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INTELLECTUAL MERIT OF PREVIOUS WORK

My recent work has focused on (1) quasiconformal mappings and their applications to geo-
metric function theory and dynamics, and (2) computational geometry and optimal meshing
(using ideas motivated by hyperbolic geometry, Riemann surfaces and conformal mappings).
The bullet points below detail some of the specific results obtained.
• True trees are dense [21]: I show any compact, connected set K ⊂ R

2 can be approxi-
mated in the Hausdorff metric by the critical points of a Shabat polynomial p (polynomials
with only ±1 as critical values). For such a polynomial, T = p−1([−1, 1]) is a finite tree
(called a “true tree”) and the proof shows such trees are dense in all planar continua.
• Dynamical dessins are dense [34]: Using this result, Kevin Pilgrim and I prove that
Julia sets of post-critically finite polynomials are dense in all planar continua. See [46], [61].
• Quasiconformal folding [22]: This extends the “true trees are dense” result to entire
functions: given a locally finite, unbounded planar tree T satisfying some natural conditions,
I construct f ∈ S with S(f) = {±1} so that T ′ = f−1([−1, 1]) approximates T . Here S(f) is
the singular set of f (closure of critical values and asymptotic values), S denotes the Speiser
class of transcendental (non-polynomial) entire functions with S(f) finite, and Sk,n ⊂ S are
functions with k critical values and n finite asymptotic values. B denotes the Eremenko-
Lyubich class of functions with S(f) compact. QC-folding is a method converting certain
trees and graphs into entire functions with precise control of the singular values. Some
applications (and the corresponding graphs) are listed below. See also [10], [40], [59], [73]:

◮ A wandering domain in B (Dennis Sullivan [84] proved non-existence for rational
functions; similar proofs are given in [39], [44] for S, but the B case had remained open).

◮ A f ∈ S3,0 so that lim supr→∞
logm(r, f)/ logM(r, f) = −∞ (counterexample in S to

Wiman’s 1916 conjecture, see also [45]; m,M are the min, max of |f | on {|z| = r}).
◮ A f ∈ S3,0 so that area({z : |f(z)| > ǫ}) <∞ for all ǫ (this is a strong counterexample

to the area conjecture of Eremenko and Lyubich).
◮ A f ∈ S2,0 whose escaping set has no non-trivial path components (a counterexample

to the strong Eremenko conjecture in S; improves the example in [76] for B).
◮ I disprove A. Epstein’s order conjecture [24]: if f, g ∈ S and ψ ◦ f = g ◦ φ for some

QC maps ψ, φ, then ρ(f) = ρ(g) where ρ = lim supr→∞
log logM(r, f)/ log r.

◮ A f ∈ S2,0 that grows as fast as desired on R. See [65] for examples in S3,0.

• Models for B and S: If Ω is a disjoint union of smooth, unbounded Jordan domains
(called tracts) and F : Ω → {|z| > R} is a holomorphic covering map on each tract,
then (Ω, F ) is called a model. Eremenko and Lyubich observed [39] that if f ∈ B then
(Ω = {|f | > R}, f |Ω) is a model for large R; these are the EL-models. In [23] I prove that
every model can be extended from Ω(ρ) = {|F | > R + ρ} to a K(ρ)-quasi-regular map on
C; thus every model can be approximated by an EL-model with the same number of tracts,



answering a question of Rempe-Gillen [74]. In [27] I derive the analogous (and harder) result
for S, and investigate differences between these two classes.
• The smallest transcendental Julia set [28]: I construct a transcendental entire func-
tion f whose Julia set has Hausdorff dimension 1. This had been open since 1975 when Baker
[5] proved that Hdim(J (f)) ≥ 1 for all such f . Moreover, my example has finite spherical
1-measure, and packing dimension 1 (the first transcendental example with Pdim(J ) < 2).
• Small Julia sets in S: The previous example cannot be in the Eremenko-Lyubich class:
Stallard [82], [83] proved that {dim(J (f)) : f ∈ B} = (1, 2]. Using a refinement of QC
folding, Simon Albrecht and I [29] have shown that inf{dim(J (f)) : f ∈ S} = 1. These are
the first Speiser class examples with dimension < 2.
• Prescribing postsingular dynamics: Kirill Lazebnik and I prove that given any in-
finite discrete set S of complex numbers, any ǫ > 0, and any map h : S → S, there is a
meromorphic f that approximates h on S in the following way: there is a bijection ψ be-
tween S and P (f), the postsingular set of f , so that f = ψ ◦h ◦ψ−1 on P (f), |ψ(z)− z| < ǫ
and |ψ(z)− z| = o(1) as |z| ր ∞. This is the transcendental analog of DeMarco, Koch and
McMullen’s result [55] for S finite and f rational. Taking ǫ = 0 is open in both cases.
• New families of 4-manifolds: The almost-Kähler metrics on a given 4-manifold always
sweep out an open subset in the moduli space of all anti-self-dual metrics. In [33], Claude
LeBrun and I construct families of 4-manifolds where this subset is non-empty, but not
closed. This surprising result hinges on an unexpected link between harmonic measure on
certain hyperbolic 3-manifolds and self-dual harmonic 2-forms on associated 4-manifolds.
• QC dimension distortion [31]: H. Hakobyan, M. Williams and I show that if E ⊂ R

n

is Ahlfors regular of dimension d and f : Rn → R
n is QC then Hdimf(y+E) = Hdim(E) for

a.e. y ∈ R
n (this also holds in Carnot groups). For a QC f : R2 → R

2 and S ⊂ R, we prove
infy∈S Hdim(f(R× {y})) ≤ 2/(d+ 1) and infx∈RHdim(f({x} × S)) ≤ 2d/(d+ 1) and prove
sharpness, extending work and answering questions from [6], [7]. We also build E ⊂ R with
Hdim(E) = 1, and a QC map f so that f(E × [0, 1]) contains no rectifiable sub-arcs; this is
the first uncountable example of such a set (impossible if E has positive length).
• The NOT theorem: I prove in [25] that any PSLG (planar straight line graph) with n
vertices has a O(n2.5) conforming non-obtuse triangulation (called a NOT for brevity; non-
obtuse means all angles ≤ 90◦, conforming means the edges of the triangulation cover the
edges of the PSLG). Giving any polynomial bound was a long standing open problem. The
NOT theorem improves a famous O(n3) bound of Eldesbrunner and Tan [38] for conforming
Delaunay triangulations, and also improves a variety of other optimal triangulation results.
• The inverse Voronoi problem [25]: Given a PSLG, I construct a point set V of size
O(n2.5), so that the Voronoi diagram of V covers Γ (the Voronoi diagram consists of points
in R

2 that are closest to two or more points of V ). This gives the first polynomial time
solution to this machine learning problem stated in [77]. An alternate formulation is to
think of placing cell phone towers in several countries bounded by a total of n segments, so
that a cell phone used in any country is always closest to a tower in that same country; this
is possible with O(n2.5) towers (and at least ≃ n2 are needed in some cases).
• Optimal quad-meshing: I prove in [26] that every PSLG with n vertices has a conform-
ing quadrilateral mesh with O(n2) elements, and all angles between 120◦ and 60◦ (except for
smaller angles of the PSLG which remain unchanged). The complexity and angle bounds
are all sharp. See [14] by Bern and Eppstein, who gave the upper angle bound for polygons.



BROADER IMPACT OF PREVIOUS WORK
• Developing infrastructure for academic and industrial computing: My meshing
results enhance the suite of available automatic meshing algorithms available for research
and industry, and improve practical computational methods in various ways. For example,
condition numbers for certain matrices associated with general triangulations grow expo-
nentially with the size of the mesh, but only linearly for NOTs, [90]; the finite element
method on a NOT leads to a matrix that is symmetric, positive definite and negative off the
diagonal, giving a linear system that is easier to solve [81]. Other practical advantages of
NOTs are described in [35] (maximum principles for discrete PDE’s), [11] (Hamilton-Jacobi
equations), [53], [78] (finding geodesics on a triangulated surface), [1], [87], [88] (meshing
space-time), [15], [81] (dual triangulations). My result on the inverse Voronoi problem is
cited in [8], a paper dealing with the optimal placement of heat sinks on integrated circuits
(removing excess heat is one of the primary bottlenecks in circuit design). The same funda-
mental problem of efficient packing by Voronoi cells also occurs in biological growth models
[85], geographic information systems [92], and facility location problems [62], [91].
My work on optimal meshing depends on my earlier work on numerical conformal mapping

[19], the medial axis (coming from computational geometry) and the “iota map” (coming
from convex hull is hyperbolic 3-space). Potential applications of rapid conformal and QC
mapping include automated face recognition (which enhances privacy and security), medical
imaging, obstacle avoidance for robots (or self-driving cars), among others.
• Building interdisciplinary connections: The interdisciplinary character of the prob-
lems in the proposal can serve as a bridge between researchers with common interests but
different backgrounds. For example, my papers on fast conformal mapping [19] and meshing
[20], [25], [26], was specifically written to be accessible to both mathematicians and computer
scientists, have appeared in a premier computer science journal, and have been presented at
computer science conferences and seminars. My work on an easily computed, combinatorial
version of the Riemann map (the so-called iota map, e.g., [17], [18], [19], [20]) has been cited
in papers by applied mathematicians (e.g., [9], [41], [42]). I co-hosted a graduate workshop
on computational geometry which included a mixture of “pure” and “applied” topics, e.g.,
mini-courses by Scott Sheffield on random geometric structures, by Esther Ezra on geometric
set systems, by David Mount on nearest neighbor searches and by Yusu Wang on computa-
tional topology and persistent homology. I maintain the website for this workshop, and for
other meetings I have organized.
My paper [30] with E. Feinberg and J. Zhang on the behavior of Abel and Cesàro limits

has been cited in the economics literature, [50].
• Educational impact: The results obtained have been the basis of a series of graduate
courses; a set of lecture notes on dynamics and quasiconformal analysis, and another set
on conformal mapping and meshing. Some of the results have appeared in my recent book
“Fractals in Probability and Analysis” with Yuval Peres. We are currently working on a
sequel “Conformal Fractals” that will introduce topics like Julia sets, Kleinian limit sets,
harmonic measure, DLA (diffusion limited aggregation) and the Gaussian free field. Another
book near completion is a self-contained introduction to planar QC mappings and their
applications to complex dynamics (including the folding theorem described in this proposal).
Recently I have mentored a number of undergraduate research projects on topics related to

my work: Ahmed Rafiqi used accelerated random walks to calculate conformal maps (2018
Ph.D. from Cornell under John Hubbard); Kevin Sackel worked on QC removability (he won



a Churchchill fellowship to Cambridge and is now a PhD student at MIT); Shalin Parekh
numerically estimated percolation dimension of random walks on a grid (he spent a year in
Geneva in a program run by Stas Smirnov and Wendelin Werner, and is currently a PhD
student at Columbia), Christopher Dular implemented my O(n2) triangulation refinement
algorithm (currently at Georgia Tech), and Joe Suk wrote code to implement by “Trues trees
are dense” theorem numerically (Ph.D. program at Columbia); this year I am working with
undergraduates Emi Brawley, Yugarshi Mondal and Hindy Drillick who all plan to pursue
graduate studies in mathematics.
I have supervised 5 Ph.D. dissertations on topics related to my previous and current

proposals: Zsuzanne Gönye (geodesics in hyperbolic manifolds), Karyn Lundberg (boundary
convergence of conformal maps), Hrant Hakobyan (dimension distortion under QC maps)
and Chris Green (numerical conformal mapping), and Kirill Lazebnik (wandering domains).
I am currently supervising Jack Burkart (transcendental Julia sets). Most of my students
have had some computational aspect to their thesis; this makes them better suited to both
academic and non-academic jobs (Green works at Twitter and Lundberg at Lincoln Labs at
MIT). Producing mathematicians who can talk to and work with applied mathematicians
(or even non-mathematicians) is a form of infrastructure enhancement that makes it easier
to transfer decades of mathematical progress into practical solutions of important problems.
This point was well illustrated at the 2018 ICM in Rio de Janeiro, where almost a third of
all the plenary/prize/public lectures dealt with the interaction of mathematics, computation
and applications.

PUBLICATIONS RESULTING FROM RECENT NSF SUPPORT

• Constructing entire functions by quasiconformal folding. Acta Math., 214(1):1–60, 2015.
• A transcendental Julia set of dimension 1. Invent. Math., 212(2) 407–460, 2018.
• Harmonic measure: algorithms and applications, Proc. Int. Cong. of Math., 2018 Rio de Janeiro,
Vol. 2, 1507–1534.

• Models for the Eremenko–Lyubich class. J. Lond. Math. Soc. (2), 92(1):202–221, 2015.
• Dynamical dessins are dense. with K. Pilgrim, Rev. Mat. Iberoamer., 31(3), 1033–1040, 2015.
• The order conjecture fails in class S. J. d’Analyse., 127(1), 283–302, 2015.
• Models for the Speiser class. P. Lond. Math. Soc., 114(5), 765-797, 2015.
• Nonobtuse triangulations of PSLGs. Discrete Comput. Geom. 56(1), 43–92 , 2016.
• Quadrilateral meshes for PSLGs. Discrete Comput. Geom. 56(1), 1–42, 2016.
• Frequency of dimension distortion under quasisymmetric mappings, with H. Hakobyan, and
M. Williams, Geometric and Functional Analysis, 26(2), 379–421, 2016.

• Anti-self-dual 4-manifolds, quasi-Fuchsian groups and almost-Kahler geometry, with Claude
LeBrun, to appear in Communications in Analysis and Geometry.

• Speiser class Julia sets with dimension near one, with S. Albrecht. submitted to J. d’Analyse.
• Prescribing the postsingular dynamics of meromorphic functions, with K. Lazebnik, preprint

EVIDENCE OF RESEARCH PRODUCTS AND THEIR AVAILABILITY
All preprints are posted on www.math.sunysb.edu/~bishop/papers. My webpage also

contains lecture notes and slides of lectures related to my research (also links to videos of my
lectures when they exist), class notes with links to relevant literature, as well as abstracts of
my papers, descriptions of my research and links to workshops I have organized or attended
and to related work of other mathematicians. A survey of my recent work was published in
the proceedings of the 2018 ICM.



PROJECT DESCRIPTION

The proposal deals with combinatorial constructions in geometric function theory (true
trees, quasiconformal folding) and applications of function theory ideas to discrete prob-
lems (constructing manifolds, optimal meshing, random growth). Quasiconformal mappings
and harmonic measure will play prominent roles. The proposed questions range from long
standing (and probably very difficult) conjectures to questions suitable for graduate and
even undergraduate students.

—————————————– 1. Trees and triangles —————————————–

• True trees: Given a tree T with n edges drawn in the plane, add edges connecting
each vertex to ∞ until we obtain obtain a topological triangulation of the sphere with 2n
elements. Glue together equilateral triangles using the same pattern of adjacencies to get
a conformal sphere. A homeomorphic copy T ′ of T lives on this sphere (the edges of the
triangulation not incident on ∞). One can check that we can map each triangle conformally
to either the upper or lower half-plane so that ∞ maps to ∞ and each edge of T ′ maps
to [−1, 1], and so that these maps agree across the boundaries of the triangles. Thus the
resulting function p is a n-to-1 holomorphic function from the sphere to itself, branched of
order n at ∞, and hence is a polynomial of degree n. Moreover, p only has critical values at
±1 (these are called Shabat polynomials) and T ′ = p−1([−1, 1]). We call T ′ the “true form”
of T , or a “true tree” for short, see [47], [56], [57], [79].
This construction is a special case of Grothendieck’s dessins d’enfants where a finite graph

on a compact surface gives rise to a conformal structure on that surface. It is interesting
algebraically because the polynomial p can be taken to have algebraic coefficients; thus the
action of Galois groups on the polynomials induces an action on finite planar trees. It is
interesting analytically because the true form of a tree gives every edge equal harmonic
measure (the first hitting probability of a Brownian motion) from ∞, and the harmonic
measure restricted to the two sides of any edge are equal (the tree is “conformally balanced”).
It is natural to ask if there is a similar correspondence for infinite trees:

Question 1. Which locally finite, infinite plane trees T have a true form, i.e., they are
ambiently homeomorphic to f−1([−1, 1]) for some entire function singular values ±1?

The uniformization theorem implies that every such tree occurs as T = f−1([−1, 1]) for
some holomorphic f defined on either the plane or the unit disk; for us an “infinite true
tree” means it corresponds to the plane. There is a solution to this type problem due to
Peter Doyle [37] in terms of the recurrence or transience of a random walk on an infinite
graph constructed from T , but this criterion is not always easy to apply, so we would like
more tractable conditions, such as those given by Cui in [36]. An interesting test case are
the infinite random trees coming from DLA; see Question 30.
The infinite 3-regular tree T does not have a true form in the plane; this is deduced using

Nevanlinna theory in [36] (but it is not hard to see directly). If we compute the true forms
{Tn} of nth level truncations of T , the Euclidean size of the edges decay exponentially away
from the root, and the truncations {Tn} seem to approach a limiting shape; see left figure
below, drawn with Don Marshall’s ZIPPER program. Steffen Rohde and Brent Werness have
observed that this limit appears to agree exactly with a fractal curve coming from successive
reflections across the boundary of the standard deltoid (see right figure below), but there
is, as yet, no explanation of this coincidence (the deltoid fractal arises in anti-holomorphic
dynamics; see [60] for the precise definition).



Problem 2. Prove the leaves of the truncated true trees {Tn} limit on the deltoid fractal.

It is known that the deltoid fractal can also be defined as a limit of curves on conformal
spheres constructed by gluing together equilateral triangles in a tree-like pattern. A careful
study of these patterns should lead to a proof of the illustrated similarity.
• Quasiconformal folding: Recall that a quasiconformal map is a homeomorphism of C
that is absolutely continuous on almost all lines and such that |µ| ≡ |fz̄/fz| ≤ k < 1; this
says that infinitesimal circles map to ellipses with uniformly bounded eccentricity (taking
k = 0 gives a conformal map). The measurable Riemann mapping theorem (MRMT) is
the fundamental result that every such µ arises from some QC mapping f . A quasi-regular
function is a composition of a holomorphic function and a QC map.
The construction of true trees via the uniformization theorem can be replaced by a qua-

siconformal construction which gives greater control of the geometry. Using this, I proved
my “true trees are dense” theorem [21]: any compact continuum can be approximated by
finite true trees in the Hausdorff metric. The proof quickly reduces to approximating trees
from a certain nice class by true trees. Which infinite planar trees can be approximated by
infinite true trees? The quasiconformal folding theorem provides a partial answer.
The QC-folding theorem say that if T is a locally finite, infinite planar tree that satisfies

some mild geometric conditions (easy to check in practice), then we can add finite trees to
the vertices of T to get a new tree T ′ and quasiconformal maps η from each complementary
component of T ′ to the right half-plane so that g = cosh ◦η is quasi-regular map on the
whole plane. Moreover, g is holomorphic except on a small neighborhood of the original
tree T . Then by the measurable Riemann mapping theorem, we can define a holomorphic
f = g ◦ϕ (ϕ is QC and often close to the identity) whose corresponding tree combinatorially
equals T ′, and whose shape approximates T . The singular values of f are the same as for
g, and these can be controlled very precisely in the construction. As noted in the summary
of previous work, QC-folding has already settled a number of open questions in function
theory and holomorphic dynamics. Below we discuss further potential applications.
• Belyi and Shabat functions: A holomorphic function f : X → S

2 on a Riemann
surface X is called a Belyi function if f is branched only over 0, 1 and ∞, and f has no
removable singularities at punctures of X. The latter condition implies that f cannot be
holomorphically extended to a Riemann surface properly containing X. For example, the
polynomials associated to true trees above are Belyi functions for the Riemann sphere.

Question 3. Do all planar domains have a Belyi function? All open Riemann surfaces?

If the surface X has a Belyi function f , then the preimages of the upper and lower half-
planes are topological triangles in G which are conformally equivalent to equilateral triangles
glued (according to arclength) along their edges. Thus the previous question really asks if



every open Riemann surface can be constructed from a countable collection of equilateral
triangles glued along their boundaries. If we also assume the Belyi functions have no as-
ymptotic values (limits along curves tending to ∞ on the surface) then these triangles are
compact, and we get a standard triangulation. More concisely:

Conjecture 4. Every open Riemann surface has an equilateral triangulation.

Using QC-folding one can construct quasi-regular analogs of Belyi functions without as-
ymptotic values on any Riemann surface. However, using the measurable Riemann mapping
theorem to make this function holomorphic may change the conformal structure of the sur-
face, and it is not obvious whether we can define the desired holomorphic function on the
same Riemann surface that we started with. This is not a problem for QC-folding on the
plane or sphere, because there is only one conformal plane and one conformal sphere. How-
ever, for general compact surfaces, Belyi’s theorem [13] implies that X has a Belyi function
(= has an equilateral triangulation) iff it is an algebraic curve. There are only countably
many such curves, so not all compact Riemann surfaces have a Belyi function. Hence not all
conformal structures on a given compact surface can be attained, so the potential problem
described above actually occurs.
For non-compact surfaces however, it should be possible to alternate applications of the

folding construction on compact sub-surfaces (which we can choose to alter the conformal
structure only slightly), with conformal correction maps that “push” the perturbed sub-
surface back into X. For example, the results of [51] should be helpful here. I am pursuing
this approach with Lasse Rempe-Gillen.
If we don’t allow a Belyi function to have any poles, then we get a Shabat function: a

f : X → C so that f is holomorphic on X, branched only over 0 and 1, and has no removable
singularities in ∂X.

Question 5. Do all planar domains have a Shabat function? All open Riemann surfaces?

In this case, the pre-images of the upper and lower half-planes are non-compact triangles
that all have one vertex at ∞ (equivalently, we are decomposing the surface into conformal
half-strips). The “fold-and-correct” alternating strategy described above should work here
too, but the graphs that arise in the folding steps will be much more intricate.
• Quantitative Runge’s theorem: Given a finite number of Jordan domains {Dj}N1
with disjoint closures, and complex values {cj}N1 , Runge’s theorem provides a sequence
of polynomials {pn} that converges to cj uniformly on Dj, but it gives no control of these
polynomials offD = ∪Dj. By slightly enlarging each domain and connecting the new domain
boundaries to each other and to ∞, we can construct a graph G to which quasiconformal
folding can be applied. The resulting function f can be chosen to be within ǫ of cj on Dj

and off D, and |f(z)| is controlled in terms of ǫ and the geometry of G. A similar folding
construction gives a meromorphic approximation with prescribed poles. Can we formulate
a general version that can be applied without constructing the graph by hand each time?

Problem 6. Prove a quantitative version of Runge’s theorem derived from QC-folding. i.e.,
given a holomorphic function on a neighborhood of a compact set X, give explicit estimates
on the approximating entire (or meromorphic) function in terms of the geometry of X, the
behavior of f and the desired degree of approximation.

What about QC-folding versions of Mergelyan’s or Arakelyan’s approximation theorems?



• Holomorphic immersions and embeddings: One of the most famous and well studied
problems in complex analysis is the Bell-Narasimhan Conjecture (e.g., page 20, [12]):

Conjecture 7. Every open Riemann surface has a proper holomorphic embedding in C
2.

This has been intensely studied and is now known for many examples, e.g., for all circular
domains without punctures [43]. It is closely connected to many other problems involving
complete or proper embedding or immersions of surfaces in C

2 or C
3 and to problems of

constructing minimal surfaces in R
3. It is known that every Riemann surface embeds in C

3

and immerses in C
2. The problem with embedding into C

2 is that self-intersections can’t
always be removed by local changes (they are stable under perturbations).
One tool that has been used to construct examples is Runge’s theorem. In [63] it is

used to construct functions on a bordered Riemann surface whose derivatives are large on
a complicated subset X (a “labyrinth”) of interlocking pieces near the boundary. A curve
tending to the boundary either must avoid this set (in which case it has long length) or
it contains points where the derivative is large; in either case the image can be proven
to be very long, and hence the image surface is complete. However, in this construction
some regions of X where the Runge approximation might be “too large” must be removed
from the surface, changing the conformal type in an unknown way. This is very similar
to the problem arising when building Belyi functions on all open surfaces. Perhaps the
“conformal correction” methods considered there could be useful here, or the quantitative
Runge’s theorem described above could be applied. As a first step, it would be interesting
to see if known special cases of the Bell-Narasimhan conjecture can be re-proven using QC
folding, e.g., results from [2], [3], [48]. I thank Graham Smith for suggesting that QC-folding
might be related to minimal surfaces and for pointing me to the fascinating work in the area.

———————————— 2. Transcendental Dynamics ————————————

Transcendental dynamics refers to the iteration theory of non-polynomial entire functions.
We let T denote this class of functions. As usual, the Fatou set F is the maximal open set
where the iterates of f form a normal family and the Julia set J is its complement (and
is always non-empty). While similar to polynomial dynamics in many respects, there are
several significant differences: wandering domains can exist, Fatou components of any finite
or infinite multiplicity may occur, the escaping set I(f) = {z : f(z) → ∞} plays a more
prominent role (and has interesting subsets based on rates of escape), the Julia set always
contains a non-trivial continuum, and it is generally harder to build “small” Julia sets than
“large” ones, in the sense of fractal dimensions.
Recall that Hausdorff, upper Minkowski and packing dimension are defined as

Hdim(K) = inf{s : inf{
∑

j r
s
j : K ⊂ ∪jD(xj, rj)} = 0},

Mdim(K) = inf{s : lim supr→0 infN Nr
s = 0 : K ⊂ ∪N

j=1D(xj, r)},
Pdim(K) = inf{s : K ⊂ ∪∞

j=1Kj : Mdim(Kj) ≤ s for all j},
and that Hdim ≤ Pdim. For transcendental Julia sets, these can differ.
• Dimensions of Julia sets: I.N. Baker [5] proved in 1975 that a transcendental Julia set
must contain a non-trivial continuum and hence has Hausdorff dimension ≥ 1. However,
the first example attaining this minimum is in my 2018 paper [28]. It also has packing
dimension 1, the first transcendental example with Pdim < 2. The gray triangle below
shows the possible pairs 1 ≤ Hdim ≤ Pdim ≤ 2 for a transcendental Julia set and black
denotes all known examples: the vertex (2, 2) is due to Misiurewicz [66] (see also McMullen
[64]); the top edge (t, 2), 1 < t < 2 is due to Stallard [82], [83]; (1, 1) is my example.
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2 Question 8. For each 1 < s < t < 2 is there a f ∈ T
with Hdim(J ) = s and Pdim(J ) = t? (gray triangle)

Question 9. Is there a transcendental Julia set with
Hdim(J ) = 1,Pdim(J ) = 2? (upper left corner)

Question 10. For t ∈ (1, 2), is there a f ∈ T with
Hdim(J (f)) = Pdim(J (f)) = t? (diagonal edge)

A current student of mine, Jack Burkart, is working on answering Question 10 in the affir-
mative for some value of 1 < t < 2. His argument should give a dense set of such t’s and
then continuous deformations might allow us to deduce all values 1 < t < 2 occur.
Although my example has finite 1-dimensional spherical measure, it has infinite 1-dimensional

packing measure and it does not lie on any rectifiable curve.

Question 11. Can a transcendental Julia set lie on a rectifiable curve on the sphere?

The Julia set of tan(z) is R, so this can occur for meromorphic functions. Question 11
seems very delicate, and I have ideas for both constructing such an example and for proving
it can’t exist. The Fatou components in my example are infinitely connected, which leads
to the infinite packing measure and the impossibility of connecting the Julia set by a finite
length curve. Kisaka and Shishikura [54] have constructed examples in T with annular Fatou
components, and I believe similar examples can also be constructed by QC-folding. Can we
combine all these ideas (perhaps with characterizations of rectifiability from [4], [49]) to
produce a positive answer to Question 11?
• Dynamics in the Speiser class S: As mentioned earlier, the Speiser class consists of
transcendental functions that have a finite number of singular values. Each such function has
a finite dimensional family of quasiconformal deformations Mf = {g = ψ ◦ f ◦ ϕ} such that
g is entire and and ψ, ϕ are both QC. Hence Speiser functions are similar to polynomials in
certain ways (e.g., no wandering domains). Simon Albrecht and I [29] constructed a sequence
in S with Hdim(J ) ց 1, but the following is still open:

Question 12. Is {Hdim(J (f)) : f ∈ S} = (1, 2]?

By results of Rippon and Stallard [75], the Hausdorff dimension of such examples is > 1
and the packing dimension equals 2. The Hausdorff dimension of the Julia set changes
continuously over Mf , so Question 12 would follow from:

Conjecture 13. If f ∈ S, then sup{Hdim(J (g)) : g ∈Mf} = 2.

This is an analog of Shishikura’s result [80] about dimensions of quadratic Julia sets
tending to 2 near generic points in the boundary of the Mandelbrot set (also to the fact that
Kleinian limit sets have dimension tending to 2 near most boundary points of Teichmüller
space [32]). Possibly Shishikura’s proof can be adapted to this case. Conjecture 13 is due
to Lasse Rempe-Gillen. In the other direction,

Question 14. Is there an f ∈ S with inf{Hdim(J (g)) : g ∈Mf} = 1?

Both the above imply dim(J ) can be non-constant on Mf , but even this is unknown:

Question 15. If f ∈ S, g ∈Mf is Hdim(J (f)) = Hdim(J (g))?



Before my examples with Albrecht, every known Speiser Julia set had Hausdorff dimension
2, so our examples are the first where this question can even be tested. Recall from above
that the escaping set is defined as I(f) = {z : |fn(z)| → ∞}.
Question 16. Is there an f ∈ S with dim(I(f)) = 1?

Rempe-Gillen and Stallard [72] gave such an example in the Eremenko-Lyubich class B. The
answer would be yes in the Speiser class, if Question 14 could be solved by considering only
affine equivalents af(cz + d) + b of a single function f ∈ S, since Rempe-Gillen has shown
Hdim(I) is invariant under such deformations and it is always bounded above by Hdim(J ).
I have some tentative sketches of what the corresponding tree for a folding construction of
such a function might look like, but many details remain to be verified.

————– 3. 4-manifolds and critical points of harmonic measure ————–

As mentioned in the summary of previous work, the almost-Kähler metrics on a 4-
manifolds always form an open subset of the moduli space of all anti-self-dual metrics,
but Claude Lebrun and I have constructed, for the first time, examples where this subset
is not closed. (For the precise definitions of almost-Kähler and anti-self-dual, see [33], but
these definitions are not necessary for understanding the problems stated below.)
The simplest of many possible examples occurs when Σ is a compact surface and M is

a geometrically finite hyperbolic 3-manifold homeomorphic to Σ × R. There is a unique
harmonic function u on M that tends to 1 in one infinite end of M and tends to 0 in the
other end (this is the harmonic measure of one end of the manifold). The 4-manifold N
can be thought of as M times a circle, with the two infinite ends each collapsed to points.
LeBrun had shown that N has an almost-Kähler metric iff u has no critical points in M .
Given Σ, the space of associated M ’s is parameterized by pairs of conformal structures

on Σ; when the two structures are the same, then M is represented by a Fuchsian group
G acting on the hyperbolic upper half-space R

3
+ and the limit set Λ ⊂ R

2 is a circle. In
this case, the harmonic measure function u has no critical points. As we deform one of the
structures, the Fuchsian group becomes quasi-Fuchsian and Λ becomes a fractal quasi-circle
with complementary components Ω0,Ω1. Then u is the quotient of the harmonic measure
function ω(z,Ω1,R

3
+) (the harmonic function on R

3
+ that has boundary values 0 on Ω0 and

1 on Ω1). We show that if Σ has high enough genus, then we can always deform G so that
Λ approximates a certain explicit “dogbone” curve, and this implies the harmonic measure
function has a critical point in R

3
+.

Question 17. How large a genus is needed? Can we check small examples computationally?

Question 18. We actually prove u has at least two critical points. Does it have exactly
two? What other possibilities are there?

Question 19. For surfaces Σ where critical points occur, how common are they? Does the
set where they occur have infinite volume in Teichmüller space? Is this set dense on the
boundary of Teichmüller space? What about the set where critical points do not occur?

Question 20. Are there simple necessary or sufficient geometric conditions on a closed
Jordan curve which imply the corresponding harmonic measure function has a critical point?



—————– 4. Optimal triangulations and conformal geometry —————–

• Planar meshes: Earlier we discussed decomposing a Riemann surface into conformal
images of equilateral triangles. In computational geometry and meshing for numerical PDE
there is also a need to decompose polygonal domains into actual triangles that are as close to
equilateral as possible, while keeping the triangulation as simple as possible, e.g., using only
a polynomial number of elements (as a function of the number n of boundary segments).
Easy examples show that polynomial complexity rules out any uniform lower bound on
angles (consider a long narrow rectangle), and hence any upper bound that is less than 90◦

(since the angles sum to 180◦, an upper bound < 90◦ implies a strictly positive lower bound).
Polynomial algorithms giving 90◦ for simply polygons and larger bounds for PSLGs (planar
straight line graphs) were found in the 1990’s (see [16], [67], [86]), but the sharp result for
PSLGs is more recent: In [25] I proved the existence of polynomial sized, conforming non-
obtuse triangulations (NOTs; all angles ≤ 90◦) for any PSLG. If the PSLG has n vertices,
my construction gives O(n2.5) elements; the best known lower bound is ≃ n2, so a gap exists:

Conjecture 21. Every PSLG has a conforming NOT with O(n2) elements.

Conjecture 22. Every PSLG has an O(n2) conforming Delaunay triangulation.

Conjecture 23. Every PSLG has an O(n2) conforming Voronoi diagram.

A Delaunay triangulation is defined by the property that any pair of triangles sharing
an edge having opposite angles summing to ≤ π. Given a point set V , the corresponding
Voronoi digram is the collection of points that are nearest to two or more different points.
Conforming means that the edges of the triangulation or diagram covers the edges of the
given PSLG, e.g., see the figure at left below. It is obvious that a NOT is also Delaunay,
and it is easy to build a conforming Voronoi diagram for a NOT by placing six points in
each triangle in a certain way. Thus the first conjecture above implies the second two, but
I have never found any approach for the latter cases that simplified the proof, or gave a
better estimate, than in the NOT problem. Perhaps all three problems are equivalent to
each other. Can we prove they have the same complexity (even if we can’t determine exactly
what that complexity is)?

Given a PSLG, the NOT algorithm first adds edges to form a dissection by isosceles
triangles with good angles (a dissection is like a mesh, except that edges may overlap without
being equal; thus some “bad” points are vertices of some triangles but interior to edges of
others). Next, the algorithm converts the dissection into a mesh by propagating the “bad”
points along paths parallel to the bases of the triangles. An example is illustrated on the
right above. If the propagation paths terminate (by leaving the dissection or hitting another
vertex), they cut the dissection into a mesh using triangles and quadrilaterals (and the latter
can be made into triangles by adding diagonals). However, as shown above, a propagation



path may cross the same triangle repeatedly. In order to get the uniform complexity bound,
the algorithm bends paths to terminate them faster; to get the desired angle bounds, the
amount of bending is limited by constraints that closely resemble keeping a discrete second
derivative bounded. This makes the proof of the NOT theorem reminiscent of Pugh’s closing
lemma: every C1 vector field has a C1 perturbation with a closed orbit [69],[70], [71]; this is
open for C2 vector fields and perturbations. Dennis Sullivan asked to make this precise:

Question 24. Can a closing lemma help prove the O(n2) NOT-theorem? Can the NOT
argument help prove a C2-closing lemma (or suggest a counterexample)?

The O(n2) upper bound in Conjecture 21 is a worst case estimate, so most PSLGs with
n vertices might have much smaller NOTs. It would be very interesting (and important for
applications) to know if the algorithm can do better in better cases:

Problem 25. Find an algorithm that, given a PSLG Γ, produces a O(N) sized conforming
NOT, where N is the size of a minimal conforming NOT for that Γ.

• Dimension 3: Solving the above problems would mostly complete the theory of opti-
mal triangulation in R

2, but the corresponding theory using tetrahedra in R
3 (the really

important case for applications) is wide open; there are many examples, heuristics and
implementations, but few rigorous results. The main open question in the field is:

Question 26. Do polyhedra in R
3 have non-obtuse tetrahedralizations of polynomial size?

Does this hold for any dihedral angle bound θ < 180◦? Even finding an acute tetrahe-
dralization (all angles < 90◦) of a cube in R

3 was open until recently (the smallest known
example uses 1,370 pieces [89]) and there is no acute decomposition for the cube in R

4,
[58]. The breakthrough in 2-dimensional meshing was to introduce the idea of a thick/thin
decomposition of a polygon that is analogous to the thick/thin decomposition of a Riemann
surface; in the thin parts of the polygon, Euclidean geometry is used to create the mesh and
in the thick parts hyperbolic geometry is used. Fast, approximate conformal mapping gives
the decomposition into thick and thin parts, and the use of the two alternate geometries
gives the optimal angles bounds. Can we use analogous ideas in R

3? Can one create a
3-manifold out of a polyhedron, run a Ricci flow on it (as in Perelman’s proof of Thurston’s
geometrization conjecture) to decompose it into pieces and then utilize the “natural” geome-
tries on the different pieces to define meshes? Any progress would have a significant impact
on many problems of practical interest.
An intermediate problem between 2 and 3 dimensions is to find NOTs for triangulated

surfaces in R
3. The proof of the NOT theorem uses properties of planar geometry that may

not hold on a surface with curvature (angles at a vertex not summing to 2π). Is there always a
polynomial bound for a non-obtuse refinement of a triangulated surface? What if we assume
the surface is the boundary of a convex polyhedron? This case is particularly interesting for
many reasons, e.g., the paper of O’Rourke [68] on a special case of Dürer’s Problem: does
every convex polyhedron in R

3 has a spanning tree of its edges, so that cutting along these
edges gives a non-overlapping unfolding in the plane; this famous problem is still open after
500 years. O’Rourke’s paper cites the NOT theorem, because his method becomes easier if
the faces of the polyhedron are non-obtuse triangles.



———————– 5. Random trees and harmonic measure ———————–

Earlier we saw true trees, whose edges all have equal harmonic measure from ∞. Next we
consider trees with equal length edges that are grown using harmonic measure from ∞.
DLA (diffusion limited aggregation) is defined by fixing a unit disk at the origin and

sending in a second unit disk moving by Brownian motion from infinity until it touches the
first disk. Successive disks are added in the same way. The main problem is to determine
the almost sure growth rate α = lim supn

1

n
log diam(DLA(n)). Some DLA clusters with

n = 100, 1000, 10000 are shown below. The last one is colored according to when the disk
was added; the colors on the first two will be explained below.

Obviously diam(DLA(n)) ≤ 2n, but Harry Kesten [52] improved this to O(n2/3) almost
surely; this remains the best known upper bound even 30 years later. The trivial lower
bound is &

√
n (consider the areas), and shockingly, this is still the best known:

Conjecture 27. limn diam(DLA(n))/
√
n = ∞ almost surely.

Consider the convex hull of the disk centers of a DLA cluster. If there is a convex hull
vertex where the exterior angle measure is θ = π/2λ > π, then conformal mapping estimates
show that the probability of the next disk being added at this vertex is at least ≃ n−αλ. On
the other hand, if the DLA diameter grows like nα, then the convex hull perimeter should
increase by 1 about every n1−α steps, leading us to the equation αλ = 1−α or α = 1/(1+λ).
Since 1

2
≤ λ ≤ 1, we have 1

2
≤ α ≤ 2

3
; the trivial lower bound and Kesten’s upper bound.

One way for the convex hull to have (relatively) sharp angles is for it to have few vertices.
In the pictures above, a disk is red if its center became a convex hull vertex when it was
added; note that these form a large fraction of the small clusters (a fraction that should
tend to zero with n, but how quickly?). See below for a plot of a DLA cluster and its convex
hull. Also shown is a plot of the number of vertices in the convex hull as a function on log n
(averaged over 100 random trials). The plot clearly looks linear as a function of log n. On
the right is the “true tree” version of a DLA with a 1000 vertices (see Question 30).
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Question 28. Is the number of convex hull vertices O(log n) almost surely? If this is true,
can we deduce Conjecture 27? A growth rate α > 1/2?

Experiments indicate the answers to the questions above are yes, at least for small values
of n (less than a million). Running larger experiments poses an interesting computational
question of its own. The naive method of drawing a DLA cluster takes time n2 log n. We
simulate Brownian motion by a random walk that jumps half the distance to the cluster
at each step; this takes an expected O(log n) steps to approximate the hitting point of the
new disk. However, we have to compute the distance to the cluster; this involves finding
the minimum of n distances to individual disks, giving quadratic growth in work. Nearest-
neighbor search is a well studied problem in computational geometry: given a set S ⊂ R

n

and point x ∈ R
n find the closest point of S to x (or accurately estimate the distance from

x to S, which is what we want for the DLA application). This is generally done by pre-
processing the set S using dyadic grids, and allows us to find the closest point (and update
the data structure) with logarithmic work.

Question 29. Can we model a DLA cluster of size n in O(n log2 n) time?

Finally, we return to beginning of the proposal; Question 1 asked for practical criteria for
deciding if an infinite planar tree has a true form in the plane. We can form an infinite tree
from DLA by joining the centers of adjacent disks in a DLA cluster.

Question 30. Does an infinite DLA tree have a true form in the plane, almost surely?

Probably this is not true; the figure of the “true DLA tree” above shows the outer edges
are much smaller than the inner ones; this tends to support the idea that the limiting tree
naturally lives in the hyperbolic disk, rather than the Euclidean plane. How to prove this is
correct seems very far from obvious.

BROADER IMPACTS OF THE PROPOSAL

Enhancing computational infrastructure: All of the broader impacts discussed in the
summary of previous work (enhanced computational infrastructure, encouraging interdisci-
plinary research and enhancing STEM education) also apply to the current proposal. Solu-
tions to the 2 and 3 dimensional meshing problems could have a dramatic impact on various
aspects of modeling surfaces and 3-dimensional bodies, which in turn have numerous impli-
cations for computing in research and manufacturing. The increasing use of finite element
methods increases the incentive to improve automatic meshing algorithms. However, many
known algorithms can create distorted and even unusable grid elements, so automatic mesh-
ing methods with geometric guarantees are essential. As well as improving known theoretical
results, I will work to implement my previous algorithms to demonstrate their utility and
make them more accessible to potential users.
Educational impact: In the summary of previous work, I described courses, lecture notes,
graduate and undergraduate projects related to my work, and the current proposal has simi-
lar impacts on the infrastructure of research and education. In particular, I plan to follow-up
the 2017 graduate workshop on computational and random geometry with another next year.
Graduate students working on problems related to this proposal receive training in aspects
of both pure and applied mathematics, participate in seminars in both departments, and
become more open to such collaborations; this improves the likelihood they will partici-
pate in interdisciplinary and academic/industrial collaborations and improves their ability
to motivate and train their own students in the future.



Moreover, the geometric and interdisciplinary nature of the problems in this proposal
suggest numerous projects that are accessible and appealing to undergraduates or even high
school students; such problems can motivate them to the further study of mathematics,
or at least give then a greater appreciation for the potential of mathematics in their own
field. Currently I am department coordinator for matching high school students seeking
research mentors with faculty members. I have also helped organize Stony Brook’s annual
Math Day for undergraduates and am involved in starting a geometry lab for undergraduate
research here. A few examples of problems related to the proposal that might be suitable
for undergraduates to work on include:
• Drawing a transcendental Julia: Even though my “dim =1” example is given by an
explicit infinite product, it is difficult to get an accurate computer picture because we lack
a simple test for being in the Julia or Fatou sets.
• Approximate the true form of a planar tree. Use Don Marshall’s ZIPPER program
to explore how combinatorics influences geometry of true trees. A former undergraduate,
Joe Suk, has worked on this, but much more remains to do. For example, compute the true
forms of truncations of various infinite trees, as we did for the 3-regular tree. Do the leaves
limit on fractal curves that we can recognize from other settings?
• Implement the NOT algorithm. Implement the O(n2.5) NOT algorithm and its vari-
ations for conforming Delaunay triangulations and Voronoi coverings. Study the “triangle
flow” for triangulated surfaces, e.g., the Platonic solids.
• Critical points of harmonic measure: Compute limit sets of “small” quasi-Fuchsian
groups and look for a critical point of the harmonic measure function of one side. This could
give a “small” example of the 4-manifold as described in the proposal.
• Faster DLA: Speed up DLA experiments suggested in the proposal using nearest neigh-
bor search structures from computational geometry. Test Question 28 at larger scales and
formulate measures of how the convex hull deviates from being “round”.
• Brownian geometry: It is conjectured that the Brownian trace (the set visited by planar
Brownian motion during time [0, 1]) contains no rectifiable curves, or even curves of Hausdorff
dimension 1. A former undergraduate, Shalin Parekh, did experiments using random walks
on a square grid that showed the minimal length path connecting widely separated points
scaled like dimension ≈ 1.02. See figures below. However, his experiments were fairly small
(walks with around 105 steps); make his code more efficient and repeat these experiments
for longer walks. It would also be interesting to investigate the adjacency graph of the
complementary components. Are there any interesting graph theoretic properties? How
does the graph diameter grow? It is conjectured by Wendelin Werner that in the limiting
case, any two complementary components of the Brownian trace can be connected by a finite
path of touching components. What is the correct discrete formulation of this conjecture?
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Soc. Japan, 29(1):69–97, 1986.

[86] T.-S. Tan. An optimal bound for high-quality conforming triangulations. Discrete Comput. Geom.,
15(2):169–193, 1996.

[87] S. Thite. Adaptive spacetime meshing for discontinuous Galerkin methods. Comput. Geom., 42(1):20–
44, 2009.
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