. YEKUTIELL - An explicit construction of the Grothendieck residue complex.
-Journées arithmétiques de Gendve (1991), D. Coray, Y.-F.S. Pétermann, éditeurs.

- Méthodes semi-classiques, volume 2, Colloque International (Nantes, juin 1991).




%211 . J. KOLLAR - Flips and abundance for algebraic threefolds. A summer seminar at the
University of Utah (Salt Lake City, 1991).

#212 . M. BROUE, G. MALLE, J. MICHEL - Représentations unipotentes génériques et blocs
des groupes réductifs finis (avec un appendice de G. LUSZTIG).
#¥213 . R. HARVEY, B. LAWSON. A theory of characteristic currents associated with a singular

connection.
en préparation :

- Collogue " Analyse complexe et Géométrie" (Luminy 1992) - B. COUPET, J. DETRAZ,
G. DLOUSSKY, éditeurs.

. Colloque "Complex analytic methods in dynamical system" (IMPA, 1992) - C. CAMACHO,
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.J. LE POTIER - Systdmes cohérents et structures de niveau.
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