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LAGRANGIAN POTENTIAL THEORY
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“Geometrically Based” Potential Theories:

Consider a compact set

Gl ⊂ G(p,Rn) = The Grassmannian of p-planes in Rn

Let
P(Gl ) =

{
A ∈ Sym2(Rn) : tr

(
A
∣∣
w

)
≥ 0 ∀W ∈ Gl

}
Definition. u ∈ C2(Ωopen) is Gl -plurisubharmonic if

tr
(
D2u

∣∣
w

)
≥ 0 ∀W ∈ Gl

i.e.,
D2u ∈ P(Gl )

on Ω.
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Note

u ∈ C2(Ω) is Gl -psh ⇐⇒

u
∣∣
Ω∩W is subharmonic for all affine Gl -planes W ⇐⇒

u
∣∣
M is subharmonic on every minimal Gl -manifold M
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Gl -Harmonic

Definition. A function u ∈ C2(Ωopen) is Gl -harmonic if

D2u ∈ ∂P(Gl )

on Ω.

This means at every point ∃W ∈ Gl with

tr
(
D2u

∣∣
W

)
= 0.
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Example 1.

Gl = [Rn] = G(n,Rn)

P(Gl ) = {A : tr(A) ≥ 0}

u is Gl -psh ⇐⇒ tr (D2u) = ∆u ≥ 0.

u is Gl -harmonic ⇐⇒ tr (D2u) = ∆u = 0.

Classical Potential Theory
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Example 2.

Gl = G(1,Rn)

P(Gl ) = {A : 〈Av , v〉 ≥ 0 ∀ v ∈ Rn} = {A ≥ 0}

u is Gl -psh ⇐⇒ D2u ≥ 0.

The Theory of Convex Funtions

u is Gl -harmonic ⇐⇒ D2u ≥ 0 and det(D2u) = 0

The Real Monge-Ampère Equation
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Example 3.

Gl = GC(1,Cn) ⊂ G(2,R2n)

Note the decomposition

Sym2(R2n) = Hermsym ⊕ Hermskew

A = 1
2 (A− JAJ) + 1

2 (A + JAJ) = Asym
C + Askew

C

Asym
C J = JAsym

C and Askew
C J = −JAskew

C

P(Gl ) = {Asym
C ≥ 0}

u is Gl -psh ⇐⇒ (D2u)sym
C ≥ 0.

The Theory of Plurisubharmonic Functions

u is Gl -harmonic ⇐⇒ (D2u)sym
C ≥ 0 and detC(D2u)sym

C = 0

The Complex Monge-Ampère Equation
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Example 4. Calibrations.

φ ∈ ΛpRn constant coefficient p-form

is a calibration if

φ
∣∣
W ≤ dvolW for all oriented p-planes W

We define
Gl = Gl (φ) =

{
W : φ

∣∣
W = dvolW

}
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Lagrangian Planes

Here
Gl = Lag ⊂ G(n,R2n)

the set of Lagrangian n-planes in Cn = (R2n, J)

Recall

W is Lagrangian ⇐⇒ Cn = W ⊕ J(W ) (orthogonal direct sum)

As before

P(Lag) =
{

A ∈ Sym2(R2n) : tr
(
A
∣∣
W

)
≥ 0 ∀W ∈ Lag

}
Definition. u ∈ C2(Ω) is Lag-plurisubharmonic if

D2u ∈ P(Lag) on Ω.
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u ∈ C2(Ω) is Lag− psh

⇐⇒ u
∣∣
W∩Ω is subharmonic for all affine Lagrangian planes W

⇐⇒ u
∣∣
M is M-subharmonic for minimal Lagrangian submanifolds M

For the last
D2u

∣∣
M = ∆Mu + HMu
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Semi-Continuous Gl -psh functions

We want to extend the notion of Gl -psh to non-differentiable functions.

We use the notions from viscosity theory (Crandall, Ishii, Lions, Evans, ... ).

For a domain Ω ⊂ Rn we define

USC(Ω) ≡ {u : Ω→ [−∞,∞) : u is upper semi-continuous}

Definition. By a test function for u ∈ USC(Ω) at a point x ∈ Ω we mean a
C2-function ϕ defined near x with

u ≤ ϕ and u(x) = ϕ(x).

Definition. A function u ∈ USC(Ω) is Lag-psh if for all x ∈ Ω and for each test
function ϕ for u at x ,

D2ϕ ∈ P(Lag)

PLag(Ω) = the set of these.
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Note

Test functions may not exist for u at some point x ∈ Ω

This is OK, and an important part of the definition.
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Remarkable Properties

• u, v ∈ PLag(Ω) ⇒ max{u, v} ∈ PLag(Ω)

• PLag(Ω) is closed under decreasing limits.

• PLag(Ω) is closed under uniform limits.

• If F ⊂ PLag(Ω) is locally uniformly bounded above,

then U∗ ∈ PLag(Ω) where

U(x) ≡ sup
u∈F

u(x)

(Perron)
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Also

• C2 Lag-psh functions are in PLag(Ω).

• u ∈ PLag(Ω) is classically subharmonic on Ω

For this note that Cn = W ⊕ JW for W ∈ Lag
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Viscosity Lag-Harmonics

Dual Equation

P̃(Lag) ≡ −(∼ IntP(Lag)) = ∼ (−IntP(Lag))

P̃(Lag) =
{

A : tr
(
A
∣∣
W

)
≥ 0 for some w ∈ Lag

}
Definition u is Lag-harmonic on Ω if

u ∈ PLag(Ω) and − u ∈ P̃Lag(Ω)

Note that P(LAG) ∩ (−P̃(Lag)) = ∂P(Lag)

Otherwise said: u is both a subsolution and a supersolution.

Blaine Lawson Potential Theory for Nonlinear PDE’s December 5, 2017 18 / 44



Lag-Convex Domains

Definition Consider Ω ⊂⊂ Cn with smooth boundary ∂Ω.

Then ∂Ω is strictly Lag convex if every point x ∈ ∂Ω

has a smooth defining function which is strictly Lag-psh.

Alternatively: if the second fundamental form of ∂Ω (w.r.t. inner normal)

has strictly positive trace on every W ∈ Lag which is tangent to ∂Ω.
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The Dirichlet Problem

Theorem Let Ω ⊂⊂ Cn have a smooth strictly Lag convex boundary ∂Ω.

Then for every ϕ ∈ C(∂Ω)

there exists a unique function u ∈ C(Ω), with

(1) u
∣∣
Ω

Lag-harmonic, and

(2) u
∣∣
∂Ω

= ϕ.
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THE LAGRANGIAN MONGE-AMPÈRE OPERATOR
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Is There a Polynomial Differential Operator
Whose Solutions are Lag-Harmonic?

Sym2(R2n) decomposes under U(n):

Sym2(R2n) = Hermsym ⊕ Hermskew

= (R · Id)⊕ Hermsym
0 ⊕ Hermskew

A = 1
2 (A− JAJ) + 1

2 (A + JAJ) = Asym
C + Askew

C

=

(
trA
2n

)
Id + (Asym

C )0 + Askew
C

Basic Fact
The Lag-Analysis is independent of Hermsym

0 .
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Basic Fact
The Lag-Analysis is independent of Hermsym

0 .

Proof. Let

E ∈ Hermsym
0 and W ∈ Lag.

Choose orthonormal basis {ek}k for W . Then

tr
(
E
∣∣
W

)
=
∑

k

〈Eek ,ek 〉 = 1
2

{∑
k

〈Eek ,ek 〉+
∑

k

〈JEek , Jek 〉

}

= 1
2

{∑
k

〈Eek ,ek 〉+
∑

k

〈EJek , Jek 〉

}
= 1

2 tr(E) = 0
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So we see:

Asym
C plays a central role in C-psh functions

and the complex Monge-Ampère equation,

but Askew
C is invisible (trace = 0 on complex lines)

ALag ≡
( trA

2n

)
Id + Askew

C plays a central role in Lag-psh functions

and the Lagrangian Monge-Ampère equation,

but
(
Asym

C

)
0 is invisible (trace = 0 on Lagrangians).
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The Lagrangian Monge-Ampère Operator
Suppose

B ∈ Hermskew BJ = −JB

B(e) = λe ⇒ B(Je) = −λJe

B ∼=



λ1
−λ1

·
·
·
λn

−λn


Assume 0 ≤ λ1 ≤ · · · ≤ λn

If W is Lagrangian, tr
(
B
∣∣
w

)
≥ −(λ1 + · · ·+ λn)
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The Lagrangian Monge-Ampère Operator

Suppose

A ∈ Sym2(R2n) and W ∈ Lag

tr
(
A
∣∣
W

)
= tr

{(
trA
2n

Id + Askew
C

)∣∣∣∣
W

}
=

trA
2

+ tr
(
Askew

C

∣∣
W

)
≥ µ− (λ1 + · · ·+ λn)

where µ ≡ trA
2 and

0 ≤ λ1 ≤ · · · ≤ λn are the non-negative e-values of Askew
C .
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The Lagrangian Monge-Ampère Operator

tr
(
A
∣∣
W

)
≥ µ− (λ1 + · · ·+ λn)

µ ≡ trA
2 and 0 ≤ λ1 ≤ · · · ≤ λn are e-values of Askew

C . So

tr
(
A
∣∣
W

)
≥ 0 ∀W ∈ Lag ⇐⇒ µ− (λ1 + · · ·+ λn) ≥ 0

Consider the operator

MALag(A) ≡
∏
±±···±

(µ± λ1 ± λ2 ± · · · ± λn)

This is a polynomial in µ

coefficients are symmetric functions of λ2
1, ..., λ

2
n
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The Lagrangian Monge-Ampère Operator

MALag(A) ≡
∏
±±···±

(µ± λ1 ± λ2 ± · · · ± λn)

• P(Lag) = Closure{MALag(A) > 0}Id

• A Lag-Harmonic u is a viscosity solution of

(D2u)Lag ≥ 0 and MALag(D2u) = 0.
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An Invariant Definition, I

A ∈ Sym2(R2n) and ALag = trA
2n Id + Askew

C

DALag ≡ the derivation on ΛnR2n

MALag(A) = a factor of det
(
DALag

)
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An Invariant Definition, II (Spinors)

A ∈ Sym2(R2n) and B = Askew
C

B ∼=
(
λ 0
0 −λ

)
Set |B| =

√
B2. Then

|B|J =

(
λ 0
0 λ

)(
0 −1
1 0

)
=

(
0 −λ
λ 0

)
and hence defines an element in Λ2R2n:

B =
∑
λk ek ∧ Jek ∈ Λ2R2n ⊂ C`(R2n)
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An Invariant Definition, II (Spinors)

Let S be an irreducible complex representation of C`(R2n)

(S = Λ0,∗)

Then B acts by Clifford multiplication on S and

MALag(A) = det(µ Id + iB)
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TRANSPLANTATION TO GROMOV MANIFOLDS
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Gromov Manifolds

Definition

A Gromov manifold is a triple (X , ω, J) where

(X , ω) is a symplectic manifold and

J is an almost complex structure on X with:

ω(v ,w) = ω(Jv , Jw) and ω(Jv , v) > 0

The riemannian metric

〈v ,w〉 ≡ ω(Jv ,w) has 〈Jv , Jw〉 = 〈v ,w〉.

By Gromov any compact symplectic manifold admits such a structure.

This structure pushes forward under symplectomorphisms.
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Riemannian Hessian

Definition

For u ∈ C∞(X ), the hessian of u is a section of Sym2(T ∗X )

defined on vector fields v ,w by

(Hessf )(v ,w) ≡ vwf − (∇v w)f

This Hessian gives a canonical splitting of the 2-jet bundle of X :

J2(X ) = R⊕ T ∗X ⊕ Sym2(T ∗X ),

Via the metric and J

Sym2(T ∗X ) = R⊕ Hermsym
0 (TX )⊕ Hermskew(TX )

Everything above carries over –

including the Lag Monge-Ampère operator.
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Lagrangian Pseudoconvexity

∃ Lag analogues of pseudoconvexity and total reality from complex analysis.

For example.

Definition The Lagrangian hull of a compact subset K ⊂ X is

K̂ ≡ {x ∈ X : u(x) ≤ sup
K

u ∀ Lag-psh u on X}

Theorem The following are equivalent.

1) If K ⊂⊂ X , then K̂ ⊂⊂ X .

2) There exists a Lag-psh proper exhaustion function f on X .

This defines Lag-pseudoconvixity.
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Freeness

A manifold M ⊂ X is Lag-free if it has no tangent Lagrangian planes

(always true if dim(M) < n)

If M is free, then

Mε = {x : dist(x ,M) < ε} is Lag-convex.

In fact, M has a fundamental neighborhood system

of Lag-convex neighborhoods
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THE DIRICHLET PROBLEM
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The Inhomogeneous Dirichlet Problem

THEOREM. Let Ω ⊂ X be a Lag-convex domain. Then for every

ψ ∈ C(Ω), ψ ≥ 0 and ϕ ∈ C(∂Ω)

there exists a unique
H ∈ C(Ω) ∩ PLag(Ω)

with
MALag(H) = ψ, and

H
∣∣
∂Ω

= ϕ.
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The (Homog) Dirichlet Problem for Other Branches

Given A ∈ Sym2(R2n), let
Λ1 ≤ Λ2 ≤ · · ·

be the ordered eigenvalues of MALag(A), and set

Pk
Lag = {A : Λk (A) ≥ 0}

THEOREM. Let Ω ⊂ X be a Lag-convex domain. Then for every

ϕ ∈ C(∂Ω)

there exists a unique
H ∈ C(Ω) ∩ Pk

Lag(Ω)

with
MALag(H) = 0, and H

∣∣
∂Ω

= ϕ.
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A FUNDAMENTAL SOLUTION

IN EUCLIDEAN SPACE
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Riesz Kernels

The Riesz charateristic of the subequation PLag in Cn is n.

The Riesz kernel

Kn(x) ≡

{
− 1
|x|n−2 for n ≥ 3
log|x | for n = 2

is Lag-harmonic in Cn − {0} and Lag-psh across 0.

THEOREM.
MALag(Kn)α = c δ0 (c > 0)

where α = 1
2n−1

.

Blaine Lawson Potential Theory for Nonlinear PDE’s December 5, 2017 41 / 44



This Means:

Kn,ε(x) = − 1
(|x |2 + ε2)

n
2

is Lag-psh and ↓ Kn(X )

and

MALag(Kn,ε)
α =

1
ε2nϕ

(
|x |
ε

)
→ c δ0

where ϕ ≥ 0 is integrable on Cn.
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QUESTIONS
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Questions

1. Regularity of the solution to (DP) when ψ > 0?

We note that MALag is not uniformly elliptic.

However its linearization at a solution is elliptic.

2. Is there a foliation (generically) attached to a Lag-harmonic?

3. Can one establish useful capacities using Lag-harmonics?
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