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Weil-Petersson curves, β-numbers,
and minimal surfaces

By Christopher J. Bishop

Abstract

This paper gives geometric characterizations of the Weil-Petersson class

of rectifiable quasicircles, i.e., the closure of the smooth planar curves in the

Weil-Petersson metric on universal Teichmüller space defined by Takhta-

jan and Teo. Although motivated by the planar case, many of our char-

acterizations make sense for curves in Rn and remain equivalent in all

dimensions. We prove that Γ is Weil-Petersson if and only if it is well

approximated by polygons in a precise sense, has finite Möbius energy or

has arclength parametrization in H3/2(T). Other results say that a curve

is Weil-Petersson if and only if local curvature is square integrable over

all locations and scales, where local curvature is measured using various

quantities such as Jones’s β-numbers, nonlinearity of conformal weldings,

Menger curvature, the “thickness” of the hyperbolic convex hull of Γ, and

the total curvature of minimal surfaces in hyperbolic space. Finally, we

prove that planar Weil-Petersson curves are exactly the asymptotic bound-

aries of minimal surfaces in H3 with finite renormalized area.

1. Introduction

This paper gives several geometric characterizations of the Weil-Petersson

class of rectifiable quasicircles. This collection of planar closed curves has

previously known connections to geometric function theory, operator theory

and certain random processes such as Schramm-Loewner evolutions (SLE).

Our new characterizations will also link it to various ideas in harmonic analysis

and geometric measure theory (e.g., Sobolev spaces, knot energies, β-numbers,

biLipschitz involutions, Menger curvature) and in hyperbolic geometry (e.g.,

convex hulls, minimal surfaces, isoperimetric inequalities, renormalized area).
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Moreover, most of our characterizations extend to curves in Rn and remain

equivalent there, defining new classes of curves that may be of interest in

analysis and geometry. The name “Weil-Petersson class” comes from work

of Leon Takhtajan and Lee-Peng Teo [123] defining a Weil-Petersson metric

on universal Teichmüller space, analogous to the well known metric on finite

dimensional Teichmüller spaces of Riemann surfaces defined by André Weil

and Hans Petersson. The same collection of curves was earlier studied by Hui

Guo [65] and Guizhen Cui [37] using the terms “integrable Teichmüller space

of degree 2” and “integrably asymptotic affine maps”, respectively.

A quasicircle is the image of the unit circle T under a quasiconformal map-

ping f of the plane, e.g., a homeomorphism of the plane that is absolutely con-

tinuous on almost all lines, conformal outside the unit disk D, and whose dilata-

tion µ = fz/fz belongs to B∞
1 , the open unit ball in L∞(D). The collection of

planar quasicircles (modulo similarities) corresponds to universal Teichmüller

space T (1), and the usual metric is defined in terms of ∥µ∥∞. Motivated by

ideas in string theory to apply Hilbert space methods to spaces of loops (e.g.

[23], [24]), Takhtajan and Teo [123] defined a Weil-Petersson metric on univer-

sal Teichmüler space T (1) that makes it into a Hilbert manifold. This topology

on T (1) has uncountably many connected components, but one of these com-

ponents, denoted T0(1), is exactly the closure of the smooth curves; this is the

Weil-Petersson class. Takhtajan and Teo proved these curves are precisely the

images of T under quasiconformal maps with dilatation µ ∈ L2(dAρ) ∩ B∞
1 ,

where Aρ is hyperbolic area on D. Thus, roughly speaking, Weil-Petersson

quasicircles are to L2 as general quasicircles are to L∞.

Takhtajan and Teo give an alternate characterization in terms of the con-

formal mapping f : D → Ω, where Ω is the domain bounded by Γ. They

show Γ is Weil-Petersson if and only if log f ′ ∈ W 1,2, i.e., (log f ′)′ = f ′′/f ′ ∈
L2(D, dxdy). By the Sobolev trace theorem, the boundary values of log f ′ are

in the Sobolev space H1/2(T). We will prove that this implies the arclength

parametrization of Γ is in the space H3/2(T) and that this characterizes Weil-

Petersson curves.

Theorem 1.1. Γ is Weil-Petersson if and only if it is chord-arc and the

arclength parametrization is in the Sobolev space H3/2(T).

A rectifiable curve Γ is called chord-arc if, for all x, y ∈ Γ, we have

ℓ(γ) = O(|x − y|), where γ ⊂ Γ is the shortest sub-arc with endpoints x, y.

The definition of H3/2(T) will be given in Section 3, as will the simple proof of

necessity. Sufficiency of H3/2 follows from other characterizations of the Weil-

Petersson class given in this paper. This was first observed by David Mumford,

who conjectured Theorem 1.1 based on an earlier draft of this paper. Takhta-

jan and Teo had proven that T0(1) is a topological group, and Mumford also
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pointed out that the above theorem makes Jordan curves in H3/2 into a topo-

logical group, extending known results for Hs(T), s > 3/2 (the group structure

is obtained by identifying closed curves with circle homeomorphisms via con-

formal welding, as described in Sections 2 and 3). See also [31], [71] and the

remarks following Definition 6.

It has been an open problem to give a “geometric” characterization of

the Weil-Petersson class, as opposed to the known “function theoretic” char-

acterizations. See Remark II.1.2 of [123]. Theorem 1.1 is our first step in this

direction, and it will lead to a variety of more purely geometric characteriza-

tions. Like being an H3/2 curve, most of these conditions also make sense for

curves in Rn, n ≥ 2, and we will prove that they remain equivalent in higher

dimensions. For example, one immediate consequence of Theorem 1.1 is:

Theorem 1.2. Γ is Weil-Petersson if and only if it has finite Möbius

energy, i.e.,

Möb(Γ) =

∫
Γ

∫
Γ

Å
1

|x− y|2
− 1

ℓ(x, y)2

ã
dxdy < ∞,(1.1)

where ℓ(x, y) denotes the length of the shorter sub-arc of Γ connecting x and

y, and both integrals are with respect to arclength on Γ.

Möbius energy is one of several “knot energies” introduced by Jun O’Hara,

see [95], [96], and [97]. It blows up when the curve is close to self-intersecting, so

in the special case of curves in R3, continuously deforming a curve to minimize

the Möbius energy should lead to a canonical “nice” representative of each knot

type. This was proven for irreducible knots by Michael Freedman, Zheng-Xu

He and Zhenghan Wang [53], who also showed that Möb(Γ) is Möbius invariant

(hence the name), that finite energy curves are chord-arc, and in R3 they

are topologically tame (there is an ambient isotopy to a smooth embedding).

Theorem 1.2 follows from Theorem 1.1 by a result of Simon Blatt [21] (we

sketch a proof in Section 3). The connection to Weil-Petersson curves indicates

that Möbius energy may also be interesting in dimensions other than 3.

Theorem 1.2 has several different reformulations. For example, it is essen-

tially the same as the “Jones Conjecture” stated independently in [56]. We will

explain the connection in Section 3. Another variation is rather elementary to

state, using only the definition of arclength. If a closed Jordan curve Γ has

finite length ℓ(Γ), choose a base point z01 ∈ Γ and for each n ≥ 1, let {znj },
j = 1, . . . , 2n be the unique set of ordered points with zn1 = z01 that divides

Γ into 2n equal length arcs (called the nth generation dyadic subarcs of Γ).

Let Γn be the inscribed 2n-gon with these vertices. See Figure 1. Clearly,

ℓ(Γn) ↗ ℓ(Γ), and the Weil-Petersson class is characterized by the rate of this

convergence.



4 CHRISTOPHER J. BISHOP

Theorem 1.3. With notation as above, a curve Γ is Weil-Petersson if

and only if ∞∑
n=1

2n [ℓ(Γ)− ℓ(Γn)] < ∞(1.2)

with a bound that is independent of the choice of the base point.

Figure 1. Inscribed dyadic polygons. Γ is Weil-Petersson if

and only if its length is rapidly approximated using such poly-

gons.

Another consequence of Theorem 1.1 involves Peter Jones’s β-numbers:

given a curve Γ ⊂ R2, and a square Q in the plane let

βΓ(Q) = (2
√
2/3) · inf

L
sup

z∈Γ∩3Q

dist(z, L)

diam(Q)
,

where the infimum is over all lines hitting 3Q, the square concentric with Q

and with three times the side length (β = 0 if Γ∩ 3Q = ∅). See Figure 2. The

factor of 2
√
2/3 is not essential, and it is only included to normalize β so that

it always lies in [0, 1].

Q

3Q

Q

3Q

Figure 2. β-numbers measure how close Γ is to a line near Q.

On the left β is small; on the right is it close to 1.

Theorem 1.4. A Jordan curve Γ is Weil-Petersson if and only if∑
Q

β2
Γ(Q) < ∞,(1.3)

where the sum is over all dyadic squares in the plane.
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Dyadic squares and cubes will be defined in Section 4. This theorem is our

fundamental result of the form: “Γ is Weil-Petersson if and only if curvature

is square integrable over all locations and scales”. All of our other criteria can

be formulated in an analogous way, using different measures of local curvature

(even Theorems 1.2 and 1.3, although they do not immediately look like L2

curvature conditions). Other versions involve Schwarzian derivatives, Menger

curvature, and the Gauss curvatures of minimal surfaces; these all measure

deviation from flatness in different, but closely related, ways.

Jones [74] introduced the β-numbers in his famous “traveling salesman

theorem” that characterizes subsets of rectifiable curves in the plane. In the

special case of a Jordan curve Γ, his result says that

ℓ(Γ) ≃ diam(Γ) +
∑
Q

β2
Γ(Q)diam(Q),(1.4)

where the sum is over all dyadic squares in R2. Thus (1.3) is a strengthening

of Jones’s condition (1.4). Analogs of Jones’s theorem have been proven in Rn

by Kate Okikiolu [98], and in Hilbert space by Raanan Schul [114] (with some

corrections in [9] and [10] by Matthew Badger and Sean McCurdy, who also

consider curves in more general Banach spaces). Analogous results in some

other metric spaces are given in [38], [51], [81], and [82]. Several of these

papers have been superseded by Sean Li [80] using a new “stratified” version

of the β-numbers to prove a traveling salesman theorem on arbitrary Carnot

groups.

For curves in Rn, n ≥ 3, we will prove that (1.3) is equivalent to the

conditions in Theorems 1.1, 1.2 and 1.3, using the following refinement of

Jones’s theorem that is proven in [18].

Theorem 1.5. If Γ ⊂ Rn, n ≥ 2, is a Jordan arc, then

ℓ(Γ) = crd(Γ) +O

Ñ∑
Q

β2
Γ(Q)diam(Q)

é
,(1.5)

where the sum is over all dyadic cubes in Rn.

Here crd(Γ) = |z−w| denotes the “chord” distance between the endpoints

z, w of Γ. The point of Theorem 1.5 is that the diam(Γ) term in (1.4) can be

replaced by crd(Γ) ≤ diam(Γ), and that this term is only multiplied by “1” in

(1.5).

For the rest of the introduction, we return to the planar case n = 2, where

the statements are simplest; in higher dimensions some changes are needed due

to technicalities that arise, e.g., a minimal surface in H3 must be replaced by

a minimal current or flat chain in Hn+1. These changes will be discussed in

Section 6.
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The hyperbolic upper half-space is defined as H3 = R3
+ = {(x, t) : x ∈

R2, t > 0}, with the hyperbolic metric dρ = ds/t. The hyperbolic convex hull

of Γ ⊂ R2, denoted CH(Γ), is the smallest convex set in H3 that contains

all (infinite) hyperbolic geodesics with both endpoints in Γ. Except when Γ

is a circle, CH(Γ) has a non-empty interior and has two boundary surfaces

(both with asymptotic boundary Γ), called the “domes” of either side of Γ.

See Figure 3 for the domes of a square and its complement. For z ∈ CH(Γ),

we define δ(z) to be the maximum of the hyperbolic distances from z to the

two boundary components of CH(Γ). See Figure 9. This function serves as a

Möbius invariant version of the β-numbers.

Figure 3. The domes of a square and its complement. The

convex hull of the boundary is the region between these two

surfaces. The dome on the left is a hemisphere over the in-

scribed disk with four half-cones attached, each with a vertex

at a corner of the square. The dome on the right is the hemi-

sphere over the circumscribed disk, cut by four vertical planes

over the sides of the square.

Our hyperbolic Weil-Petersson criteria will involve integrating some quan-

tity such as δ over points (x, t) on some surface S ⊂ H3 that has Γ ⊂ R2 as its

asymptotic boundary; usually S will be one of the two connected components

of ∂CH(Γ), the cylinder Γ × (0, 1], or a minimal surface contained in CH(Γ).

Suppose S ⊂ H3 is a 2-dimensional, properly embedded sub-manifold that has

an asymptotic boundary that is a closed Jordan curve in R2. The Euler char-

acteristic of S will be denoted χ(S), i.e., χ(S) = 2 − 2g − h if S is a surface

of genus g with h holes. We let K(z) denote the Gauss curvature of S at z.

The hyperbolic metric dρ = ds/2t was chosen so that H3 has constant Gauss

curvature −1. If the principle curvatures of S at z are κ1(z) and κ2(z), then

K(z) = −1+ κ1(z)κ2(z) (this is the Gauss equation). The norm of the second

fundamental form is given by |K(z)|2 = κ1(z)
2+κ2(z)

2. The surface S is called
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a minimal surface if κ1 = −κ2 (i.e., the mean curvature H = (κ1 + κ2)/2 is

zero). In this case we will write κ = |κj |, j = 1, 2, and so K(z) = −1− κ2(z).

These definitions, and other basic results from differential geometry, such as

the Gauss-Bonnet theorem, can be found in various textbooks, e.g., [69].

Michael Anderson [7] has shown that every closed Jordan curve on R2

bounds a simply connected minimal surface in H3, but there may be other

minimal surfaces with boundary Γ that are not disks. See Figure 4.

Figure 4. A planar curve from Anderson’s paper [7] illustrating

that a curve Γ ⊂ R2 can be the boundary of multiple minimal

surfaces. The first is topologically a disk; the second is topo-

logically a torus with a hole removed.

However, every minimal surface S with asymptotic boundary Γ is contained in

CH(Γ) and the principle curvatures of S at a point z satisfy |κj(z)| = O(δ(z)),

(see Lemma 19.1). Let Aρ denote hyperbolic area and Lρ hyperbolic length.

Theorem 1.6. For a closed curve Γ ⊂ R2, the following are equivalent :

(1) Γ ⊂ R2 is a Weil-Petersson curve.

(2) Γ asymptotically bounds a surface S ⊂ H3 so that∫
S

|δ(z)|2dAρ(z) < ∞.

(3) Γ asymptotically bounds a surface S ⊂ H3 so that |K(z)| → 0 as z → R2 =

∂H3 through S and ∫
S

|K(z)|2dAρ(z) < ∞.

(4) Every minimal surface S asymptotically bounded by Γ has finite Euler char-

acteristic and finite total curvature, i.e.,∫
S

∣∣κ(z)∣∣2dAρ(z) =

∫
S

∣∣K(z) + 1
∣∣dAρ(z) < ∞.

(5) There is some minimal surface S with finite Euler characteristic and as-

ymptotic boundary Γ so that S is the union of a nested sequence of compact

Jordan subdomains Ω1 ⊂ Ω2 ⊂ . . . with

lim sup
n→∞

[Lρ(∂Ωn)−Aρ(Ωn)] < ∞.
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In 1993 Geraldo de Oliveira Filho ([99, Theorem B]) showed that a com-

plete, immersed minimal disk in Hn having finite total curvature has an asymp-

totic boundary Γ that is rectifiable, and he asked if Γ must be C1. By Part (4)

above, the answer is no, since Theorem 1.4 implies that Weil-Petersson curves

need not be C1. The curve γ(t) = t · exp(i/| log 1/t|) satisfies β(Q) ≃ 1/n

if 0 ∈ Q and diam(Q) = 2−n, and one can check that (1.3) is satisfied even

though γ has an infinite spiral at 0. However, Weil-Petersson curves are “al-

most” C1 in the sense that Hs ⊂ C1,s−3/2 ⊂ C1 for all s > 3/2, e.g., Lemma

8.2 of [39].

The isoperimetric difference in Part (5) of Theorem 1.6 is also known as

the renormalized area of S, at least in the special case that Ω is the truncation

of S ⊂ H3 at a fixed height above the boundary. More precisely, set

St = S ∩ {(x, y, s) ∈ H3 : s > t}, ∂St = S ∩ {(x, y, s) ∈ H3 : s = t}

and define the renormalized area of S to be

RA(S) = lim
t↘0

[Aρ(St)− Lρ(∂St)]

when this limit exists and is finite. We will show that these truncations satisfy

the last part of Theorem 1.6, and hence the following holds.

Corollary 1.7. For any closed curve Γ ⊂ R2 and for any minimal sur-

face S ⊂ H3 with finite Euler characteristic and asymptotic boundary Γ, we

have

RA(S) = −2πχ(S)−
∫
S

κ2(z)dAρ.(1.6)

In other words, either Γ is Weil-Petersson and both sides are finite and equal,

or Γ is not Weil-Petersson and both sides are −∞.

Proposition 3.1 of [5] by Spyridon Alexakis and Rafe Mazzeo gives a ver-

sion of (1.6) for surfaces in the setting of n-dimensional Poincaré-Einstein man-

ifolds (that formula also involves the Weyl curvature, which vanishes in H3),

but they use the additional assumption that Γ is C3,α. However, as noted

earlier, Weil-Petersson curves need not be even C1. Corollary 1.7 shows that

the Alexakis-Mazzeo result holds without any conditions on Γ, at least in the

case of H3.

Our proof of Corollary 1.7 will show that the exact method of truncation

in the definition of renormalized area is not important.

Corollary 1.8. Suppose S = ∪nKn ⊂ H3 is a minimal surface, where

K1 ⊂ K2 ⊂ . . . are nested compact sets such that S \ Kn is a topological

annulus for all n. Then

RA(S) = lim
n→∞

sup
Ω⊃Kn

[
Aρ(Ω)− Lρ(∂Ω)

]
,
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where the supremum is over compact domains Kn ⊂ Ω ⊂ S bounded by a

single Jordan curve. As above, either both terms are finite and equal, or both

are −∞.

Renormalized area has strong motivations arising from string theory. Mal-

dacena [84] proposed that the expectation value of the Wilson loop operator

(a precursor of string theory) should be the area of a minimal surface with

asymptotic boundary Γ. It was pointed out by Mans Hennington and Kostas

Skenderis [68], and by Robin Graham and EdwardWitten [64], that area should

be renormalized area. More recently, it has been suggested that renormalized

area be used to measure the entanglement entropy of regions in conformal field

theory, in a way that is analogous to how the entropy of a black hole is measured

by the area of its event horizon, e.g., [94], [111], and [122]. See the introduc-

tion of [5] for further details and references. Also see [106] by David Radnell,

Eric Schippers, and Wolfgang Staubach, where they argue that Weil-Petersson

curves are the correct setting for 2-dimensional conformal field theory.

The Weil-Petersson class also arises in computer vision: see the papers of

Eitan Sharon and Mumford [116], Matt Feiszli, Sergey Kushnarev and Kath-

eryn Leonard [49], and Feiszli and Akil Narayan [50]. The latter paper com-

putes geodesics for the Weil-Petersson metric as optimal “morphing” paths

between different shapes, and such calculations lead naturally to the question

of identifying the closure of the smooth curves in this metric.

Indeed, the problem of geometrically characterizing Weil-Petersson curves

was originally suggested to me by Mumford in December of 2017. However, I

did not work seriously on Mumford’s question until attending an IPAM work-

shop on the geometry of random sets a year later. Motivated by SLE, Yilin

Wang and Steffen Rohde [109] had previously defined the Loewner energy of

a closed loop, and Wang subsequently proved that it is finite if and only if

the curve is Weil-Petersson. See [127], [129] and Definition 24 in Appendix A.

Her lecture at IPAM contained a summary of results from the Takhtajan-

Teo paper [123], including the characterization of the Weil-Petersson curves

in terms of log f ′ ∈ W 1,2. In [19], Jones and I had characterized curves for

which log f ′ ∈ BMO (bounded mean oscillation), so this alternative definition

provided a useful starting point for me.

I thankfully acknowledge discussions with Kari Astala, Martin Chuaqui,

Blaine Lawson, Pekka Koskela, Dragomir Saric, Raanan Schul, Leon Takhta-

jan, Dror Varolin, Fredrik Viklund, Rongwei Yang, Yilin Wang, and Michel

Zinsmeister. I am grateful to Atul Shekhar for pointing me to the paper [56].

I thank Jack Burkart and Maŕıa González for reading various early drafts and

providing many helpful comments and corrections. I am deeply appreciative

to Mike Anderson, Claude LeBrun, Rafe Mazzeo and Andrea Seppi for very
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enlightening discussions of curvature, minimal surfaces, renormalized area and

Willmore energy, to John Morgan for explaining the Smith Conjecture, and

especially to David Mumford for sharing his perspective on these problems and

for his thoughtful and continued encouragement of this work. Finally, many

thanks to the anonymous referee for a careful reading of a difficult manuscript

and for several recommendations that improved it.

The remainder of the paper is organized as follows. The next five sections

state various definitions of the Weil-Petersson class: known function theoretic

ones, new criteria involving Sobolev smoothness, new conditions involving the

β-numbers, and finally, new characterizations using hyperbolic geometry, first

in H3 and then in higher dimensions. These definitions and some of the easier

implications between them are proven in the first half of the paper, and more

involved proofs are left for later sections. For the convenience of the reader,

Table 1 in Section 7 summarizes all the definitions, and Figure 11 shows a

directed graph indicating the implications that are proven in this paper and

shows where to find the corresponding proofs. An appendix describes some

other known characterizations of the Weil-Petersson class, giving 26 equiva-

lent definitions in all. A 27th was recently announced by Viklund and Wang

in [125]. Indeed, since the first draft of this manuscript was posted, several

papers and preprints have appeared that solve problems stated here or give

extensions of our results. For example, Jared Krandel [75] has extended The-

orem 1.5 to curves in Hilbert space. In [26], Martin Bridgeman, Kenneth

Bromberg, Franco Vargas Pallete, and Yilin Wang answer a question related

to this paper by proving the Loewner energy of a planar curve equals the

renormalized volume between two certain surfaces in hyperbolic 3-space (un-

der certain smoothness assumptions). Zhiyuan Geng and Fang-Hua Lin [63]

show that curves with H3/2 smoothness arise naturally in an energy mini-

mization problem related to liquid crystals, and Huaying Wei and Katsuhiko

Matsuzaki [130] consider Lp analogs of Weil-Petersson curves for p ̸= 2.

2. Function theoretic characterizations

A quasiconformal (QC) map h is a homeomorphism of a planar domain Ω

to another domain Ω′, so that h is absolutely continuous on almost all lines

and whose dilatation µ = hz/hz is in B∞
1 (the open unit ball of L∞). See [3]

or [78]. We say that h is a planar quasiconformal map if Ω = Ω′ = R2. The

measurable Riemann mapping theorem says that given a µ ∈ B∞
1 , there is a

planar quasiconformal map h with this dilatation. If µ is supported on the

unit disk, D, then there is a quasiconformal h : D → D with this dilatation.

A quasiconformal map h is called K-quasiconformal if its dilatation satisfies

∥µ∥∞ ≤ k = (K − 1)/(K + 1). More geometrically, at almost every point, h
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is differentiable and its derivative (which is a real linear map) send circles to

ellipses of eccentricity at most K.

A quasicircle Γ = f(T) is the image of the unit circle T under a planar qua-

siconformal map. Such curves have a well known geometric characterization:

Γ is a quasicircle if and only if for all subarcs γ ⊂ Γ with diam(γ) ≤ diam(Γ)/2

we have diam(γ) = O(|z − w|), where z, w are the endpoints of γ (this is one

of about thirty equivalent conditions given in [62]). Weil-Petersson curves are

quasicircles by definition, but they are also rectifiable and satisfy even more

stringent conditions.

Suppose Γ is a closed curve in the plane, and let f be a conformal map

from the unit disk D = {z : |z| < 1} to Ω, the bounded complementary

component of Γ. If f is conformal on D, then f ′ is never zero, so Φ = log f ′

is a well defined holomorphic function on D. Recall that the Dirichlet class

is the Hilbert space of holomorphic functions F on the unit disk such that

|F (0)|2 +
∫
D |F ′(z)|2dxdy < ∞. In other words, the Dirichlet space consists of

the holomorphic functions in the Sobolev space W 1,2(D) (functions with one

derivative in L2(dxdy)).

Definition 1. The curve Γ is a quasicircle and Γ = f(T), where f is con-

formal on D and log f ′ is in the Dirichlet class.

This definition of Weil-Petersson curves immediately provides some geo-

metric information about the curve Γ. For a Jordan arc γ, let ℓ(γ) denote

its arclength, and let crd(γ) = |z − w|, where z, w are the endpoints of γ. If

log f ′ is in the Dirichlet class, then log f ′ ∈ VMOA (vanishing mean oscillation;

see Chapter VI of [58]). The John-Nirenberg theorem (e.g., Theorem VI.2.1 of

[58]) then implies that f ′ is in the Hardy space H1(D), so Γ is rectifiable. Even

stronger, a theorem of Christian Pommerenke [104] implies that Γ is asymptot-

ically smooth, i.e., ℓ(γ)/crd(γ) → 1 as ℓ(γ) → 0. Thus a Weil-Petersson curve

has “no corners”, e.g., no polygon is Weil-Petersson. Asymptotic smoothness

implies Γ is chord-arc; a fact observed in [56] (see also Theorem 2.8 of [105],

but there is a gap due to the non-standard definition of “quasicircle” in a result

quoted from [46].)

An estimate of Arne Beurling [13] (simplified and extended by Alice Chang

and Don Marshall in [32] and [87]) says that log |f ′| being in the Dirichlet class

implies
∫
exp(α log2 |f ′|2)ds < ∞ for all α ≤ 1. In particular, |f ′| ∈ Lp(T) for

every p < ∞ (but examples show |f ′| need not be bounded). Thus f is almost,

but not quite, Lipschitz. We shall describe its precise smoothness later.

It is easy to prove using power series (e.g., Lemma 10.2 of [17]) that for

any holomorphic function F on D the condition∣∣F (0)
∣∣2 + ∫

D

∣∣F ′(z)
∣∣2dxdy < ∞
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holds if and only if∣∣F (0)
∣∣2 + ∣∣F ′(0)

∣∣2 + ∫
D

∣∣F ′′(z)
∣∣2 (1− |z|2

)2
dxdy < ∞.

Applying this to F = log f ′, we see that∫
D

∣∣∣(log f ′)′∣∣∣2 dxdy =

∫
D

∣∣∣∣f ′′

f ′

∣∣∣∣2 dxdy < ∞(2.1)

could be replaced by the condition∫
D

∣∣∣∣∣
Å
f ′′′

f ′

ã
−
Å
f ′′

f ′

ã2∣∣∣∣∣2 (1− |z|2
)2

dxdy < ∞.(2.2)

This integrand is reminiscent of the Schwarzian derivative of f given by

S(f) =

Å
f ′′

f ′

ã′
− 1

2

Å
f ′′

f ′

ã2
=

f ′′′

f ′ − 3

2

Å
f ′′

f ′

ã2
.(2.3)

The quantities in (2.2) and (2.3) are very similar, except that a factor

of 1 has been changed to 3/2. However, this represents a non-linear change,

and it is difficult to compare the two quantities directly. Nevertheless, for

conformal maps into bounded quasidisks, the integrals of these two quantities

are simultaneously finite or infinite.

Definition 2. The curve Γ is quasicircle and Γ = f(T), where f is confor-

mal on D and satisfies∫
D

∣∣S(f)(z)∣∣2 (1− |z|2
)2

dxdy < ∞.(2.4)

Proposition 1 of Cui’s paper [37] says that Definitions 2 and 1 are equiva-

lent. See also Theorem II.1.12 of [123] and Theorem 1 of [103]. If f is univalent

on D, then

sup
z∈D

∣∣S(f)(z)∣∣ (1− |z|2
)2 ≤ 6.(2.5)

See Chapter II of [79] for this and other properties of the Schwarzian. If f

is holomorphic on the disk and satisfies (2.5) with 6 replaced by 2, then f is

injective, i.e., a conformal map. If 2 is replaced by a value t < 2, then f also

has a K-quasiconformal extension to the plane, where K depends only on t.

This is due to Lars Ahlfors and Georges Weill [2], who gave a formula for the

extension and its dilatation

f(w) = f(z) +

(
1− |z|2

)
f ′(z)

z − 1
2

(
1− |z|2

)(
f ′′(z)/f ′(z)

)(2.6)

µ(w) = −1

2

(
1− |z|2

)2
S(f)(z)(2.7)
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where w ∈ D∗ and z = 1/w ∈ D. See Section 4 of [35] for a lucid discussion

of the Ahlfors-Weill extension; it also appears as Formula (3.33) in [100], and

Equation (9) of [107]. Equation (2.7) suggests the following definition.

Definition 3. The curve Γ = f(T), where f is a quasiconformal map of

the plane that is conformal on D∗ and whose dilatation µ on D satisfies∫
D

∣∣µ(z)∣∣2(
1− |z|2

)2dxdy < ∞.(2.8)

This is equivalent to Definition 2 by Theorem 2 of [37], and∫
D

∣∣µ(z)∣∣2dAρ < ∞,(2.9)

where dAρ denotes integration against hyperbolic area; this was one of the

definitions of the Weil-Petersson class mentioned in the introduction.

Another variation on this theme is to consider the mapR(z)=f(1/f−1(z)).

This is an orientation reversing quasiconformal map of the sphere to itself that

fixes Γ pointwise, exchanges the two complementary components of Γ and

whose dilatation satisfies ∫
Ω∪Ω∗

∣∣µ(z)∣∣2dAρ(z) < ∞,(2.10)

where dAρ is hyperbolic area on each of the domains Ω,Ω∗. This version is

sometimes easier to check, and we will use it interchangeably with Definition 3.

The map R is called a quasiconformal reflection across Γ. Definition 13 will

give an analogous characterization in terms of biLipschitz involutions in Rn.

A circle homeomorphism φ : T → T is called a conformal welding if

φ = f−1 ◦ g, where f, g are conformal maps from the two sides of the unit

circle to the two sides of a closed Jordan curve Γ. There are many weldings

associated to each Γ, but they all differ from each other by compositions with

Möbius transformations of T. Not every circle homeomorphism is a conformal

welding, but weldings are dense in all circle homeomorphisms in various senses;

see [16].

A circle homeomorphism is called M -quasisymmetric if it maps adjacent

arcs of equal length to arcs whose length differ by a factor of at most M ; we

call φ quasisymmetric if it is M -quasisymmetric for some M . The quasisym-

metric maps are exactly the circle homeomorphisms that can be continuously

extended to quasiconformal self-maps of the disk, and are also exactly the con-

formal weldings of quasicircles. See [3]. If I ⊂ T is an arc, let m(I) denote its

midpoint. For a homeomorphism φ : T → T and an arc I ⊂ T, define

qs(φ, I) =

∣∣φ(m(I)
)
−m

(
φ(I)

)∣∣
ℓ
(
φ(I)

) .



14 CHRISTOPHER J. BISHOP

A quasisymmetric homeomorphism φ is called symmetric if qs(φ, I) → 0 as

|I| → 0. Pommerenke [104] proved such weldings characterize curves where

log f ′ is in the little Bloch space (|(log(f ′)′|(1−|z|) = o(1)); see also [57] by Fred

Gardiner and Dennis Sullivan and [120] by Kurt Strebel. It is proven in [17]

that φ corresponds to a Weil-Petersson curve if and only if qs(φ, I) ∈ ℓ2.

Definition 4. The curve Γ has a welding map φ that satisfies∑
I

qs2(φ, I) ≤ C < ∞,(2.11)

where the sum is over any dyadic decomposition of T and C is independent of

the choice of the decomposition.

Weil-Petersson weldings were first characterized by Yuliang Shen [117] in

terms of the Sobolev spaceH1/2. We will describe his result in the next section.

3. Sobolev conditions

We start by recalling some standard notation. Given two quantities A,B

that both depend on a parameter, we write A ≲ B if there is a constant C

such that A ≤ CB holds independent of the parameter. We write A ≳ B if

B ≲ A, and we write A ≃ B if both A ≲ B and A ≳ B hold. The notation

A ≲ B means the same as the “big-Oh” notation A = O(B).

Definition 1 can be interpreted in terms of Sobolev spaces. The space

H1/2(T) ⊂ L2(T) is defined by the finiteness of the seminorm

D(f) =

∫∫
D

∣∣∇u(z)
∣∣2dxdy

=
1

8π

∫ 2π

0

∫ 2π

0

∣∣∣∣∣f(eis)− f(eit)

sin 1
2(s− t)

∣∣∣∣∣
2

dsdt ≃
∫
T

∫
T

∣∣f(z)− f(w)
∣∣2

|z − w|2
|dz||dw|,

where u is the harmonic extension of f to D. The equality of the first and

second integrals is called the Douglas formula, after Jesse Douglas who intro-

duced it in his solution of the Plateau problem [41]. See also Theorem 2.5 of [4]

(for a proof of the Douglas formula) and [110] (for more information about the

Dirichlet space). For s ∈ (0, 1) we define the space Hs(T) using∫
T

∫
T

∣∣f(z)− f(w)
∣∣2

|z − w|1+2s
|dz||dw| < ∞.

See [1] and [39] for additional background on fractional Sobolev spaces. See

also [93] by Subhashis Nag and Sullivan; in the authors’ words, its “purpose is

to survey from various different aspects the elegant role of H1/2 in universal

Teichüller theory” (a role we seek to explore in this paper too).
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Shen [117] proved Γ is Weil-Petersson if and only if its welding map φ sat-

isfies logφ′ ∈ H1/2. One direction is easy. If Γ is Weil-Petersson, then log f ′

and log g′ have boundary values in H1/2(T), where f and g are conformal

maps from either side of T to either side of Γ. See [123]. A simple compu-

tation shows logφ′(x) = − log f ′(φ(x)) + log g′(x). Beurling and Ahlfors [12]

proved H1/2(T) is invariant under pre-compositions with quasisymmetric circle

homeomorphisms, so logφ′ ∈ H1/2(T). The converse is harder; [17] provides a

geometric alternative to Shen’s operator theoretic proof.

Note that log f ′(z) = log |f ′(z)| + i arg f(z) ∈ W 1,2(D) if and only if the

radial limits log |f ′| and arg(f ′) are both in H1/2(T). Since arg(f ′) can be

unbounded, it is surprising that this is also equivalent to f ′/|f ′| ∈ H1/2.

Definition 5. The curve Γ = f(T) is chord-arc and exp(i arg f ′) = f ′/|f ′| ∈
H1/2(T).

It is easy to deduce this from Definition 1. Since arg f ′ ∈ H1/2(T), using
|eix − eiy| ≤ |x− y| and the Douglas formula, we get∫
T

∫
T

∣∣∣∣∣ei arg f
′(x) − ei arg f

′(y)

x− y

∣∣∣∣∣
2

dxdy ≤
∫
T

∫
T

∣∣∣∣arg f ′(x)− arg f ′(y)

x− y

∣∣∣∣2 dxdy < ∞.

Thus exp(i arg f ′) ∈ H1/2(T). A direct function theoretic proof of the converse
is given in [17]; it also follows from a chain of implications proven later in this

paper.

Let a : T → Γ be an orientation preserving arclength parametrization

(i.e., a multiplies the arclength of every set by ℓ(Γ)/2π). For z ∈ Γ, let τ(z)

be the unit tangent direction to Γ with its usual counterclockwise orientation.

Then τ(a(x)) = a′(x)2π/ℓ(Γ), where a′ = da
dθ on T. Thus a′ = exp(i arg f ′) ◦φ,

where φ = a−1◦f is a circle homeomorphism. In Section 8, we shall prove that

this map φ is quasisymmetric (and hence so is its inverse). As noted above,

pre-composing with such maps preserves H1/2(T), so Definition 5 is equivalent

to saying a′ ∈ H1/2(T). Every arclength parametrization is Lipschitz, hence

absolutely continuous, and therefore the distributional derivative of a equals

its pointwise derivative a′. Thus, for arclength parametrizations, a′ ∈ H1/2(T)
is the same as a ∈ H3/2(T). Therefore Definition 5 is equivalent to

Definition 6. The curve Γ is chord-arc, and the arclength parametrization

a : T → Γ is in the Sobolev space H3/2(T).

Proving this is equivalent to Definition 1 gives Theorem 1.1. Previous to

Shen’s result described earlier, François Gay-Balmaz and Tudor Ratiu [60] had

proved that if Γ is Weil-Petersson, then the corresponding welding map φ is

in Hs(T) for all s < 3/2, but Shen [117] gave examples that are neither in

H3/2(T), nor Lipschitz. Thus Theorem 1.1 implies that having an H3/2 ar-

clength parametrization is not the same as having an H3/2 conformal welding.
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These are equivalent conditions for s > 3/2, because for such weldings the

Sobolev embedding theorem implies that φ′ is Hölder continuous, which im-

plies that the conformal mappings f, g have non-vanishing, Hölder continuous

derivatives (e.g.,[36]), and therefore φ is biLipschitz. This fact implies that Γ

has an Hs arclength parametrization (to see this, just copy the argument fol-

lowing Definition 5, using the fact that biLipschitz circle homeomorphisms

preserve Hs(T) for 1/2 < s < 1, e.g., [22]).

When identified with quasisymmetric circle homeomorphisms, elements of

the universal Teichmüller space T (1) form a group under composition. It is

not a topological group for the usual topology because left multiplication is

not continuous (e.g., Theorem 3.3 in [79] or Remark 6.9 in [73]). However,

Takhtajan and Teo [123] proved T0(1) is a topological group with its Weil-

Petersson topology. So even though H3/2-diffeomorphisms of the circle are not

a group, Theorem 1.1 shows the set of H3/2 Jordan curves can be identified

with a group via conformal welding, namely T0(1). Circle diffeomorphisms

in Hs(T) with s > 3/2 also form a group, e.g., [71] and [117], and by the

previous paragraph this means Hs curves are identified with a topological

group via conformal welding. Thus our work gives the “endpoint” result of

this previously known fact. See [11], [60], [89], and [90] for related discussions

of groups, weldings, Sobolev embeddings and immersions.

Next we consider some consequences of Definition 6. Since Γ is chord-arc,

1

C
≤
∣∣a(x)− a(y)

∣∣
|x− y|

≤ 1, x, y ∈ T,

so setting z = a(x), w = a(y), we have∫
Γ

∫
Γ

∣∣∣∣τ(z)− τ(w)

z − w

∣∣∣∣2 |dz||dw|= ∫
T

∫
T

∣∣∣∣a′(x)− a′(y)

a(x)− a(y)

∣∣∣∣2 dxdy
=

∫
T

∫
T

∣∣∣∣a′(x)− a′(y)

x− y
· x− y

a(x)− a(y)

∣∣∣∣2 dxdy
≃
∫
T

∫
T

∣∣∣∣a′(x)− a′(y)

x− y

∣∣∣∣2 dxdy.
Thus Definition 6 is equivalent to

Definition 7. The curve Γ is chord-arc and∫
Γ

∫
Γ

∣∣∣∣τ(z)− τ(w)

z − w

∣∣∣∣2 |dz||dw| < ∞.

This characterization of the Weil-Petersson class was independently dis-

covered by Shen and Li Wu [118]. They prove that Γ is a Weil-Petersson curve

if and only if τ(a(x)) = a′(x) = exp(ib(x)) for some b ∈ H1/2(T). Since∣∣τ(a(x))− τ
(
a(y)

)∣∣ = O
(
|b(x)− b(y)|

)
,
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it is easy to check that τ ◦ a ∈ H1/2, which gives Definition 7.

In Section 9, we will prove that Definition 7 is equivalent to

Definition 8. The curve Γ has finite Möbius energy, i.e,

Möb(Γ) =

∫
Γ

∫
Γ

Å
1

|z − w|2
− 1

ℓ(z, w)2

ã
dzdw < ∞.

As mentioned in the introduction, Blatt [21] proved directly that Defini-

tion 6 is equivalent to Definition 8 (but there is a typo in Theorem 1.1 of [21]:

it is stated that s = (jp − 2)/(2p), but this should be s = (jp − 1)/(2p), as

given in his proof).

A Jordan curve with a H3/2 arclength parametrization is chord-arc ([21,

Lemma 2.1]), because this assumption prevents bending on small scales, but

there is no quantitative bound on the chord-arc constant: Jordan curves with

H3/2 parametrizations can come arbitrarily close to self-intersecting (think of

a smooth, Jordan approximation to a figure “8”). However, such a bound is

possible in terms of Möb(Γ). This is Lemma 1.2 of [66], but for the reader’s

convenience, we sketch a proof here.

If |z − w| ≤ ϵ, but ℓ(z, w) ≥ Mϵ, let σk, σ
′
k ⊂ γ(z, w) be arcs of length

2kϵ that are path distance (on Γ) 2kϵ from z and w, respectively, for k =

1, . . . ,K = ⌊log2(M)⌋ − 4. Then σk ∪ σ′
k has diameter at most ϵ(1 + 2k+1)

in Rn, but these two arcs are at least distance (M − 2k+2)ϵ ≥ Mϵ/2 apart

on Γ. Thus∫
σk

∫
σ′
k

Å
1

|z − w|2
− 1

ℓ(v, w)2

ã
dzdw≥

ï
1

(2k+2ϵ)2
− 1

(M/2)2

ò
(2kϵ)(2kϵ)

≥ 1

16
− 22K+2

M2

≥ 1

16
− 2−6 >

1

32
.

Summing over k shows Möb(Γ) ≥ K/32 ≳ logM , so we have proven that

Möb(Γ) < ∞ implies Γ is chord-arc.

Using the fact that Γ is chord-arc, we now get

Möb(Γ)=

∫
Γ

∫
Γ

ℓ(z, w)2 − |z − w|2

|z − w|2ℓ(z, w)2
dzdw

=

∫
Γ

∫
Γ

(ℓ(z, w)− |z − w|)(ℓ(z, w) + |z − w|)
|z − w|2ℓ(z, w)2

dzdw

≃
∫
Γ

∫
Γ

ℓ(z, w)− |z − w|
|z − w|3

.

Thus Definition 8 holds if and only if
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Definition 9. The curve Γ is chord-arc and satisfies∫
Γ

∫
Γ

ℓ(z, w)− |z − w|
|z − w|3

|dz||dw| < ∞.(3.1)

In [56], Eva Gallardo-Gutiérrez, Maŕıa González, Fernando Pérez-Gon-

zález, Christian Pommerenke and Jouni Rättyä claim that (3.1) follows from

Definition 1, but their proof contains a small error. They also state the converse

as a conjecture of Jones; our results prove both directions. Definition 9 does

not immediately look like a “curvature is square integrable” criterion, but it

can easily be put in this form. Set

k(z, w) =
√
24 ·
 

ℓ(z, w)− |z − w|
|z − w|3

.

If Γ is smooth, then it is easy to check that k(x) = limy→x k(x, y) is the usual

Euclidean curvature of Γ at x. Thus (3.1) can be rewritten as∫
Γ

∫
Γ

k2(z, w)|dz||dw| < ∞,(3.2)

and this has much more of a “L2-curvature” flavor.

4. β-numbers

A dyadic interval I in R is one of the form (2−nj, 2−n(j +1)] for j, n ∈ Z.
A dyadic cube in Rn is the product of n dyadic intervals of equal length. This

common length is called the side length of Q and is denoted ℓ(Q). Note that

diam(Q) =
√
nℓ(Q). For λ > 0, we let λQ denote the cube concentric with Q

but with diameter λdiam(Q), e.g., 3Q is the “triple” of Q, a union of Q and

3n − 1 adjacent copies of itself.

A multi-resolution family in a metric space X is a collection of sets {Xj}
in X such that there are N,M < ∞ such that

(1) For each r > 0, the sets in {Xj} with diameter between r and Mr cover X;

(2) Each bounded subset of X hits at most N sets Xk in the collection that

satisfy diam(X)/M ≤ diam(Xk) ≤ Mdiam(X);

(3) Any subset of X with positive, finite diameter is contained in at least one

set Xj with diam(Xj) ≤ Mdiam(X).

Dyadic intervals are not a multi-resolution family for R, e.g., [−1, 1] is not

contained in any dyadic interval, violating (3). However, the family of triples of

all dyadic intervals (or cubes) do form a multi-resolution family. Similarly, if we

add all translates of dyadic intervals by ±1/3, we get a multi-resolution family.

This is sometimes called the “1
3 -trick”; see [98]. The analogous construction

for dyadic squares in Rn is to take all translates by elements of {−1
3 , 0,

1
3}

n.

During the course of this paper, we will deal with functions α that map

a collection of sets into the non-negative reals, and we will wish to decide if
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the sum
∑

j α(Xj) over some multi-resolution family converges or diverges.

We will frequently use the following observation to switch between various

multi-resolution families without comment.

Lemma 4.1. Suppose {Xj}, {Yk} are two multi-resolution families on a

space X , and suppose that α is a function mapping subsets of X to [0,∞) that

satisfies α(E) ≲ α(F ), whenever E ⊂ F and diam(F ) ≲ diam(E). Then∑
j

α(Xj) ≃
∑
k

α(Yk).

Proof. By Condition (3) above, each Xj is contained in some set Yk(j) of

comparable diameter. Hence α(Xj) ≲ α(Yk(j)) by assumption. Each Yk is

contained in a comparably sized Xm, and Xm can contain at most a bounded

number of comparably sized subsetsXj . Thus each Yk is only chosen boundedly

often as a Yk(j). Thus
∑

j α(Xj) ≲
∑

k α(Yk). The opposite direction follows

by reversing the roles of the two families. □

For a Jordan arc γ with endpoints z, w, we recall that crd(γ) = |z − w|
and define the “excess length” as ∆(γ) = ℓ(γ)− crd(γ). In Section 10 we will

prove that Definition 9 is equivalent to the following:

Definition 10. The curve Γ is chord-arc and∑
j

∆(Γj)

ℓ(Γj)
< ∞(4.1)

for some (hence every) multi-resolution family {Γj} of arcs on Γ.

Condition (4.1) is just a reformulation of (1.2); since, if ℓ(Γ) = 1 and {Γj}
corresponds to a dyadic decomposition of Γ, we have∑

n

2n
[
ℓ(Γ)− ℓ(Γn)

]
=
∑
j

∆(γj)/ℓ(γj).(4.2)

Thus, proving that Definition 10 is equivalent to being Weil-Petersson essen-

tially proves Theorem 1.3. There is a slight gap here because Definition 10

uses a sum over a multi-resolution family and Theorem 1.3 is stated in terms

of dyadic intervals. However, the theorem assumes a bound that is uniform

over all dyadic decompositions, and this includes the ±1
3 -translates of a single

dyadic family, and the union of these three families form a multi-resolution

family (the “1
3 -trick” from above). Conversely, Corollary 10.3 will show that

∆(γ) ≤ ∆(3γ), so the dyadic sum can be bounded by the sum over dyadic

triples, a multi-resolution family. Thus (4.1) for any multi-resolution family is

equivalent to (4.2) with a uniform bound over all dyadic decompositions of Γ.
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Given a set E ⊂ Rn and a dyadic cube Q, define Jones’s β-number as

β(Q) = βE(Q) =
2
√
2/3

diam(Q)
inf
L

sup{dist(z, L) : z ∈ 3Q ∩ E},

where the infimum is over all lines L that hit 3Q. See the left side of Figure 5.

Jones invented the β-numbers as part of his traveling salesman theorem (TST)

[74], which estimates the length of the shortest curve containing a set E. When

E = Γ is a Jordan curve itself, the TST gives

ℓ(Γ) ≃ diam(Γ) +
∑
Q

βΓ(Q)2diam(Q),(4.3)

where the sum is over all dyadic cubes Q in Rn. Our main geometric charac-

terization of Weil-Petersson curves is to simply drop the “diam(Q)” term from

(4.3).

Definition 11. The closed Jordan curve Γ satisfies∑
Q

βΓ(Q)2 < ∞,(4.4)

where the sum is over all dyadic cubes.

This is not very surprising (in retrospect). In the 1990’s Jones and I proved

(Lemma 3.9 of [19], or Theorem X.6.2 of [59]) that if Γ is an M -quasicircle,

then

ℓ(Γ) ≃ diam(Γ) +

∫∫ ∣∣f ′(z)
∣∣∣∣S(f)(z)∣∣2 (1− |z|2

)3
dxdy(4.5)

with constants depending only on M . By Koebe’s distortion theorem, the

following holds:

|f ′(z)|(1− |z|2) ≃ dist(f(z), ∂Ω),

and thus the factor on the left is analogous to the diam(Q) term in Jones’s

β2-sum. Dropping this term from (4.5) gives exactly the integral in Defini-

tion 2. Thus dropping diam(Q) from (4.3) “should” also characterize Weil-

Petersson curves (but proving this requires some work, given later).

Our results characterize H3/2 curves in terms of β-numbers. Xavier Tolsa

pointed out that related results for graphs of Besov functions (which include

Hs as a special case) are given in [40].

It will be convenient to consider several equivalent formulations of condi-

tion (4.4). For x ∈ Rn and t > 0, define

βΓ(x, t) =
1

t
inf
L

max{dist(z, L) : z ∈ Γ, |x− z| ≤ t},

where the infimum is over all lines hitting the ball B = B(x, t), and let β̃Γ(x, t)

be the similar quantity defined using the infimum only over lines L hitting x.
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Since this is a smaller collection, clearly β(x, t) ≤ β̃(x, t), and it is not hard to

prove that β̃(x, t) ≤ 2β(x, t) if x ∈ Γ. See the center picture in Figure 5.

3Q

x

t

Q

Figure 5. Three equivalent versions of the β-numbers.

Given a Jordan arc γ with endpoints z, w, we define

β(γ) =
max{dist(z, L) : z ∈ γ}

|z − w|
,

where L is the line passing through z and w. See the right side of Figure 5.

Lemma 4.2. If Γ is a closed Jordan curve or a Jordan arc in Rn such

that (4.4) holds, then Γ is a chord-arc curve. For chord-arc curves, (4.4) holds

if and only if any of the following conditions holds :∫ ∞

0

∫∫
Rn

β2(x, t)
dxdt

tn+1
< ∞,(4.6) ∫ ∞

0

∫
Γ

β̃2(x, t)
dsdt

t2
< ∞,(4.7) ∑

j

β2(Γj) < ∞,(4.8)

where dx is volume measure on Rn, ds is arclength measure on Γ, and the

sum in (4.8) is over a multi-resolution family {Γj} for Γ. Convergence or

divergence in (4.6) and (4.7) is not changed if
∫∞
0 is replaced by

∫M
0 for any

M > 0.

The equivalence of these conditions is fairly standard, and a proof can be

found as Lemma B.2 in [18]. Since β(x, t) ≃ β̃(x, t) if x ∈ Γ, the integral in

(4.7) is finite if and only if it is finite with β replacing β̃. However, putting β̃

into (4.6) gives a divergent integral for every closed Jordan curve Γ.

The Menger curvature of three points x, y, z ∈ Rn is c(x, y, z) = 1/R,

where R is the radius of the circle passing through these points. The perimeter

of this triangle with vertices x, y, z is denoted by

ℓ(x, y, x) = |x− y|+ |y − z|+ |z − x|.
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Definition 12. The curve Γ is chord-arc and satisfies∫
Γ

∫
Γ

∫
Γ

c(x, y, z)2

ℓ(x, y, z)
|dx||dy||dz| < ∞.(4.9)

Again, this is not unexpected in hindsight. It is known that the conditions∫
Γ

∫
Γ

∫
Γ

c(x, y, z)2|dx||dy||dz| < ∞(4.10)

and
∑
Q

β2
Γ(Q)ℓ(Q) < ∞(4.11)

are equivalent, and the analog of dropping the length term from (4.11), would

be to divide by a term that scales like length in (4.10), which gives (4.9).

Indeed, to prove that Definitions 11 and 12 are equivalent, we will simply

indicate how to modify the proof of the equivalence of (4.10) and (4.11) in

Hervé Pajot’s book [102].

Recall that a Whitney decomposition of an open setW ⊂ Rn is a collection

of dyadic cubes Q with disjoint interiors, whose closures cover W and which

satisfy diam(Q) ≃ dist(Q, ∂W ). The existence of such decompositions is a

standard fact (e.g., for each z ∈ W , take the maximal dyadic cube Q so that

z ∈ Q ⊂ 3Q ⊂ W . See Section I.4 of [59]).

Suppose U is a neighborhood of Γ ⊂ Rn and R : U → U ⊂ Rn is a homeo-

morphism with fixed point set Γ. For each Whitney cube Q for W = Rn \ Γ,
with Q ⊂ U , define ρ(Q) to be the infimum of values ρ > 0 so that R is

(1 + ρ)-biLipschitz on Q and dist( z+R(z)
2 ,Γ) ≤ ρ · diam(Q) for z ∈ Q (the

latter condition ensures R(z) is on the “opposite” side of Γ from z). The

homeomorphism R is called an involution if R(R(z)) = z.

Definition 13. There is a homeomorphism R defined on a neighborhood U

of Γ that fixes Γ pointwise, and so that∑
Q

ρ2(Q) < ∞.(4.12)

The sum is over all cubes of a Whitney decomposition of Rn\Γ that lie inside U .

We will prove later (Lemma 14.1) that a map R satisfying Definition 13

is biLipschitz in neighborhood U ′ ⊂ U of Γ. We can also extend R to be a

biLipschitz involution on the sphere Sn, except in the case when Γ is knotted

in R3; the solution of the Smith conjecture implies the fixed set of an orientation

preserving diffeomorphic involution of S3 is an unknotted closed curve. See [92].

So, except for knotted curves in R3, we can say that Weil-Petersson curves are

exactly the fixed point sets of biLipschitz involutions of Sn that satisfy (4.12).

Although the Smith conjecture was stated for diffeomorphisms, John Morgan

explains on page 4 of [92] that its proof extends to homeomorphisms when the
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fixed point set is locally flat (locally ambiently homeomorphic to a segment).

This holds in our case by Theorem 4.1 of [66] (finite Möbius energy implies

tamely embedded) and the fact that Definition 13 implies Definition 8.

Next, we give a variation of the β-numbers where Γ must avoid a “fat

torus” instead of being contained in a “thin cylinder”. We start with the

definition in the plane. Given a dyadic square Q, we define εΓ to be the

infimum of the values ε ∈ (0, 1] such that there are a line L, a point z and

a disk D satisfying the following conditions: (1) L hits 3Q, (2) D has radius

ℓ(Q)/ϵ, (3) z is the closest point of D to L, and (4) neither D nor its reflection

across L intersects Γ. See Figure 6. If no such line, point and disk exist,

we set εΓ(Q) = 1. It is easy to see that βΓ(Q) = O(ϵΓ(Q)), but the opposite

direction can certainly fail for a single square Q. Nevertheless, we will see that

the corresponding sums over all dyadic squares are simultaneously convergent

or divergent.

Q
diam(Q)

ε diam(Q)

Γ

ε

Figure 6. The left side illustrates the definition of εΓ(Q) in the

plane: Γ passes between two large, almost touching disks. In R3

the definition says Γ passes through the hole of a “thick torus”,

as on the right.

Definition 14. The curve Γ is chord-arc and satisfies∑
Q

ε2Γ(Q) < ∞(4.13)

where the sum is over all dyadic squares Q that hit Γ and satisfy diam(Q) ≤
diam(Γ).

In higher dimensions, the diskD is replaced by a ballB of radius diam(Q)/ϵ

that attains its distance ϵ from L at z ∈ Q, and so that the full rotation of B

around L does not intersect Γ. Thus Γ is surrounded by a “fat torus”. The

centers of the balls form a (n − 2)-sphere that lies in a (n − 1)-hyperplane

perpendicular to L.
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5. Hyperbolic conditions for planar curves

We start by recalling the basic definitions and then discuss Weil-Petersson

curves in the plane. In the next section we describe the changes that must be

made for curves in Rn, n ≥ 3.

The hyperbolic length of a (Euclidean) rectifiable curve in the unit disk D
or in the n-dimensional ball Bn is given by integrating

dρ =
ds

1− |z|2

along the curve. In the upper half-space Hn+1 = {(x, t) : x ∈ Rn, t > 0} we

integrate dρ = ds/t. Note that this definition differs by a factor of 2 from that

given in some sources; we have made our choice so that hyperbolic space has

constant Gauss curvature −1. The hyperbolic distance between two points is

given by taking the infimum of all hyperbolic lengths of paths connecting the

points. In the ball, hyperbolic geodesics are either diameters of the disk or

they are circles perpendicular to the boundary. In the half-space model Hn+1,

hyperbolic geodesics are either vertical rays or semi-circles centered on the

boundary.

Given a closed curve Γ ⊂ Rn, the hyperbolic convex hull, denoted CH(Γ),

is the convex hull in Hn+1 of all infinite geodesics that have both endpoints

in Γ. The complement of the convex hull is a union of hyperbolic half-spaces.

Each such half-space intersects Rn in an open Euclidean ball (or half-space or

exterior of a ball) that does not hit Γ.

A planar curve Γ divides R2 into two components, and the boundary

of CH(Γ) has two corresponding connected components (unless Γ is a circle)

called the domes of the two sides of Γ. Each dome meets R2 exactly along Γ,

and inside H3 they are disjoint, except when Γ is a circle, in which case they

coincide. The dome of the bounded complementary component Ω of Γ is the

upper boundary of the union of all hemispheres whose base disk is in Ω. The

hemispheres that touch the dome are exactly those whose base disks touch ∂Ω

at two distinct points. Such disks are called medial axis disks, and their centers

form the medial axis of Ω, a well studied object in computational geometry.

See Figure 7; the figure on the right was drawn by first computing the medial

axis shown on the left and then taking the upper envelope of the corresponding

hemispheres. The dome of the unbounded complementary component can be

defined by inverting around a point in Ω. Figure 8 shows a picture of both

domes together.

For a point z ∈ CH(Γ), we define δ(z) = max(distρ(z, S1), distρ(z, S2)),

i.e., δ(z) is the hyperbolic distance to the farther of the two boundary compo-

nents of CH(Γ). See Figure 9. For z inside the convex hull, δ(z) measures the
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Figure 7. A smooth domain, its medial axis and its dome.

Figure 8. Domes for both sides of the curve in Figure 7; the

convex hull of Γ is the region between the two surfaces.

δ(  )z

CH(   )Γ
z

Figure 9. A “side view” of the convex hull. The line at the

bottom represents R2, and region above it represents H3; δ(z)

is the thickness of the convex hull near z. For quasicircles, δ

is uniformly bounded; a curve is a Weil-Petersson curve if and

only if δ ∈ L2 with respect to hyperbolic area on the boundary

of the convex hull.
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“thickness” of the convex hull of Γ near z. We will show that Definition 14

implies

Definition 15. The hyperbolic convex hull of the closed curve Γ satisfies

(5.1)

∫
∂CH(Γ)

δ2(z)dAρ(z) < ∞,

where dAρ denotes hyperbolic surface area on ∂CH(Γ).

We have integrated over all of ∂CH(Γ), but the proof will show that if

the integral over one component is finite, then so is the integral over the other

component.

If Γ is a quasicircle, then each point z of one boundary component is

within a uniformly bounded hyperbolic distance δ(z) of the other boundary

component, i.e., if Γ is a quasicircle, then δ(z) ∈ L∞(∂CH(Γ), dAρ). This

holds because both complementary components of a quasicircle are uniform

domains [88], and thus for every x ∈ Γ and 0 < r ≤ diam(Γ), both complemen-

tary components contain disks of diameter ≃ r inside D(x, r). The converse is

not true, since non-quasicircles may also have δ(z) ∈ L∞. Definition 15 says

that the Weil-Petersson class corresponds to δ(z) ∈ L2(∂CH(Γ), dAρ). The

condition δ(z) ∈ L1(∂CH(Γ), dAρ) is equivalent to CH(Γ) having finite hyper-

bolic volume. For a closed curve, this value is either zero (for lines and circles)

or infinite (everything else); we leave this fact as an exercise.

For planar closed curves Γ, each boundary surface of CH(Γ) ⊂ H3 meets R2

exactly along Γ, and each is isomorphic to the hyperbolic unit disk when given

its hyperbolic path metric. These surfaces are pleated surfaces, i.e., each is a

disjoint union of non-intersecting infinite geodesics for B3 (possibly uncount-

ably many) and at most countably many regions lying on hyperbolic planes,

each region bounded by disjoint hyperbolic geodesics. Roughly speaking, each

surface is a copy of the hyperbolic disk that has been “bent” along a collection

of disjoint geodesics, and there is an associated bending measure that gives the

amount of bending on each geodesic. For more about convex hulls and pleated

surfaces, see [43] by David Epstein and Al Marden (or the revised version [44]).

For an overview of domes and convex hulls see Marden’s paper [86]; see also his

book [85] for a discussion related to hyperbolic 3-manifolds. Hyperbolic domes

and convex hulls have been extensively studied, e.g., [14], [15], [25], [27], [28],

[45], and [48].

In general, the bending measure may have both atoms and continuous

parts; e.g., the dome of two overlapping disks has a definite angle along an

infinite geodesic where two hemi-spheres meet. But for Weil-Petersson curves

the bending measure cannot have an atom; this would violate Definition 15
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because δ would be bounded away from zero on a fixed neighborhood of an in-

finite geodesic. For the dome of a planar domain bounded by a Weil-Petersson

curve, the amount of bending, B(z), that lies within unit distance of z ∈ S1 is

O(δ(z)). Indeed, the inequality∫
S

B2(z)dAρ < ∞(5.2)

gives yet another characterization of Weil-Petersson curves.

If we think of the bending measure as a type of curvature, the following

seems reasonable (we will prove it by smoothing the convex hull boundary).

Definition 16. The curve Γ ⊂ R2 is the boundary of a smooth surface

S ⊂ H3 such that κ1(z), κ2(z) → 0 as z ∈ S tends to the boundary of hyperbolic

space and ∫
S

(
κ21(z) + κ22(z)

)
dAρ(z) < ∞,(5.3)

where κ1, κ2 are the principle curvatures of S.

In Section 18 we use a result of Charles Epstein [42], relating curvature,

the Gauss map and quasiconformal reflections to show that this implies Defi-

nition 3.

We can take the surface in Definition 16 to be minimal. A result of

Anderson [7] shows that any closed Jordan curve Γ ⊂ R2 is the asymptotic

boundary of some minimal disk in H3. An estimate of Andrea Seppi (see

Lemma 19.1) says that

max(|κ1(z)|, |κ2(z)|) = O(δ(z)), x ∈ S ⊂ CH(Γ).(5.4)

This implies that S has finite total curvature if Definition 15 holds.

Definition 17. The curve Γ is a quasicircle that is the asymptotic bound-

ary of an embedded minimal surface that is topologically a disk and satisfies∫
S κ2dAρ < ∞.

As noted earlier, the Gauss curvature of S satisfies K(z) = −1− κ2(z) ≤
−1, so for a compact Jordan sub-domain Ω of S with area A and boundary

length L, the isoperimetric equality for such surfaces (e.g., (4.30) of [101])

implies the following:

L2 ≥ 4πAχ+A2,

where χ = χ(Ω) is the Euler characteristic of Ω. A short manipulation gives

L−A ≥ 4πAχ

L+A
.

For χ ≥ 0 the right-hand side is non-negative, and if χ < 1 it is greater than or

equal to 4πχ. In either case, the difference is bounded below, depending only

on χ. Conversely, we shall prove L−A is bounded above iff Γ is Weil-Petersson.
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Definition 18. The closed Jordan curve Γ is the asymptotic boundary of

a minimal surface S ⊂ H3 that has finite Euler characteristic and that can be

written as the nested unions of compact subsets Ω1 ⊂ Ω2 ⊂ . . . such that

lim sup
n

[
Lρ(∂Ωn)−Aρ(Ωn)

]
< ∞.

A special case of such compact nested subdomains is given by simply

truncating the surface S at Euclidean height t above the boundary of H3.

Define

St = S ∩ {(x, y, s) ∈ H3 : s > t}, and ∂St = S ∩ {(x, y, s) ∈ H3 : s = t}.

The renormalized area of S is defined as

RA(S) = lim
t↘0

[
Aρ(St)− Lρ(∂St)

]
,

and we shall prove that the limit always exists (possibly it is −∞):

Definition 19. The closed Jordan curve Γ is the asymptotic boundary of a

minimal surface S ⊂ H3 with finite Euler characteristic and finite renormalized

area.

There is a discrete version of renormalized area that illustrates the con-

nection between our Euclidean and hyperbolic conditions. Define the “dyadic

cylinder”

X =
∞⋃
n=1

Γn ×
(
2−n, 2−n+1

]
,

where {Γn} are the dyadic polygonal approximations to Γ, as in Theorem 1.3.

See Figures 10 and 13. The dyadic cylinder X has holes, but in Section 12

we shall describe how to fill them to form a triangulated, simply connected

“dyadic dome”, that will work too. Theorem 1.3 is equivalent to finite renor-

malized area for these discrete surfaces:

Definition 20. The dyadic cylinder X corresponding to the closed Jordan

curve Γ has finite renormalized area.

6. Hyperbolic conditions in higher dimensions

Next we discuss how the definitions presented in the previous section have

to be changed for curves Γ ⊂ Rn. Definition 20 needs no change; the con-

struction of the dyadic cylinder and dome is exactly the same, and the proof

that they have finite renormalized area if and only if Γ satisfies Definition 11 is

valid in all dimensions. Definition 16 is also unchanged. Rather than smooth-

ing a boundary component of the convex hull, we can smooth the dyadic dome

instead. The proof that it implies Definition 3 using the theorem of Charles
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Figure 10. The dyadic cylinder and dyadic dome (same curve

as Figure 7).

Epstein on quasiconformality of Gauss maps will be replaced by a construction

of a biLipschitz involution fixing Γ and implying Definition 13.

If Γ ⊂ Rn is the asymptotic boundary of a minimal 2-surface in Hn+1,

then Definitions 17, 18 and 19 remain the same as before. In general, this

need not be the case, and they each require a change of terminology, but not

of concept. Anderson’s result for H3 in [7] is replaced by his result from [6]

for smooth curves in Rn giving the existence of a minimal 2-current. This is

extended to the existence of minimal 2-chain by Fang-Hua Lin in [83] for C1

curves, and his proof extends to H3/2 curves. For definitions of currents see

Herbert Federer’s comprehensive text [47] or the more accessible [119] by Leon

Simon. Brian White’s paper [131] summarizes the basic definitions and results,

and [91] by Frank Morgan starts with a very informative example.

In general, one cannot control the global topology of a minimal current or

chain, but in [83] Lin proves that if Γ is C1, then there is a minimal 2-chain with

asymptotic boundary Γ that agrees with a smooth surface in a neighborhood

of the boundary. His proof of this fact only uses the C1 assumption to deduce

that near the boundary, the 2-chain is close to a vertical 2-plane, and this

implication also holds for the curves Γ ⊂ Rn satisfying Definition 14. He proves

that this surface is locally a Lipschitz graph with small norm with respect to

this plane, and this also holds under our assumptions. Moreover, this surface

is topologically an annulus and is asymptotic to the dyadic dome of Γ. Note

that Lin’s proof only gives that Γ is the boundary of some such 2-chain, not

that every chain with asymptotic boundary Γ has this property.

Definition 17 will thus be replaced by the following: Γ ⊂ Rn is a closed

Jordan curve that is the asymptotic boundary of a minimal 2-chain such that

in {(x, t) ∈ Hn+1 : 0 < t < t0} agrees with an annular surface that has finite

total curvature.
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Definitions 18 and 19 are both changed in the obvious way, replacing the

minimal surface by a minimal 2-chain or current which agrees with a surface S

near the boundary. In Definition 18, we take Ωn to be a smooth topological

annulus contained in S∗
t = S ∩ {(x, s) ∈ Hn+1 : s < t} for t > 0 small enough.

Definition 19 is unchanged, except that it suffices to consider the area of S

between heights 0 < s < t for t fixed and s tending to zero and show that the

corresponding limit exists.

Finally, Definition 15 needs to be changed because in higher dimensions

the hyperbolic convex hull of Γ has a single boundary component, and so

it does not make sense to measure the thickness of the convex hull by the

hyperbolic distance between the two boundary components. However, given a

point z ∈ CH(Γ) and a tangent vector v at z, it does make sense to ask how far

it is from z to the boundary of CH(Γ) following a geodesic in direction v. We let

δ(z, v) denote this distance. The thickness of CH(Γ) will be the supremum of

these distances over different directions, but we need to avoid moving vertically

or parallel to Γ. Therefore we want

δ(z) = inf
P

sup
v⊥P

δ(z, v),

where the infimum is over all tangent 2-planes at z generated by the vertical

direction and one horizontal direction; the infimum will be attained when the

horizontal direction is approximately parallel to Γ. With this definition, we

have δ(z) = O(εΓ(Q)), where z = (x, t) and Q is a dyadic cube in Rn with

x ∈ Q and diam(Q) ≃ t.

In Definition 15 we no longer integrate δ2(z) over the boundary of the con-

vex hull (the hyperbolic (n − 1)-measure of a unit ball will be approximately

δn−1 instead of ≃ 1), but we have to integrate over some appropriate 2-surface,

such as the minimal 2-chain or current described above, or the dyadic dome.

In the latter case, we do not know that the dyadic dome is contained inside

CH(Γ)), so δ(z) as given above is not defined there, but it suffices to integrate

δ2(R(z)) over the dome, where R : Hn+1 → CH(Γ) is the nearest point re-

traction. We can also state the condition as
∑

Q δ2(Q) < ∞, where the sum

is over dyadic cubes in Rn, and δ(Q) is defined as the maximum of δ(z) over

CH(Γ) ∩ T(Q), where T (Q) = Q× [12ℓ(Q), ℓ(Q)] ⊂ Hn+1.

7. Summary of definitions

For the reader’s convenience, Table 1 gives a summary of the definitions

from the preceding sections. For curves in R2, Definitions (1)–(20) are equiv-

alent. For curves in Rn, n ≥ 3, Definitions (6)–(20), properly modified, are

all equivalent. Definitions (1)–(3) are the previously known function theo-

retic definition, (4)-(20) are the new definitions proven here and in [17], and

(21)–(26) are other known definitions, described in Appendix A. The graph in
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Figure 11. Diagramming the proof that our definitions are all

equivalent. Each number in a square refers to a definition and

numbers on an arrow give the section of this paper where that

implication is proven; unlabeled dashed edges are proven in [17],

and unlabeled solid edges are immediate from the definitions.

The dashed arrows are only valid for n = 2, either because one

of the definitions only makes sense there, or we only give the

proof in that case. The shaded blocks group definitions based

on conformal maps (left), Euclidean geometry (upper right) and

hyperbolic geometry (lower right).

Figure 11 has vertices representing definitions and edges representing proofs;

the vertex labels correspond to definition numbers, and the edge labels say in

which section of this paper the corresponding proof may be found.

8. From function theory to β-numbers: (5) ⇒ (6), (7) ⇒ (11)

Lemma 8.1. Definition 5 implies Definition 6.

Proof. Suppose f is a conformal map from D to the bounded complemen-

tary component of Γ. Let a : T → Γ be an orientation preserving arclength

parametrization, and let φ = a−1 ◦ f : T → T. We claim this circle homeo-

morphism is quasisymmetric. To prove this, consider two adjacent arcs I, J of
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Table 1. A summary of 26 definitions of Weil-Petersson curves.

Definition Description

1 log f ′ in Dirichlet class

2 Schwarzian derivative

3 QC dilatation in L2

4 conformal welding

5 exp(i log f ′) in H1/2

6 arclength parametrization in H3/2

7 tangents in H1/2

8 finite Möbius energy

9 Jones conjecture

10 good polygonal approximations

11 β2-sum is finite

12 Menger curvature

13 biLipschitz involutions

14 ε2-sum is finite

15 δ-thickness in L2

16 finite total curvature surface

17 minimal surface of finite curvature

18 additive isoperimetric bound

19 finite renormalized area

20 dyadic cylinder

21 closure of smooth curves in T0(1)

22 P−
φ is Hilbert-Schmidt

23 double hits by random lines

24 finite Loewner energy

25 large deviations of SLE(0+)

26 Brownian loop measure

the same length. Since Definition 5 states that Γ is chord-arc, and chord-arc

curves are quasicircles, the conformal map f from D to the bounded comple-

mentary has a quasiconformal extension to the whole plane. Hence f is also

a quasisymmetric map on T, and this implies that f(I) and f(J) have com-

parable diameters; e.g., see [61] or Section 4 of [67]. Since Γ is chord-arc, this

implies that f(I) and f(J) have comparable lengths, and hence that φ(I) and

φ(J) also have comparable lengths, since a preserves arclength. This implies

that φ is quasisymmetric.
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Note that a′ = exp(i arg f ′) ◦φ. In [12], Beurling and Ahlfors proved that

H1/2 is invariant under composition with a quasisymmetric homeomorphism

of T. Thus a′ ∈ H1/2 if and only if exp(i arg f) ∈ H1/2. Since a is Lipschitz, it

is also absolutely continuous, so its weak derivative agrees with its pointwise

derivative a′. Hence a ∈ H3/2(T). □

A direct proof of the converse is given in [17]. A more roundabout proof

uses the implications (6) ⇒ (7) ⇒ (11) ⇒ (3) ⇒ (2) ⇒ (1) ⇒ (5). The first

two and last implications are proven in this paper, and the other three are

proven in [17].

By our remarks in Section 3, we already know that Definition 6 is equiv-

alent to Definition 7, so we need only prove:

Lemma 8.2. Definition 7 implies Definition 11.

Proof. We let U be the torus T2 minus the diagonal, and take a Whitney

decomposition of U by dyadic squares {Qj}, i.e., a covering of U by squares Q

with disjoint interiors and the property that diam(Q) ≃ dist(Q, ∂U). We will

think of T as [0, 1] with its endpoints identified, and use dyadic squares in

[0, 1]2 as elements of our Whitney decomposition. See Figure 12.

Figure 12. On the left is the obvious packing of [0, 1]2 mi-

nus the diagonal by maximal dyadic squares, but this is not a

Whitney decomposition, since some squares touch the diagonal.

However, if we recursively subdivide each of these squares into

four sub-squares and keep the three not touching the diagonal

(shaded on left), we generate the Whitney decomposition on

the right.

Normalize Γ to have length 1 and use the arclength parametrization to

identify Γ × Γ with the torus T2 = [0, 1]2. We decompose Γ × Γ into pieces

denoted {Wj}, where each piece is a product of two dyadic arcs Wj = γj×γ′j of

equal length (these correspond to dyadic intervals in [0, 1]). For each Whitney
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piece Wj = γj × γ′j ⊂ Γ× Γ, choose a w0 ∈ γ′j such that

ℓ
(
γ′j
) ∫

γj

∣∣τ(z)− τ(w0)
∣∣2|dz| ≤ 2

∫
γ′
j

∫
γj

∣∣τ(z)− τ(w)
∣∣2|dz||dw|.

We can do this because a positive measurable function must take a value that is

less than or equal to twice its average. Let L be the line through one endpoint

of γ′j in direction τ(w0). Then the maximum distance d that γj can attain

from L satisfies

d ≲

∫
γj

∣∣τ(z)− τ(w0)
∣∣|dz| ≤ Ç∫

γj

∣∣τ(z)− τ(w0)
∣∣2|dz|å1/2

ℓ
(
γj
)1/2

.

Therefore (using the fact that γ is chord-arc),

β2(γj) ≃ d2/diam(γj)≲
1

ℓ(γj)

∫
γj

∣∣τ(z)− τ(w0)
∣∣2|dz|

≤ 2

ℓ(γj)2

∫
γj

∫
γ′
j

∣∣τ(z)− τ(w)
∣∣2|dz||dw|

≲

∫
γj

∫
γ′
j

∣∣∣∣τ(z)− τ(w)

z − w

∣∣∣∣2 |dz||dw|.
Summing over all Whitney pieces proves that the β2-sum is finite when

taken over all arcs of the form {γj}. By construction (see Figure 12), every

dyadic interval in [0, 1] (except for [0, 12 ], [
1
2 , 1] and [0, 1]) occurs as a γj at least

once, and at most three times, so this bounds the sum of β2(γ) over all dyadic

subintervals of Γ, for a fixed base point, with an estimate independent of the

basepoint. Thus it holds for some multi-resolution family of arcs (recall the
1
3 -trick for making such a family from three translates of the dyadic family).

Because of Lemma 4.2, this proves the lemma. □

9. Tangents control Möbius energy: (7) ⇔ (8)

The following proof is similar to an argument in [21].

Lemma 9.1. Definition 7 is equivalent to Definition 8.

Proof. We want to show that

Möb(Γ) =

∫
Γ

∫
Γ

1

|z − w|2
− 1

ℓ(z, w)2
|dz||dw| < ∞(9.1)

if and only if ∫
Γ

∫
Γ

∣∣τ(x)− τ(y)
∣∣2

|x− y|2
|dx||dy| < ∞.(9.2)

First we collect a few relevant formulas about rectifiable arcs.
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Suppose γ is rectifiable with endpoints z, w, and let τ(x) denote the unit

tangent vector at x ∈ γ (well defined almost everywhere on γ; we assume γ is

oriented from w to z). Then

u =
z − w

|z − w|
=

1

|z − w|

∫
γ

τ(y)|dy|

is the unit vector in direction z − w, and hence

|z − w|2 = |z − w|
∫
γ

〈
τ(x), u

〉
|dx| =

∫
γ

∫
γ

〈
τ(x), τ(y)

〉
|dy||dx|.(9.3)

Next, using |τ | = 1, we get∫
γ

∫
γ

∣∣τ(x)− τ(y)
∣∣2|dx||dy|= ∫

γ

∫
γ

〈
τ(x)− τ(y), τ(x)− τ(y)

〉
|dx||dy|

=

∫
γ

∫
γ

Ä∣∣τ(x)∣∣2 − 2
〈
τ(y), τ(x)

〉
+
∣∣τ(y)∣∣2ä |dx||dy|

=2ℓ(γ)2 − 2

∫
γ

∫
γ

〈
τ(x), τ(y)

〉
|dx||dy|.

Let γ = γ(z, w) ⊂ Γ be the shorter sub-arc with endpoints z, w. Combin-

ing the equality above with (9.3) and the assumption that Γ is chord-arc, we

get

Möb(Γ)=

∫
Γ

∫
Γ

ℓ(z, w)2 − |z − w|2

ℓ(z, w)2|z − w|2
|dz||dw|

≃
∫
Γ

∫
Γ

ℓ(z, w)2 −
∫
γ

∫
γ

〈
τ(x), τ(y)

〉
|dx||dy|

|z − w|4
|dz||dw|

=
1

2

∫
Γ

∫
Γ

∫
γ

∫
γ

∣∣τ(x)− τ(y)
∣∣2|dx||dy|

|z − w|4
|dz||dw|

Given x, y ∈ Γ with ℓ(x, y) ≤ 1
8ℓ(Γ), set σ(x, y) = {(z, w) ∈ Γ× Γ : x, y ∈

γ(z, w)}. If, in addition, 0 < t < ℓ(Γ)/2, let σ(x, y, t) ⊂ Γ be the arc of length t

with one endpoint x that is disjoint from the arc γ(x, y). Using the fact that Γ

is chord-arc, it is not hard to show that if m ≥ 2, t ∈ [ℓ(x, y), diam(Γ/8)], and

w ∈ σ(y, x, t), then ∫
σ(x,y,t)

|dz|
|z − w|m

≃ 1

|x− w|m−1
.(9.4)
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(Hint: divide the integral using the annuli {z : 2n|w − x| < |z − w| ≤ 2n+1 ·
|w − x|}). Set s = ℓ(Γ)/2 and set t = ℓ(Γ)/8. Note that

ℓ(x, y) ≤ t, w ∈ σ(y, x, t), z ∈ σ(x, y, t) ⇒ (z, w) ∈ σ(x, y)

ℓ(x, y) ≤ t, (z, w) ∈ σ(x, y) ⇒ z ∈ σ(x, y, s),

w ∈ σ(y, x, s).

Let Σ(t) = {(x, y) ∈ Γ× Γ : ℓ(x, y) ≤ t}. By the first implication and Fubini’s

theorem,∫∫
Γ×Γ

|τ(x)− τ(y)|2
∫∫

(z,w)∈σ(x,y)

|dz||dw|
|z − w|4

|dx||dy|

≥
∫∫

Σ(t)

|τ(x)− τ(y)|2
∫∫

(z,w)∈σ(x,y)

|dz||dw|
|z − w|4

|dx||dy|

≳

∫∫
Σ(t)

|τ(x)− τ(y)|2
∫
z∈σ(x,y,t)

∫
w∈σ(y,x,t)

|dz||dw|
|z − w|4

|dx||dy|,

and using (9.4),

≃
∫∫

Σ(t)

|τ(x)− τ(y)|2
∫
w∈σ(y,x,t)

|dw|
|x− w|3

|dx||dy|

≃
∫∫

Σ(t)

|τ(x)− τ(y)|2

|x− y|2
|dx||dy|.

This proves that Definition 8 implies Definition 7, since the integral over (Γ×
Γ) \ Σ(t) is obviously bounded (depending on t) since pairs of points (x, y) in

this set are separated by distance ≳ t.

To prove the opposite implication, we want to show that Möb(Γ) is finite

if the τ -integral is. As above, it suffices to evaluate the energy integral (9.1)

over Σ(t). A calculation similar to the one above gives∫∫
Σ(t)

|τ(x)− τ(y)|2
∫∫

(z,w)∈σ(x,y))

|dz||dw|
|z − w|4

|dx||dy|

≲

∫∫
Σ(t)

|τ(x)− τ(y)|2
∫
z∈σ(x,y,s)

∫
w∈σ(y,x,s)

|dz||dw|
|x− w|4

|dx||dy|

≃
∫∫

Σ(t)

|τ(x)− τ(y)|2
∫
w∈σ(y,x,s)

|dw|
|x− w|3

|dx||dy|

≃
∫∫

Σ(t)

|τ(x)− τ(y)|2

|x− y|2
|dx||dy|.

This proves that Definitions 8 and 7 are equivalent. □
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10. Continuous and discrete asymptotic smoothness: (9) ⇔ (10)

Lemma 10.1. Definition 9 is equivalent to Definition 10.

Proof. We use notation similar to Section 8. Without loss of generality, we

may rescale Γ so that it has length 1. As before, we identify Γ×Γ with the torus

T2 = [0, 1]2, we let U be this torus minus the diagonal, and we take a Whitney

decomposition of U by dyadic squares {Qj} as in the proof of Lemma 8.2.

Also as before, Γ× Γ, minus the diagonal, has a Whitney decomposition with

elements denoted {Wj}, and each of these pieces is a product of dyadic arcs

Wj = γj × γ′j . For each Wj , we can write γj ∪ γ′j = Γj \Γ′
j so that γj , γ

′
j ,Γj ,Γ

′
j

all have comparable lengths.

Recall that crd(γ) = |z − w|, where z, w are the endpoints of γ, and

that ∆(γ) ≡ ℓ(γ)− crd(γ). We sometimes write ∆(z, w) for ∆(γ) when γ has

endpoints z, w, and when it is clear from context which arc connecting these

points we mean. We say two subarcs of Γ are adjacent if they have disjoint

interiors, but share a common endpoint.

Lemma 10.2. If γ, γ′ ⊂ Γ are adjacent, then ∆(γ) + ∆(γ′) ≤ ∆(γ ∪ γ′).

Proof. Note that ℓ(γ∪γ′) = ℓ(γ)+ℓ(γ′) and crd(γ∪γ′) ≤ crd(γ)+crd(γ′),

so the following holds:

∆(γ ∪ γ′) = ℓ(γ ∪ γ′)− crd(γ ∪ γ′)

≥ ℓ(γ) + ℓ(γ′)− crd(γ)− crd(γ′) = ∆(γ) + ∆(γ′). □

Corollary 10.3. If γ ⊂ γ′ then ∆(γ) ≤ ∆(γ′).

Now, fix j and consider the Whitney box Wj = γj × γ′j . If γ ⊂ Γj is any

arc with one endpoint in γj and the other in γ′j , then Γ′
j ⊂ γ ⊂ Γj , and hence

∆(Γ′
j) ≤ ∆(γ) ≤ ∆(Γj). Because Γ is chord-arc, if z ∈ γ′j and w ∈ γj , then

|z −w| ≳ ℓ(Γ′
j) ≃ ℓ(Γj). We can therefore write the integral from Definition 9

as ∫
Γ

∫
Γ

ℓ(z, w)− |z − w|
|z − w|3

|dz||dw| =
∑
j

∫
Wj

∆(z, w)

|z − w|3
|dz||dw|

≲
∑
j

∆(Γj)

ℓ(Γj)3
ℓ(Γj)

2 =
∑
j

∆(Γj)

ℓ(Γj)
.

Thus Definition 10 implies Definition 9.

Reversing the argument, now assume Γ′
j is some dyadic subinterval of Γ

and let γj , γ
′
j be the equal length dyadic arcs adjacent to Γ′

j . We have∫
γj

∫
γ′
j

ℓ(z, w)− |z − w|
|z − w|3

|dz||dw|≳
∆(Γ′

j)

ℓ(Γ′
j)

.
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The squares Wj = γj × γ′j arising in this way have bounded overlap, so∫
Γ

∫
Γ

ℓ(z, w)− |z − w|
|z − w|3

|dz||dw|≳
∑
j

∆(Γ′
j)

ℓ(Γ′
j)

,

where the sum is over all dyadic subintervals of Γ. This works for any dyadic

decomposition {Γj} of Γ, and hence for a multi-resolution family. This gives

the equivalence of Definitions 9 and 10. □

11. The β2-sum implies asymptotic smoothness: (11) ⇒ (10)

The following is where we use Theorem 1.5, the strengthening of Jones’s

traveling salesman theorem (TST) mentioned in the introduction. The proof

given in [18] is somewhat involved so, although this section is short, the fol-

lowing implication may be the most difficult one represented by an arrow in

Figure 11.

Lemma 11.1. Definition 11 implies Definition 10.

Proof. We let {γj} be a dyadic decomposition of Γ. For each j, choose a

dyadic cubeQj that hits γj and has diameter between diam(γj) and 2·diam(γj).

Note that any such dyadic cube can only be associated to a uniformly bounded

number of arcs γj in this way, because there are only a bounded number of

arcs γj that have the correct size and are close enough to Qj ; this uses the

fact that Γ is chord-arc. Also, because Γ is chord-arc, diam(γj) ≃ ℓ(γj) ≃
diam(Qj). Therefore, by the strengthened TST (1.5),

∆(γj) = ℓ(γj)− crd(γj) ≃
∑

Q⊂3Qj

β2
γj (Q)ℓ(Q).

Since βγj (Q) ≤ βΓ(Q), we get∑
j

∆j

ℓ(γj)
≃
∑
j

∑
Q⊂3Qj

β2
γj (Q)

ℓ(Q)

ℓ(Qj)

≲
∑
j

∑
Q⊂3Qj

β2
Γ(Q)

ℓ(Q)

ℓ(Qj)
≃
∑
Q

β2
Γ(Q) ·

∑
j:Q⊂3Qj

ℓ(Q)

ℓ(Qj)
.

Note that for each Q with diam(Q) ≤ diam(Γ) and Q ∩ Γ ̸= ∅, there is a

cube of the form Qj from above that has diameter comparable to diam(Q) and

such that Q ⊂ 3Qj . Moreover, there are only a uniformly bounded number of

distinct dyadic cubes Qj of a given size so that 3Qj contains Q, so each Qj

can only be chosen a bounded number of times. Thus the sum over the j’s in

the last line above is bounded by a multiple of a geometric series, and so it is

uniformly bounded. Therefore
∑

j
∆(γj)
ℓ(Qj)

≲
∑

Q β2
Γ(Q). □



WEIL-PETERSSON CURVES, β-NUMBERS, AND MINIMAL SURFACES 39

12. Dyadic cylinders and domes: (10) ⇔ (20)

If Γ ⊂ Rn is rectifiable, set Yt = Γ× (t, 1] ⊂ Hn+1 and Y = Y0. Then

Aρ(Yt) =

∫ 1

t

∫
Γ

dsdt

t2
= ℓ(Γ)

Å
1

t
− 1

ã
= Lρ(Γt)− ℓ(Γ).

Thus the vertical cylinder Y has finite renormalized area for any rectifiable

curve. Roughly speaking, we expect renormalized area to measure how or-

thogonal the surface is to the boundary. The cylinder is perfectly vertical; a

minimal surface with the same boundary curve necessarily deviates from ver-

tical over regions where Γ has some curvature. We can make this vague idea

precise using a discrete analog of a minimal surface.

Define a “dyadic cylinder” associated to Γ by X =
⋃∞

n=0 Γn×(2−n−1, 2−n],

where Γn is the 2n-gon inscribed in Γ corresponding to a dyadic decomposition

of Γ into subarcs of length 2−nℓ(Γ). Note that is depends on a choice of base

point for the dyadic decomposition.

Each “layer” of X between heights 2−n and 2−n+1 consists of 2n Euclidean

rectangles (or “panels”) in vertical planes that meet along vertical edges (called

“hinges”). See Figure 13. Alternate vertices of the top edge of one layer

agree with the bottom vertices of the next layer up, but there are triangular

horizontal “holes” between the layers.

Figure 13. The dyadic cylinder and dome of a circle and a

snowflake; the first has finite renormalized area and the second

does not.
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If desired, these holes can be eliminated as follows. Suppose [z, w] is an

edge segment of Γn and let a1, a2 ∈ H3 be the points of height 2−n and 2−n−1

above z. Similarly b1, b2 above w. Let v be the vertex of Γn+1 between z and

w and let c2 be the point at height 2−n−1 above v. The rectangular face of the

dyadic cylinder X with corners a1, a2, b2, b1 is replaced by the three Euclidean

triangles with vertices (a1, b1, c2), (c2, b2, b1) and (a1, c2, b1). Doing this for

every edge of Γn and adding the interior of the polygon Γ2 raised to height 1/4

defines a closed surface that we will call a dyadic dome of Γ. See Figure 13 for

two examples of dyadic cylinders and the corresponding domes.

Lemma 12.1. If Γ is a closed rectifiable Jordan curve, then Γ is Weil-

Petersson if and only if every corresponding dyadic cylinder X has finite renor-

malized area, with a bound independent of the choice of base point.

Proof. First we show that the Weil-Petersson condition implies finite renor-

malized area. A simple calculation, as above, shows that the part of X be-

tween heights 2−n and 2−n+1 has hyperbolic area 2n−1ℓ(Γn). Similarly, if

2−n−1 < t ≤ 2−n, then

Aρ(Xt) =
n∑

k=0

2k−1ℓ
(
Γk

)
+

Å
1

t
− 2n

ã
ℓ
(
Γn+1

)
,

and hence

Aρ(Xt)−
1

t
ℓ(Γ) = Aρ(Xt)−

(
1

t
− 2n + 1 +

n∑
k=1

2k−1

)
ℓ(Γ)

= −ℓ(Γ)−
n∑

k=1

2k
[
ℓ(Γ)− ℓ(Γk)

]
+

Å
1

t
− 2n

ã (
ℓ(Γ)− ℓ(Γn+1)

)
= −ℓ(Γ)−

n∑
k=1

2k
[
ℓ(Γ)− ℓ(Γk)

]
+O

(
2n[ℓ(Γ)− ℓ(Γn+1

)
])

→−ℓ(Γ)−
∞∑
k=1

2k
[
ℓ(Γ)− ℓ(Γk)

]
since the infinite series is convergent when Γ is Weil-Petersson by (1.2). Finally,

for 2−n−1 < t ≤ 2−n, note that ℓ(∂Xt) = ℓ(Γn+1)/t, so

1

t

[
ℓ(∂Xt)− ℓ(Γ)

]
≤ 2n+1

[
ℓ(Γn+1)− ℓ(Γ)

]
→ 0,

since these are terms of a summable series. Thus Aρ(Xt)−Lρ(∂Xt) has a finite

limit and X has finite renormalized area.

Next we consider the converse: finite renormalized area implies Γ is Weil-

Petersson. Suppose that RA(X) < ∞. First we deduce that Γ is rectifiable.
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If t = 2−n, then

Aρ(Xt)− Lρ(∂Xt) =

(
n∑

k=1

2k−1ℓ(Γk)

)
− 2nℓ(Γn) = O(1),

or, equivalently,

ℓ(Γn) =
1

2
ℓ(Γn−1) +

1

4
ℓ(Γn−2) + · · ·+ 2−nℓ(Γ1) +O(2−n),

and hence (since {ℓ(Γn)} is non-decreasing in n),

ℓ(Γn)≤
1

2
ℓ(Γn−1) +

1

4
ℓ(Γn−1) + · · ·+O(2−n)

≤ ℓ(Γn−1) +O(2−n),

which implies ℓ(Γ) < ∞. To show Γ is Weil-Petersson, take t = 2−n and note

that

Aρ(Xt)− Lρ(∂Xt) =

(
n∑

k=1

2k−1ℓ(Γk)

)
− 2nℓ(Γn)

=

(
n∑

k=1

2k−1ℓ(Γk)

)
−
(
1 + 1 + 2 + . . . 2n−1

)
ℓ(Γn)

=−1

2

n∑
k=1

2k
[
ℓ(Γn)− ℓ(Γk)

]
− ℓ(Γn).

By the monotone convergence theorem (for counting measure on N), as n ↗ ∞
this tends to

−1

2

∞∑
k=1

2k
[
ℓ(Γ)− ℓ(Γk)

]
− ℓ(Γ).

Thus if Aρ(Xt)− Lρ(∂Xt) is bounded below, then

∞∑
k=1

2k
[
ℓ(Γ)− ℓ(Γk)

]
< ∞

with a bound independent of the choice of the dyadic decomposition. Hence

finite renormalized area of X implies Γ is Weil-Petersson by Theorem 1.3. □

It is not hard to show that the dyadic dome has finite renormalized area

if and only if the dyadic cylinder does, by considering a horizontal projection

between the surfaces that changes hyperbolic area and lengths by at most a

bounded additive factor. A very similar argument will be used in Section 22

to show that Weil-Petersson curves bound minimal surfaces with finite renor-

malized area, so we leave the details until then.
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13. The β’s and Menger curvature are equivalent: (11) ⇔ (12)

In this section, we prove that Definitions 11 and 12 are equivalent. The es-

timates follow arguments contained in Pajot’s book [102]; we will just indicate

where to find them and how to modify the proofs given there.

We start with bounding Menger curvature using the β-numbers. This is

similar to the proof of Theorem 31 of [102]. In our proof, we will take µ to be

arclength measure on Γ; this satisfies the linear growth condition of Theorem 31

in [102] because Γ is chord-arc. Pajot defines

c2(µ) =

∫
Γ

∫
Γ

∫
Γ

c2(x, y, z)dµ(x)dµ(y)dµ(z),

and on the bottom of page 37 he notes that

c2(µ) ≤ 3c2(µ),(13.1)

where

c2(µ) =

∫
A

c2(x, y, z)dµ(x)dµ(y)dµ(z),

and

A = {(x, y, z) ∈ Γ× Γ× Γ : |x− z| ≤ |x− y|, |y − z| ≤ |x− y|}.

He states that

c2(µ) ≤
∑
Q

∫
(x,z)∈3Q

Ñ∑
R⊂Q

∫
x,y∈‹R c2(x, y, z)dµ(y)

é
dµ(x)dµ(z),

where the inner sum is over dyadic sub-cubes R ⊂ Q and where

R̃ = {(x, y) ∈ 3R : |x− y| ≥ diam(R)/3}.

Recall that ℓ(x, y, z) = |x−y|+ |y−z|+ |z−y| is defined as the perimeter

of the triangle with vertices (x, y, z), and it is comparable to the longest of the

three sides. Note that, for (x, y, z) ∈ A and (x, y) ∈ R̃, we have ℓ(x, y, z) ≃
|x− y| ≃ diam(R). Thus we can replace (13.1) by the analogous estimate∫

Γ

∫
Γ

∫
Γ

c2(x, y, z)

ℓ(x, y, z)
dµ(x)dµ(y)dµ(z)

≲
∑
Q

∫
x,z∈3Q

Ñ∑
R⊂Q

∫
x,y∈‹R c2(x, y, z)

ℓ(x, y, z)
dµ(y)

é
dµ(x)dµ(z)

≃
∑
Q

∫
x,z∈3Q

Ñ∑
R⊂Q

∫
x,y∈‹R c2(x, y, z)

diam(R)
dµ(y)

é
dµ(x)dµ(z).
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We now follow the rest of the proof on page 38 of [102], replacing the factor

diam(R)−2 that occurs throughout by diam(R)−3. At the end we obtain∫
Γ

∫
Γ

∫
Γ

c2(x, y, z)

ℓ(x, y, z)
dµ(x)dµ(y)dµ(z)≲

∑
Q

β2(Q).

Thus Definition 11 implies Definition 12, as desired.

Next we deal with the opposite inequality: bounding
∑

β2 in terms of the

Menger curvature. The relevant estimates are given in the proof of Theorem 38

of [102]. On the bottom of page 43, Pajot gives the inequality

β2
Γ(Q)diam(Q)≲

∑
P⊂Q

∫
P ∗

∫
c2(x, y, z)dµ(x)dµ(y)dµ(z)

Å
diam(P )

diam(Q)

ã1/2
,(13.2)

where

P ∗ = {(x, y, z) ∈ (3P )3 : |x− y| ≃ |x− z| ≃ |y − z| ≃ diam(P )}.

Divide both sides of (13.2) by diam(Q), and note that for (x, y, z) ∈ P ∗ we

have ℓ(x, y, z) ≃ diam(P ). This gives

β2
Γ(Q)≲

∑
P⊂Q

∫
3P

∫
c2(x, y, z)

diam(Q)
dµ(x)dµ(y)dµ(z)

Å
diam(P )

diam(Q)

ã1/2
≲
∑
P⊂Q

∫
3P

∫
c2(x, y, z)

ℓ(x, y, z)
dµ(x)dµ(y)dµ(z)

Å
diam(P )

diam(Q)

ã1/2
On the top of page 44, this modified expression leads to∑

S⊂Q

β2
Γ(S) ≲

∫
Q

∫
Q

∫
Q

c2(x, y, z)

ℓ(x, y, z)
dµ(x)dµ(y)dµ(z).

Since dµ is arclength measure, this shows that Definition 12 implies Defini-

tion 11.

14. Reflections control β’s: (13) ⇒ (11)

Next we show that Definition 13 implies Definition 11; i.e., if Γ is the

fixed point set of a involution R defined on a neighborhood U of Γ, and whose

distortion satisfies certain L2 estimates, then the β2-sum for Γ is finite. We

start by showing that such an involution is a biLipschitz map.

Lemma 14.1. A map R : U → U satisfying Definition 13 is biLipschitz

on U .

Proof. Choose a neighborhood U ′ ⊂ U of Γ such that for any pair of points

z, w ∈ U ′ with |z − w| ≤ 3max(dist(z,Γ), dist(w,Γ)) the segment between z

and w is inside U . Fix two such points z, w ∈ U ′. Without loss of generality,
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we may assume dist(z,Γ) ≥ dist(w,Γ). Let S be the segment between z

and w. Then R(S) is an arc connecting R(z) and R(w), so we must have

|R(z)− R(w)| ≤ ℓ(R(S)). The segment S may hit Γ, but R is the identity at

such points, and S \Γ consists of at most countably many open sub-segments,

each covered by its intersection with Whitney cubes Q for Rn \ Γ. The length

of each such intersection is increased by at most a factor of ρ(Q). Therefore,

|R(z)−R(w)| − |z − w|≲
∑

Q∩S ̸=∅

ρ(Q)diam(Q),

where the sum is over all Whitney cubes that hit S. By the Cauchy-Schwarz

inequality, the right side of the equation above is less than

≲

Ñ ∑
Q∩S ̸=∅

ρ2(Q)diam(Q)

é1/2Ñ ∑
Q∩S ̸=∅

diam(Q)

é1/2

≲

Ñ ∑
Q∩S ̸=∅

ρ2(Q)diam(Q)

é1/2

(ℓ(S))1/2 .

Let Q′ be the minimal dyadic cube containing w with ℓ(Q′) ≥ 6dist(z,Γ). By

our assumptions on z and w, any dyadic cube Q in the above sum is a subcube

of 3Q′, and hence this sum is bounded by

≲

Ñ
ℓ(S)

∑
Q⊂3Q′

ρ2(Q)diam(Q)

é1/2

,

where we sum over Whitney cubes inside 3Q′. If we define

P (Q′) =

Ñ
1

diam(Q′)

∑
Q⊂3Q′

ρ2(Q)diam(Q)

é1/2

,(14.1)

then this estimate can be written more compactly as

|R(z)−R(w)| − |z − w|≲P (Q′)diam(Q′).

Since P (Q′) ≤ (
∑

Q ρ2(Q))1/2 < ∞, we get |R(z)−R(w)| = O(|z − w|) for all
z, w ∈ U with |z − w| ≤ 3dist(z,Γ). Reversing the roles of z and w gives the

same estimate when |z − w| ≤ 3dist(w,Γ). When |z − w| ≥ 3max(dist(z,Γ),

dist(w,Γ)), we can choose z′, w′ ∈ Γ, with |z − z′| = dist(z,Γ) and |w − w′| =
dist(w,Γ). Since z′ and w′ are both fixed by R, we have

|R(z)−R(w)| ≤ |R(z)− z′|+ |z′ − w′|+ |w′ −R(w)| ≲ |z − w|.

Thus R is Lipschitz. Since R = R−1 is an involution, it is automatically

biLipschitz. □
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Lemma 14.2. Definition 13 implies Definition 11.

Proof. For n = 2, it is clear that Definition 13 implies Definition 3, which

in turn implies Definition 11 by using results from [17] and implications proven

earlier in this paper. Thus we may assume n ≥ 3.

First note that that if P is as defined in (14.1), then∑
Q′

P 2(Q′) =
∑
Q′

∑
Q⊂3Q′

ρ2(Q)
diam(Q)

diam(Q′)

=
∑
Q

ρ2(Q)
∑

Q′:Q⊂3Q′

diam(Q)

diam(Q′)
≲
∑
Q

ρ2(Q),

since the sum over Q′ only involves O(1) cubes of each size. Thus it suffices

to show that β(Q′) = O(P (Q′)). Normalize so ℓ(Q′) = 1. Choose two points

p, q ∈ Γ ∩ 3Q′ with |p− q| ≃ 1, and let L be the line through p and q. Choose

some w ∈ Γ ∩ 3Q′ that maximizes the distance from L. Let β = dist(w,L). It

suffices to show that β = O(P (Q′)). We may fix a large M < ∞ and assume

that P (Q′) ≤ 1/M2 and MP (Q′) ≤ β ≤ 1/M , for otherwise there is nothing

to do. We will show that this gives a contradiction if M is large enough, and

hence that β ≤ M · P (Q′).

z

z

p

q

w w

L

Figure 14. Proof that β = O(P ). The two points z, z′ cannot

be almost equidistant from p, q and w without their average

being far from from L, contradicting how all these points were

chosen.

Let w′ be the closest point on L to w, and let z be the point on the ray

from w′ through w so that dist(z, L) = 1
2ℓ(Q

′). See Figure 14. Let Q be

the Whitney square for Rn \ Γ containing z, and let z′ = R(z). Note that

the p, q, w,w′, z, z′ all lie in a three dimensional subspace, so, without loss of

generality, we may assume that L is the z-axis in R3, w′ = 0, w = (β, 0, 0),

and z = (1, 0, 0). The points p, q satisfy |p| ≃ |q| ≃ |p− q| ≃ 1. Since z and z′
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are approximately the same distance from these two points, up to a factor of

O(P (Q′)), we deduce that z′ lies inside a O(P (Q′))-neighborhood of the circle

x2 + y2 = 1 in the xy-plane. See Figure 14 again.

Similarly, since z and z′ are equidistant from w, up to a factor of O(P (Q′)),

the points z′ lies within a O(P (Q′)) neighborhood of the sphere of radius

1 − β around z. However, since P (Q′) ≪ β ≪ 1, these two regions only

intersect in the half-space {x > 0}, and thus z′ also lies in this half-space.

Thus q = (z + z′)/2 has x-coordinate ≥ 1/2, and, by the definition of ρ, it

is within ρ(Q) of a point q′ ∈ Γ. But ρ(Q) ≲ P (Q′) ≪ 1, since it is one of

the cubes in the sum defining P (Q′). This implies there is a point q′ of Γ

that is about unit distance from L, which contradicts the assumption that the

maximum distance was β ≤ 1/M ≪ 1.

This contradiction implies β(Q′) ≤ M · P (Q′), as desired, so we have

proven that Definition 13 implies Definition 11. □

15. The β2-sum is equivalent to the ε2Γ-sum: (11) ⇔ (14)

Recall from Section 4 that for a dyadic cube Q hitting Γ, εΓ(Q) is the

infimum of ϵ ∈ (0, 1] so that there is a line L hitting 3Q and a ball B of radius

diam(Q)/ϵ, so that B attains its minimum distance ≤ ϵ from L at a point

z ∈ Q, and so that every rotation of B around L is disjoint from Γ. Thus Γ is

“surrounded” by the solid torus obtained by rotating B around L.

Lemma 15.1. Definition 11 is equivalent to Definition 14.

Proof. It is easy to see that βΓ(Q) ≲ εΓ(Q), so one direction is clear. It

is also easy to find examples where βΓ(Q) = 0, but εΓ(Q) > 0, so the opposite

inequality does not hold for individual cubes. However, we will prove that

εΓ(Q) can be bounded by a weighted sum of βΓ(Qk) over a sequence of cubes

containing Q, and this estimate will imply that the sum of ε2Γ(Q) over all dyadic

cubes is bounded, if the corresponding sum of β2
Γ(Q) is bounded.

Fix x ∈ Γ and a dyadic cube Q0 containing x with diam(Q0) ≤ diam(Γ).

Renormalize so that diam(Q0) = 1. For k ≥ 1, let Qk be the unique dyadic

cube containing Q0 and satisfying diam(Qk) = 2kdiam(Q0). Set

ϵ = ϵ(Q) = 2A
∞∑
k=1

2−kβΓ(Qk) = 2A
∑

Q′:Q⊂Q′

βΓ(Q
′)
diam(Q)

diam(Q′)
,(15.1)

where the constant 1 ≤ A < ∞ will be chosen later, independent of Q and Γ.

We will prove that εΓ(Q) ≲ ϵ (with a constant depending only on A).

By definition, εΓ ∈ [0, 1], so if ϵ > 1/(20A) ≥ 1/20, there is nothing to

do. Therefore, we may assume that ϵ ≤ 1/(20A) is fairly small. Let L be

a line through x that minimizes in the definition of βΓ(Q0). Let L⊥ be the

perpendicular hyperplane through x, and let z ∈ L⊥ be distance 1/ϵ ≥ 20
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from x. Let B = B(z, r), where r = (1/ϵ) − ϵ ≥ 19. In particular, B \ 3Q0

is nonempty. We claim that B is disjoint from Γ (and so are all its rotations

around L).

Note that dist(B,L) = ϵ. For 0 ≤ m ≤ N = ⌊log2 1
ϵ ⌋, simple trigonometry

shows that dist(B \ 3Qm, L) ≥ C1ϵ2
2m (we can do the calculation in the plane

generated by L and z; see Figure 15 and recall that diam(Q0) = 1). On the

other hand, the distance between Γ ∩ 3Qm and L is ≤ C2
∑m

k=0 βΓ(Qk)2
k,

because the angle between the best approximating lines for Qk and Qk+1 is

O(βΓ(Qk+1)). Therefore, if for every 0 ≤ m ≤ N we have

m∑
k=0

βΓ(Qk)2
k < (C1/C2)ϵ2

2m,

then B and Γ ∩ 2QN will be disjoint. Note that if we take A = 1
2C2/C1, then

max
0≤m≤N

2−2m
m∑
k=0

βΓ(Qk)2
k ≤

N∑
m=0

2−2m
m∑
k=0

βΓ(Qk)2
k

≤
N∑
k=0

βΓ(Qk)2
k

N∑
m=k

2−2m ≤
N∑
k=0

βΓ(Qk)2
−k = ϵ/(2A) = (C1/C2)ϵ.

Since this holds for every choice of z in L⊥ such that dist(z, L) = 1/ϵ, we have

proven that εΓ(Q) ≲ ϵ, as claimed.

2
k

Q

k−1
2 Q

Q

θ

ε 2
2k

Figure 15. The part of the ball of radius diam(Q)/ε(Q) that

lies in 2kQ\2k−1Q makes angle θ ≃ ε2k with the perpendicular

ray from L to z and hence (since we are assuming diam(Q) = 1),

it is distance approximately ε−1(1− cos(θ)) ≃ εθ2 = ε22k from

the line L.
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Summing the rightmost term of (15.1) over all dyadic cubes gives

∑
Q

ε2Γ(Q)≲
∑
Q

 ∑
Q′:Q⊂Q′

βΓ(Q
′)
diam(Q)

diam(Q′)

2

≲
∑
Q

 ∑
Q′:Q⊂Q′

βΓ(Q
′)

Å
diam(Q)

diam(Q′)

ã3/4 Å diam(Q)

diam(Q′)

ã1/42

,

and by Cauchy-Schwarz we get

≲
∑
Q

 ∑
Q′:Q⊂Q′

β2
Γ(Q

′)

Å
diam(Q)

diam(Q′)

ã3/2 ·

 ∑
Q′:Q⊂Q′

Å
diam(Q)

diam(Q′)

ã1/2 .

The second term is dominated by a geometric series; hence it is bounded. Thus∑
Q

ε2Γ(Q)≲
∑
Q′

β2
Γ(Q

′)
∑

Q:Q⊂Q′

diam(Q)3/2

diam(Q′)3/2
.

Since Definition 11 implies Γ is chord-arc, the number of dyadic cubes inside

Q′ of size diam(Q′)2−k and hitting Γ is at most O(2k). Thus the right side is

bounded by

≲
∑
Q′

β2
Γ(Q

′)
∞∑
k=0

O(2k)2−3k/2 ≲
∑
Q′

β2
Γ(Q

′)
∞∑
k=0

2−k/2 ≲
∑
Q′

β2
Γ(Q

′),

and so the ε2Γ-sum is finite if the β2
Γ-sum is finite, as desired. □

It is sometimes convenient to assume that the balls in the definition of εΓ
are small compared to diam(Γ). This is easy to obtain if we replace εΓ(Q) by

ε̃Γ(Q) = max
(
εΓ,
(
diam(Q)/diam(Γ)

)α)
for some 1/2 < α < 1. Then only balls of diameter d ≲ diam(Γ) · diam(Q)1−α

are needed to bound ε̃Γ(Q). Clearly ϵΓ(Q) ≤ ϵ̃Γ(Q), and∑
Q:Q∩Γ ̸=∅

ε̃2Γ(Q) ≲
∑
Q

ε2Γ(Q) +
∑
Q

Å
diam(Q)

diam(Γ)

ã2α
where the second sum is finite for chord-arc curves because α > 1/2, and the

number of dyadic squares of size ≃ 2−n hitting Γ is O(2n). Thus bounding∑
ϵ̃2Γ is equivalent to bounding

∑
ϵ2Γ for chord-arc curves. This is helpful when

one wants to control ϵΓ(Q) in terms of more local behavior of Γ.
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16. The εΓ-sum is equivalent to the δ-integral: (14) ⇔ (15)

Recall that each ball B ⊂ Rn is the boundary of a hyperbolic half-space H

in Hn+1, and two balls are disjoint if and only if the corresponding half-spaces

are disjoint.

Lemma 16.1. Suppose B1, B2 ⊂ Rn are disjoint balls of radius r that are

distance ϵ apart. Then ρ, the hyperbolic distance between the corresponding

half-spaces, satisfies ρ ≃
√

ϵ/r.

Proof. The nearest points on the half-spaces will occur inside the copy of

the hyperbolic upper half-plane lying above the line connecting the centers of

B1 and B2. Thus it suffices to do this calculation in this plane; this is a simple

calculus exercise. Using Möbius transformations, we can normalize so the balls

both have radius 1, and the distance between them is η = ϵ/r. The intersection

of the hemispheres with this plane are two half-circles. At height t above R2,

these circles are Euclidean distance η+O(t2) apart, hence hyperbolic distance

ρ ≃ t+ η/t apart. This is minimized when t =
√
η =

√
ϵ/r. □

Lemma 16.2. If z ∈ CH(Γ), then δ(w) = O(δ(z)) for all w ∈ CH(Γ) ∩
Bρ(z, 1).

Proof. The point is that if H1, H2 are two disjoint hyperbolic half-planes

that are both within distance δ of a point z, then their boundaries remain

within distance O(δ) of each other inside Bρ(z, 1) (imagine z = 0 in the ball

model). □

Lemma 16.3. Definition 14 implies Definition 15.

Proof. Lemmas 16.1 and 16.2 imply that if εΓ(Q) is small (say less than

1/100), then δ(z) ≲ εΓ(Q) for every point z ∈ T (Q) = Q × [ℓ(Q)/2, ℓ(Q)]

⊂ Hn+1. This gives Definition 15. □

In the higher dimensional version of Definition 15, we can either sum

δ2(Q), or we can integrate δ2 over any surface with Aρ(S ∩ T (Q)) = O(1),

e.g., the dyadic dome of Γ, or a smoothed version of the dyadic dome, or a

minimal surface with asymptotic boundary Γ, or (in the case n = 2) a boundary

component of the hyperbolic convex hull of Γ.

Lemma 16.4. Definition 15 implies Definition 14.

Proof. If Γ ⊂ R2 is a circle, then δ(z) vanishes everywhere, but εΓ does

not. Thus εΓ(Q) cannot be bounded using δ alone; there must also be some

dependence on the size ofQ. Without loss of generality, we assume diam(Γ)=1,

diam(Q) ≤ 1/100, and δ(z) < 1/100 for z in CH(Γ) ∩ T(Q), where we define

T (Q) ⊂ Hn+1 as the points that project vertically into Q, and have height
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between ℓ(Q)/2 and ℓ(Q). For z ∈ T (Q) and each normal direction at z that is

perpendicular to an optimal plane in the definition of δ(z), there are a pair of

disjoint hyperbolic half-spaces H and H∗ connected by a geodesic segment of

hyperbolic length at most O(δ) running through z and perpendicular to each

half-space. These half-spaces intersect Rn in disjoint regions B,B∗ that do not

hit Γ and are bounded by spheres.

If both regions are bounded balls, they are separated by a (n− 1)-plane,

which extends to a vertical n-plane in Hn+1 which separates the hyperbolic

half-spaces and thus comes within O(δ) of the point z. This implies B,B∗

each have radius ≳ δ(z) · diam(Q). Otherwise one region, say B, is a bounded

ball and the other region B∗ is the exterior of a ball. Since B∗ does not hit Γ,

its boundary sphere must have diameter ≥ 1, and therefore it makes angle of

at most O(diam(Q)) with the vertical near z. Since the other half-space H is

also within O(δ) of z, it makes an angle of at most θ = O(δ(z)) +O(diam(Q))

with the vertical, and hence B has radius r ≳ diam(Q)/(δ(z) + diam(Q)).

In either case, we have ε2Γ(Q) = O(δ2(z)) + O(diam2(Q)). The δ2-sum is

bounded by assumption. This assumption also implies that given δ0 = 2−m>0,

all but finitely many terms of the δ sum are less than δ0. Assume we are at

a scale below which all cubes satisfy this. Given such a cube Q, Γ ∩ 3Q can

hit only O(1/δ0) sub-dyadic-cubes of 3Q of size δ0diam(Q). Iterating, we see

that Γ hits at most O(Ckδk) = O(2(m+log2 C)k) dyadic cubes of size s ≳ 2−mk.

Thus
∞∑
k=0

∑
Q:2−m(k+1)

<ℓ(Q)≤2−mk,
Q∩Γ ̸=∅

diam2(Q) ≤
∑
k

2(m+log2 C−2m)k < ∞

if m > log2C, which occurs if δ0 is small enough. This proves the lemma. □

17. The δ-integral controls surface curvature: (15) ⇒ (16)

Lemma 17.1. Definition 15 implies Definition 16.

Proof. For dimensions n = 2 and higher we create a triangulated surface

where adjacent triangles are very close to parallel, and we smooth this sur-

face to obtain a surface with small principle curvatures. In dimensions higher

than 2, the discrete surface can be the dyadic dome, introduced in Section 12,

and the principle curvatures of a smoothed version are controlled by the β-

numbers. In the special case n = 2, we can also use a discretization of the

usual hyperbolic dome of one side of Γ. Since this case is of particular interest,

we describe it first.

Suppose S is one component of ∂CH(Γ). It is known that S, with its

hyperbolic path metric, is isomorphic to the hyperbolic disk (see, for example,
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[44], [86], and [85]). The hyperbolic unit disk can be triangulated by geodesic

triangles with hyperbolic diameters d ≃ 1 and angles bounded strictly between

0 and π; e.g., take the tesselation corresponding to a Fuchsian triangle group.

Fix such a triangulation of D and map the vertices to S via the isometry.

Each triple of image vertices corresponding to a triangle on D lies on a hyper-

bolic plane and determines a triangle on this plane. Create a new surface S1

by gluing these triangles together along their edges. Because the vertices lie

in CH(Γ), convexity implies that each triangle, and hence all of S1, also lies in

CH(Γ).

Consider two triangles T1, T2 in S1 that meet along a common edge e.

Normalize so that one endpoint of e is the origin in the ball model of hyperbolic

3-space, e lies along the x axis, and T1 lies in the xy-plane. Then T2 lies

in Euclidean plane that makes some angle θ with the xy-plane, and by our

assumptions, it contains a point p (e.g., the vertex of T2 not on e) that is

hyperbolic distance ρ ≃ 1 from 0 and Euclidean distance d ≃ 1 from the

x-axis. Then p is Euclidean distance r ≃ θ from the xy-plane. Because both

triangles lie inside CH(Γ) and, since CH(Γ) is trapped between two hyperbolic

half-planes that each come within hyperbolic distance δ(0) of the origin, we

must have θ ≲ δ(0) (we are using Lemma 16.2).

If T is component triangle of S1, let θ(T ) be the maximum angle T makes

with any of its neighboring triangles, and think of θ(z) as a function on S1 that

is constant on triangles. Since θ(z) can be bounded by a uniform multiple of

δ(w) for a point w that is a uniform hyperbolic distance away, we get∫
S1

θ2(z)dAρ(z) ≲

∫
S1

δ2(z)dAρ(z) < ∞.

The principle curvatures of S1 are zero inside each triangle and are a

multiple of arclength measure along the edges. However, by smoothing S1 we

can obtain a surface S2 such that the principle curvatures of S2 tend to zero

as we approach infinity and are bounded by O(maxT ∗ θ(z)), where T ∗ denotes

the union of all component triangles that touch T (including those that only

touch at a vertex). Then∫
S2

|K + 1|2(z)dAρ(z) ≲

∫
S1

δ2(z)dAρ(z) < ∞.

For n ≥ 2, essentially the same proof works if we take the dyadic dome

for our triangulated surface with asymptotic boundary Γ. The angles between

adjacent faces are easily bounded by the β-numbers of the corresponding arcs

of Γ, which, after smoothing, proves that Definition 11 implies Definition 16.

□
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18. Surface curvature bounds QC reflections: (16) ⇒ (3)

Lemma 18.1. For n = 2, Definition 16 implies Definition 3.

Proof. For n = 2, this implication is due to Charles Epstein [42]. He

proves that for a surface S ⊂ H3 whose principle curvatures |κ1(p)|, |κ2(p)|
are bounded strictly below 1, the Gauss map from the surface to the plane at

infinity is quasiconformal. Recall that the Gauss map sends a point p on S to

the endpoint on R2 of the hyperbolic geodesic ray starting at p that is normal

to S. There are actually two Gauss maps from S to R2 depending on which

“side” of S the geodesic ray is on. In the case when the surface has asymptotic

limit Γ ⊂ R2, the composition of one of these maps with the inverse of the

other defines a quasiconformal reflection across Γ. By Proposition 5.1 of [42],

the dilatation of the composed Gauss maps is

D(z) =max

Ç∣∣∣∣1 + κ1(p)

1− κ1(p)
· 1− κ2(p)

1 + κ2(p)

∣∣∣∣1/2 , ∣∣∣∣1− κ1(p)

1 + κ1(p)
· 1 + κ2(p)

1− κ2(p)

∣∣∣∣1/2
å

=1 +O
(
|κ1(p)|+ |κ2(p)|

)
,

where p ∈ S is the point corresponding to z ∈ R2. Therefore the dilatation

satisfies

|µ(z)| = O(|κ1(p)|+ |κ2(p)|).
Moreover, on page 121 of [42], Epstein shows that the Jacobian J of this map

satisfies

C1

∣∣(1∓ κ1)(1∓ κ2)
∣∣ ≤ J ≤ C2

∣∣(1± κ1)(1± κ2)
∣∣.

In particular, J ≃ 1 if |κ1|, |κ2| are both uniformly bounded below 1.

Definition 16 implies that κ1, κ2 are both small outside some compact

ball B around the origin. Thus the Gauss map for S defines a quasiconformal

reflection in some neighborhood U of Γ and inside this neighborhood∫
U

∣∣µ(z)∣∣2dAρ(z) ≲

∫
S\B

∣∣K0(z)
∣∣2dAρ(z),

where dAρ in the left-hand and right-hand sides is the hyperbolic area measure

on R2\Γ and S, respectively, and K0 is the trace-free second fundamental form

of S. Extend this reflection to the rest of R2 by some diffeomorphism of one

component of R2 \ U to the other that agrees with the reflection given by the

Gauss map on ∂U . This gives a global quasiconformal reflection across Γ that

satisfies (2.10), as desired. □

Next we consider higher dimensions.

Lemma 18.2. For n ≥ 2, Definition 16 implies Definition 13.

Proof. We consider only points z on S that are at height not exceeding t0
above Rn where t0 is chosen so small that if z = (x, t) ∈ R × (0, t0), then
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the principle curvatures of S at z are all very small, say ≤ 1/100. There

is an (n− 1)-sphere of directions in the tangent space of Hn+1 at z that are

perpendicular to S. These directions define a tangent (n − 1)-dimensional

hyperbolic hyperplaneHz that passes through z, and the boundary ofHz on Rn

is a Euclidean (n−2)-sphere Sz whose center is within O(t ·supw maxj |κj(w)|)
of the point x (the vertical projection of z onto Rn). We define R on this

sphere by taking the antipodal map.

We claim that such spheres foliate a neighborhood U of Γ and that R is

Lipschitz. If so, then R is a biLipschitz involution that fixes Γ. Let Kr = Kr(z)

be an upper bound for max |κj | in a hyperbolic r-ball around z. Given z, w ∈ S

that are t < r apart in the hyperbolic metric, let γ be the geodesic segment in

Hn+1 connecting them. The perpendicular hyperplanesHz, Hw are both within

O(Kr) of being orthogonal to γ. Hence the corresponding spheres Sz, Sw are

within O(Kr · t) of each other, but they are also at least distance ≳ K · t
apart (this is easiest to see in the ball model of hyperbolic space, setting

z = 0 ∈ Bn+1). Thus using the antipodal map on each boundary sphere

preserves the distance between points on the same sphere, and it increases the

distance between points on different spheres by at most O(K · t). Thus R

is Lipschitz, as desired. Moreover, if two such spheres intersect the same

Whitney cube Q of Rn \ Γ, then both have radii r ≃ ℓ(Q), and their centers

are within O(ℓ(Q)) of each other. Thus the corresponding points on S are

within hyperbolic distance O(1) of each other. The argument above implies

that ρ(Q) = O(Kr(z)) for some point z ∈ S, and thus
∑

Q ρ2(Q) is finite if∫
S |Kr(z)|2 is. Hence Definition 16 implies Definition 13. □

19. Minimal surfaces with finite total curvature (n = 2): (15) ⇒ (17)

We already know that Γ is Weil-Petersson if and only if it is the boundary

of some surface in Hn+1 that is asymptotically flat and has finite total curva-

ture. Next we prove this surface can be taken to be minimal if n = 2. First, we

need to know that a minimal surface that is trapped between parallel planes

has small principle curvatures. This is obvious for minimal surfaces in Rn

because they can be parametrized by harmonic functions, and in hyperbolic

3-space, the corresponding estimate is due to Andrea Seppi [115]:

Lemma 19.1. Suppose S is an embedded minimal disk in B3 that has an

asymptotic bounding quasicircle Γ ⊂ S2. Suppose that 0 ∈ S and that S lies

between two disjoint hyperbolic planes that both lie at most distance ϵ from 0,

on opposite sides of the xy-plane. Then the tangent plane of S at 0 makes

angle at most O(ϵ) with the xy-plane, and the absolute values of the principle

curvatures of S at 0 are both bounded by O(ϵ).
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This is essentially Propositions 4.14 and 4.15 of [115]; see Equation (32) in

particular. Given a minimal surface S that is trapped between two hyperbolic

planes P−, P+, Seppi considers the function u(z) = sinh(dist(z, P−)) for z ∈ S

and uses the fact that this function satisfies the equation ∆Su−2u = 0, where

∆S is the Laplace-Beltrami operator for the surface S. The Schauder estimates

for this equation imply that

∥u∥C2(B(x,r/2)) ≤ C∥u∥C0(B(x,r)).

In order to get a uniform bound for C, we must bound the curvature of S, and

Seppi gives an argument for this assuming the boundary of S is a quasicircle

(this covers our application, since Weil-Petersson curves are quasicircles). Fi-

nally, the sup norm of u is bounded in terms of the distance between P− and

P+ near z. In our case, this distance is O(δ(z)) by Lemma 16.2. One small

technical point is that Seppi requires the point z to be on a geodesic segment

that meets both P− and P+ orthogonally. However, it is very simple to see

that if z is between two disjoint hyperbolic planes that each come within ϵ of z,

then there are also two disjoint planes that come within O(ϵ) and satisfy the

orthogonality condition for z.

The lemma implies that near the boundary of hyperbolic space we have∫
S

(
κ21(z) + κ22(z)

)
dAρ ≲

∫
∂CH(Γ)

δ2(z)dAρ < ∞

when Γ is Weil-Petersson. Thus for n = 2, Definition 15 implies Definition 17.

20. Renormalized area (n = 2): (15) ⇒ (19)

As we discussed in Section 1, a 2-surface S ⊂ Hn+1 with boundary curve

Γ ⊂ Rn is said to have finite renormalized area if

RA(S) = lim
t↘0

[
Aρ(St)− Lρ(∂St)

]
exists and is finite, where

St = {(x, y, s) ∈ S : s ≥ t}, ∂St = {(x, y, s) ∈ S : s = t}.

Lemma 20.1. For n = 2, Definition 15 implies Definition 19.

Proof. Using the Gauss-Bonnet theorem (in the third equality), we have

Aρ(St)− Lρ(∂St) =

∫
St

1dAρ −
∫
∂St

1dLρ

=

∫
St

(1 + κ2)dAρ −
∫
St

κ2dAρ −
∫
∂St

1dLρ

= −
∫
St

KdAρ −
∫
St

κ2dAρ −
∫
∂St

1dLρ
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= −2πχ(St) +

∫
∂St

κgdLρ −
∫
St

κ2dAρ −
∫
∂St

1dLρ

= −2πχ(St)−
∫
St

κ2dAρ +

∫
∂St

(κg − 1)dLρ,

where κg is the geodesic curvature of ∂St in St. Since we are assuming that

Definition 15 holds, we know from earlier results that the β’s tend to zero,

and this implies that near the boundary any minimal surface is nearly vertical

(trapped between nearly touching hyperbolic planes), and therefore the surface

has finite Euler characteristic.

The estimate of Seppi discussed in Section 19 shows that∫
St

κ2dAρ = O(

∫
St

δ2dAρ).

Since Γ is Weil-Petersson, our earlier results imply that this area integral con-

verges to a finite limit as t ↘ 0.

Therefore it suffices to show that the boundary integral of κg − 1 tends

to zero as t ↘ 0. The geodesic curvature κg of the boundary curve comes

from two components. There is a vertical component of size 1 due to the

curve lying on the horizontal plane. There is a horizontal component due to

the curvature of ∂St in this plane. This component has size bounded by the

principle curvatures of the surface, that by Seppi’s estimate are bounded by

O(δ(z)). The geodesic curvature κg is given by projecting this vector onto the

tangent space of St, and our previous estimates show this tangent space makes

an angle at most O(δ) with the vertical. Thus |κg| = 1 +O(δ2). Hence∫
∂St

(κg − 1)ds = O

Å∫
∂St

δ2(z)ds

ã
.(20.1)

Note that, since δ2 has finite integral over the whole surface, its integral over

the annulus At = St \ St+1 tends to zero with t. Moreover, Lemma 16.2

implies that the integral of δ2(z) over ∂St is dominated by a multiple of the

area integral over At and hence the boundary integral in (20.1) must tend to

zero. This proves the lemma (and also shows that the formula (1.6) holds.) □

The estimate |κg| = 1 +O(δ2) also follows from equation (2.4) of [34]:

κg =
1

∇r

(
coth r + ⟨K(e, e),∇⊥r⟩

)
,

where r is the hyperbolic distance to some fixed point (say the origin in the

ball model), Dr is the gradient of r in Hn+1, ∇r is the projection of Dr onto

the tangent space of S, ∇⊥r is the projection of Dr onto the normal space

of S, and K is the second fundamental form of S.
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Seppi’s paper [115] is written for minimal 2-surfaces in H3; extending his

bound on principle curvatures to surfaces in Hn+1 would extend the lemma

to this case since the rest of this argument is valid in higher dimensions. My

reading of his paper indicates such an extension is true, but the details have

not been written down, so far as I know.

21. Isoperimetric inequalities: (18) ⇒ (17)

Suppose that S ⊂ Hn+1 is a minimal surface with asymptotic boundary

curve Γ in Rn. As before, for t > 0 let St = S ∩ {(x, s) ∈ Rn × (t,∞)} be the

part of S above height t and let S∗
t = S \ St be the part below height t. We

assume that for t small enough, S∗
t is real analytic and a topological annulus.

Suppose Ω ⊂ S∗
t is a compact subannulus with one boundary component

equal to Γt = S(∩Rn × {t}), and the other boundary component is a smooth

curve Γ(0). Let T = T (Ω) be the distance in S between Γ(0) and Γt. For

0 ≤ s ≤ T , let

Ω(s) = {z ∈ Ω : dS(z,Γ(0)) > s}, Γ(s) = {z ∈ Ω : dS(z,Γ(0)) = s}.

Here dS refers to distance on the surface S. Note that Ω(0) = Ω. Also note

that χ(Ω) = 0 (it is an annulus) and χ(Ω(s)) ≥ 0 since Ω(s) is the union of

a topological annulus and possibly some disks. Let A(s) be the hyperbolic

area of Ω(s), and let L(s) be the hyperbolic length of Γ(s) = ∂Ω(s) \ Γt. In

particular, A(0) = Aρ(Ω) and L(0) = Lρ(Γ). The Gauss-Bonnet theorem says

that ∫
Ω(s)

KdAρ +

∫
∂Ω(s)

κgdLρ = 2πχ
(
Ω(s)

)
,

where κg is the geodesic curvature of ∂Ω in Ω. For points in Γt ⊂ ∂Ω, this is

the negative of κSg , the geodesic curvature of Γt in St. Since ∂Ω(s) = Γt ∪Γ(s)

and χ(Ω(s)) ≥ 0 , we get

−
∫
Γ(s)

κgdLρ ≤
∫
Γt

κgdLρ +

∫
Ω(s)

KdAρ.(21.1)

Lemma 21.1. Suppose 2
T < ϵ ≤ 1. With notation as above,

Lρ(∂Ω)−Aρ(Ω) ≥ −C(S, t) + (1− ϵ)

∫
Ω(1/ϵ)

κ2dAρ,

where

C(S, t) = max

Å∫
Γt

κSg dLρ, Lρ(Γt)

ã
.

Proof. This follows from known facts about the isoperimetric inequality on

negatively curved surfaces. Our presentation follows that of Issac Chavel and

Edgar Feldman [33], although they attribute the basic facts to Félix Faila [52].
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As shown in [52], the function A(s) is continuously differentiable and de-

creasing on [0, T ], and A′(s) = −L(s) (Theorem 5 of [52]). Similarly, by The-

orem 3 of [52], L(s) is continuous on [0, T ], analytic except for finitely many

points, and (except for these points)

L′(s) ≤ −
∫
Γ(s)

κgdLρ.

Using (21.1), we get

L′(s) ≤
∫
Γt

κgdLρ +

∫
Ω(s)

KdAρ.(21.2)

Thus

L′(s)−A′(s)≤
∫
Γt

κgdLρ +

∫
Ω(s)

KdAρ + L(s)

=

∫
Γt

κgdLρ −
∫
Ω(s)

(1 + κ2)dAρ + L(s),

which implies

L′(s)−A′(s)≤L(s)−A(s) +

∫
Γt

κgdLρ −
∫
Ωs

κ2dAρ.(21.3)

By the isoperimetric inequality for surfaces with K ≤ −1 (e.g., equation (4.30)

of [101]), we have

Lρ

(
∂Ω(s)

)2
=
(
L(s) + Lρ(Γt)

)2 ≥ 4πχ(Ωs)A(s) +A(s)2,

and this implies

L(s)−A(s) ≥ 4πχ(Ωs)A(s)

L(s) + Lρ(Γt) +A(s)
− Lρ(Γt) ≥ −Lρ(Γt)(21.4)

since χ(Ωs) ≥ 0. Assume for the moment that

L(0)−A(0) ≤ −Lρ(Γt) +

∫
Ω(1/ϵ)

κ2dAρ.(21.5)

Then we claim there must be a s ∈ [0, 1/ϵ] such that

L′(s)−A′(s) ≥ −ϵ

∫
Ω1/ϵ

κ2dAρ.(21.6)

If not, then, by integrating and using (21.5), we get

L(
1

ϵ
)−A(

1

ϵ
) =L(0)−A(0) +

∫ 1/ϵ

0

L′(x)−A′(x)dx

<−Lρ(Γt) +

∫
Ω(1/ϵ)

κ2dAρ +
1

ϵ

ñ
−ϵ

∫
Ω(1/ϵ)

κ2dAρ

ô
= −Lρ(Γt),

which contradicts (21.4) for s = 1/ϵ, proving that there is at least one such

point s.
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Let a be the infimum of values s where (21.6) holds. Since we have assumed

that κ is not constant zero, the right side of (21.6) is negative if ϵ is small

enough. Thus on [0, a] the function L(s) − A(s) has a negative derivative

except for finitely many points. Therefore L(a) − A(a) ≤ L(0)− A(0). Using

(21.6) and (21.3) with s = a, we get

−ϵ

∫
Ω(1/ϵ)

κ2dAρ ≤L′(a)−A′(a)

≤L(a)−A(a) +

∫
Γt

κgdLρ −
∫
Ω(a)

κ2dAρ

≤L(0)−A(0) +

∫
Γt

κgdLρ −
∫
Ω(a)

κ2dAρ

This implies the following:

L(0)−A(0) ≥ −
∫
Γt

κgdLρ +

∫
Ωt

κ2dAρ − ϵ

∫
Ω(1/ϵ)

κ2dAρ.

Now, since 0 ≤ a ≤ 1/ϵ, we have Ω(1/ϵ) ⊂ Ω(a), so∫
Ω(a)

κ2dAρ − ϵ

∫
Ω(1/ϵ)

κ2dAρ ≥ (1− ϵ)

∫
Ω(a)

κ2dAρ ≥ (1− ϵ)

∫
Ω(1/ϵ)

κ2dAρ,

and hence

L(0)−A(0) ≥ −
∫
Γt

κgdLρ + (1− ϵ)

∫
Ω(1/ϵ)

κ2dAρ.(21.7)

Thus either (21.5) fails or (21.7) holds. In either case, we have proven the

lemma. □

Lemma 21.2. Definition 18 implies 17.

Proof. Fix a point z ∈ S and a large disk D = D(z,R) around z. For n

large enough, Ωn contains D(z, 2R), and so Ωn(R) contains D(z,R). So if R

is large enough, κ is as small as we wish in Ω∗
n(R) = Ωn \Ωn(R). Lemma 21.1

with ϵ = 1/2 then implies∫
D(z,R)

κ2dAρ ≤ 2C(S, t) + 2
[
Lρ(∂Ωn)−Aρ(Ωn)

]
.

The first term on the right is independent of n, and Definition 18 says the

second term is bounded independently of n. Therefore∫
D(z,R)

κ2dAρ = O(1),

with a bound independent of R. Taking R ↗ ∞ and applying the monotone

convergence theorem shows
∫
S∗
t
κ2dAρ < ∞, as desired. □
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Proof of Corollary 1.8. The inequality

RA(S) ≤ sup{Aρ(Ω)− Lρ(∂Ω)}

is obvious since the truncated surfaces in the definition of RA(S) are among

the domains used in the supremum on the right.

To prove the other direction, note that if D(z,R) ⊂ Ω, then χ(S) =

χ(Ω) = χ(Ωt) for all 0 ≤ t ≤ T/2 if R is large enough. Then by Lemma 21.1

Aρ(Ω)− Lρ(∂Ω) ≤ −(2π ∓ ϵ)χ
(
D(z,R/2)

)
− (1− ϵ)

∫
D(z,R/2)

κ2dAρ.

Taking R ↗ ∞, and applying the monotone convergence theorem, we get

Aρ(Ω)− Lρ(∂Ω) ≤ −(2π ∓ ϵ)χ(Ω)− (1− ϵ)

∫
S

κ2dAρ.

Then taking ϵ ↘ 0 gives

lim sup
R↗∞

sup
Ω:Ω⊃D(z,R)

[Aρ(Ω)− Lρ(∂Ω)] ≤ −2πχ(Ω)−
∫
S

κ2dAρ. □

22. From dyadic domes to renormalized area: (20) ⇒ (19)

In Section 20 we showed that Definition 15 (δ ∈ L2) implies Definition 19

(RA < ∞) for planar curves by using a result of Seppi [115] that bounds the

principle curvatures at a point z of a minimal surface in terms of δ(z), the local

thickness of the hyperbolic convex hull of Γ. Seppi’s proof is written for curves

in R2 and surfaces in H3, but it seems very likely that his estimate remains

valid for curves in Rn and minimal currents or chains in Hn+1. However, since

we lack an explicit reference for this extension, we provide an alternative

approach for the higher dimensional case. We will show that Definition 19

follows from Definition 20 using a result from Seppi’s paper [115], which does

easily extend to higher dimensions.

We recall from the discussion of minimal currents and 2-chains in Section 6

that, if Γ satisfies Definition 11, then it is the asymptotic boundary of a minimal

2-chain whose restriction to Hn+1
t = {(x, s) ∈ Hn+1 : s < t} agrees with

a minimal surface S that is a topological annulus, that has one boundary

component on Rn × {t}, and that has asymptotic boundary Γ. Lemma 1.4 in

Lin’s paper [83] shows that on a unit hyperbolic neighborhood of any point

z ∈ S, S is a Lipschitz graph with respect to a vertical 2-plane with Lipschitz

constant o(1); i.e., it tends to 0 as t ↘ 0. In particular, the path metric on S

is comparable to the ambient metric with constant tending to 1 as t ↘ 0. We

want to show that this Lipschitz constant, near z = (x, t) ∈ S, is bounded

by O(εΓ(Q)), where εΓ is as in Definition 14 and Q ⊂ Rn is the dyadic cube

containing x and with t < ℓ(Q) ≤ 2t.
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Suppose P is a n-dimensional geodesic plane in Hn+1, and suppose u(z) =

sinh dH(z, P ), where dH denotes the signed distance in Hn+1 from z to P . Then

Proposition 2.4 in [115] proves for n = 2 that

∆Su = 2u,(22.1)

where ∆S = trace(∇S
v u) is the Laplace-Beltrami operator on S. The same

proof works in higher codimension, except that certain terms that give pro-

jections onto the normal vector to S are replaced by the projection into the

(multi-dimensional) space of normal vectors.

Definition 14 says that if z ∈ S and Q are as above, then S is trapped

between disjoint half-spaces that are at most O(εΓ(Q)) apart (in the hyperbolic

metric) and are separated by a vertical n-plane. Thus, as explained in [115],

the Schauder estimates for elliptic PDE imply that |∇u(z)| = O(εΓ(Q)). The

same estimate holds for (n− 1) mutually orthogonal choices of hyperplanes P

passing through z that are also orthogonal to the vertical direction and to the

direction locally parallel to Γ. Since the distance function to each of these on S

is Lipschitz with constant O(εΓ(Q)), we see that S can be parameterized by

a Lipschitz function on the (n− 1)-plane normal to the vertical 2-plane. The

Schauder estimates also require that we have uniform bounds on the curvature

of S, but this is standard and explained in [115].

An alternative approach that avoids using the Schauder estimates is to

consider a conformal map φ from the unit disk into a neighborhood of the

point z on S. By standard potential theory on the disk, Equation (22.1)

implies that u◦φ can be written as the sum of a harmonic function U bounded

by O(εΓ(Q)) and the convolution V of log 1/|z| against a function bounded

by O(δ). On a strictly smaller disk, |∇U | is bounded by O(εΓ(Q)) by Harnack’s

inequality, and |∇V | satisfies the same estimate because the gradient is given by

convolution of 1/z, which is in L1(dxdy), with a function bounded byO(εΓ(Q)).

Combined with Lin’s estimate showing the intrinsic path metric and ambient

metrics are comparable, this gives an alternate proof that u restricted to S is

Lipschitz with constant O(εΓ(Q)).

Lemma 22.1. Let X denote the dyadic cylinder associated to Γ. If X has

finite renormalized area, then Aρ(St)−Aρ(Xt) has a finite limit as t ↘ 0

Proof. If Definition 20 holds, so does Definition 14 (we have already proved

a path from Figure 11 between them). For each vertical rectangle R making up

a side (or a “panel”) of X, we have a Lipschitz map from this panel to a portion

of S that changes area by at most an additive factor of O(ε2Γ(Q)), where Q is

the dyadic cube associated to the center of R. Because of the vertical “hinges”

between adjacent panels, some points of S might be hit twice or not at all by

the Lipschitz maps associated to those panels. However, the angles between
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these panels are bounded by O(εΓ(Q)), and the hyperbolic distance between S

and X is also bounded by O(εΓ(Q)). Thus the total error is at most O(ε2Γ(Q)),

which is summable over all the panels of X. Thus the difference between the

hyperbolic areas of S and X above height t has a finite limit t ↘ 0. □

Lemma 22.2. With X as above, Lρ(St)−Lρ(Xt) had a finite limit as t ↘ 0

Proof. The same argument as in the previous lemma works again: the

Lipschitz map from each panel of X to S preserves length up to an additive

factor of O(ε2Γ(Q)), and the errors caused by the corners are bounded by the

same magnitude. □

If Definition 20 holds, then limt↘0Aρ(Xt) − Lρ(∂Xt) exists and is finite.

The preceding lemmas imply the same for S, so it also has finite renormalized

area.

We have now proven all the implications in Figure 11.

23. Remarks and questions

Comparing different quantities : The work of Takhtajan and Teo [123],

Rohde and Wang [109] and Viklund and Wang [124] includes many explicit

formulas relating the Dirichlet norm of log f ′ to the Kahler potential of the

Weil-Petersson metric on universal Teichmuller space and to the Loewner en-

ergy of the curve Γ. Are there similar formulas that relate these quantities

to quantities discussed in this paper, e.g., Möbius energy, β2-sums, Menger

integrals, the curvature integral of a minimal surface associated to Γ or the

renormalized area of this curve? If there is more than one such minimal sur-

face, which surface? A closely related result has recently been announced

in [26], equating the Loewner energy of a planar curve to the renormalized

volume between two associated Epstein-Poincaré surfaces of constant mean

curvature in hyperbolic space.

Other knot energies : There are a variety of other knot energies besides

Möbius energies. For example,

Ej,p(Γ) =

∫
Γ

∫
Γ

Å
1

|x− y|j
− 1

ℓ(x, y)j

ãp
dxdy

blows up for self-intersections if jp ≥ 2 and is finite for smooth curves if

jp ≤ 2p+ 1. Sobolev smoothness properties for curves with finite Ej,p energy

are studied by Blatt in [21] (but there is a typo in Theorem 1.1; s should be

s = (jp− 1)/(2p)).

Another class of knot energies considered in [121] are the Menger energies

Mp(Γ) =

∫
Γ

∫
Γ

∫
Γ

cp(x, y, z)|dx||dy||dz|
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with M2(Γ) being the usual condition that is equivalent to rectifiability (see

Section 4). They show that, for p ≥ 3, finite energy curves are Jordan curves,

and that for p > 3 these curves are C1,α. The endpoint case p = 3 seems

the most interesting as this is the only scale-invariant Menger energy. Since

c(x, y, z) ≲ 1/ℓ(x, y, z), M3(Γ) is less restrictive than the Weil-Petersson condi-

tion. What are the corresponding geometric characterizations of these curves?

Length convergence on minimal surfaces : The estimates in this paper

prove that if Γ is Weil-Petersson, S is a minimal surface with asymptotic

boundary Γ and Γ(t) is the curve on S at height t above the boundary, then∫ 1

0

∣∣ℓ(Γ(t))− ℓ(Γ)
∣∣dt
t2

< ∞.

Does the converse hold? The direction stated above follows by writing∣∣ℓ(Γ(t))− ℓ(Γ)
∣∣ ≤ ∣∣ℓ(Γ(t))− ℓ(Γn)

∣∣+ ∣∣ℓ(Γn)− ℓ(Γ)
∣∣,

where Γn is the usual dyadically inscribed polygon with 2−n−1 < t ≤ 2−n. The

second term on the right is integrable by Theorem 1.3, and it is controlled by

using the β-numbers at scales smaller than t. The first term is controlled by

Seppi’s estimate and the ε-numbers at scale t; these, in turn, are controlled

by sums of β-numbers over scales larger than t. Thus the question is whether

there are non-Weil-Petersson curves for which ℓ(Γ(2−n)) is a much better ap-

proximation to ℓ(Γ) than ℓ(Γn) is?

Möbius energy and SLE : As we will discuss briefly in Appendix A, Weil-

Petersson curves are related to the large deviations theory of Schramm-Loewner

evolutions (SLE) as the parameter κ tends to zero. It is intriguing that they

are also characterized, via Möbius energy, in terms of the rate of blow-up of a

self-repulsive energy that prevents self-intersections. Is there some more direct

connection between these two ideas? A SLE(κ) curve has Hausdorff dimension

1 + κ/8 for 0 < κ ≤ 8, and we expect the ϵ-truncation of the energy integral

for an α-dimensional measure and kernel |x|2−d to grow like ϵ2−d+α. Do SLE

paths have energy that grows like ϵ−1+κ/8, and are they, in some sense, optimal

among such curves?

Is there something interesting to say regarding hyperbolic convex hulls

and minimal surfaces of an SLE path when κ > 0; e.g., can we compute an

“expected curvature” for the corresponding minimal surface? When κ ≥ 8,

the paths become plane filling, but do the corresponding minimal surfaces still

make sense, and if so, can we characterize their properties (e.g., growth rate

of renormalized area) in terms of κ? In [125], Viklund and Wang consider

connections between WP curves and SLE(κ) as κ ↗ ∞.
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Renormalized volume of hyperbolic 3-manifolds : LetG be a quasi-Fuchsian

group, M its hyperbolic quotient 3-manifold, R1, R2 the two Riemann surfaces

comprising the boundary at ∞ of M , and Γ its limit set. There are a vari-

ety of papers that relate the volume CH(Γ), the renormalized volume of M ,

and the Weil-Petersson distance between R1 and R2. For example, see [29],

[30], [76], and [113]. The ideas in these papers seem very similar to our re-

sults characterizing Weil-Petersson curves Γ in terms of the “thickness” of the

hyperbolic convex hull of Γ and the renormalized area of a surface with bound-

ary Γ. Is there a precise connection between the results of this paper and the

papers mentioned above? In [123], Takhtajan and Teo show that the usual

Weil-Petersson metric for compact surfaces can be recovered from their Weil-

Petersson metric on the universal Teichmüller space. Is this helpful in making

the connection suggested above?

Detecting Weil-Petersson components of T (1): The Hilbert manifold topol-

ogy of Takhtajan and Teo divides the universal Teichmüller space into uncount-

able many connected components. Can we geometrically characterize when two

curves belong to the same component? The current paper has done this for the

component containing the unit circle. Perhaps some condition can be given

saying that the convex hulls are quasi-isometric with constants that tend to 1

in a square integrable sense near the boundary of hyperbolic space. Are Γ1,Γ2

in the same component if and only if Γ2 = f(Γ1) for some planar QC map f

whose dilatation is in L2 for hyperbolic area on the complement of Γ1? A

related problem suggested by Takhtajan is to construct a natural section for

universal Teichmüller space, i.e., a natural choice of one quasicircle from each

connected component. A good starting point might be Rohde’s paper [108],

which gives such a choice for quasicircles modulo biLipschitz images.

Angles of inscribed dyadic polygons : Suppose {znj } are a choice of dyadic

points in Γ, as in Theorem 1.3, and define

θ(n, k) = arg

Ç
znj+1 − znj
znj − znj−1

å
to be the angles between adjacent nth generation segments. Using Theo-

rems 1.3 and 1.5, it is not hard to show that if Γ is Weil-Petersson, then

∞∑
n=1

2n∑
k=1

θ2(n, k) < ∞

with a uniform bound independent of the choice of dyadic base point. Is the

converse true? What if we also assume that Γ is chord-arc? In general, θ can

be zero at a point, even if β is large, e.g., at the center of a spiral. This problem
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is reminiscent of the longstanding ϵ2-conjecture recently proved by Benjamin

Jaye, Xavier Tolsa and Michele Villa [72]. Do their methods apply here?

The medial axis : The medial axis MA(Ω) of a domain Ω is the set of

centers of disks D(x, r) ⊂ Ω such that dist(x, y) = r for at least two points

y ∈ ∂Ω. See [54] for its basic properties (it is called the skeleton of Ω there).

Mumford has asked if Weil-Petersson curves can be characterized in terms of

the medial axis of their complementary domains. This means we know both the

set and the distance function to the boundary (a line segment, with different

distance functions, can be the medial axis of both WP and non-WP curves).

The cleanest statement we are aware of is the following: The region Ω\MA(Ω)

is foliated by directed line segments that connect each point to its unique

nearest point on ∂Ω. For each hyperbolic unit ball Bρ(w, 1) in Ω we assign

the supremum of the difference between directions for the segments hitting B.

Then Γ is Weil-Petersson if and only if Γ is chord-arc and this function is in

L2(Ω, dAρ). See Figure 16. This says Γ is Weil-Petersson if and only if the

nearest point foliation is “flat” up to an L2 error. Is there a more elegant

characterization in terms of the medial axis itself?

Figure 16. A medial axis, the nearest point foliation and an enlargement.

New characterizations of old curve families : The function theoretic char-

acterizations of the Weil-Petersson class are exactly analogous to known char-

acterizations of other classes, e.g., when log f ′ is in VMO [104] or BMO [8]

and [19]. See [17] for a table comparing these results precisely. Do VMO and

BMO curves have other characterizations analogous to the ones discussed in

this paper? Do they extend to higher dimensions? For example, Michel Zins-

meister has asked if anything interesting can be said about the domes and

minimal surfaces associated to boundaries of BMO domains.
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Appendix A. Other characterizations of Weil-Petersson curves

This appendix lists some further equivalent definitions of the Weil-Peters-

son class in the plane; these definitions were never used in our proofs, but we

include them to illustrate the variety of problems in which the Weil-Petersson

class naturally occurs. We start with Takhtajan and Teo’s definition that gives

the class its name.

Teichmüller theory : Recall that D = {|z| < 1} and D∗ = {|z| > 1}. Let

B∞
1 (D∗) denote the unit ball of L∞(D∗). By the measurable Riemann mapping

theorem, each µ ∈ B∞
1 (D∗) determines a quasiconformal map wµ of the plane

that is conformal inside D, and satisfies f(0) = f ′′(0) = 0, f ′(0) = 1. We say

that µ and ν are equivalent if wµ = wν on T, and we define T (1) be L∞(D∗)1
quotiented by this equivalence relation. This is the universal Teichmüller space.

In [123], Takhtajan and Teo define a Weil-Petersson metric on T (1) as follows.

Let U be the set of holomorphic ϕ on D such that∫
D∗

∣∣ϕ(z)∣∣2(1− |z|2
)2
dxdy <

»
π/3,

and, for each ϕ ∈ U , define a dilatation µ on D∗ by

µ(z) = −1

2

(
1− |z|2

)2
ϕ(1/z)z−4.

Given a fixed dilatation ν on D∗, consider the set of all dilations of the form

λ = ν ∗ µ−1

Å
ν − µ

1− µν

ã
· (wµ)z
(wµ)z

◦ wµ.

(This follows from the usual formula for computing the complex dilatation of a

composition of two quasiconformal mappings.) This defines a set Vν ⊂ B∞
1 (D∗)

that contains ν. Projecting these sets into T (1) defines a neighborhood of each

point [ν] ∈ T (1), and T0(1) is the connected component of the identity in this

topology.

Definition 21. The curve Γ = f(T), where f is a quasiconformal map of

the plane, conformal inside D and whose dilatation on D∗ represents a point

of T0(1).

Operator theory : Given a circle homeomorphism φ, we can define an op-

erator on harmonic functions on the unit disk by precomposing the boundary

values of u with φ, taking the harmonic extension back to the disk, and sub-

tracting the value at the origin (so the resulting harmonic function, denoted

Pφu, is zero at the origin). Given a holomorphic function in the Dirichlet

class, we can apply this operator and follow it by orthogonal projection onto

the anti-holomorphic Dirichlet functions and finally apply f(z) → f(z̄) to make

it holomorphic. Nag and Sullivan [93] proved that this operator, denoted P−
φ ,
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is bounded from the Dirichlet class to itself if and only if φ is quasisymmetric,

and Yun Hu and Yuliang Shen [70] proved it is Hilbert-Schmidt if and only

if φ is Weil-Petersson (an operator T on a Hilbert space is Hilbert-Schmidt

if
∑

j ∥Tej∥2 < ∞ for any orthonormal basis {ej}; equivalently TT ∗ is trace

class).

Definition 22. The operator P−
φ is Hilbert-Schmidt on the Dirichlet space.

Another operator theoretic characterization of the Weil-Petersson class

is given by Takhtajan and Teo ([123, Corollary II.2.9]) in terms of Grunsky

operators on ℓ2.

Integral geometry :Another measure of how much Γ deviates from a straight

line can be given in terms of how random lines hit Γ. Suppose we parametrize

lines L in R2 \ {0} by (r, θ) ∈ (0,∞)× (0, 2π], where z = r exp(iθ) is the point

of L closest to 0. It is a well known fact from integral geometry (e.g., [112])

that the measure dµ = drdθ on lines is invariant under Euclidean isometries of

the plane, and the measure of the set of lines hitting a non-degenerate convex

set X equals the length of the boundary of X (for a line segment, it is twice

the length of the segment). For a dyadic cube Q, let S(Q,Γ) be the set of lines

hitting 3Q that also hit both Γ ∩ 5
3Q and Γ ∩ (3Q \ 2Q).

Definition 23. Any translate of Γ ⊂ R2 satisfies∑
Q

µ
(
S(Q,Γ)

)
diam(Q)

< ∞.(A.1)

The equivalence of Definitions 11 and 23 follows immediately from Theo-

rem 10.2.1 of [20]. Since 12 diam(Q)/
√
2 is the perimeter of 3Q, it equals the µ

measure of the random lines hitting 3Q. Normalizing, each term becomes the

probability that if a line L hits 3Q, then L ∈ S(Q,Γ). Thus (A.1) becomes∑
Q

P
(
S(Q,Γ)|3Q

)
< ∞.(A.2)

These terms represent the probability that a random line hitting 3Q will hit

Γ ∩ 3Q at two points approximately ℓ(Q) apart. The particular values 5
3 , 2

and 3 in the definition of S(L,Γ) are probably not important, just convenient

for the proof in [20].

Loewner energy : Suppose Ω = C \ [0,∞) and suppose that γ ⊂ Ω is a

curve that connects 0 to ∞. Suppose also that this curve corresponds to the

driving function W via Loewner’s equation. Then the chordal Loewner energy

of γ is defined by Peter Friz and Atul Shekhar [55] and Yilin Wang [127] to be

I(γ) =
1

2

∫ ∞

0

Ẇ (t)2dt.
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This was generalized to simple closed curves Γ on the Riemann sphere by

Rohde and Wang [109] as follows. Given two points z, w ∈ Γ, define Γz,w ⊂ Γ

to be the subarc connecting z and w, and let Ωz,w be the complement of Γz,w

on the Riemann sphere. If we conformally map Ωz,w to Ω with z, w mapping

to 0,∞, respectively, then Γ \ Γz,w maps to an arc from 0 to ∞ in Ω, so its

energy can be defined as above. The image of Γ\Γz,w is now an arc from 0 to

∞ in Ω, so its energy is defined as above. The energy of the loop Γ rooted at

z is defined as the limit of these energies as w → z; Rohde and Wang showed

this is independent of the choice of z.

Definition 24. The curve Γ has finite Loewner energy.

The equivalence with the earlier definitions was proven by Wang [127]. She

showed that the Loewner energy equals S1(φ)/π where S1(φ) is the universal

Liouville action (and Kähler potential for the Weil-Petersson metric) defined

by Takhtajan and Teo:

S1(φ) =

∫∫
D

∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣2 dxdy + ∫∫
D∗

∣∣∣∣g′′(z)g′(z)

∣∣∣∣2 dxdy + 4π log
|f ′(0)|
|g′(∞)|

,

where f : D → Ω, g : D∗ → Ω∗ are the conformal maps from the two sides of

the unit circle to the two sides of Γ.

Large deviations of Schramm-Loewner evolutions : In [126], Wang inter-

prets finite energy curves γ from 0 to ∞ in H2 in terms of large deviations of

SLE(κ) as κ ↘ 0. Roughly speaking, the Loewner energy of γ is equal to

lim
ϵ→0

ï
lim
κ↘0

logP
[
SLE(κ) ∈ B(γ, ϵ)

]ò
.

Thus the Loewner energy is the exponential rate of decay of the probability

that SLE stays in an ϵ-neighborhood of γ. In fact, Wang’s result is not stated

using Hausdorff neighborhoods, but in terms of sets of curves that pass to the

left or right of a specified finite set of points. A little more precisely, suppose

we are given a finite set Z of points {zn} in the upper half-plane, and each

point is labeled with ±1. A curve γ from 0 to ∞ cuts the upper half-plane

into simply connected regions, that we call the “left side” and “right side”. A

curve γ is called admissible for Z (written γ ∈ A(Z)) if every point labeled +1

is on the right side of γ and every point labeled −1 is on the left side. If γ

is admissible for Z, then we say that Z is consistent with γ, and we write

Z ∈ Z(γ). Wang shows that given a set Z,

− lim
κ→0

κ · logP
[
SLE(κ) ∈ A(Z)

]
= inf{I(γ) : γ ∈ A(Z)}.

Thus the Weil-Petersson class can be defined using the following condition:
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Definition 25. The curve Γ is Weil-Petersson if and only if

sup
Z∈Z(γ)

lim
κ→0

(−κ) logP [SLE(κ) ∈ A(Z)] < ∞.

Roughly speaking, a curve in H2 from 0 to ∞ is a (subarc of a spher-

ical) Weil-Petersson curve iff for any finite set of labeled points Z consistent

with γ, the probability that SLE(κ) is also consistent with Z decays at most

exponentially quickly as κ → 0. See [126] for precise statements and further

details.

Brownian loop soup: The Brownian loop measure, introduced by Greg

Lawler and Wendelin Werner in [77], is a measure on closed loops in a do-

main Ω. It is conformally invariant and if Ω′ ⊂ Ω, then the loop measure on Ω′

is just the restriction of the loop measure for Ω to loops that are contained

in Ω′. Given disjoint compact subsets of Ω, we define W(A,B; Ω) to be the

loop measure of closed curves γ in Ω so that the outer boundary of γ hits both

A and B. Suppose Γr is the image of the circle {|z| = r} under a conformal

map from D to the interior of Γ. In [128], Wang proves that the Loewner

energy of Γ is 12 times

lim
r→1

[
W(S1, r · S1,C)−W(Γ,Γr,C)

]
.

Thus being a Weil-Petersson curve is equivalent to:

Definition 26. The curve Γ satisfies

lim
r→1

[
W(S1, r · S1,C)−W(Γ,Γr,C)

]
< ∞.

It is interesting to note that this is a type of renormalization of a divergent

quantity, just as the renormalized area is divergent. Similarly, Möbius energy

can be written as the Hadamard renormalization of a divergent energy integral

involving an inverse cube law, e.g., the repulsive force exerted by distributing

charge according to arclength on a curve in R4. Is there some underlying

connection between these different renormalizations?
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