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I have worked on problems involving conformal maps, Kleinian groups and related topics. The
main results are summarized below. The website www.math.sunysb.edu/ bishop/papers con-
tains all the papers described below. Let D = {|z| < 1} be the unit disk, D* = {|z| > 1},
T = {|]z| = 1}. If I is a closed curve then (2, Q* denote its bounded and unbounded comple-
mentary components. For E C T, |E| denotes its normalized Lebesgue measure and cap(FE) its
logarithmic capacity.

e Conformal welding: A circle homeomorphism h is called a generalized conformal welding
on E C T (denoted h € GCW(E)) if h = g~' o f, where f and g are univalent maps from I, *
to disjoint domains 2, Q*, and the composition exists for radial limits of f on E and g on h(FE)
(this was invented by David Hamilton in [59]; see also [60], [61]). Moreover, h is a (standard)
conformal welding (denoted h € CW) if E = T and Q, Q* are the two sides of a closed Jordan
curve I'. Not every h is a conformal welding, but in [20] I prove that every h agrees with some
H € CW off a set E of arbitrarily small Lebesgue measure. Other results in [20] include: every
h is in GCW(T \ E; U E3) for some sets with cap(FE1) = cap(h(E2)) = 0; if h is log-singular
(i.e., T = Ey U Ey with cap(E1) = cap(h(E2)) = 0 ) then h € CW (this is quite different from
the usual sufficient condition of A being quasisymmetric). I also give a new, short proof that
quasisymmetric homeomorphisms are conformal weldings using Koebe’s circle domain theorem
(avoiding the use of the measurable Riemann mapping theorem).

e Interpolation sets for conformal maps: In [23] I show that if E C T is compact and
has zero logarithmic capacity and ¢ is any homeomorphism of the open disk which extends
continuously to F then there is a conformal map of the disk which extends continuously to F
and equals g there. This is false if £ has positive capacity. The proof is an explicit geometric
construction.

e Factorization and Sullivan’s theorem: In [13], I show any conformal map f : D — Q
can be written as f = g o h where h is a K-quasiconformal self-map of the disk and |¢'| is
bounded away from zero uniformly. We can always take K < 8, independent of f [11], [22].
This factorization is closely related to 3-dimensional hyperbolic geometry and actually originates
in a theorem of Dennis Sullivan’s about boundaries of hyperbolic 3-manifolds (we shall explain
this later on).

e Fast approximation of conformal maps: Suppose (2 is a plane domain bounded by a
simple n-gon P. To apply the Schwarz-Christoffel formula one needs to know the conformal
preimages of the vertices, but there is no simple formula for these. In practice they are often
found by an iterative method from some initial guess (e.g., n evenly distributed points on the

circle). In [29] I show that in time O(n) we can compute n points on the unit circle which
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are close to the true preverticies in the sense that there is a K-quasiconformal map of the disk
sending our points to the true prevertices and that K is independent of the geometry of P.
So far as I know, there was no previous way of making a good initial guess for the conformal
prevertices (this is stated in [7], [67]). I also show the CRDT algorithm of Driscoll and Vavasis
[49] has the same uniform approximation property (although it is not an O(n) algorithm).

e Bowen’s dichotomy: Bowen [34] proved that the limit set A of a quasiconformal deforma-
tion of a cocompact Fuchsian group is either a circle or has Hausdorff dimension > 1. This
was extended to cofinite groups by Sullivan [86]; to divergence type groups by myself [10]; and
shown to fail for convergence type groups by Astala and Zinsmeister [3], [4], [5]. In the latter
case they show a rectifiable, but non-circular, limit set is possible. In [12] I show that if G is
a convergence group with bounded injectivity radius then there is a deformation whose limit
set has dimension one, but is nowhere rectifiable. The proof depends on estimates from [14] for
deforming a Riemann surface with exponential decay of the corresponding Beltrami data.

¢ Ruelle’s property: Ruelle [81] proved that if {G;} is an analytic family of deformations of
a cocompact Fuchsian group G, then dim(A(G})) is real analytic in ¢. Astala and Zinsmeister
[3], [4], [5] gave examples of convergence groups where this fails. In [21] I give a condition for
Ruelle’s property to fail and in [28] I show this criterion holds for many infinitely generated
groups, e.g., any divergence type group with injectivity radius bounded below.

e i-stable groups: If G is a finitely generated Fuchsian group, then dim(A(G")) = §(G') for
every quasiFuchsian deformation G’ of G (§ is the Poincaré exponent). In [15], I give examples
of infinitely generated Fuchsian groups G so this holds and other examples for which it fails.
The proof depends on estimates of Schwarzian derivatives from [14] and [17].

e Escaping geodesics: In [24] I show that dim(A) = max(dim(Ap),dim(Ay)) for any Kleinian
group; here Ay corresponds to geodesics which remain bounded for all time and A, are those
which escape to infinity at linear speed. Thus these two opposite behaviors are in some sense
generic.

¢ Rudin’s orthogonality conjecture: f € H*®(D) is orthogonal if {f"}{° is an orthogonal
sequence in the Hardy space H?. Walter Rudin conjectured that only inner functions with f(0) =
0 are orthogonal, but in [25] I disprove this (C. Sundberg independently did this as well). I also
characterize the images of Lebesgue measure under such functions; one surprising consequence
is that the Bergman space embeds isometrically in the Hardy space via a composition operator.
e Minimal sets for quasiconformal maps: A set £ is QS-minimal if dim(F) = inf; dim(f(£))
where the infimum is over all quasisymmetric images of E. In [19] Jeremy Tyson and I obtain
new examples by constructing “locally minimal” sets, i.e., sets whose dimension can be low-
ered, but only by maps with large dilatation. In [18] we answer a question of Juha Heinonen
by constructing a set where the dimension can be lowered, but the (positive) infimum is never

attained.
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e Miscellaneous: In [9] T prove that a closed curve in the plane which is homogeneous with
respect to biLipschitz self-maps must be a quasicircle, generalizing results from [56], [57], [64].
In [16] (joint work with V. Ya. Gutlyanskii, O. Martio and M. Vuorinen) we give an integral
condition on the dilatation of a map in R”, n > 2 which implies differentiability and is slightly
weaker than the well known result of Lehto in n = 2. This result is partially motivated by
a question of Curt McMullen on the rigidity of Kleinian groups; his conjugating maps do not
satisfy Lehto’s condition in the plane, but their extensions to 3-space satisfy our condition at
certain points of the limit set and hence are differentiable at these points. This is another

example of 3-dimensional techniques solving a 2-dimensional problem.
PROJECT DESCRIPTION

The proposed work has three parts: (1) constructing conformal collapsing maps which iden-
tify certain given sets to points and are conformal away from these sets (special cases include
conformal welding problems, Koebe’s circle domain conjecture and the construction of certain
dynamical objects); (2) the geometry of Kleinian limits sets (e.g., the Ahlfors conjecture, dimen-
sion of limit sets, the behavior of escaping geodesics); and (3) connections between 3-dimensional
hyperbolic geometry, computational geometry and numerical conformal mappings. We will de-
scribe problems covering a broad range of topics and difficulty. Some problems may be too
hard to attack currently, but I hope they put the more accessible ones into context and suggest

relations between areas that have not previously been connected.
1. Conformal collapsing

e Moore’s theorem: A decomposition C of a closed set K is a collection of pairwise disjoint
closed sets whose union is all of K. It is called upper semi-continuous if a sequence of elements
of C which converges in the Hausdorff metric must converge to a subset of another element of C.
If, in addition, K = C and all elements of C are continua which don’t separate the plane we call
C a Moore decomposition after R.L. Moore. He proved in [74] that quotienting the plane by such
a decomposition (i.e. identify each set to a point) gives the plane again. Given a decomposition
C, let ©(C) be the interior of the set of singletons and call C conformal if the quotient map in
Moore’s theorem can be chosen to be conformal on Q (in this case we call the quotient map
a conformal collapsing). Not every Moore decomposition is conformal: if C contains only the
closed disk {|z| < 1} and singletons then we would get a conformal map from D* to a punctured
plane, which is impossible by Liouville’s theorem. Which Moore decompositions are conformal?
When is the quotient map unique up to Mébius transformations? These questions probably do
not have simple answers, but we can seek interesting special cases which do.

e Conformal welding and Koebe’s theorem: Let A : T — T be a homeomorphism (all
circle homeomorphisms are assumed to be orientation preserving). Foliate the annulus A =
{1 < |z| < 2} with smooth curves which connect z to 2h(x) for every z € T. Taking singletons
outside A, this gives a Moore decomposition M of the plane. Note that M is conformal iff 4 is a
conformal welding (if g is the conformal collapsing take f(z) = ¢(z) on D and g(z) = ¢(2z) on D*;
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then h =g ! o f on T). Thus a special case of characterizing conformal Moore decompositions

1S:

Problem 1. Characterize the circle homeomorphisms which are conformal weldings. Charac-

terize those for which the curve I' is unique up to Mdobius transformations.

Not every homeomorphism is a conformal welding: the closure of the graph of sin(1/z) divides
the plane into two domains and the conformal maps of ID, D* onto these domains induce a circle
homeomorphism h. This map is not in CW; otherwise one could construct a conformal map
from the complement of a line segment to the complement of a point, contradicting Liouville’s
theorem. On the other hand, h € GCW(T), [20]. Other examples not in CW are given in [78],
[88]. A famous sufficient condition for h to be a conformal welding is quasisymmetry [1], i.e.,
there is an M < oo so that M~ < |h(I)|/|h(J)| < M whenever I,J C T are adjacent arcs of
equal length. This condition can be weakened slightly (see [46], [69], [70]).

Recently, I have made progress using Koebe’s circle domain theorem to construct conformal
collapsing maps. Koebe’s theorem says that any finitely connected plane domain can be confor-
mally mapped to a circle domain (i.e., all boundary components are circles or points). To see
the connection, choose n equally spaced points {z;}? C T and let ©,, . be the union of D, 2*
and an e-neighborhood of the curve connecting zy to 2h(zg), & = 1,...,n, from the foliation
of A described above. By Koebe’s theorem, this domain is conformally equivalent to a circle
domain. Taking ¢ — 0 we obtain a closed chain of tangent circles, whose complement consists
of two domains, €2, and €2;;. Thus we have conformally collapsed finitely many of the leaves

our decomposition to points. If the chains remain bounded as n — oo, then at most a bounded

number of disks are larger than any given ¢ > 0. Using this, I prove in [20] that for any h there
are non-degenerating sequences of conformal maps {fn},{gn} so that |fn(z) — gn(h(z))| — 0

except for countably many points z € T.
Conjecture 2. Every circle homeomorphism h € GCW(T \ E) for some countable set E.

The problem is to extract subsequences from the sequences above with boundary values con-
verging except possibly on a countable set. Currently, I can prove this with an exceptional
set of zero logarithmic capacity. Perhaps we can make use of other “countability” results such
as Moore’s triod theorem [75], Collingwood’s symmetry theorem for prime ends [44], or the
Bagemihl ambiguous point theorem [6]. Some other conformal welding problems that may be

tractable include:
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Problem 3. Characterize conformal welding sets (i.e., sets E so that h € GCW (E) for every

h). Is there one of positive logarithmic capacity? Every compact set of zero capacity is a CW-set.

Problem 4. Characterize the Fuchsian groups G for which every G-invariant homeomorphism
s a conformal welding. This is true for every finitely generated group of the first kind. Is true

for any infinitely generated group?
Conjecture 5. For every h and € > 0 there is a H € CW so that cap({h # H}) < e.

Peter Jones and I are also interested in generalizing quasisymmetric conformal weldings to
more general kinds of conformal collapsings. We say a decomposition C of the circle is induced
by amap f: T — Cif C = {f!(z) : € C}. We call C conformal if f is conformal on D*.

Problem 6. Characterize the decompositions of T which are induced by conformal maps f :
D* — Q, where Q is a John domain.

See [77] for the definition and basic properties of John domains. They are an important class
of domains which occur in analysis and dynamics [36], [73]. It follows from the standard quasi-
conformal theory that €2 is the complement of a quasiarc iff it corresponds to a decomposition
of T of the form C = {(z,h(x)) : x € T} for some quasisymmetric involution A of the circle.
This is a special case of a condition Peter Jones and I call a quasisymmetric decomposition,
involving the behavior of logarithmic capacity in the decomposition. We want to prove our
condition characterizes John domains and then extend it to Holder domains if possible (which
should have nice applications in complex dynamics).

e The generalized Moore-Koebe conjecture: We say a Moore decomposition is a Koebe
decomposition if every element is either a closed disk or a point. As noted earlier, not every

Moore decomposition can be conformal, but perhaps the following is true.
Conjecture 7. Every Moore decomposition is conformally equivalent to a Koebe decomposition.

In particular, only countable many elements would not be collapsed to points, so (in some
sense) there should only be countably many obstructions to any Moore decomposition being
conformal. We say M is conformally equivalent to K if there is a bijection f : M — K such
that (1) f is conformal on Q(M) and (2) if {E,} C M converges (in the Hausdorff metric) to
E € M then f(E,) — f(E) € K. One can show Conjecture 7 implies Conjecture 2. It also

implies the following famous problem:

Conjecture 8 (Koebe’s conjecture). Every domain is conformally equivalent to a circle do-

main.

Koebe’s conjecture follows from Conjecture 7 because the decomposition of 9€2 into its connected
components is a Moore decomposition [74]. The best results on the Koebe conjecture so far are

due to He and Schramm [62], [63]. In [20] a sketch is given to show that Conjecture 2 implies
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any planar domain is conformally equivalent to one whose complement has only countable
many components which are not points. Thus conformal welding problems are closely related

to Koebe’s conjecture.
2. Limit sets of Kleinian groups

We start with some basic definitions. A Kleinian group G is a discrete group of isometries

acting on the hyperbolic 3-ball, B. The quotient M = B/G is a hyperbolic 3-orbifold. A discrete
group acting on the hyperbolic disk is called a Fuchsian group. In either case, the accumulation
set of any orbit is called the limit set, A C S? = 0B, and it splits into two disjoint subsets: the
conical limit set A, (corresponding to the radial segments which return to some compact set
modulo G infinitely often) and the escaping limit set A.. The group is called elementary if the
limit set is finite. The complement 2 = S?\ A of the limit set is called the ordinary set of G. The
critical exponent of the Poincaré series of G is § = inf{s : }_ . exp(—sp(0,9(0))) < oo}, and
it is a theorem of Peter Jones and myself [30] that § = dim(A.) for all non-elementary groups.
It is well known (e.g., [87]) that if § > 1 then A9 = §(2 — §), where )¢ is the base eigenvalue of
the Laplacian on M. We let C(A) C B denote the hyperbolic convex hull of the limit set. Then
C(M)=C(A)/G C M is called the convex core of M. G is called geometrically finite if the unit
neighborhood of C(M) in M has finite volume (this is equivalent to there being a finite sided
fundamental domain for G in B). These form a “nice” class of finitely generated groups which
are well understood. Unlike the case of Fuchsian groups, there are finitely generated Kleinian
groups which are not geometrically finite. These are the geometrically infinite groups. Finally,
G is called topologically tame if M is homeomorphic to the interior of a compact manifold with
boundary.
e Building limit sets by conformal collapsing: One of my motivations for considering
conformal collapsing is to build limit sets of Kleinian groups directly, without taking limits of
“simpler” groups. One case where I believe this will work are the so called Koebe groups. A
geometrically finite group G is a Koebe group if the ordinary set of G has a simply connected
G-invariant component (i.e., is a “B-group”) and every other component of 2 is a round disk.
Koebe groups were introduced by Maskit in [71], [72] where he proved that every geometrically
finite B-group is conformally similar to a Koebe group, i.e., is conjugate by a quasiconformal
homeomorphism of the sphere which is conformal on the invariant component. (Note the simi-
larity to Conjecture 7.)

Here is a plan to build a Koebe group from scratch. Take a Riemann surface R = D/G and a
collection of disjoint simple geodesics {y;x} C R. Let I' C D be all lifts of Ugy, to the disk and

assume that any two components of I' are at least hyperbolic distance § > 0 apart.

Conjecture 9. Suppose I' C D is a §-separated collection of infinite hyperbolic geodesics (not
necessarily invariant under a group). Then there is a continuous map F : §* — S? which is

conformal on D* such that (1) F maps each component of T' to a point, and (2) F maps each



7

component of D\ T to a disk. If, in addition, T is invariant under a Fuchsian group G, then

for any g € G, Fogo F~' is Mébius, i.e., F(T) is the limit set of a Kleinian group.

The proof of Conjecture 9 should be similar to my approach to conformal welding: take e-
neighborhoods of n components of I', apply Koebe’s theorem and show the limit exists as e — 0
and n — oo. This will require certain estimates using capacity and quasiconformal mappings.
One interesting aspect is that unlike Maskit’s construction using the Klein-Maskit combination
theorem, our group G need not be finitely generated and the geodesics we collapse need not be
closed on the quotient surface. In this case the tangent points between round components need
not be parabolic fixed points. I am not aware that this possibility has been considered before.
If this works out, the next step will be to use conformal collapsing to build limit sets of finitely
generated, but geometrically infinite groups (proving such limit sets are locally connected).

e Where is dimension minimized on the boundary of Teichmuller space? Another
reason for considering Koebe groups is the special role they play on the boundary of Teichmiiller
space. Fix a finitely generated Fuchsian group G and consider the Hausdorff dimension of the
limit set as a function on the corresponding Teichmiiller space T. In [30] Peter Jones and I
proved that this is a lower semi-continuous function on the closure of Tz which only attains
its minimum value 1 at G and is equal to its maximum, 2, exactly at the geometrically infinite
groups on 07Tg. Thus the dimension attains a minimum value somewhere on the boundary of
Teichmiiller space: the value is strictly between 1 and 2 and is attained at some geometrically

finite group.
Conjecture 10. The minimum of dim(A) on 0Tq is attained at a Koebe group.

Why Koebe groups? In some sense these are the “simplest” groups on the boundary of T, so
perhaps their limit sets are “smallest” in terms of dimension. By Maskit’s theorem it suffices

to prove the first statement of the following conjecture.

Conjecture 11. If G’ is conformally similar to a Koebe group G then dim(A(G")) > dim(A(G)).

Equality occurs iff the groups are conjugate by a Mdbius transformation.

For Fuchsian groups (which are a special case of Koebe groups), the first part is trivial for
topological reasons and the second is Bowen’s dichotomy discussed in the summary of previous
work. Can we prove Conjecture 11 without using group invariance? We say {2 is a Bowen

domain if dim(f(09)) > dim(99) for every quasiconformal map of S? which is conformal on Q.
Conjecture 12. The invariant component of a Koebe group is a Bowen domain.

One can construct examples of Bowen domains by putting a QS-minimal set (see summary of
previous work) into the boundary, but other examples are not obvious. Proving a set is minimal
for quasiconformal maps usual involves finding a “large” path family in the set. Perhaps these

ideas can be modified to study Bowen domains by also allowing certain paths crossing though
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2. Can we find an “interesting” geometric condition which implies 2 is Bowen (e.g., 09 has
“branching” at all points and all scales)? Assuming the dimension function on T is minimized
at a Koebe group, it is natural to try to identify which group.

Conjecture 13. The minimizing Koebe group corresponds to collapsing a single geodesic loop.

Which loop to choose? The shortest one? This seems unlikely in general; if R had several equal
length shortest geodesics, there is no reason why the corresponding Koebe groups should all
have the same dimension, so by making a small deformation of the surface we could get a new
surface with a unique shortest geodesic vy so that collapsing v did not minimize dimension. On

the other hand, perhaps this is true if there is one very short geodesic.

Conjecture 14. There is ¢ = ¢(n) > 0 so the following holds. Suppose that R = D/G is a
compact surface of genus n and v is closed simple geodesic on R so that £(y) < c(v') for any

other geodesic v'. Then collapsing v yields a Koebe group which minimizes dimension on 0.

o Heat kernels and the Ahlfors conjecture: After considering the “smallest” groups on
the boundary of Teichmiiller space, we turn to the “largest” ones: the geometrically infinite
groups. Some well known problems state that these groups have the same nice properties that

geometrically finite groups do. Among these problems are

Conjecture 15 (Marden’s conjecture). If G is finitely generated, then it is topologically tame.
Conjecture 16 (The Ahlfors conjecture). If G is finitely generated, then A = S% or |A|s = 0.
Conjecture 17. If G is finitely generated and non-elementary, then 6 = dim(A).
Conjecture 18. If G is finitely generated, but geometrically infinite then § = 2.

In Conjecture 16, | - | denotes 2-dimensional Lebesgue measure. It is known that 15 = 16
= 17 & 18 (see [26], [27], [30], [35]). Using heat kernels, Peter Jones and I proved [30] that for
finitely generated, geometrically infinite groups, the limit set always has dimension 2 (which is
a weaker version of Conjecture 18). If § = 2 there is nothing to do since we proved § < dim(A)
for all non-elementary groups. If § < 2 then the base eigenvalue satisfies Ag > 0 which implies
the heat kernel k(x,y,t) decays exponentially fast in time. If we start a Brownian motion deep
inside the convex core (which we can do since the convex core is non-compact in this case),
we can use this estimate to prove the Brownian motion never leaves the convex core with high
probability. Lifting to the ball, this means that with positive probability, Brownian motion
leaves the ball without ever leaving the hyperbolic convex hull of the limit set. Thus Brownian
motion hits A with positive probability which implies A has positive area.

This argument shows that A has zero area, iff lim;_, fC( M) k(z,y,t)dy = 0, i.e., iff a Brownian
motion eventually exits the convex core of M almost surely. Thus the Ahlfors conjecture can

be restated in terms of heat kernel estimates. If G is topologically tame and has a positive
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lower bound on its injectivity radius then Peter Jones and I proved a more precise rate of
decay, namely fC( M) k(z,y,t)dy < C/+/t [31]. Does this last estimate characterize topological
tameness? What if we allow thin parts? The heat kernel approach gives a new way to attack
these conjectures and provides a natural way of comparing them.

e The escaping limit set has full dimension: Fernindez and Melidn [54] proved that in an
infinite area Riemann surface with no Green’s function, the geodesics rays escaping to oo (with

a given base point) have dimension 1. What about higher dimensions?

Conjecture 19. If M is an infinite volume hyperbolic n-manifold with no Green’s function

then the escaping geodesics have dimension n — 1.

I can prove this with a positive lower bound on the injectivity radius. The proof involves
constructing an appropriate harmonic function with bounds on the gradient. In general we will
require a better understanding of harmonic functions in thin parts of hyperbolic manifolds.

e The law of the iterated logarithm for Kleinian groups: Another problem involving
harmonic functions in thin parts is to determine the exact Hausdorff guage function for limit
sets of geometrically infinite, but topologically tame Kleinian groups (the dimension is 2 by
[30]). Peter Jones and I proved in [31] that if G also has injectivity radius bounded away

from zero, then the limit set A has positive, finite Hausdorff measure for the function ¢(t) =

t? \/ log % log log log %, extending work of Sullivan [84]. Is this still true if M has thin parts?
The proof in [31] depends on a careful estimate of the Green’s function for M. If M has a thin
part, there is a n~3 chance of Brownian motion exiting the thin part at distance n from where
it entered. Thus the behavior of Green’s function on the manifold should be modeled by the
random walk on the integers with these transition probabilities. It is also still open to find the
dimension (in terms of guage functions) of the conical limit set, even with a lower bound on the
injectivity radius.
3. Computational, hyperbolic and conformal geometry

e Domes and ¢: Suppose {2 is a simply connected plane domain. The dome of €2 is the surface
Sq in Ri which is the upper envelope of all semi-spheres whose base is a disk contained in €.
Equivalently, Sq is the boundary of the hyperbolic convex hull in ]R?‘|r of Q¢ = 52\ Q. Thurston
observed that there is an isometry ¢ from Sq with its hyperbolic path metric to the hyperbolic
disk. Restricting this map to the boundary 0Sq = 02 gives a map ¢ : 9Q — T (at least if 99
is a Jordan curve; in general we have to be more careful about the boundary values, but this is
standard material). Sullivan (in a special case) [85] and Epstein and Marden (in general) [51]

proved there is a K-quasiconformal extension of ¢ : 2 — D with K independent of €.
Problem 20. What is the best K for the Sullivan-Epstein-Marden theorem?

It is currently known that 2.1 < K < 7.82 (by Epstein-Markovic [52] and myself [22]). The map

¢ also has a simple geometric description in the plane. Suppose that 2 C C is a finite union of
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disks. Then ) can be written as the union of one “root” disk Dy and finite number of crescents
(domains bounded by two circular arcs). We can map one arc of a crescent to the other by a
unique elliptic Mobius transformation. Equivalently, follow the circles which are orthogonal to
both boundary arcs. Composing these maps we get an explicit map ¢ : 9Q — 0Dy (see left
figure below). This is the same map as we discussed above. A similar construction can be done
for a general simply connected domain, but the details are more involved (using the medial
axis, a geometric object we will describe later, one can foliate 2 \ Dy by circular arcs and ¢ is
obtained by following paths orthogonal to this foliation; see center figure below). Thus ¢ gives
a purely geometric way to estimate conformal modulus up to a uniform factor, e.g., we can use
¢ to estimate the modulus of the path family connecting the two bold arcs in the maze on the
right below, and the answer will be accurate up to a factor of at least 7.82. Geometric estimates
of conformal quantities are basic tools of geometric function theory; does this type of estimate

have any interesting applications?

- =
N J —— "

e The factorization theorem and Brennan’s conjecture: Knowing the best K in Problem

20 is interesting for classical complex analysis. This is because I proved in [13] that the extension
of 1 :  — D can be chosen to be locally Lipschitz with a uniform bound. This implies there is
a K < 00, so that every conformal map f : D — Q can be factored as f = g o h where h is a

K-quasiconformal self-map of the disk and |¢| is bounded away from zero uniformly.
Problem 21. What is the optimal K for factorization?

If this holds for K = 2 then Astala’s sharp L? estimate [2] for quasiconformal maps implies
Conjecture 22 (Brennan’s conjecture). If g : @ — D is conformal then ¢’ € LP for all p < 4.

Epstein and Markovic have an example where K for Sullivan’s theorem is > 2.1, but what
about the factorization theorem? Can we prove the factorization theorem with L? estimates on
¢’ and A’ directly without estimating the QC constant? For example, the map ¢ has a Beltrami
dilatation u of a special form; can this be exploited to give a better estimate than Astala’s
general result? Is Astala’s theorem sharp for maps which preserve the circle, e.g., if h: T — T
is M -quasisymmetric, what is the best LP space the derivative of a quasiconformal extension of
h to the disk can be in? If such estimates fail then we should be able to find a domain with bad
estimates and try to iterate the geometry to obtain a counterexample to Brennan’s conjecture.
e The parameter problem: Is it useful to have an easily computed rough approximation

for the Riemann map? If 2 is bounded by a simple polygon P with vertices v = {v1,...,v,},
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then the conformal map of the disk onto Q is given by the Schwarz-Christoffel formula f(z) =
A+C [* T, (1— %)ak-ldw, where may, is the interior angle at vertex v, and z = {z1,...,2,}
are the preimages of the vertices. To apply the formula we must first know the points z, which
are usually found by some iterative procedure. My results imply that dgc(z,:¢(v)) < log7.82,
where dgc(z,w) is the minimal log K so that there is a K-QC map of the disk mapping z to
w. Moreover, I show in [29] that if P has n vertices then w = +(v) can be computed with work
< Cn. The novel feature is that the constants K = 7.82 and C are independent of n and the
geometry of the polygon. So far as I know, there are no results of this type already known. The
standard practice when solving for z is to start with n equally spaced points on the circle. Is
t(v) a better starting point in practice, i.e., does it lead to a solution more often or more quickly
using known iteration methods?

One such method is due to Davis [47] Suppose the n angles are fixed. Given a current
guess w for the prevertices one computes the Schwarz-Christoffel map with these parameters
and compares the resulting polygon P, to the given polygon P. The spacing between the
prevertices is increased or decreased according to whether the side lengths of P, are too short
or too long compared to the sides of P. As Howell points out in [67], lengthening the side of a
polygon with given angles can sometimes decrease its harmonic measure, and so Davis’s method
can fail to converge even if we start arbitrarily close to the correct answer. However, it does
seem to work in many cases, and is nice because it uses the geometry of the problem (rather
than calling a general non-linear equation solver). Can we use more sophisticated geometric
properties of harmonic measure to improve it?

One possible improvement is to use the + map. Given n distinct points on the circle, we
can triangulate the disk with n — 2 triangles and these points as vertices. Now form n — 3
quadrilaterals with domain D by using vertices from adjacent triangles. The logarithms of the
conformal moduli of these quadrilaterals determines the n points up to a Mobius transformation
and hence identifies n-tuples (modulo Mobius transformations) with R*~2. We can define a map
U from R*3 to itself as follows. Given n — 3 real numbers, find a corresponding n-tuple and
apply Schwarz-Christoffel to get a polygon. Then apply ¢ to get a n-tuple on the circle. (The
intermediate polygon might be self-intersecting, but this is not a serious problem). It is easy
to see this map is well defined and the correct prevertices are a solution of ¥(z) = ¢(v). I can

show U is onto and it is natural to ask

Problem 23. Is the the map ¥ 1-to-1? Is U a diffeomorphism? Does F(z) = || ¥(z) — «(v)||3

have a unique local minimum? How fast can we solve V(z) = w numerically?

In [49] Driscoll and Vavasis defined a very similar map using cross ratios and observed that in
practice the iteration wy = 1(v), w41 = w, — ¥(w,,) always converged linearly to the correct

answer and they asked for an explanation. I can prove ||[¥(w) — w|| < C, so ¥ looks like the



12

identity on large scales. If this also held on small scales (e.g., its derivative was close to the

identity) this would explain the experimental observations of Driscoll and Vavasis.
Problem 24. Prove the iteration of Driscoll and Vavasis converges to the conformal prevertices.

More generally, find any algorithm which converges to the true conformal prevertices with an
estimate which is independent of the geometry of the polygon. Many more ideas from hyperbolic
geometry and geometric function theory could be applied. If we fix all but one coordinate in ¥,
the resulting function need not be monotone [29], but perhaps some variation is. For example,
W depended on a choice of triangulation; what happens if we average over many triangulations?
In [29] T show how angle scaling (as developed by Epstein, Marden and Markovic) reduces the
global convergence problem to a local one.

e The medial axis: The medial axis of 2, MA({2), consists of the centers of all disks in 2
whose boundaries hit 9€2 in two or more points. For polygons the medial axis is a finite tree,
and is the boundary of a Voronoi diagram (it bounds regions in P which consist of points closest

to certain arcs of P). The medial axis (or skeleton) was introduced by Blum [33] as a way of

<
L5

describing shapes in biology and there is now a large literature applying it to problems such

as mesh generation, computer vision, robotic motion, sphere packing and radiosurgery, e.g.,
[40], [55], [58], [65], [66], [68], [79], [80], [89], [91]. Other applications are described on David
Eppstein’s website www.cs.uci.edu/"eppstein/gina/medial.html. Many papers deal with
algorithms for computing the medial axis (e.g. [37], [38], [45], [53], [82], [83], [92]), but relatively
few investigate it as a mathematical object (e.g., [39], [41], [42], [43], [90]) and many of these
place strong restrictions on the domain, e.g., piecewise analytic boundary.

The dome of €2 is easily computed from the medial axis and a theorem of Chin, Snoeyink
and Wang [38] that the medial axis can be computed in time O(n) is used in my proof that the
conformal prevertices can be approximated in time O(n). In [29] I point out that the medial
axis can be identified with the dual R-tree of the bending lamination, a well studied measured
lamination on the dome of 2, but the implications of this remain to be investigated. (An R-tree
is a metric space in which any two points are connected by a unique arc and this arc is isometric
to a segment in R. Any finite tree is a R-tree, but so is R? if we define d(z,y) = |z — y| if z,y
lie on the same ray from the origin and = |z| + |y| otherwise. See [8], [76].)

There are numerous practical and theoretical problems that are open. Which R-trees occur as
medial axes? The medial axis itself is very unstable under perturbations. For example, changing

the unit disk to a regular n-gon changes the medial axis from a single point to a union of n
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unit length radial segments. Is there a practical alternate version of the medial axis which is
more stable under perturbations (what happens if we replace the Euclidean metric by the R-tree
metric induced by the bending lamination)? What kind of perturbations? Davis’s algorithm
used edge lengths to update the prevertex approximations, but perhaps it would be better to
compare medial axes.

I would like to use the medial axis to study properties of domains. For example, in [12] I use
a Mobius invariant version of Peter Jones’ 8’s based on how closely the boundary approximates
a circle. Can we characterize the smoothness of a domain using these and the medial axis?
Stephen Vavasis suggested using these ideas to estimate the L? norm of harmonic conjugation
on a domain (i.e., he wants to find geometric conditions on 2 that assure |f'|dz is an Ay weight,
where f : D — Q is conformal). Manipulating the medial axis allows us to perturb a domain
in a way where we can control both the Euclidean and conformal geometry (approximately), so

Peter Jones suggested it might be a good tool for attacking the following well known problem.
Question 25. Is the space of chord-arc curves connected?

Recall that a chord-arc curve is a locally rectifiable curve such that the shorter arc connecting
two points z,y has length at most C|z — y| for some fixed C. The arc length parameterization
has derivative in BMO and this identifies chord-arc curves with an open subset of BMO. This

is the topology being considered above.
4. Educational and broader impact of the proposal

One impact of the proposal will be to establish new collaborations between different disciplines
within mathematics by finding new connections between them. For example, we have shown
Koebe’s circle domain theorem is connected with conformal weldings, that Moore’s results in
planar topology generalized to conformal collapsing would have applications in dynamics, that
problems about Kleinian groups (such as the Ahlfors conjecture) can be attacked by heat kernel
estimates and probability, and conformal mapping problems (such as Brennan’s conjecture) are
related to 3-dimensional hyperbolic geometry. The work on heat kernels and Kleinian groups
has already stimulated some work by Chang, Qing and Yang on conformally flat manifolds and
the connection between hyperbolic geometry and conformal mappings is cited as motivation for
some of the recent work of Epstein, Marden and Markovic [50], [52].

The proposal also seeks to establish new collaborations between investigators in pure math-
ematics and in applied mathematics and computer science. We already have seen that the
hyperbolic viewpoint leads to new ideas for numerically computing conformal maps and there
are numerous applications of such algorithms (e.g., see the book of Driscoll and Trefethen [48]
for examples such as fluid flow, mesh generation and electrostatics). I hope the proposal will
lead both to new theorems (rigorous estimates for convergence) and improved algorithms which
will have practical benefits (starting from a guaranteed good guess, using known geometric

properties of harmonic measure to design better iterative schemes). Investigating the medial
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axis may also have a broad impact. As noted in the proposal, it already has many applications
as a compact description of the shape of a region, but has instability which is undesirable from
a computational standpoint. Explaining this instability (or decreasing it using ideas from hy-
perbolic geometry), might be useful in practice. Conversely, the literature on the medial axis
in computational geometry may offer new ideas to low dimensional topology and analysis, such
as new conformal invariants and new ideas for how to classify and perturb domains.

Establishing new connections between disciplines will apply more points of view to important
problems, and no doubt a lot of interesting (and unanticipated) work will result on both theo-
retical and practical problems. My initial results on conformal prevertices seem to be of interest
to the applied mathematicians I have discussed them with (e.g., Nick Trefethen called them
a “substantial contribution” and Steve Vavasis thought they should have applications beyond
conformal mappings). I have been encouraged to submit my paper to one of the STAM jour-
nals and have also been invited to submit the work to the ACM Symposium on Computational
Geometry. If nothing else, this indicates that there is interest in the proposed work and real
opportunities for new interdisciplinary collaborations.

The proposed work also promotes the integration of research and education at both the
graduate and undergraduate levels. Currently I am teaching a graduate course on Kleinian limit
sets which is closely related to the proposal. In the near future I plan to teach a graduate course
on numerical conformal mappings and hyperbolic geometry. The material is accessible enough
that students can understand the problems quickly and are exposed to the interaction of analysis,
geometry, topology, probability and some computational aspects as well. I also plan to use this
material in MAT 402, an undergraduate seminar which our math majors are required to take.
Our department is starting a new masters program in mathematics education; perhaps a topic
like the medial axis could be used in secondary education to illustrate how elementary geometric
concepts can yield important “real life” applications (e.g., computer recognition of printed
characters, optimal placement of medical radiation, ... ) which require “abstract” mathematics
to understand.

A former graduate student, Zsuzsanna Gonye, finished her thesis on the Hausdorff dimension
of escaping geodesics. She showed that for a large class of hyperbolic manifolds the geodesics
which escape to infinity at linear speed (or at any specified sub-linear speed) have full dimension.
She also shows that a theorem of Steger and myself [32] for finitely generated Fuchsian groups
fails for some divergence type groups. She is now at Polytechnic University in Brooklyn, NY.
A current student, Karyn Lundberg, is working on problems related to Koebe’s theorem and
conformal welding. Another, Hrant Hakobyan, will work on the construction of Koebe groups
and their properties as described in the proposal. Another student, Anirban Dutta, is still
working on his qualifying exams, but has expressed an interest in problems involving Brownian

motion or geometric classifiers (such as the medial axis). A pending supplement to my previous
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grant will be used to support visits to Stony Brook by Melkana Brakalova. She will work with
me on geometric properties of solutions of the generalized Beltrami equation.

Many of the problems we have discussed could be understood by undergraduates and can
be investigated by numerical means. Here are a couple of ideas that might be suitable for
undergraduate research projects.

e Compute conformal weldings: The map (log(2==))~" maps the outside of the unit disk to

241
the outside of the two tangent disks D(3,2)UD(—1, 1), identifying the points +i to the tangent

point at 0. Given an involution h of T with fixed points £1 and n points in the upper half circle,
use M&bius conjugates of this map to inductively identity zj and h(zg) to a point z;. Obtain
a chain of “blobs” which satisfy the conformal welding relation at the tangent points. Write a

program to compute the polygonal arc z1,...,z,. If h is quasisymmetric show it converges to a

(D) oD oD %>

e Numerically estimate the constant in Sullivan’s theorem: Suppose 2 is a polygon

quasi-arc.

and let f : D — Q be a conformal map (this can be computed using available software) and
let ¢« : 9Q — T be the restriction of the isometry from S to . Compute the quasisymmetric
constant of ¢ o S for various examples. Search for the worse case.

o Iterating Schwartz-Christoffel and :: Fix n angles and write a program to iterate the
map ¥ = ;0§ on n-tuples in the circle. Do the iterates converge? Is there a fixed point?
Similarly investigate the closely related map S o ¢ which maps polygons to polygons. Do they
remain bounded under iteration? How do sides degenerate? Near an internal angle of size « the
conformal map to the disk acts like 27/® and ¢ behaves like z if @ > 7 and 2z'/5™@) if o < 7.
Thus ¢ o § will look repelling nears points with angle < 7 and attracting near angles > .

e Dimension of Koebe groups: Numerically estimate the dimension of limits set (perhaps
via the Poincaré series) when R is a once punctured torus (the boundary of this Teichmiiller
space is well understood and we can write down generators for the groups).

e Computing Riemann maps: Use «(v) as a starting point for known iterative schemes for
finding conformal prevertices. How does this compare to starting from equally spaced points?
e Bending of hyperbolic convex surfaces: It is of great interest to estimate the “bending”
of the dome. If Q is a finite union of disks, B(t) is the sum of angles between geodesic faces in
S encountered by a geodesic segment of length ¢ on S. In this case the bending angles and the
hyperbolic distance can be interpreted in terms of the Delaunay triangulation of the vertices
of Q. Estimate the bending for various examples using available software in computational

geometry for computing Delaunay triangulations.



16

[1]
2]
(3]
[4]

[5]

[10]
[11]

[12]
[13]

[14]

REFERENCES

L.V. Ahlfors. Lectures on quasiconformal mappings. Math. Series, no. 10,. Van Nostrand, 1966.

K. Astala. Area distortion of quasiconformal mappings. Acta Math., 173(1):37-60, 1994.

K. Astala and M. Zinsmeister. Mostow rigidity and Fuchsian groups. Comptes Rendu Acad. Sci., Paris,
311:301-306, 1990.

K. Astala and M. Zinsmeister. Holomorphic families of quasi-Fuchsian groups. Ergod. Th. & Dynam. Sys.,
14:207-212, 1994.

K. Astala and M. Zinsmeister. Abelian coverings, Poincaré exponent of convergence and holomorphic defor-
mations. Ann. Acad. Sci. Fenn. Ser. A I Math., 20(1):81-86, 1995.

F. Bagemihl. Curvilinear cluster sets of arbitrary functions. Proc. Nat. Acad. Sci. U. S. A., 41:379-382, 1955.
L. Banjai and L.N. Trefethen. A multipole method for Schwarz-Christoffel mapping of polygons with thou-
sands of sides. STAM J. Sci. Comp. to appear.

M. Bestvina. R-trees in topology, geometry, and group theory. In Handbook of geometric topology, pages
55-91. North-Holland, Amsterdam, 2002.

C. J. Bishop. Bi-Lipschitz homogeneous curves in R? are quasicircles. Trans. Amer. Math. Soc., 353(7):2655-
2663 (electronic), 2001.

C. J. Bishop. Divergence groups have the Bowen property. Ann. of Math. (2), 154(1):205-217, 2001.

C. J. Bishop. BiLipschitz approximations of quasiconformal maps. Ann. Acad. Sci. Fenn. Math., 27(1):97—
108, 2002.

C. J. Bishop. Non-rectifiable limit sets of dimension one. Rev. Mat. Iberoamericana, 18(3):653-684, 2002.
C. J. Bishop. Quasiconformal Lipschitz maps, Sullivan’s convex hull theorem and Brennan’s conjecture. Ark.
Mat., 40(1):1-26, 2002.

C. J. Bishop. Quasiconformal mappings of Y-pieces. Rev. Mat. Iberoamericana, 18(3):627-652, 2002.

C. J. Bishop. d-stable Fuchsian groups. Ann. Acad. Sci. Fenn. Math., 28(1):153-167, 2003.

C. J. Bishop, V. Ya. Gutlyanskii, O. Martio, and M. Vuorinen. On conformal dilatation in space. Int. J.
Math. Math. Sci., (22):1397-1420, 2003.

C. J. Bishop and P. W. Jones. Compact deformations of Fuchsian groups. J. Anal. Math., 87:5-36, 2002.
C. J. Bishop and J. T. Tyson. Conformal dimension of the antenna set. Proc. Amer. Math. Soc., 129(12):3631—
3636 (electronic), 2001.

C. J. Bishop and J. T. Tyson. Locally minimal sets for conformal dimension. Ann. Acad. Sci. Fenn. Math.,
26(2):361-373, 2001.

C.J. Bishop. Conformal welding and Koebe’s theorem. submitted to Annals of Math.

C.J. Bishop. A criterion for the failure of Ruelle’s property. submitted to Erg. Thy. and Dyn. Sys.

C.J. Bishop. An explicit constant for Sullivan’s convex hull theorem. In Proceedings of the Ahlfors-Bers
Collogium, 2001. Amer. Math. Soc., Providence, RI. to appear.

C.J. Bishop. Interpolating sets for conformal maps. submitted to J. Amer. Math. Soc.

C.J. Bishop. The linear escape limit set. to appear in Proc. Amer. Math. Soc.

C.J. Bishop. Orthogonal functions in H*. submitted to Pacific J. Math.

C.J. Bishop. Minkowski dimension and the Poincaré exponent. Michigan Math. J., 43(2):231-246, 1996.
C.J. Bishop. Geometric exponents and Kleinian groups. Invent. Math., 127(1):33-50, 1997.

C.J. Bishop. Big deformations at infinity. 2003. to appear in Illinois J. of Math.

C.J. Bishop. A fast approximation to the Riemann map. 2003. Preprint.

C.J. Bishop and P.W. Jones. Hausdorff dimension and Kleinian groups. Acta. Math, 179:1-39, 1997.

C.J. Bishop and P.W. Jones. The law of the iterated logarithm for Kleinian groups. In Lipa’s legacy (New
York, 1995), pages 17-50. Amer. Math. Soc., Providence, RI, 1997.

C.J. Bishop and T. Steger. Representation-theoretic rigidity in PSL(2, R). Acta Math., 170(1):121-149, 1993.
H. Blum. A transfomation for extracting new descriptors of shape. In W.W. Dunn, editor, Proc. Symp.
Models for the perception of speech and visual form, pages 362-380, Cambridge, 1967. MIT Press.

R. Bowen. Hausdorff dimension of quasicircles. Publ. I. H. E. S., 50:11-25, 1979.

R.D. Canary. Ends of hyperbolic 3-manifolds. J. Amer. Math. Soc., 6(1):1-35, 1993.

L. Carleson, P. W. Jones, and J.-C. Yoccoz. Julia and John. Bol. Soc. Brasil. Mat. (N.S.), 25(1):1-30, 1994.
C.-S. Chiang and C.M. Hoffmann. The medial axis transform for 2D regions. ACM Transactions on graphics,
1982.

F. Chin, J. Snoeyink, and C. A. Wang. Finding the medial axis of a simple polygon in linear time. Discrete
Comput. Geom., 21(3):405-420, 1999.



39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
(48]
[49]
[50]

[51]

[52]
[53]
[54]

[55]

[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]

[66]

17

H. I. Choi, S. W. Choi, and H. P. Moon. Mathematical theory of medial axis transform. Pacific J. Math.,
181(1):57-88, 1997.

H.I. Choi, C.Y. Han, and J.-H. Yoon. Medial axis transform distance and its applications 2000, April 2000
Kyung Moon, Seoul, Korea. In Geometric modeling and computer graphics, pages 65—69.

S. W. Choi and H.-P. Seidel. Hyperbolic Hausdorff distance for medial axis transformation. Graphical Models,
63:369-384, 2001.

S. W. Choi and H.-P. Seidel. Linear one-sided stability of MAT for weakly injective domain. J. Math. Imaging
Vision, 17(3):237-247, 2002.

S.W. Choi and S.-W. Lee. Stability analysis of medial axis transform. In Proc. 15th ICPR Barcelona, Spain,
volume 3, pages 139-142, 2000.

E. F. Collingwood. Cluster sets of arbitrary functions. Proc. Nat. Acad. Sci. U.S.A., 46:1236-1242, 1960.
T. Culver, J. Keyser, and D. Manocha. Accurate computation of the medial axis of a polyhedron. In Pro-
ceedings of the fifth ACM symposium on Solid modeling and applications, June 8-11, 1999, Ann Arbor, MI
USA, pages 179-190, 1999.

G. David. Solutions de ’équation de Beltrami avec |||l = 1. Ann. Acad. Sci. Fenn. Ser. A I Math.,
13(1):25-70, 1988.

R.T. Davis. Numerical methods for coordinate generation based on Schwarz-Christoffel transformations. In
4th ATAA Comput. Fluid Dynamics Conf., Williamsburg VA, pages 1-15, 1979.

T. A. Driscoll and L. N. Trefethen. Schwarz-Christoffel mapping, volume 8 of Cambridge Monographs on
Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2002.

T. A. Driscoll and S. A. Vavasis. Numerical conformal mapping using cross-ratios and Delaunay triangulation.
SIAM J. Sci. Comput., 19(6):1783-1803 (electronic), 1998.

D. B. A. Epstein, A. Marden, and V. Markovic. Quasiconformal homeomorphisms and the convex hull
boundary.

D.B.A. Epstein and A. Marden. Convex hulls in hyperbolic spaces, a theorem of Sullivan and measured
pleated surfaces. In Analaytical and geometric aspects of hyperbolic spaces, London Math. Soc. Lecture Notes
Series 111, pages 113-253. Cambridge University Press, 1987.

D.B.A. Epstein and V. Markovic. The logarithmic spiral: A counterexample to the K = 2 conjecture. to
appear in Annals of Math.

G. Evans, A. Middleditch, and N. Miles. Stable computation of the 2D medial axis transform. Internat. J.
Comput. Geom. Appl., 8(5-6):577-598, 1998.

J. L. Ferndndez and M. V. Melidn. Escaping geodesics of Riemannian surfaces. Acta Math., 187(2):213-236,
2001.

C. Gaudeau, M. Boiron, and J. Thouvenot. Squelettisation et anamorphose dans I’étude de la dynamique des
déformations des structures: application & I’analyse de la motricité gastrique. In Recognition of shapes and
artificial intelligence (Second AFCET-IRIA Cong., Toulouse, 1979), Vol. III (French), pages 57-63. IRIA,
Rocquencourt, 1979.

M. Ghamsari and D.A. Herron. Higher dimensional Ahlfors regular sets and chordarc curves in R". Rocky
Mountain J. Math., 28(1):191-222, 1998.

M. Ghamsari and D.A. Herron. Bi-Lipschitz homogeneous Jordan curves. Trans. Amer. Math. Soc.,
351(8):3197-3216, 1999.

H. N. Gursoy and N. M. Patrikalakis. Automated interrogation and adaptive subdivision of shape using
medial axis transform. Advances in Engineering Software and Workstations, 13(5/6):287-302, 1991.

D. H. Hamilton. Generalized conformal welding. Ann. Acad. Sci. Fenn. Ser. A I Math., 16(2):333-343, 1991.
D. H. Hamilton. Simultaneous uniformisation. J. Reine Angew. Math., 455:105-122, 1994.

D.H. Hamilton. Length of Julia curves. Pacific J. Math., 169(1):75-93, 1995.

Z.-X. He and O. Schramm. Fixed points, Koebe uniformization and circle packings. Ann. of Math. (2),
137(2):369-406, 1993.

Z.-X. He and O. Schramm. Koebe uniformization for “almost circle domains”. Amer. J. Math., 117(3):653~
667, 1995.

D.A. Herron and V. Mayer. Bi-Lipschitz group actions and homogeneous Jordan curves. Illinois J. Math.,
43(4):770-792, 1999.

C.M. Hoffmann. Computer vision, descriptive geometry and classical mechanics. In Computer Graphics and
Mathematics, pages 229-244. Springer Verlag, Eurographics Series, 1992.

C.M. Hoffmann. Geometric Approaches to Mesh Generation, volume 75 of IMA Volumes in Mathematics
and its Applications, pages 31-52. Springer Verlag, 1995.



18
[67]

[68]

[69]

[70]

[85]

[86]
(87]

[88]
(89]
[90]

[91]

[92]

L. Howell. Computation of Conformal Maps by Modified SchwarzChristoffel Transformations. PhD thesis,
1990.

R. A. Jinkerson, S. L. Abrams, L. Bardis, C. Chryssostomidis, A. Clement, N. M. Patrikalakis, and F. E.
Wolter. Inspection and feature extraction of marine propellers. Journal of Ship Production,, 9(2):88-106,
1993.

O. Lehto. Homeomorphic solutions of a Beltrami differential equation. In Festband 70. Geburtstag R. Nevan-
linna, pages 58—65. Springer, Berlin, 1966.

O. Lehto. Remarks on generalized Beltrami equations and conformal mappings. In Proceedings of the
Romanian-Finnish Seminar on Teichmiller Spaces and Quasiconformal Mappings (Bragov, 1969), pages
203-214. Publ. House of the Acad. of the Socialist Republic of Romania, Bucharest, 1971.

B. Maskit. On the classification of Kleinian groups. I. Koebe groups. Acta Math., 135(3-4):249-270, 1975.
B. Maskit. On the classification of Kleinian groups. II. Signatures. Acta Math., 138(1-2):17-42, 1976.

C. T. McMullen. Kleinian groups and John domains. Topology, 37(3):485-496, 1998.

R. L. Moore. Concerning upper semi-continuous collections of continua. Trans. Amer. Math. Soc., 27(4):416—
428, 1925.

R. L. Moore. Concerning triods in the plane and the junction points of plane continua. Proc. Nat. Acad. Sci,
14:85-88, 1928.

J. W. Morgan. A-trees and their applications. Bull. Amer. Math. Soc. (N.S.), 26(1):87-112, 1992.

R. Nakki and J. Viisdld. John disks. Ezposition. Math., 9(1):3-43, 1991.

K. Oikawa. Welding of polygons and the type of Riemann surfaces. Kodai Math. Sem. Rep., 13:37-52, 1961.
N. M. Patrikalakis and T. Maekawa. Shape Interrogation for Computer Aided Design and Manufacturing.
Springer Verlag, 2002.

G. X. Ritter. Topology of computer vision. In Proceedings of the 1987 Topology Conference (Birmingham,
AL, 1987), volume 12, pages 117-158, 1987.

D. Ruelle. Repellers for real analytic maps. Ergod. Th. & Dym. Sys., 2:99-107, 1982.

E.C. Sherbrooke, N. M. Patrikalakis, and E. Brisson. An algorithm for the medial axis transform of 3d
polyhedral solids. IEEE Transactions on Visualization and Computer Graphics, 2(1):44-61, 1996.

E.C. Sherbrooke, N. M. Patrikalakis, and F.-E. Wolter. Differential and topological properties of medial axis
transforms. CVGIP: Graphical Model and Image Processing, 58(6):574-592, 1996.

D. Sullivan. Growth of positive harmonic functions and Kleinian group limit sets of planar measure 0 and
Hausdorff dimension 2. In Geometry Symposium (Utrecht 1980), Lecture Notes in Math. 894, pages 127-144.
Springer-Verlag, 1981.

D. Sullivan. Travaux de Thurston sur les groupes quasi-Fuchsiens et les variétés hyperboliques de dimension
3 fibrées sur S*. In Bourbaki Seminar, Vol. 1979/80, pages 196-214. Springer, Berlin, 1981.

D. Sullivan. Discrete conformal groups and measureable dynamics. Bull. Amer. Math. Soc., 6:57-73, 1982.
D. Sullivan. Related aspects of positivity in Riemannian geometry. J. Differential Geom., 25(3):327-351,
1987.

J. V. Vainio. Conditions for the possibility of conformal sewing. Ann. Acad. Sci. Fenn. Ser. A I Math.
Dissertationes, (53):43, 1985.

J. Wang. Medial axis and optimal locations for min-max sphere packing. J. Comb. Optim., 4(4):487-503,
2000.

E.-F. Wolter. Cut locus and the medial axis in global shape interrogation and representation. 1993. MIT,
Dept. of Ocean Engineering, Design Laboratoy Memorandum 92-2.

Q. J. Wu. Sphere packing using morphological analysis. In Discrete mathematical problems with medical
applications (New Brunswick, NJ, 1999), volume 55 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci.,
pages 45-54. Amer. Math. Soc., Providence, RI, 2000.

C.-K. Yap. An O(nlogn) algorithm for the Voronoi diagram of a set of simple curve segments. Discrete
Comput. Geom., 2(4):365-393, 1987.



