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HARMONIC MEASURE: ALGORITHMS AND
APPLICATIONS

Christopher J. Bishop

This is a brief survey of results related to planar harmonic measure, roughly from
Makarov’s results of the 1980’s to recent applications involving 4-manifolds, dessins
d’enfants and transcendental dynamics. It is non-chronological and rather selective,
but I hope that it still illustrates various areas in analysis, topology and algebra that are
influenced by harmonic measure, the computational questions that arise, the many open
problems that remain, and how these questions bridge the gaps between pure/applied
and discrete/continuous mathematics.

1 Conformal complexity and computational consequences

� Three definitions: First, the most intuitive definition of harmonic measure is as the
boundary hitting distribution of Brownian motion. More precisely, suppose Ω � Rn

is a domain (open and connected) and z 2 Ω. We start a random particle at z and let
it run until the first time it hits @Ω. We will assume this happens almost surely; this is
true for all bounded domains in Rn and many, but not all, unbounded domains. Then
the first hit defines a probability measure on @Ω. The measure of E � @Ω is usually
denoted !(z; E;Ω) or !z(E). For E fixed, !(z; E;Ω) is a harmonic function of z on
Ω, hence the name “harmonic measure”.

Next, ifΩ is regular for the Dirichlet problem, then, by definition, every f 2 C (@Ω)

has an extension uf 2 C (Ω) that is harmonic in Ω, and the map z ! uf (z), z 2 Ω is
a bounded linear functional on C (@Ω). By the Riesz representation theorem, uf (z) =R

@Ω f d�z ; for some measure �z , and �z = !z . For domains with sufficient smooth-
ness, Green’s theorem implies harmonic measure is given by the normal derivative of
Green’s function times surface measure on the boundary. Thus the key to many results
are estimates related to the gradient of Green’s function.

Finally, in the plane (but not in higher dimensions) Brownian motion is conformally
invariant, so !z for a simply connected domain Ω is the image of normalized Lebesgue
measure on the unit circle T = fw : jwj = 1g under a conformal map f : D = fw :

jwj < 1g ! Ω with f (0) = z. Because of the many tools from complex analysis, we
generally have the best theorems and computational methods in this case.
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Figure 1: Continuous Brownian motion and two discrete approximations. In
the center is a random walk on a grid; this is slow to use. On the right is the
“walk-on-spheres” or “Kakutani’s walk”; this is much faster to simulate.

� The walk on spheres: Suppose we want to compute the harmonic measure of one
edge of a planar polygon. The most obvious approach is to approximate a Brownian
motion by a randomwalk on a 1

n
�

1
n
grid. See Figure 1. However, it takes about n2 steps

for this walk tomove distance 1, so for n large, it takes a long time for each particle to get
near the boundary. A faster alternative is to note that Brownian motion is rotationally
invariant, so it first hits a sphere centered on its starting point z in normalized Lebesgue
measure. Fix 0 < � < 1 and randomly choose a point on

S�(z) = fw : jw � zj = � � dist(z; @Ω)g:

Now repeat. This random “walk-on-spheres” almost surely converges to a boundary
point exponentially quickly, so only O(logn) steps are needed to get within 1/n of the
boundary; see Binder and Braverman [2012]. I learned this process from a lecture of
Shizuo Kakutani in 1986 and refer to it as Kakutani’s walk.

However, even Kakutani’s walk is only practical on small examples. Long corridors
can make some edges very hard to reach, so we need a huge number of samples to
estimate their harmonic measure. This is called the “crowding phenomena” (because
the conformal pre-images of these edges are tiny; see below). For example, in a 1 � r

rectangle a Brownian path started at the center has only probability � exp(��r/2)

of hitting one of the short ends; for r = 10, the probability1 is ! � 3:837587979 �

10�7. See Figure 2. Thus random walks are not a time efficient method of computing
harmonic measure (but they are memory efficient; see the work of Binder, Braverman,
and Yampolsky [2007]).
� The Schwarz-Christoffel formula: Conformal mapping gives the best way of com-
puting harmonic measure in a planar domain. See Figure 3. Many practical meth-
ods exist; surveys of various techniques include DeLillo [1994], Papamichael and Saff
[1993], Trefethen [1986], Wegmann [2005]. Some fast and flexible current software
includes SCToolbox by Toby Driscoll, Zipper by Don Marshall, and CirclePack by

1In fact, ! = 2
�
arcsin((3�2

p
2)2(2+

p
5)2(

p
10�3)2(51/4 �

p
2
4
); see page 262 of Bornemann,

Laurie, Wagon, and Waldvogel [2004].
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Figure 2: 10, 100, 1000 and 10000 samples of the Kakutani walk inside a 1�10

polygon. This illustrates the exponential difficulty of traversing narrow corridors.

Ken Stephenson. To quote an anonymous referee of Bishop [2010a]: “Algorithmic
conformal mapping is a small topic – one cannot pretend that thousands of people pay
attention to it. What it does have going for it is durability. These problems have been
around since 1869 and they have proved of lasting interest and importance.”

When @Ω is a simple polygon, the conformal map f : D ! Ω is given by the
Schwarz-Christoffel formula (e.g., Christoffle [1867], Schwarz [1869], Schwarz [1890]):

f (z) = A + C

Z z

0

nY
k=1

(1 �
w

zk

)˛k�1dw;

where f˛1�; : : : ; ˛n�g, are the interior angles of the polygon and z = fz1; : : : ; zng �

T = fz : jzj = 1g are the preimages of the vertices (we call these the SC-parameters
or the pre-vertices). For references, variations, and history of this formula, see Driscoll
and Trefethen [2002].

Figure 3: A conformal map to a polygon. The disk is meshed by boxes to a scale
where vertex preimages are well separated. Counting boxes, we can estimate that
the horizontal edge at top left has harmonic measure� 2�16, another illustration
of crowding.
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The Schwarz-Christoffel formula does not really give us the conformal map; one
must still solve for the n unknown SC-parameters, and this is a difficult problem. There
are various heuristic methods that work as follows: make a parameter guess, compute
the corresponding map, compare the image with the desired domain and modify the
guess accordingly. Davis [1979] uses a simple side-length comparison: if a side is too
long (or short), one simply decreases (or increases) the gap between the corresponding
parameters proportionally. The more sophisticated CRDT algorithm of Driscoll and
Vavasis [1998] uses cross ratios of adjacent Delaunay triangles to make the updated
guess. However, neither Davis’ method nor CRDT comes with a proof of convergence,
nor a bound on how many steps are needed to achieve a desired accuracy.
�The fastmapping theorem: However, such bounds are possible (see Bishop [2010a]):

Theorem 1. Given � > 0 and an n-gon P , there is w = fw1; : : : ; wng � T so that

1. w can be computed in at most C n steps, where C = O(1 + log 1
�
log log 1

�
),

2. dQC (w; z) < � where z are the true SC-parameters.

Here a step means an infinite precision arithmetic operation or function evaluation. The
error in Theorem 1 is measured using a distance between n-tuples defined by

dQC (w; z) = infflogK : 9 K-quasiconformal h : D ! D such that h(z) = wg:

A homeomorphism h : D ! D isK-quasiconformal (K-QC) if it is absolutely continu-
ous on almost all lines (so partial derivatives make sense a.e.) and j�hj � k < 1, where
�h = hz/hz is the complex dilatation of h (e.g., see Ahlfors [2006]). Geometrically,
this says that infinitesimal circles are mapped to infinitesimal ellipses with eccentricity
bounded by K = (k + 1)/(k � 1) � 1. In general, QC maps are non-smooth and can
even map a line segment to fractal arc; see Bishop, Hakobyan, andWilliams [2016] and
its references.

The possible boundary values of a QCmap h : D ! D are exactly the quasisymmet-
ric (QS) circle homeomorphisms. We say h : T ! T is M -QS if jh(I )j � M jh(J )j

whenever I and J are disjoint, adjacent intervals of the same length on T .
Amap f : D ! D is called a quasi-isometry (QI) for the hyperbolic metric � if there

is an A < 1 so that A�1 � �(f (z); f (w))/�(z; w) � A whenever �(z; w) � 1; thus
f is bi-Lipschitz at large scales, but we make no assumptions at small scales, not even
continuity. Nevertheless, such an f does extend to a homeomorphism of the boundary
circle, and the class of these extensions is again the QS-homeomorphisms. Thus QC
and QI self-maps of D have the same set of boundary values.

Using the QC-metric on n-tuples has several advantages: it implies approximation
in the Hausdorff metric and ensures points occur in the correct order on T . When K

is close to 1, the QS formulation holds with M � 1 and implies that the relative gaps
between points are correct in a scale invariant way. We also have dQC (w; z) = 0 iff the
n-tuples are Möbius images of each other; this occurs iff the corresponding polygons
are similar, which makes dQC a natural metric for comparing shapes (to be precise,
dQC is only a metric if we consider n-tuples modulo Möbius transformations). Finally,
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this metric is easy to bound by computing any vertex-preserving QC map between the
corresponding polygons, e.g., the obvious piecewise linear map coming from two com-
patible triangulations. See Figure 4. Using this, we can bound the QC-distance to the
true SC-parameters without knowing what those parameters are. Computing the ex-
act QC-distance between n-tuples is much harder, e.g. see Goswami, Gu, Pingali, and
Telang [2015].

Figure 4: Equivalent triangulations of two polygons define a piecewise linear
QC map and give an upper bound for the QC distance. Here K = 2 and the most
distorted triangle is shaded.

� Applications to computational geometry: We will first discuss some applications
of the fast mapping theorem (FMT), and then discuss its proof. As explained below,
the proof of the FMT depends on ideas from computational geometry (CG), and it re-
turns the favor by solving certain problems in CG. Optimal meshing is the problem of
efficiently decomposing a domain Ω into nice pieces. Assume @Ω is an n-gon. “Effi-
cient” means we want the number of mesh elements to be bounded by a polynomial in
n (independent of Ω). “Nice” means the pieces are triangles or quadrilaterals that have
angles strictly bounded between 0ı and 180ı, whenever possible. Some results that use
the FMT (or ideas from its proof) include:
I Thick/thin decomposition: Every polygon can be written as a union of disjoint
thick and thin pieces that are analogous to the thick/thin pieces of a hyperbolic manifold
(regions where the injectivity radius is larger/smaller than some �). See Figure 5. For
an n-gon, each thin piece is either a neighborhood of a vertex (parabolic thin parts), or
corresponds to a pair of sides that have small extremal distance within Ω (hyperbolic
thin parts); the thin parts are in 1-to-1 correspondence with the thin parts of the n-
punctured Riemann sphere formed by gluing two copies of the polygon along its (open)
edges. Despite there being ' n2 pairs of edges, there are O(n) thin parts, and they can
be found in time O(n) using the FMT with � ' 1; see Bishop [2010a].
IOptimal quad-meshing: Any n-gon has anO(n) quadrilateral meshwhere every an-
gle is less than 120ı and all the new angles are at least 60ı; see Bishop [2010b], Bishop
[2016b] Here “new” means that existing angles < 60ı remain, but are not subdivided.
Both the complexity and angle bounds are sharp. The thick/thin decomposition plays a
major role here: the thin parts are meshed with an ad hoc Euclidean construction and
the thick parts are meshed by transferring a hyperbolic mesh from D by a nearly con-
formal map. Is there a similar approach in 3 dimensions, perhaps using decompositions
into pieces that are meshed using some of the eight natural 3-dimensional geometries?
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Figure 5: Thin parts of a surface and a polygon are shaded (light = parabolic,
dark = hyperbolic), and the thick pieces are white.

I The NOT theorem: Every planar triangulation with n elements can be refined to a
nonobtuse triangulation (all angles � � = 90ı, called a NOT for brevity) with O(n2:5)

triangles; see Bishop [2016a]. No polynomial bound is possible if � < 90ı and the
previous best result was with � = 132ı, due to Tan [1996]. See also Mitchell [1993].
A gap remains between the O(n2:5) algorithm and the n2 worst known example. The
proof of the NOT theorem involves perturbing a natural C 1 flow associated to the trian-
gulation, in order to cause collisions between certain flow lines. Is there any connection
to closing lemmas in dynamics, e.g., Pugh [1967]? Perhaps the gap could be reduced
using dynamical ideas, or ideas from the NOT theorem applied to flows on surfaces.

TheNOT theorem has an amusing consequence: suppose several adjoining countries
have polygonal boundaries (with n edges in total) and the governments all want to place
cell towers so that a cell phone always connects to a tower (the closest one) in the same
country as the phone. Is this possible using a polynomial number of towers? More
mathematically, we are asking for a finite point set S whose Voronoi cells conform to
the given boundaries (the Voronoi cells of S are the points closest to each element of
S ). If the countries are nonobtuse triangles this is easy to do, so the NOT theorem
implies this is possible in general using O(n2:5) points, the first polynomial bound for
this problem stated in Salzberg, Delcher, Heath, and Kasif [1995].
� Proof of the FMT: Like the other methods mentioned earlier, the fast mapping algo-
rithm iteratively improves an initial guess for the conformal map. However, whereas
Davis’ method and CRDT use conformal maps onto an approximate domain, and try to
improve the domain, the fast mapping algorithm uses approximately conformal maps
onto the correct target domain and improves the degree of conformality. More precisely,
each iteration computes the dilatation �f of a QC map f : D ! Ω, and attempts to
solve the Beltrami equation gz = �f gz with a homeomorphism g : D ! D. If g

was an exact solution, then F = f ı g�1 would be the desired conformal map. The
exact solution is given by a infinite series involving the Beurling transform (see e.g.,
Ahlfors [2006]) but the FMT uses only the leading term of this series and approximately
solves the resulting linear equation (thus it is a higher dimensional version of Newton’s
method). Iterating gives a sequence of QCmaps that converge quadratically to a confor-
mal map, assuming the initial dilatation � is small enough. A variation of this method
was implemented by Green [2011].
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To bound the total time, we have to estimate the time needed for each iteration, and
the time needed to find a starting guess for which we can uniformly bound the number
of iterations needed to reach accuracy � (it is not obvious that such a point even exists).
The first step involves representing the map as a collection of series expansions on
the disk, and applying discretized integral operators using the fast multipole method
and structured linear algebra. The second part is less standard: we use computational
geometry to make a “rough-but-fast” QC approximation to the Riemann map and use 3-
dimensional hyperbolic geometry to prove that this guess is close to the correct answer,
with a dilatation bound independent of the domain. It is (fairly) easy to reduce from
“bounded dilatation” to “small dilatation” by a continuation argument, so we will only
discuss proving the uniform bound.

2 Disks, domes, dogbones, dimension and dendrites

� The medial axis flow: The medial axis (MA) of a planar domain Ω is the set of all
interior points that have � 2 distinct closest points on @Ω. For polygons, these are the
centers of maximal disks in Ω, but the latter set can be strictly larger in general; see
Bishop and Hakobyan [2008]. If @Ω is a polygon, then the medial axis is a finite tree.
See Figure 6.

Figure 6: The top shows the medial axis of a domain (left) and the medial axis
foliation and flow (right). The bottom show triangulations of the target polygon
and initial guess using the MA-flow parameters. Here K = 1:24, (the most
distorted triangle is shaded), but the polygons appear almost identical.

If we fix one medial axis diskD0 as the “root” of this tree, then arcs of the remaining
disks foliateΩnD0. Each boundary point can be connected toD0 by a path orthogonal
to this foliation; see Figure 6. The medial axis flow defines Möbius transformations
between medial axis disks, hence preserves certain cross ratios, and given the medial
axis, we can use this to compute the images of all n boundary vertices in O(n) time.
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The medial axis itself can be computed in linear time by a result of Chin, Snoeyink,
and Wang [1999], so the MA-flow gives a linear time (i.e., “fast”) initial guess for the
SC-parameters.
� The convex hull theorem: Why is our “fast guess” an accurate guess? The answer
is best understood by moving from 2 to 3 dimensions. The “dome” of a planar domain
Ω is the surface S = S(Ω) � H3 = R3

+ = f(x; y; t) : t > 0g that is the boundary of
the union of all hemispheres whose base disk is contained in Ω. In fact, it suffices to
consider only medial axis base disks. See Figure 7.

Figure 7: A polygonal domain and its dome. The red patches on the dome each
correspond to the dome of a vertex disk of the medial axis; the yellow regions
correspond to domes of edge disks.

Recall that H3 has a hyperbolic metric d� = ds/t . Each hemisphere below the
dome S is a hyperbolic half-space, and the region above S is the intersection of their
complements, hence is hyperbolically convex. Thus the dome ofΩ is also the boundary
of the hyperbolic convex hull in H3 of Ωc = C n Ω. We define the “nearest point
retraction” R : Ω ! S(Ω) by expanding a horo-sphere in R3

+ tangent to R2 at z 2

Ω until it first hits S at a point R(z). See Figure 8. Dennis Sullivan’s convex hull
theorem (CHT) states that R is a quasi-isometry from the hyperbolic metric on Ω to the
hyperbolic path metric on the dome. Sullivan [1981b] originally proved the CHT in the
context of hyperbolic 3-manifolds (see below) and the version above is due to Epstein
and Marden [1987]. See also Bishop [2001], Bishop [2002], Bridgeman and Canary
[2010].

The dome S with its hyperbolic path metric is isometric to the hyperbolic disk. The
isometry � : S ! D can be visualized by thinking ofS as bent along a disjoint collection
of geodesics, and “flattening” the bends until we get a hyperbolic plane (the hemisphere
above D0; this is clearly isomorphic to D). Remarkably, the restriction of this map to
@S = @Ω equals the MA-flow map @Ω ! @D0. Figure 9 gives the idea of the proof.
Since � ı R : Ω ! D is a quasi-isometry (and because QI and QC maps of D have the
same boundary values), the MA-flow map @Ω ! @D0 has a uniformly QC extension
� : Ω ! D0. Thus our “fast guess” is indeed a “good guess” with uniform bounds.
� Convex hulls and 3-manifolds: As mentioned above, Sullivan’s CHT was first dis-
covered in the context of hyperbolic 3-manifolds. By definition, such a manifold M is
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S(   )Ω
C(    )Ωc

z

R(z)

Ω

Figure 8: The dome S of Ω is the boundary of the hyperbolic convex hull of Ωc

(shaded). The retraction map R : Ω ! S defined by expanding horoballs need
not be 1-to-1, but is a quasi-isometry.

Figure 9: The dome of two overlapping disks consists of two hyperbolic half-
planes joined along a geodesic (left). Flattening this bend means rotating one
half-plane around the geodesic until it is flush with the other (center). On R2,
this rotation corresponds to the medial axis flow in the base domain. The same
observation applies to all finite unions of disks, and the general case follows by
a limiting argument.

the quotient of H3 by a Kleinian group, i.e., a discrete group G of orientation preserv-
ing hyperbolic isometries. This is completely analogous to a Riemann surface being
the quotient of the hyperbolic disk by a Fuchsian group. The accumulation set of any
G-orbit on @H3 = R2 [ f1g is called the limit set Λ of G; this is often a fractal set.
The complement of Λ is called the ordinary set Ω. In this paper we will always assume
Ω ¤ ¿. We let C (Λ) � H3 denote the hyperbolic convex hull of Λ. It is G-invariant,
so its quotient defines a region C (M ) � M called the convex core of M ; this is also
the convex hull of all the closed geodesics in M . We define the “boundary at infinity”
of M as @1M = Ω/G; this is a union of Riemann surfaces, one for each connected
component ofΩ. The dome of each component ofΩ is a boundary component of C (Λ),
and corresponds to a boundary component of C (M ). The original formulation of Sulli-
van’s CHT (which he attributes to Thurston) is that @1M is uniformly QC-equivalent
to @C (M ).

A case of particular interest is whenM is homeomorphic toΣ�R for some compact
surface Σ and C (M ) is compact (this is called a co-compact quasi-Fuchsian manifold).
See Figure 10. Then Λ is a Jordan curve, so @C (M ) has two components, Ω1 and
Ω2. Since u = !(z;Ω2; H3) is invariant under G, it defines a harmonic function
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R1
R2

M

C(M)

Figure 10: A co-compact quasi-Fuchsian manifold. The tunnel vision function
is the harmonic measure of one component of @1M .

u(z) = !(z; R2; M ) on M . (Here u is harmonic for the hyperbolic metric on H3, not
the Euclidean metric; the two concepts agree in 2 dimensions, but not in 3.) This is
the “tunnel vision” function: for z 2 M , u(z) is the normalized area measure (on the
tangent 2-sphere) of the geodesic rays starting at z that tend towardsR2 � @1M . Thus
u is the “brightness” at z if R2 is illuminated but R1 is dark. It is easy to check that
u � 1/2 on the component of @C (M ) facing R2 and is � 1/2 on the other component.
Thus the level set fz : u(z) = 1

2
g is contained inside C (M ).

� Dogbones and 4-manifolds: The topology of the tunnel vision level sets has an
interesting connection to 4-dimensional geometry. If Λ is a circle, then the level sets
fu(z) = �g, 0 < � < 1, are topological disks, but if Λ approximates @Ω, where

Ω = fz : jz � 1j < 1/2g [ fz : jz + 1j < 1/2g [ fz = x + iy : jxj < 1; jyj < �g;

and � is small, then they can be non-trivial and u has a critical point. See Figure 11.

Figure 11: The dogbone domain (left) approximates two disjoint disks if the
corridor is very thin. For two disks, the level surfaces fu(z) = �g evolve from
two separate surfaces into a connected surface, so u must have a critical point;
the critical surface is shown at right.

This critical point has a surprising consequence. Claude LeBrun has shown how to
turn the hyperbolic 3-manifold M into a closed anti-self-dual 4-manifold N , so that
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N has an almost-Kähler structure if and only if u has no critical points. For defini-
tions and details, see Bishop and LeBrun [2017]. The simplest case is to take M � T
and collapse @1M to two points; this gives a conformally flat N , but a hierarchy of
topologically distinct non-flat examples also exists. In Bishop and LeBrun [ibid.] we
construct a co-compact Fuchsian group that can be deformed to a quasi-Fuchsian group
with limit set approximating the dogbone curve. Thus the almost-Kähler metrics sweep
out an open, non-empty, but proper subset of the moduli space of anti-self-dual met-
rics on the corresponding 4-manifold N , giving the first example of this phenomena.
Thus harmonic measure solves a problem about 4–manifolds, and 4–manifolds raise
new questions about harmonic measure: for which planar domains Ω does !(z;Ω; H3)

have a critical point? The group in Bishop and LeBrun [ibid.] has a huge number of
generators; how many are really needed to get an example with a critical point? Are
critical points common near the boundary of Teichmüller space for any large G?
� Heat kernels and Hausdorff dimension: As above, suppose M ' Σ � R is hyper-
bolic and C (M ) is compact. By compactness, a Brownian motion inside C (M ) hits
@C (M ) almost surely; as noted earlier, it then has probability � 1/2 of hitting the cor-
responding component of @1M . This implies Brownian motion on M leaves C (M )

almost surely, which implies Brownianmotion onH3 leavesC (Λ) almost surely, which
is equivalent to area(Λ) = 0. This observation can be made much more precise.

The heat kernel, kM (x; y; t), on a manifoldM gives the probability that a Brownian
motion starting at x at time 0 will be at y at time t . Thus the probability of being in
C (M ) at time t is p(x; t) =

R
C (M ) kM (x; y; t)dy: The heat kernel can be written

in terms of the eigenvalues and eigenfunctions of the Laplacian on M, kM (x; y; t) =P1

n=0 e��nt 'n(x)'n(y); so it seems reasonable that p(x; t) = O(exp(��0t)). See
Davies [1988], Grigor’yan [1995], which make this precise. The lift of kM to H3 is a
sum over G-orbits of

kH3(w; z; t) = (4�t)�3/2 �(z; w)

sinh(�(z; w))
exp(�t �

�(z; w)2

4t
):

Let Gn = fg 2 G : n < �(0; g(0)) � n + 1g and Nn = #Gn. The critical exponent
ı = lim supk(logNk)/k; is always a lower bound for dim(Λ), and equality holds in
many cases, e.g., when G is finitely generated. See Bishop and P. W. Jones [1997a],
Sullivan [1984].

Putting these estimates together (and dropping the non-exponential terms) gives

e��0t
' kM (x; x; t) '

X
n

X
g2Gn

k3
H(0; g(0); t) ' e�t

X
n

e�(1�ı)n�n2/4t :

The final sum is dominated by the term n = �2t(1 � ı), and comparing the exponents
gives �0 = ı(2 � ı), a well known formula relating the geometry of Λ to Brownian
motion on M . Are other relations possible? If C (M ) is non-compact, but has finite
volume, Sullivan [ibid.] showed the limit set has finite, positive packing measure (in-
stead of Hausdorff measure, as happens when C (M ) is compact). Is this reflected by
some property of Brownian motion or harmonic measure on M ?
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When vol(C (M )) = 1, Peter Jones and I proved that either (1) �0 = 0 and
dim(Λ) = ı = 2 or (2) �0 > 0 and area(Λ) > 0. See Bishop and P. W. Jones [1997a].
Again, this reduces to harmonic measure estimates: bounding !(z; @C (M ); M ) at
points deep inside C (M ). Both cases above can occur in general, but the second
case (area(Λ) > 0) is impossible for finitely generated groups with Ω ¤ ¿; this is
the Ahlfors measure conjecture and was proven independently by Agol [2004] and by
Calegari and Gabai [2006].
� Dimension of dendrites: We can strengthen the Ahlfors conjecture in some cases.
Consider a singly degenerate manifold M ' Σ � R where C (M ) contains one end of
M , and also assume that M has positive injectivity radius (i.e., non-trivial loops have
length bounded away from zero). See Figure 12. Then the limit set Λ is a dendrite
(connected and does not separate the plane) of dimension 2 and area zero. Such limit
sets are notoriously difficult to understand and compute.

C(M)

M

R1

Figure 12: Co-compact quasi-Fuchsian manifolds can limit on a singly degener-
ate M : C (M ) contains a geometrically infinite end of M , and its complement is
a geometrically finite end.

In this case, the tunnel vision function is constant, but there is an interesting alter-
native. By pushing the pole of Green’s function G to 1 through the geometrically
infinite end, normalizing at a fixed point, and using estimates of jrGj in terms of the
injectivity radius, one can show there is a positive harmonic function u on M that
is zero on R1 � @1M , and grows linearly in the geometrically infinite end, i.e.,
u(z) ' 1 + dist(z; @C (M )) for z 2 C (M ). See Bishop and P. W. Jones [1997b].
Note that u lifts to a positive harmonic U on H3, and U must be the Poisson integral
of a measure � supported on Λ.

We expect Brownian motion, Bt , on the geometrically infinite end of M to behave
like a Brownian path in [0; 1). By the law of the iterated logarithm (LIL), we then
expect u(Bn) to be as large as

p
n log logn infinitely often (i.o.). Since a Brownian

path on H3 tends to the boundary at linear speed in the hyperbolic metric, this means
that at �-a.e. z 2 Λ, i.o. we have U ((1 � e�n) � z) '

p
n log logn. Estimates for the

Poisson kernel then imply that �–a.e. point of Λ is covered by disks such that

�(D(z; t)) ' '(t) = t2
r
log

1

t
log log log

1

t
:



HARMONIC MEASURE: ALGORITHMS AND APPLICATIONS 1519

In fact, this optimistic calculation is actually correct; the paper Bishop and P. W. Jones
[ibid.] shows that Λ has finite, positive Hausdorff '-measure, verifying a conjecture of
Sullivan [1981a]. The optimal gauge ' for the general case, where injectivity radius
approaches zero, remains unknown. What about subsets of Λ defined using geodesic
rate of escape as in Gönye [2008], or Lundh [2003]?

3 Logarithms, length and Liouville

� Makarov’s theorems: The LIL above for dendritic limit sets was much easier to
discover because the connection between harmonic measure, random walks and Haus-
dorff dimension had already been uncovered by a celebrated result of Nick Makarov a
decade earlier; see Makarov [1985]. Suppose Ω is planar and simply connected. He
showed that if

'C (t) = t exp

 
C

r
log

1

1 � t
log log log

1

1 � t

!
;

then there is a C = C1 so that !(E) = 0 whenever E has zero 'C -measure. However,
there is also a C = C2, and a fractal domain Ω, so that !(E) = 1 for some set E � @Ω

of 'C measure zero. In fact, we can takeΩ to be the interior of the von Koch snowflake,
or any sufficiently “wiggly” fractal (some cases were known earlier, e.g., Carleson’s
paper Carleson [1985]). Makarov discovered that if f : D ! Ω is conformal, then the
harmonic function g = log jf 0j behaves precisely like the dyadic martingale fung on
T defined on each nth generation dyadic interval I � T by

un = lim
r%1

1

jI j

Z
I

g(rei� )d�:(1)

Distortion estimates for f 0 imply this limit exists and jg(z) � un(I )j = O(1); for any
z in the Whitney square corresponding to I . See Figure 13.

The fung have bounded differences, and the LIL for suchmartingales implies jun(x)j =

O(
p

n log logn); for a.e. x 2 T . This, in turn, gives

jg(r � x)j = O

 r
log

1

1 � r
log log log

1

1 � r

!
;

as r % 1 for a.e. x 2 T , and this implies Makarov’s LIL. Makarov’s discovery has
since been refined and exploited in many interesting ways, e.g., it makes sense to talk
about the asymptotic variance of g = log jf 0j near the boundary and precise estimates
for this have led to exciting developments in the theory of conformal and quasiconfor-
mal mappings, e.g., see the papers Astala, Ivrii, Perälä, and Prause [2015], Hedenmalm
[2017], Ivrii [2016].

Makarov’s LIL is just half of a remarkable theorem: dim(!) = 1 for any simply
connected planar domain, where dim(!) = infE fdim(E) : !(E) = 1g. Since 'C (t) =

o(t˛) for any ˛ < 1, the LIL shows dim(E) < 1 implies !(E) = 0. Hence dim(!) �



1520 CHRISTOPHER J. BISHOP

Figure 13: A Whitney decomposition of the disk and an enlargement near the
boundary. Each box corresponds to a dyadic interval on the boundary. Although
g = log jf 0j is non-constant on each box, it is within O(1) of the associated
martingale value.

1. On the other hand, since g = log jf 0j behaves like a martingale, along a.e. radius it
is either bounded or oscillates between�1 and1. The boundary set where the former
happens maps to � -finite length (since this set is a countable union of sets where jf 0j

is radially bounded) and the latter set maps to zero length (since jf 0j ! 0 along some
radial sequence). Thus dim(!) � 1. See Pommerenke [1986]. For extensions to
general planar domains, see P. W. Jones and Wolff [1988], Wolff [1993].

The obvious generalization to higher dimensions is that dim(!) = n for domains
in Rn+1. Bourgain [1987], proved dim(!) � n + 1 � �(n), Wolff [1995] constructed
ingenious fractal “snowballs” in R3 where dim(!) can be strictly larger than or strictly
smaller than 2, so the generalization above is false. In the plane, log jruj is subhar-
monic if u is harmonic, and the failure of this key fact in R3 is the basis of Wolff’s
examples. However, in Rn+1, jrujp is subharmonic if p > 1� 1/n, and this suggests
dim(!) � n + 1 � 1/n for all Ω � Rn+1, but this remains completely open.
� Harmonic measure and rectifiability: The F. and M. Riesz theorem (F. Riesz and
M. Riesz [1920]) states that for a simply connected planar domain with a finite length
boundary, harmonic measure and 1-measure are mutually absolutely continuous. Ex-
tending this has been a major goal in the study of harmonic measure for the last century.

For example, McMillan [1969] proved that for a general simply connected domain
in R2, ! gives full measure to the union of two special subsets of the boundary: the
cone points and the twist points. Cone points are simply vertices of cones inside Ω,
and on these points ! and Hausdorff 1-measure are mutually absolutely continuous.
McMillan’s theorem generalizes the F. and M. Riesz theorem since almost every point
of a rectifiable curve is a tangent point, and hence is a cone point for each side.

A point w 2 @Ω is a twist point if arg(z � w) on Ω is unbounded above and below
in any neighborhood of w. More geometrically, any curve in Ω terminating at w must
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twist arbitrarily far in both directions around w. On the twist points we have

lim sup
r!0

!(D(x; r))

r
= 1; lim inf

r!0

!(D(x; r))

r
= 0:(2)

The left side is due toMakarov [1985]; it implies that on the twist points, ! is supported
on a set of zero length. The right side is due to Choi [2004].

Choi’s theorem has an interesting consequence. Suppose E consists of twist points,
fix � > 0, and cover !-a.e. point of E using disjoint disks such that !(D(xj ; rj )) <

�rj (use the Vitali covering lemma). Then any curve  containing E has length at least

`() �
X

j

rj �
1

�

X
j

!(Dj \ E) �
!(E)

�
;

i.e., `() = 1 if !(E) > 0. This implies the “local” F. and M. Riesz Theorem: if E is
a zero length subset of a rectifiable curve, then !(E) = 0 for any simply connected do-
main. A quantitative version of this, proven in Bishop and P. W. Jones [1990], Bishop
and P. W. Jones [1994], was one of the first applications of Jones’ ˇ-numbers and his
traveling salesman theorem characterizing planar rectifiable sets in terms of ˇ-numbers
P. W. Jones [1990]. There has been steady progress since this result on the relationship
between harmonic measure and rectifiability, and even a sketch of this area would fill a
survey longer than this one. A recent landmark, giving a converse to the local Riesz the-
orem in all dimensions, is due to Azzam, Hofmann, Martell, Mayboroda, Mourgoglou,
Tolsa, and Volberg [2016]: if !jE � HnjE then !jE is rectifiable (it’s support can
be covered by countably many Lipschitz graphs). Since ! is the normal derivative of
Green’s function G, ! � Hn roughly means that jrGj is bounded near a subset of
E, and this implies that the Riesz transforms (which relate the components of rG) are
bounded operators with respect to ! on a suitable subset. Several recent deep results
on singular integral operators and geometric measure theory then imply rectifiability;
e.g., see Léger [1999], Nazarov, Tolsa, and Volberg [2014], Nazarov, Treil, and Volberg
[2003].

The left side of Equation (2) has an amusing corollary. If x 2 @Ω1 \ @Ω2, where
Ω1;Ω2 � Rn+1 are disjoint with harmonic measures !1; !2 (fix some base point in
each), then by Bishop [1991]

!1(D(x; r)) � !2(D(x; r)) = O(r2n):(3)

Now assume n = 1 and  = @Ω1 = @Ω2 is a closed Jordan curve. By the left side
of Equation (2), !-a.e. twist point of Ω1 can be covered by disks where !1(D) � r ,
so by Equation (3), these disks must also satisfy !2(D) � r � !1(D). This implies
!1 ? !2 on the twist points of  . On the tangent points of  , !1 and !2 are mutually
continuous to each other and to 1-measure, so !1 ? !2 on  if and only if the set of
tangent points of  has zero length; see Bishop, Carleson, Garnett, and P. W. Jones
[1989]. This happens for the von Koch snowflake, as well as many other fractal curves.
See Figure 14.
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Figure 14: Conformal images of 120 equally spaced radial lines, illustrating the
singularity of the inner and outer harmonic measures. On the right are 100 and
1000 Kakutani walks on each side; white shows points that are hard to hit from
either side.

One way to think about Equation (2) is to consider a castle whose outer wall is a
snowflake. If the fractal fortress is attacked by randomly moving warriors, then only
a zero length subset of the wall needs to be defended, whereas if the fortress wall was
finite length then it must all be defended. Thus a fractal fortress would be easier to
defend (at least against a drunken army). However, because of the local Riesz theorem,
it would take an officer infinite time to inspect all the defended positions.
� Conformal welding: We would like to compare !1; !2 for the two sides of a curve
 , but !1/!2 does not make sense in general. Instead, we consider the orientation
preserving (o.p.) circle homeomorphism h = g�1 ı f , where f and g are conformal
maps from the two sides of the unit circle to the two sides of  . Such an h is called a
“conformal welding” (CW). Not every circle homeomorphism is a conformal welding
(see Figure 15), and a useful characterization is likely to be very difficult to find.

f f

gg

1

1

2

2

Figure 15: If f1; g1map the two sides ofT to the two sides of a sin(1/x) curve  ,
then h = g�1

1 ı f1 is a homeomorphism, but is not a CW. Otherwise, h = g�1
2 ı

f2 with maps corresponding to a Jordan curve, and then (by Morera’s theorem)
f2 ı f �1

1 and g2 ı g�1
1 would define a conformal map from the complement of

a segment to the complement of a point, contradicting Liouville’s theorem.

If h(z) = z, then the maps f; g are equal on T , so by Morera’s theorem they define
a 1-1 entire function, and this must be linear by Liouville’s theorem. Thus only circles
can have equal harmonic measures on both sides. If h is bi-Lipschitz with constant near
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1, David [1982] showed the corresponding curve is rectifiable, but for large constants
the curve can have infinite length (see citeMR852832), or even dimension close to 2
(see Bishop [1988]). Nothing is known about where this transition occurs.

Every “nice” o.p. circle homeomorphism is a conformal welding, where “‘nice”
means quasisymmetric; this includes every diffeomorphism but also many singular
maps. These send full Lebesgue measure on T to zero measure; this happens exactly
when !1 ? !2, as for the snowflake. Surprisingly, all sufficiently “wild” homeomor-
phisms are also conformal weldings, where “wild” means log-singular: there is a set
E of zero logarithmic capacity on the circle so that T n h(E) also has zero logarith-
mic capacity. Zero logarithmic capacity sets are very small, e.g., Hausdorff dimension
zero, so log-singular homeomorphisms are very, very singular. See Lundberg [2005].
Moreover, each log-singular map h corresponds to a dense set of all closed curves in
the Hausdorff metric, so the association h $  is far from 1-to-1. See Bishop [2007].

To illustrate the gap between these two cases, consider the space of circle homeomor-
phisms with the metric d (f; g) = jfx : f (x) ¤ g(x)gj. This space has diameter 2�

and the set of QS-homeomorphisms and log-singular homeomorphisms are distance 2�

apart. However, conformal weldings are known to be dense in this space; see Bishop
[ibid.]. Are they a connected set in this metric? Residual? Borel? For some generaliza-
tions and applications of conformal welding, see the papers of Feiszli [2008], Hamilton
[1991], and Rohde [n.d.].

4 True trees and transcendental tracts

�Dessins d’enfants: As noted above, a curve  with!1 = !2 must be a circle. Thus in
terms of harmonic measure, a circle is the most “natural” way to draw a closed Jordan
curve. What happens for other topologies? Can we draw any finite planar tree T so
harmonic measure is equal on “both sides”? More precisely, with respect to the point
at infinity, can we draw T so that

(1) every edge has equal harmonic measure,
(2) any subset of any edge has equal harmonic measure from both sides?

Perhaps surprisingly, the answer is yes, every finite planar tree T has such drawing,
called the “true form of the tree” (or a “true tree” for short). To prove this, consider
Figure 16. Let � be a quasiconformal map of the exterior Ω of T to D� = fz : jzj > 1g,
with each side of T mapping to an arc of length �/n, and arclength on each edge map-
ping to a multiple of arclength in the image. Let J (z) = 1

2
(z + 1

z
) be the Joukowsky

map; this is conformal fromD� toU = Cn[�1; 1]. Then q(x) = J (�(z)n) is quasireg-
ular off T and continuous across T , so is quasiregular on C.

By the measurable Riemann mapping theorem there is a QC “correction” map ' :

C ! C so that p = q ı ' is holomorphic. Since p is also n–to–1, it must be a
polynomial of degree n. Its only critical values are˙1, so it is a generalized Chebyshev,
or Shabat, polynomial and T 0 = '(T ) = p�1([�1; 1]) is a true tree.

It is easy to see that the polynomial p can be normalized to have its coefficients
in some algebraic number field. This connection is part of Grothendieck’s’ theory of



1524 CHRISTOPHER J. BISHOP

UΩ

QC
zn

J

q

1
z

1
2 (z +    )

τ

Figure 16: For a true tree, the conformal map � : C n T ! D� sends sides
of T to arcs of equal length arcs. In general, we choose a QC map � that sends
normalized arclength on sides of T to arclength on T ; then q(z) = J (�(z)n) is
continuous across T and quasiregular on C.

dessins d’enfants and is closely connected to the spherical case of Belyi’s theorem: a
Riemann surface is algebraic iff it supports a meromorphic function ramified over three
values. There are many fascinating related problems, e.g., Grothendieck proved that the
absolute Galois group Gal(Q/Q) acts faithfully on the set of planar trees, but the orbits
are unknown (some things are known, e.g., equivalent trees have the same set of vertex
degrees). For more background see G. A. Jones and Wolfart [2016], Schneps [1994],
Shabat and Zvonkin [1994].

It is a difficult problem to compute the correspondence between trees and polynomi-
als, but this has been done by hand for trees with 10 or fewer edges, Kochetkov [2007],
Kochetkov [2014]. It is possible to go much farther using harmonic measure. DonMar-
shall and Steffen Rohde have adapted Marshall’s conformal mapping program ZIPPER;
to compute the true form of a given planar tree (even with thousands of edges). See
Marshall and Rohde [2007]. For small trees (less than 50 edges or so) they can ob-
tain the vertices (and hence the polynomial) to thousands of digits of accuracy. Given
enough digits of an algebraic integer ˛ 2 R one can search for an integer relation among
1; ˛; ˛2; : : : , that determines the field, e.g., using Helaman Ferguson’s PSLQ algorithm;
see Ferguson, Bailey, and Arno [1999].

Alex Eremenko asked if Shabat polynomials have special geometry. In Bishop
[2014], I showed the answer is no in the sense that given any compact, connected set
K there are polynomials with critical values ˙1 whose critical sets approach K in the
Hausdorff metric. In particular, the true tree T = p�1([�1; 1]) can be �-close to any
connected shape, i.e., “true trees are dense”. See Figure 17.

Figure 17: True trees approximating some random letters of the alphabet.
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Ω U

J

cosh 

F

1
z

1
2 (z +    )exp

τ

conformal

Figure 18: The transcendental version of Figure 16. F is holomorphic off T but
not necessarily across T . QC-folding defines a quasiregular g so that g = F

outside a “small” neighborhood of T .

Is there a higher dimensional analog of true trees? In what other settings does “equal
harmonic measure from both sides” makes sense and lead to interesting problems? If
we drop (1) from the definition of a true tree, then we get trees that connect their vertices
using minimum logarithmic capacity. See Stahl [2012].
� Dessins d’adolescents: Given the connection between true trees and polynomials, it
is natural to ask about a correspondence between infinite planar trees and entire func-
tions, e.g., is every unbounded planar tree T equivalent to f �1([�1; 1]) for some en-
tire function f with critical values ˙1? The answer is no: one can show the infinite
3-regular tree is not of this form. However, a version of the “true trees are dense” con-
struction does hold. Consider how to adapt the construction in Figure 16 to unbounded
trees, as in Figure 18. Now, Ω = C n T is a union of unbounded, simply connected do-
mains, called tracts, and each of these tracts can be mapped to Hr = fx + iy : x > 0g,
by a conformal map � . The power function zn is replaced by exp : Hr ! D�, but is still
followed by the Joukowsky map, giving a holomorphic function F (z) = J (exp(�(z)))
on each tract, butF need not be continuous across T . Fixing this requires some assump-
tions (some regularity of T that replaces finiteness). Via � , the vertices of T define a
partition of iR = @Hr and we assume that this partition satisfies

(1) adjacent intervals have comparable length,
(2) interval lengths are all � � .

Under these hypotheses, the QC-folding theorem from Bishop [2015] gives a quasi-
regular g that agrees with F outside T (r) = [e2T fz : dist(z; e) < r �diam(e)g; where
the union is over all edges in T . The tree T 0 = g�1([�1; 1]) satisfies T � T 0 �

T (r). The measurable Riemann mapping theorem gives a quasiconformal ' so that
f = g ı '�1 is an entire function with critical values ˙1 and no other singular values
(the singular set S(f ) is the closure of the critical values and finite asymptotic values,
i.e., limits of f along curves to 1).

Since g is holomorphic off T (r), �' is supported in T (r) and is uniformly bounded
in terms of the assumptions on T . Inmany applications T (r) has finite, even small, area,
and ' is close to the identity. Thus the QC-folding theorem converts an infinite planar
tree T satisfying some mild restrictions into an entire function f with S(f ) = f˙1g,
and such that T 0 = f �1([�1; 1]) is “close to” T in a precise sense.

Let T denote the transcendental entire functions (non-polynomials). The Speiser
class is S = ff 2 T : S(f ) is finiteg, and the Eremenko-Lyubich class is B = ff 2
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T : S(f ) is boundedg. The QC-folding theorem (or simple modifications) gives a
flexible way to construct examples in S and B with specified singular sets, including:
I A f 2 B with a wandering domain. Wandering domains do not exist for rational
functions by Sullivan’s non-wandering theorem Sullivan [1985], nor in S by work of
Eremenko and Lyubich [1992] and Goldberg and Keen [1986]. See Figure 19. See also
the paper of Lazebnik [2017].
I A f 2 S so that area(fz : jf (z)j > �g) < 1 for all �. This is a strong counterex-
ample to the area conjecture of Eremenko and Lyubich [1992].
I A f 2 S whose escaping set has no non-trivial path components; this improves the
counterexample to the strong Eremenko conjecture in B due to Rottenfusser, Rückert,
Rempe, and Schleicher [2011].
I A f 2 S so that lim supr!1 logm(r; f )/ logM (r; f ) = �1 where m; M denote
the min, max of jf j on fjzj = rg. In 1916 Wiman had conjectured lim sup � �1, as
occurs for exp(z). Beurling [1949] gave a partial positive result, but Hayman [1952]
found a counterexample in general, and QC-folding now improves this to S.

Figure 19: The folding theorem reduces constructing certain entire functions
to drawing a picture. Here are the pictures associated to counterexamples for
the area conjecture (upper left), Wiman’s conjecture (upper right), an Eremenko-
Lyubich wandering domain (lower left) and a Speiser class Julia set of dimension
near 1.



HARMONIC MEASURE: ALGORITHMS AND APPLICATIONS 1527

I f 2 S with Julia sets so that dim(J) < 1+� Albrecht and Bishop [2017]. Examples
inB are due to Stallard [1997], Stallard [2000], who also showed dim(J) > 1 for f 2 B.
Baker [1975] proved dim(J) � 1 for all f 2 T , and examples with dim(J) = 1 (even
with finite spherical linear measure) exist Bishop [2018], but it is unknown whether
they can lie on a rectifiable curve on the sphere.
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