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1. INTRODUCTION

A locally integrable function w is called an A; weight if there is a C' < oo so that

1

m/Bw S CeSSinfBW,

for every ball B in the plane. We say that w is comparable to a quasiconformal
Jacobian if there is quasiconformal map f : R2 — R? and an M < oo so that

17 < Jy < Mw holds almost everywhere. In this paper we prove:

Theorem 1.1. There is an A, weight w on R? which is not comparable to any qua-

siconformal Jacobian.

The problem originates in the “quasiconformal Jacobian problem” (formulated by
David and Semmes in their 1990 paper [6]) which asks how to characterize quasi-
conformal Jacobians up to comparability, and (so far as I know) was first explicitly
stated by Semmes in [13] (following Conjecture 5.3 of that paper). The question also
appeared as the second of 33 questions posed in [10] and in various other sources such
as Section 4.6 of [9], Problem 3 of [8] and Question 4.5 of [4]. Also see [3], [12], [14]
for the history of this problem and various partial results that have been obtained.

The basic idea of the proof of Theorem 1.1 is to construct a Sierpinski carpet E
and a weight w > 1 which blows up on E. The set E is an intersection of sets
E{ D Ey; O ... so that each E, contains thick annuli around each of its “holes” and
w is chosen so that any corresponding f(E,) would have the same property. Using
this one can show that a polygonal path in f(F,) can be modified to also remain
inside f(FE,;1) with only a small addition of length. This implies f(F) contains a
rectifiable curve 7. Since w blows up on E, the Jacobian of f~! vanishes on f(F)
and so f!(y) would have zero length, i.e., be a point, which is impossible since f is
a homeomorphism. Thus w can’t be comparable to any quasiconformal Jacobian.

If w is bounded and bounded away from zero, then it is comparable to the Jacobian
of the identity map. However, the proof of Theorem 1.1 will show that given any
positive function ¢(t) on [0, 00) so that ¢(t) — 0 as ¢ — oo, we can take the weight
w to satisfy area({z : w(z) > A}) < ¢(A). Thus no additional assumption on the
distribution function of an A; weight (weaker than boundedness) will force it to be

comparable to a quasiconformal Jacobian.
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As pointed out by Bonk, Heinonen and Saksman in [4], the quasiconformal Jacobian
problem is closely related to the problem of determining which metric spaces are
biLipschitz equivalent to the plane. Obviously, such a space must be homeomorphic
to R?2. Two additional necessary conditions are that the surface be linearly locally
connected (LLC) and Ahlfors 2-regular. A metric space is LLC if there is a C' < 0o so
that B(z,r) can always be contracted to a point in B(z,Cr). Being Ahlfors 2-regular
means that Hausdorff 2-dimensional measure, H,, satisfies r2/C < Hy(B(z,r)) <
Cr? for some C' < oo which is independent of z and r.

A result of Bonk and Kleiner [5] states these these conditions imply the space
is quasisymmetrically equivalent to R?, but Laakso [12] gave an example of such a
space which is not bi-Lipschitz equivalent to the plane. However, his surface is not
embeddable in any finite dimensional Euclidean space (or even any uniformly convex
Banach space) and in [8] Heinonen asked if such an example could be embedded in
R". He also pointed out that the example in Theorem 1.1 implies the answer is yes,
i.e., there is a LLC, Ahlfors 2-regular surface in R", for some n < oo, which is not
biLipschitz equivalent to R?. This is because a theorem of Semmes (see Theorem 5.2
of [13] or Theorem 4.5 of [9]) implies that any A; weight is the Jacobian of an embed-
ding of R? into some finite dimensional R® and the image is LLC and 2-regular. The
surface corresponding to the weight w in Theorem 1.1 can’t be biLipschitz equivalent
to R?, for this would give a quasisymmetric map of the plane to itself (and hence
a quasiconformal map) with Jacobian comparable to w. Some extra work shows we

can take n = 3:

Corollary 1.2. There is a surface S C R® that is Ahlfors 2-reqular and locally lin-

early connected, but is not bi-Lipschitz equivalent to R2.

Theorem 1.1 was obtained while I attending the Ahlfors-Bers colloquium in Ann
Arbor, May 2005. I thank the organizers for a stimulating conference and Mario Bonk
and Juha Heinonen for very helpful comments concerning the problem addressed here.
Thanks to Leonid Kovalev for some corrections to an earlier version of the paper. Also
many heartfelt thanks to the referee, especially for finding an error in the original
proof of the “good path lemma” (Lemma 2.2), for pointing out the specific statement

of the problem in [13] and for various other helpful comments on two different versions
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of the manuscript. I greatly appreciate the effort the referee put into carefully reading

and reporting on my work.

2. THE CONSTRUCTION

2.1. The definition of E. Our weight w will tend to co on a set £ which we describe
now. FE will be a type of Sierpinski carpet, but with a construction that varies at
different generations. For odd, positive integers L. > 3, N > 3 and any positive
integer M we define a (L, M, N)-piece as follows. Take a square ) and divide it into
L? equal subsquares. These are called the type 1 subsquares of Q. Let Q, denote
the center square of this collection and divide Qg into M? equal subsquares (the type
2 subsquares of (). Then divide each of type 2 squares into N? equal subsquares
(called type 3). See Figure 1. Remove the center type 3 square from each type 2
squares. These are called the omitted squares associated to (). This leaves a set
Q=Q(L,M,N) C @ so that

1. Q consists of Q with M? squares of side length ¢(Q)/LM N removed.

2. area(Q) = area(Q)(1 — (LN)7?).

3. () contains disjoint annuli around each omitted square with radii ratio ~ N.

FIGUure 1. This shows an (L, M, N)-piece for L =3, M =4, N = 3.
The type 1 squares are white, the type 2 are gray and the omitted
squares are black.

Given sequences {L,},{M,},{N,}, n =1,2,..., we define a compact set as fol-
lows. Let t, = (L,M,N,) ' and s, = [[;_, tn. Ep is the unit square. E; C Ej is

the associated (L, My, Ni)-piece. Divide E; into disjoint squares of size s; (these
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are called the first generation squares) and replace each of these with the associated
(Lo, My, Ny)-piece. This gives Fy C E;. In general, given E, ; we divide it into
(n — 1)st generation squares of size s,_; and replace each of these by the associated
(Ly, M,,, N,,)-piece to get E,. Let E =N, E,.

For our construction to work it suffices to take {L,} constant, and for {M,} and
{N,} to satisfy:

(2.1) Y N,? =00,

(2.2) ZNn_?’<oo, ZMn_2<OO.

To be specific, we can take L, = 7 for all n, M,, = n, and N, = 3+ z[y/n]. Then
L, N, <./n for n large (say n > ng = 168) and hence

n n
1
—92 _ -1
(2.3) area(E,) < H (1= (LgNg)™9) < H (1- E) =0(n"").
k=ng k=ng
In particular, (2.1) implies area(E) = 0. Similarly, if S is an nth generation square
and k > n, then
area(E, N S) < C’E.
area(S) T n
Suppose we are given a nth generation square (). Because L, = 7 we can find
a collection of type 1 subsquares of size £(Q)/L, whose union separates the central
type 1 square from the boundary of ) and such that the distance of any of these
squares from the central square or from the boundary of @ is > ¢(Q)/7. We will call
these the “ring squares” associated to @ (since they form a topological annulus which
separates the center of @) from its boundary). See Figure 2. We denote the union of
the ring squares by W (or by Wg to be more precise). Note that by the compactness

of K-quasiconformal maps, there is a constant 0 < Cx < 0o so that

(2.4) dist(f(W),0f(Q) U f(Q')) = Crdiam(f(Q)),

for any K-quasiconformal f which fixes 0 and oo, where @' is the central type 1

square in Q).
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FIGURE 2. The ring W of type 1 squares which separates the central
type 1 square @' from the boundary of Q).

2.2. The definition of the weight w. Let F), denote a s,-neighborhood of F,
(this fills in the nth generation omitted squares and adds a “collar” of width s,
to the boundary of earlier omitted squares). Note that area(F,) < 2area(E,) and
dist(F,, Ff_;) > %sn_l. Given a sequence A, oo with Ay = 1, we define the weight
w by w(z) =1 for x ¢ Fy and w(z) = A, for x € F, \ F,,41. Let a, = A, — A, _1,

forn =1,2,.... Then on Fy, w(z) = 1+ Y 1, axxr, (), so w is locally integrable
as long as
. a
(2.5) Zakarea Fy) < QZakarea Ey) = f
k=1 k=1 k:l

Finally, assume there is a A < v/2 so that

(2.6) Aoy < AA,, n=1,2,3,....

This is a “slow growth” condition on A, which clearly implies

(2.7) A, = o(y/n) = o(n),
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(to see this, note that if 2™ < n < 2™*! then A, < Agmi1r < AF = 0(2™/2) = o(/n)).

Moreover, (2.6) implies

N N-1
a A, _ 1 1 A
% T T LA Dy
k=n k=n
— |, 1 A
= O(An) +0(n Y Arz) + s
k=n

VAN

O(An) +0(n> n27 - Agjia, - n7227%) + nWN

Jj=0

A A
< O(An)—#O(AnZ)\J?_J)-FnWN

Jj=0
An
< A, —.
< O(Ap)+n N
For a fixed n the last term tends to zero as N — 00, so
o0 a
2. — =0(A,
(23) DI SLER
Thus for any nth generation square 5,
1 > ag
2.9 _ <A,+0 E —) < O(4,
(29) area(S)/Sw_ + (n: k)_ (4n)

k=n

Since A, = essinfy, w, this is similar to the A; condition (but only for generation
squares; we will verify it for all balls below). Also note that we can take A, — oo
as slowly as we wish, which means that we can make area({z : w(z) > A}) — 0 as
quickly as we wish, as claimed in the introduction.

Next we record an observation that we will need in the proof of Corollary 1.2. If
x ¢ E, then dist(z, E) = dist(z, E,) and if x € E, \ E then dist(z, F) < s,,1/2

(since x must be in one of the omitted squares of Ej for some k& > n + 1). Thus
{z: spy1 < dist(z, E) < sp,} = {x : spy1 < dist(z, Ey) < $p} = F \ Fya-

Thus w(x) only depends on the distance of z to E. Hence we can write

(2.10) Vuw(z) = f(dist(z, E)),

for some function f on (0, 00). Moreover, we can take f to satisfy

(2.11) f(r)=1 ifr >,
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(2.12) f is non-increasing,
f(r)
(2.13) 1< F(2r) <1+,

and we can take 7 as small as we like by choosing the {4, } appropriately.

2.3. Proof that w is an A; weight. We have seen that w satisfies the A; condition
with respect to nth generation squares, so all we need to do is check that it also
satisfies it with respect to any ball. Suppose B = B(z,r) is a ball of radius r and
choose n so that s,,1 < 4r < s,. The infimum of w on B is finite and must equal Ay
for some k, i.e., B C F}, and some point of B lies outside Fj;.

If £ <n, then 4r < s, < s so this implies 2B lies outside Ej,; and hence B lies
outside Fy,5. Thus w is bounded above by Ay, on B. Since Ay > 1 and a < 1/2
for all k, we have Agio = Ax + a1 + Qpro < 2A;.

If k > n, then 7 > 15,41 > 1s,. Then B can be covered by disjoint squares of
size si11 and which are all contained in 2B. Thus the average of w over B can be
no worse than twice the average over any of these squares, which by (2.9) is at most
2Ak+1 < 4Ag. Thus w is an A; weight.

Later we will also need the following observation. Suppose () is an nth generation
square, (' C @ is a type 2 subsquare and Q" C @' is the corresponding omitted
square. Suppose Bi, V5 are balls, such that Q" C B; C By C Q)'. Then the average
of w over B, and B, are comparable with a constant which is independent of n. This
holds since w is an A; weight and the essential infimum over both balls is the same

(since both are in F), and neither is in F},1).

2.4. f(E,) has big annuli. Suppose f is a K-quasiconformal map whose Jacobian
Js is comparable with constant M to the weight w defined above. Eventually, we
will prove that f(F) contains a rectifiable arc . If we can do this, then f~! has a
Jacobian that vanishes on v which means that f~!(v) has length zero, i.e., is a single
point. This is impossible since f is a homeomorphism, so we deduce that there is no
such f.

The first step is to show that if we consider nested squares in adjacent generations,
then their images under f have about the same size ratio as the original squares.

This uses the slow growth of our weight near £ and will follow from:
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Lemma 2.1. Suppose By is a unit ball centered at the origin and By C By is the
concentric ball with radius €. Suppose [ is a K-quasiconformal map of the plane
which fizes 0 and oo and also suppose that the averages of the Jacobian, Js, over
the two balls are comparable with constant M. Then there is an r > 0 such that
f(B1\ By) contains a round Euclidean annulus with outer radius r and inner radius
at most \/MGC?(T, where Ck s a constant that depends only on K.

Proof. Let A = area(f(B;)) and a = area(f(By)). By the compactness of K-
quasiconformal maps there is a Cx < oo (depending only on K) and that there
are radii » > s > 0 so that

B(O,'I") C f(Bl) C B(O,CKT'),

B(0,5/Cx) C f(Bs) C B0, s)

Thus 77?2 < A < 7C%7r? and 7s?/C% < a < 7ws®. Since the average of the Jacobian
over B, is comparable to the average over B; with constant M, we have a < Me?A

and hence 7s?/C% < Me*nC%r?, or
s < VMC%(e.
Therefore {z : VMeC%r < |z| <1} C f(By) \ f(Ba), as desired O

Note that if we used merely that f is K-quasiconformal, we would have gotten

/K by the Holder continuity of quasiconformal maps. Since

an estimate involving e
we are assuming something strong about the Jacobian of the map, we get a stronger
conclusion.

We will make several uses of the lemma in the remainder of the proof. First, recall
that if () is an omitted square of F, then @) has side length s, and is contained in a
ball radius s,v/2. Moreover, it is contained in a ball of radius N,,s,, / v/2 which hits no
other omitted squares. By the remark at the end of subsection 2.3, the averages of
w over these to balls are comparable and hence the Jacobian of f has averages over
these two balls that differ by at most a factor of CM?. Hence, by the lemma, we see
that f(F,) contains a round Euclidean annulus around f(Q) where the outer radius
exceeds the inner radius by at least a factor of N,,/M+v/2CC%.

Second, if @' is a type two subsquare of ) then we can deduce diam(f(Q’)) <
Cdiam(f(Q))V/MC% /M,. Combined with (2.4) this means that if M, is large enough
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(depending on K) then there is a § = O(1/M,,) so that
(2.14) adiam(F(Q')) < ddiam(f(Q)) < %dist( F(R),0£(Q)).

2.5. Statement of the “good path” lemma. A “good path” for f(E,) is a polyg-
onal path which is contained in f(F,) and all of whose vertices lie in sets of the form
f(0Q) where @ is a nth generation square. The main point of the whole construction

is contained in the following lemma.

Lemma 2.2. Suppose f is K-quasiconformal and has Jacobian comparable to w with
constant M. Then there are ng, C1,Cy depending on K and M so that if n > ng the
following holds. Suppose v is a good path for f(E,_1). Then there is a good path ~'
for f(E,) such that

1. every vertex of v is also a vertex of ',
2. the length of ¥ satisfies £(v') < £(y)(1 + Cy/M? + Cy/N?).

It is obvious that f(E,,) contains a good path 7,, (just take a line segment).
Thus the lemma and induction produce a sequence of good paths v, C f(E,) which
connects the endpoints of ,, and whose lengths are bounded by [[°2,(1+ O(+5) +
O(55))- This is finite if the conditions in (2.2) hold. Standard arguments then ir;ply
that f(E) contains a rectifiable path connecting the endpoints of 7; (which were in
f(E) by construction). Thus to prove Theorem 1.1 it only remains to prove Lemma
2.2

The key point of the lemma is the power of 3 in the N,, term. We need Y~ N, ? = oo
to make E have zero area, and we need Y N, ® < oo to produce a rectifiable arc in

f(E), so the gap between 2 and 3 is what allows our to example work.

2.6. Proof of the good path lemma. Let Y, denote the f image of the boundaries
of all nth generation squares. Since Y,,_; C Y,,, and since the endpoints of a good
path v for E,_; lie in Y,,_;, they also lie in Y,,. If v happens to lie inside f(E,) just
let v' = . Clearly the lemma is satisfied.

Otherwise, 7 hits some omitted image squares for f(F,) and hence hits the central
type 1 image squares for the corresponding (n — 1)st generation squares. Enumerate
these as {f(Qx)}. If v hits f(Qy) then it hits it along a line segment in ~y (since + has
no vertices in f(Qy)). Indeed, v can have no vertices until it reaches the boundary
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of the corresponding (n — 1)st generation image square, thus the line segment that
hits f(Qyg) also hits f(Wy), where Wy, is the ring that surrounds @y, (see Figure 2).
If J is an edge of v which hits f(Qy) then add two vertices to -y at the two points of
f(Wy) first hit by J after leaving f(Qy) in either direction. This adds a finite set of
new vertices to . Let {I;} be an enumeration of edges of the new ~ which intersect
some central image square.

Let @ be a (n — 1)st generation square and @' its central type 1 square. For con-
venience we drop the “j” and consider a single interval I hitting the central image
square f(®') and with its endpoints on the boundary of corresponding image ring
squares. By (2.4), the length of I and the distance of its endpoints to the correspond-
ing image (n — 1)st generation square, f(Q), are both comparable to diam(f(Q)). To
simplify we renormalize so that I = [0,1] and use terms like “left”, “right”, “top”,
“bottom” accordingly.

Suppose [ is divided into five, disjoint pieces, I1, ... I5, so that all five pieces have
length comparable to the length of I (with constant depending on K), but such
that Iy, I, I, and I5 have length less that 1dist(f(W),df(Q) U f(Q')). Thicken the
interval I to make a rectangle R = I x [—26, —16] of width § where § is as in (2.14).

Let R’ be the rectangle with the same axis as R, but three times as thick. The
rectangle R is divided into five subrectangles R, Ry, R3, R4, R5 corresponding to the
thickenings of the intervals I,...,I5. Let E; = OR; N OR;4; for j =1,2,3,4. See
Figure 3. Note that these are short segments perpendicular to I. Also note that
Ry, Ry, Ry, R5 are contained in f(Q) and disjoint from f(Q') (by our condition on
the lengths of the intervals I,..., I5). Let Xs C Y, N Ry be a curve which connects
the top and bottom edges of Ry (such an X, clearly exists because the images of nth
generation squares cover R; and have diameter < %(5 which is much smaller than the
length of Ry). Similarly define X; C Rj.

Next we define a family of paths I'; in R which all start at 0 and end at 1. Inside
R3 they run parallel to I and continue parallel to I through R, until they first hit Xy
and then run in a straight line to 0. On the other side of R3, they continue straight
into R, until they first hit X, and then run in a straight line to 1. See Figure 3. Thus
each path in I'; begins and ends at the same points and by the Pythagorean theorem,
they all have length bounded by |I|(1+4 O(6%)) = |I|(1 + O(M ?2). Moreover, all the

vertices of these polygonal paths lie in Y,,, as required.
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R X X,
SN E EE / E
== ===
( )
Ry | R Rs R, / R

FIGURE 3. The construction of I';.

Each omitted image square f(Qy) in f(Q’) hit by R can be put it into a Euclidean
square Sy with sides parallel to those of R so that expanding Sy by a factor of
At > N,/CMC? (again by Lemma 2.1) we obtain a collection of disjoint squares,
denoted A\~'S}, which are all contained in R'. By the disjointness of the expanded

squares we get

(2.15) D (ATH(Sk))? < area(R') < 3.
J

The orthogonal projection of Sy on Fy will be denoted Ji (this corresponds to a
horizontal projection in Figure 3). Fix a k and let L be a line parallel to I which
contains one side of S;. Choose a closed path Xy C Y,, which surrounds S; and has
comparable diameter and hence hits L at two points {a, b}, separated on L by 0Sk.
Let W be the rectangle in A~1S;, which is the union of segments parallel to L which
hit Sy (see Figure 4). We also define curves X, Xo C Y, which each connect the two
long sides of W, are separated in W by S, and each with distance > %/\_IE(S,C) from
Xy (this is possible since (n 4 1)st generation image squares cover W \ Sy and have
much smaller diameter than W).

Now for each omitted image square S; hit by Rs we change the definition of the
paths in I'; which correspond to parameters in J;. Outside A™1S; we leave them alone.
Inside A~ 1S}, we replace each path by one that passes around S;, being careful to
place the vertices in Y,,, as shown in Figure 4. More precisely, since the path hits S
it enters A=) in a “short” side of W and defines a line segment L' which is parallel
to L. We let the path follow L' until it hits X;. From this point we let it run in
a straight line to the closer of the points a, b, then along L to the other point, and
then in a straight line to a point of Xy N L'. The path then continues along L' until
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it leaves W. Since W has width ~ £(Sy) and dist(Xy, X;) ~ A714(Sy) for i = 1,2,
the new path is at most O(A2/(L')) ~ M(Sy) longer than L' by the Pythagorean
theorem. Doing this for every square gives the path family T'y.

It may be difficult to see what happens to any one path, but we can easily compute
the length of an average path crossing R. If we sum up over all the squares S; then
the additional length of the path crossing R, and starting at x € E; is at most

L(@) = 37 OM(S)xs, @)

Integrating over E; and dividing by the length of E; gives the average additional

length as

1 C
—— [ L(z) <6X) £(5)* < =X =0()3),

by (2.15). Thus there is at least one path through R’ which connects E; and Es and
which has length < [I|(1 4+ C)\3).

A

N L)

FIGURE 4. The construction of I's.

Thus there is a polygonal path with the same endpoints as I, which stays inside
f(E,) and which has length < |I|(1 + O(62))(1 + O()?®)). Since § < O(1/M,,) and
A < O(1/N,) we see that (2.2) implies Lemma 2.2 and hence Theorem 1.1.

3. A SURFACE IN R? NOT EQUIVALENT TO THE PLANE

Throughout this section w and F will refer to the weight and set constructed in
Section 2. Our goal is to prove Corollary 1.2.
Our surface S will be the image of R? under a quasisymmetric map ¥ which will

be the composition of two maps. The first map P is given by the vertical projection
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from R? to the graph of a Lipschitz function on R?, namely,
P(z) = (x, min(1, dist(z, E))).

Clearly P is biLipschitz. The second map is the quasiconformal map ® : R — R3
given by the following result from [1]

Theorem 3.1. There is a non-increasing function f on (0,00) which satisfies

lim f(t) = oo,

t—0+
and a a quasiconformal mapping ® : R® — R3 such that each of the following condi-
tions hold.

1. f can be taken to grow as slowly as we wish, e.g., given a sequence s, 0 and
any A > 1 we may assume f(so,) < Af(Sn).
2. There is a C < oo so that for all z,w € R* x {0},
1 oG -ew)l _
C = |z —ylf(lz—wl) =
3. The map ® is smooth on R% x (0,00) and its Jacobian satisfies Jp(2,t) ~ f3(¢).

This is closely related to a result of David and Toro. If a function f satisfies
conditions (2.11), (2.12) and (2.13), then second claim of Theorem 3.1 is Theorem
2.10 of [7]. The third claim is not explicitly stated in [7], but it probably follows
from the estimates found there (some details about bounds for derivatives in the
construction would have to be checked).

So assume we have f and ® as given by Theorem 3.1 and let ¥ = ®o P. Clearly ¥ is
quasisymmetric so S = ¥(R?) C R? is locally linearly connected. Define A, = f?(s,)
and let w be the corresponding weight. We may assume A,, satisfies (2.6) by taking
f to grow slowly enough (e.g., A < 2% in part 1 of Theorem 3.1).

Let H, denote 2-dimensional Hausdorff measure and let dm denote area measure in
the plane. To see that S is Ahlfors 2-regular, we first want to check that ¥(E) (which
also equals ®(E)) has zero 2-dimensional measure. Note that E can be covered by
N = area(E,)s,? squares of side length s, and recall that area(E,) = O(1/n) by
(2.3). Thus ¥(E) can be covered by the images of these squares, each of which has
diameter at most Cs,, f(s,) ~ $pAn ~ $,0(y/n). Thus the 2-dimensional Hausdorff
measure of ¥(FE) is at most Ns2A2 = (1/n)o(n). Since this tends to zero as n — oo

we deduce ¥(E) has zero measure.
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Next suppose z € S and 7 > 0 and let By = B(z,r)NS. Let y = U~i(x). By

quasisymmetry there are balls By, By with
B, = B(y,s) C ¥ 1(By) C By = B(y,Cs) C R?,

where r ~ sf(s) and C depends only on f. By our previous remarks, |¥(E N B;) has
zero measure. Also, ¥ is locally Lipschitz on B; \ E with Jacobian almost everywhere

comparable to w. Thus the 2-dimensional measure of U(B; \ E) is comparable to

/B ()

Since E has zero area and w is an A; weight, this is comparable to s?essinf g w(z).
By the construction of F, if 2s, < s < 2s,,_1, then for any ball B; of radius s,
Bj \ FE contains a square of side length s,.;. Thus by the definition of A; weight and
condition (2.10) we have
Ho(V(By)) ~ / wdm ~ s®essinfp,w ~ 8% f(sp41) ~ 8°f2(Sp1)-
B

Since 2, < s < 25,_; we have f(sn) > f(s) > f(sn_1)/\. Thus
Ho(Bo) > Hao(V(By)) ~ s%f(5)? ~ 12
By a similar argument,
Ha(Bo) < Ha(¥(By)) ~ (Cs)*f(Cs)? ~ 1.

Thus S = U(R?) is Ahlfors 2-regular.

As previously noted, if there were a biLipschitz map of S to R?, then the com-
position of this with ¥ would give a quasiconformal map of the plane to itself with
Jacobian comparable to w. We proved before that this is impossible, so S can’t be

biLipschitz equivalent to R?. This proves Corollary 1.2.

4. CONCLUDING REMARKS
Here are a few questions raised by our example:
Question 4.1. Is there a compact set E of measure zero so that no A; weight w

that blows up on E (i.e., so that w(z) — oo as z — FE) can be comparable to a

quasiconformal Jacobian?
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Question 4.2. Is there a compact set E of measure zero so that no locally integrable

w which blows up on E can be comparable to a quasiconformal Jacobian?

Question 4.3. Is there a compact set E of measure zero so that every quasiconformal

image of E contains a rectifiable curve?

The questions above are arranged so that an example for one is also an example
for the previous ones. It is important that we only consider maps into the plane: by
Theorem 3.1 the whole plane can be quasisymmetrically mapped into R? so that the
image has no rectifiable curves and the Jacobian is co everywhere on R? (see [1], [7]).

Our construction heavily uses that £, contains big annuli around its complemen-

tary components. This forces F to have dimension 2.

Question 4.4. Can the example in this paper have Hausdorff dimension < 279 What
are the answers to Questions 4.1 - 4.3 if we require that dim(E) < 2¢

In [11], Kovalev and Maldonado introduce the following definition: E is a quasicon-
formal oco-set if there is a quasiconformal Jacobian with essential limit oo everywhere
on E (essential limit means the limit after changing values, if necessary, on a set of
measure zero). They show (Corollary 4.3 of [11]) that every set E C R" of Hausdorff
dimension < 1 is a quasiconformal co-set. Thus the set in Question 4.2 must have
dimension at least 1.

Do the answers to the questions above for K-quasiconformal maps depend on the
size of K, i.e., might the answers be different for large or small K? For example, in
[2] T show that there a compact set E of measure zero and a Ky > 1 so that every
K-quasiconformal image of E contains a rectifiable curve for every K < Ky, but
there is a K-quasiconformal image without rectifiable curves for some K > K. The
proof that small deformations of the set contain rectifiable curves uses the following

lemma, which follows from the proof of Lemma 2.2.

Lemma 4.5. Suppose that Ey D E1 D FEy D FEs... are compact sets and E =
NE,. Suppose there is a K < oo, C > 0 and sequences of positive numbers {P,},
{Qn} so that the following holds. For n =1,2,..., suppose E, = UQg,, = E,_1 \
Uk, Wk (disjoint except for boundaries) where Q. , consists of a closed K -quasidisk

Win with a finite number of open K-quasidisks W, removed (called the omitted



16 CHRISTOPHER J. BISHOP

regions). Moreover, for each j, k assume there is a collection of disjoint disks {D,} =
{D(zyn,rn)} so that with the properties that

1. dist(Dy,, 0Wy,) > Cdiam(Wy.,).

2. Wjkm C D(2n,70/Qn) C D(y, Pyrn) C Wik,
Ify P2 < 0o and >on Q, < 0o, then E contains rectifiable curves.

Finally, how does one characterize biLipschitz images of the plane? Is there a
natural condition on a surface that (in addition to LLC and Ahlfors 2-regular) that

is not satisfied by the example in this paper?
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