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proving that any real-valued continuous function on an
interval I C R can be uniformly approximated by a
real-valued polynomial with only real critical points and
whose derivatives converge to zero almost everywhere on
I. Alternatively, the approximants may be chosen so that
the derivatives converge to plus infinity almost everywhere,
or so that these behaviors each occur almost everywhere
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pointwise almost everywhere. Together, these results prove
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1. Introduction

This paper is a sequel to [1]. In that paper, the classic Weierstrass approximation

theorem [14] was strengthened by proving the following.
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Proposition 1.1. Any real-valued, continuous function f on a compact interval I C R,
can be uniformly approzimated by real polynomials {p,} so that all their critical points lie
in I. If, in addition, f is K-Lipschitz, then we can take the {p,} to be O(K)-Lipschitz.
Moreover, pl, converges weak-x to f' as elements of L*°(I), but p, diverges pointwise
almost everywhere.

In this paper, we give a different variation of this result in which p/, may be chosen
to converge almost everywhere to either 0 or co. A theorem of Clunie and Kuijlaars [4]
states that if {p/,} has only real zeros and converges pointwise to finite, non-zero, real
values on a set £ C R of positive Lebesgue measure, then {p/,} must actually converge
uniformly on every compact subset of C to an entire function in the Laguerre-Pélya
class (defined below). Thus if {p,} are polynomials with only real critical points that
converge uniformly to a general function f (not the anti-derivative of a Laguerre-Pdélya
function), then at almost every point x € I, the sequence {p/,(z)} either diverges or it
converges to either 0, —oco or +00. The approximating sequences {p, } constructed in [1]
have derivatives that diverge almost everywhere on I, showing the first alternative can
occur. In this paper, we construct approximating sequences so that {p/,} converges to 0,
or —oo, or +00. Thus all the behaviors allowed by the Clunie-Kuijlaars theorem actually
occur.

In analogy to singular functions in real analysis (non-constant, continuous functions
that have derivative zero almost everywhere), we shall say that {p,} is a singular sequence
of polynomials if {p,} converges uniformly to a continuous, non-constant function f,
but {p),} converges to zero almost everywhere. Our main result is that every real-valued,
continuous function can be uniformly approximated by such a sequence.

Theorem 1.2. If f is real-valued and continuous on I, then there is a sequence of poly-
nomials {p,} with only real critical points, so that p, — f uniformly on I and {p]}
converges to zero almost everywhere. If f is increasing on I, then the elements of {pn}
may be chosen to be increasing on I as well.

Increasing polynomials p,, obviously satisfy p), > 0, but it turns out that one cannot
always take strict inequality in the final part of Theorem 1.2.

Theorem 1.3. Suppose f is real-valued and continuous on I, and that {p,} are real-valued
polynomials that converge uniformly to f, and that the polynomials {p,} only have real
critical points. If f is not the anti-derivative of the restriction of a Laguerre-Pdlya entire
function to I, and if J C I is a non-trivial interval on which f is non-constant, then
J contains a critical point of p, for all sufficiently large n (depending on J). In other
words, the critical points of {pn} accumulate everywhere that f is non-constant.

The theorem of Clunie and Kuijlaars also allows for the possibility that {p/,} converges
pointwise almost everywhere to —oo or +o0o. We will show this can occur.
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Theorem 1.4. If f is real-valued and continuous on I, then there is a sequence of poly-
nomials {pn} with only real critical points so that {p,} converges uniformly to f on I,
and {pl,} converges to +0o almost everywhere on I.

Without the restriction on the critical points, it is easy to obtain the weaker condition
|pl,| — oo almost everywhere: if ¢, — f uniformly, then it is not hard to verify that
Pn = Gn + +Ty, — [ uniformly as well, and that |p,,| — oo almost everywhere if
kn 0o quickly enough, depending on the choice of {g, }. Here, T}, is the nth Chebyshev
polynomial, defined later in this introduction. Thus the point of Theorem 1.4 is to get
the “one sided” divergence to 400, while restricting the critical points to the interval I.
By first approximating —f by a sequence {p,} with derivatives tending to 4+o0c almost
everywhere, and then changing signs, it is clear that Theorem 1.4 also holds with +oo
replaced by —oo. In Section 5, we will also note that similar constructions give sequences
{pn} with only real critical points so that p,, — f uniformly and with p/, tending to 0,
—oo or +oo respectively, almost everywhere on any three disjoint, measurable sets whose
union is .

Polynomials with only real critical points have played a role in several problems, e.g.,
density of hyperbolicity in dynamics [10], rigidity of conjugate polynomials [7], Smale’s
conjecture on solving polynomial systems [8], and Sendov’s conjecture on locations of
critical points [3]. In holomorphic dynamics, the orbits of critical points play an essential
role. Various constructions in the field make use of approximation theorems such as
Weierstrass’s and Runge’s theorems, and it is desirable to control the locations of the
critical points of the approximating functions. In [2], a version of Runge’s theorem is
proven where all critical points may be taken to lie within any open e-neighborhood
of a connected set K. In [1], this is further improved to ¢ = 0 when K = I C R is
an interval, i.e., Weierstrass’s theorem holds even if we require all critical points to lie
in I. However, [1] also constructs disconnected sets K C R where Cr(K) (real valued,
continuous functions on K) is not the uniform closure of polynomials with all critical
points in K. Classifying the sets K when this does occur remains an open problem.

The Laguerre-Pdlya class, mentioned above, is the collection of entire functions (holo-
morphic functions on C) that are limits, uniformly on compact sets, of real polynomials
with only real zeros. These have been characterized as follows [13]: it is the collec-
tion of entire functions f so that (1) all roots are real, (2) the nonzero roots satisfy
>, 12n| 72 < o0 and (3) we have a Hadamard factorization

_,m a+bz4cz? 1— i z/%n 1.1

s = et [l = e, (11)

with m € {0,1,2,...}, a,b € R and ¢ < 0. In particular, functions like exp(—z?) and
sin(z) are in the Laguerre-Pélya class, but exp(z?) and sinh(z) are not.

A theorem of Korevaar and Loewner [9], extending earlier work of Laguerre [11] and

Pélya [13], says that if {p,} are polynomials with only real zeros that converge uniformly
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Fig. 1. A 2-point perturbation of T53, shown over the full interval [—1, 1] (left) and an enlargement around
the perturbed roots (right). Separating two adjacent roots creates a larger node between them, while having
little effect on the size of more distant nodes.

to f on an interval I C R, then f must be the restriction to I of a Laguerre-Pélya entire
function, and that p,, converges to f on the whole complex plane (uniformly on compact
sets). See also [5]. Clunie and Kuijlaars [4] later proved that this also holds if we only
assume p,, converges in measure to f on a subset £ C R of positive measure. Since almost
everywhere convergence on a set of finite measure implies convergence in measure, we
obtain the pointwise version of their theorem quoted earlier.

If a real polynomial p of degree n + 1 has all n critical points in [—1, 1], then its
derivative can be written in the form

p)=C -2, (1.2)
k=1

where C' € R and {z}'}}_; C [—1,1]. The polynomials used in this paper are all of this
form, where {2} } are perturbations of the roots {rj} of nth Chebyshev polynomial T,,.
We briefly recall the definition of these polynomials.

Let J(z) = 3(241/z) be the Joukowsky map. It is easy to verify that this map sends a
point z = x 44y on the unit circle to z € [—1, 1], and that J is a 1-1 holomorphic map of
D* ={z:|z| > 1} to U = C \ [-1,1]. Thus it has a holomorphic inverse J~! : U — D*.
Therefore T,, = J((J~1)") is a n-to-1 holomorphic map of U to U that is continuous
across OU = [—1, 1], so by Morera’s theorem (e.g., Theorem 4.19 of [12]) it is holomorphic
on the whole plane, and hence it is a degree n polynomial. Unwinding the definition,
we see that T, maps [—1, 1] into itself and is given by T,,(z) = cos(n arccos z). It takes

the values 1 at the points {2} = {cos(7£)}7?_, (the vertical projections of the nth

2k—1
2n

the midpoints on T between the roots of unity). See Fig. 1 for an example. This figure

roots of unity), and has its zeros at {r¥} = {cos(r )}r_, (the vertical projections of
(and many others in this paper) was drawn using the MATLAB program Chebfun by L.N.
Trefethen and his collaborators. See [6].

Fix a large positive integer n and consider the Chebyshev polynomial T;,. Order the
n roots of T}, from left to right, and for £ = 1,...,n — 1, let I}} denote the interval
between the kth and (k + 1)st roots of T,,. We call these the “nodal intervals”, and call
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Fig. 2. A Chebyshev polynomial of degree 300 near the origin, and the polynomials obtained by moving N
pairs of roots for N = 1,2,3. The white dots represent roots that are moved; all others are kept fixed. The
thinner curve is the original Chebyshev polynomial and the thicker is the perturbed polynomial. The height
of the new nodes is better illustrated in logarithmic coordinates in Fig. 3.

the restriction of T}, to I}} a “node” of T},. Every node of T}, is either positive or negative.
Suppose it is positive. If we move the roots of T}, at the endpoints of I}’ farther apart
(and leave all the other roots of T;, fixed), then the node between them becomes higher,
and the two adjacent negative nodes each get smaller (less negative). More distant nodes
are changed slightly, but the effect diminishes with distance from I7’. This will be made
precise in Section 3. See Fig. 1 for the basic idea.

This is the fundamental operation that we use to create the polynomials we want:
choose an interval J bounded by two roots of T;, and move each root by equal amounts
away from each other. This procedure was introduced in [1], where roots were moved
using small perturbations. Here “small” means that a root 7} of T}, is only moved within
the interval [r_,, 7}l ], i.e., it is moved no further than the nearest adjacent root on
either side, and usually it is only moved a small fraction of this distance. When the
perturbations are small in this sense, then the perturbed Chebyshev polynomials created
are uniformly bounded. This was important in [1] in order to prove that a K-Lipschitz
function f can be approximated by polynomials (with only real critical points) that are
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Fig. 3. On top is log|p| for perturbations of a degree 300 Chebyshev polynomial after moving N pairs of
points, for N = 1,...,5. The maximums are growing exponentially with N. On the bottom are the anti-
derivatives of the perturbations, renormalized so E1 p(t)dt = 1. These anti-derivatives converge to a step

function with jump at 0. In both pictures, the horizontal axis is restricted to [—.2,.2].

(CK)-Lipschitz, for some fixed C' < co. [1] shows we must have C' > 1, but the optimal
value remains unknown.

In this paper, we will be concerned with “large” perturbations, i.e., roots that are
moved farther than the closest adjacent roots. We will choose an even number of adjacent
Chebyshev roots {77, 1,7} 2;---,T}on}, and then move half these to points close to
(but larger than) a = r}}, and move the other half to points close to (but less than)
b =1} on41- This creates a very large node inside the interval (a,b); we will show that
the height of this node grows exponentially with N e.g., Equation (3.6). By choosing the
size and sign of these nodes correctly, and rescaling appropriately, the anti-derivatives
form polynomial sequences satisfying Theorems 1.2 and 1.4. Some examples of multi-
point perturbations are shown in Fig. 2.

Fig. 3 gives essentially the same plots (superimposed on top of each other) but with
a logarithmic scale on the vertical axis. The heights of the new nodes do appear to grow
exponentially in N (linearly on the logarithmic scale) and we will verify this in Section 3.
The bottom picture in Fig. 3 shows anti-derivatives of the perturbed polynomials, nor-
malized to have total integral 1. Because the un-normalized mass grows exponentially
with N, the normalized functions are exponentially smaller than the originals. In par-
ticular, since the un-normalized perturbations are bounded by 1 outside of the interval
I where the perturbations occur, the normalized polynomials are exponentially small
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Fig. 4. At top, a smooth function is approximated by step function, which in turn is approximated by the
anti-derivative p of a perturbed Chebyshev polynomial. In this example, we have moved four roots near each
jump. The step function and p are easier to distinguish in an enlargement over [—.2, 0] (bottom picture).

outside this interval. Fig. 3 suggests that we can approximate a step function using anti-
derivatives of perturbed Chebyshev polynomials as described above. This will be made
precise in later sections.

The idea behind Theorem 1.2 is that we can create a perturbed Chebyshev polynomial
that has nodes with exponentially large area near specified points of [—1,1], and these
nodes can be chosen to be either positive or negative. By multiplying by a scalar, we
can make these nodes have area +e, while the function is much smaller away from these
nodes. The integral of such a function looks like a step function with jumps of size
+¢, and by choosing the signs and areas of the large nodes correctly we can uniformly
approximate any continuous function by polynomials of this form, i.e., a polynomial with
only real critical points and with derivative less than e except on a set of length e. Taking
a sequence of such polynomials with 3" €, < 0o, and applying the Borel-Cantelli Lemma,
gives a singular sequence of polynomials converging uniformly to f, proving the first part
of Theorem 1.2 (once we have verified several details). See Fig. 4 for an example. Note
the numerous critical points of the approximating polynomial; these are consistent with
Theorem 1.3.

Our other results are proved using variations on this construction. For example, to
obtain monotone approximations in Theorem 1.2, we follow the procedure above, but
applied to T and perturbing each double root as a single point. Then every root of
the new polynomial has even degree, and hence the corresponding anti-derivative is
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monotone. This will allow us to approximate any monotone function f by a monotone
singular sequence. For details, see Section 4.

If A and B are both quantities that depend on a common parameter, then we use
the usual notation A = O(B) to mean that the ratio A/B is bounded independent of
the parameter. The notation A < B means the same as A = O(B). The more precise
notation A = O¢(B) will mean |A| < C|B|. For example x = 1+ O2(2) is simply a more
concise way of writing 1 — 2 <z <1+ 2. The notation A = Q¢ (B) (or A 2 B) means
A > CB or, equivalently, B = O¢(A). We use A ~ B to mean that both A < B and
A Z B hold, i.e., that A and B are comparable up to a fixed multiplicative constant,
independent of the implicit parameter. In general, the notation A = B means that
two previously defined quantities are equal, and A := B defines A in terms of B. This
paper is mostly self-contained, except for a few standard estimates involving Chebyshev
polynomials, quoted from [1].

We thank two anonymous referees for detailed reports that caught several minor errors
and greatly improved the exposition.

2. Forced accumulation of real critical points

In this section, we will prove Theorem 1.3, but we start by gathering together various
facts that we will need for the proof. Recall, from the introduction, the theorem of Clunie
and Kuijlaars: if {¢, } has only real roots and converges pointwise to finite, non-zero limits
on a set of positive Lebesgue measure, then it must converge uniformly on all compact
planar sets to a Laguerre-Polya function. As a consequence of this, we will deduce the
following result.

Lemma 2.1. Suppose J = [a,b] C R is a compact interval and {q,} is sequence of real
polynomials with only real roots, and that all the roots of all the g, are in R\ J. Suppose
also that m < g, < M on J, for some 0 < m < M < oo independent of n. Then there
is a subsequence of {qn} that converges uniformly on compact subsets of the plane to a
Laguerre-Pdélya function.

Proof. Suppose ¢(z) = C[[(z — r) is a polynomial with roots {ry} C R\ J. Since ¢
does not change sign on J, without loss of generality we may assume ¢ > 0 on J. Then

log g(x) = log|q(x)| =log |C| + Y logla — 1,

is a finite sum of continuous, concave down functions on J. This means that there is a
¢n € [a,b] so that log g, (and hence g,) is increasing on [a, ¢,] and decreasing on [cy,, b]
(possibly ¢, = a or ¢, = b). For every n, ¢, is either < (a+b)/2 or > (a +b)/2. Assume
> (a+ b)/2 occurs infinitely often. Then by passing to a subsequence we may assume
every ¢y, is increasing on J' = [a, %(a + b)], the left half of J. The other case, where we
have that {g,} is decreasing on J” = [$(a + b),b], is almost identical to what follows,
and is left to the reader.
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Let Q C R denote the rational numbers. For each z € J'NQ we can take a subsequence
so that {g,, (x)} converges to a limit in [m, M]. By a diagonalization argument, we can
find a subsequence that converges for every rational number in J’, and at the endpoints
of J'. The limiting function ¢ must be increasing on J' N Q, and it can be extended to
an increasing function on all of J’ by the formula

q(z) =inf{q(y) :y € J' NQN[z,00)}.

An increasing function has only countably many discontinuities (all jump discontinu-
ities), so ¢ is continuous almost everywhere on J', and 0 < m < g < M < oo.

If ¢ is continuous at x, then we claim ¢, (x) converges to g(x). To prove this, suppose
e > 0 and use the continuity of ¢ at = to choose § > 0 so that |z — y| < ¢ implies
lg(x) — q(y)| < €. For y € QN (z,z+ ), we have (since ¢, is increasing)

4n () < qn(y) < qy) + e < q(x) + 2¢

for large enough n (depending on €), and hence limsup ¢, (z) < ¢(x). Similarly, if z €
QN (xz—4d,x), then

an () > qn(2) > q(z) — e > q(z) — 2¢

for large enough n, and hence liminf g, (z) > ¢(z). Thus ¢,(x) — g(x) at every point of
continuity of g. Since ¢ is continuous on a set of positive measure, the conclusion of the
lemma follows from the theorem of Clunie and Kuijlaars. O

We will say a real-valued, continuous function f on an interval J = [a, b] is “inflection
type” if there is a division point ¢ € [a,b] so that f is convex up on [a,c] and concave
down on [c, b] (there may be many such points if f is linear on some subinterval of J).
We allow ¢ = a or ¢ = b, hence convex and concave functions on J are also considered
inflection type.

Lemma 2.2. If {f,}5° are all inflection type on J = [a,b], and f, — [ uniformly on J,
then f is also inflection type.

Proof. Let {c,} be a division point for f,. By taking a subsequence, if necessary, we
may assume ¢, — ¢ € [a,b]. First assume a < ¢ < b. Then for any € € (0,¢ — a), f, is
convex up on [a, c— €], if n is large enough so that ¢, > ¢ — €. Uniformly limits of convex
functions are convex, so we deduce f is convex up on [a, c]. A similar argument shows f
is concave down on [¢, b]. If ¢ € {a, b} then one of these arguments shows f is convex up
or concave down on all of J, hence it is still of inflection type. O

An increasing function on an interval need not be strictly increasing on any sub-
interval, (e.g., the Cantor singular function), but an increasing, inflection-type function
does have this property.
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Lemma 2.3. Suppose f is inflection type and increasing on J = [a,b]. Then there is
[z,y] C [a,b] so that f is constant on both [a,z] and [y,b], and so that f is strictly
increasing on [x,y|. In particular, either f is constant on J (if x = y) or it is strictly
increasing on some non-trivial sub-interval J (if x < y).

Proof. If not, then there is a non-trivial interval [s,t] C [a, b] such that f is constant on
[s,t] but non-constant on both [a, s] and [t,b]. Thus f(s) > f(a), and this implies that
f is not convex up on [a,u] for any s < u < t. Thus the division point for f satisfies
¢ < s. Therefore f must be concave down on all of [s,b]. Since it is constant on [s, t] and
increasing on [a,b] this implies it is constant on [s,b], a contradiction. This proves the
lemma. O

Proof of Theorem 1.3. Suppose f is real-valued and continuous on [—1, 1], that {p,} are
real-valued polynomials converging uniformly to f on [—1, 1], and that these polynomials
have only real critical points. Assume J C [—1,1] is a non-trivial interval, that f is not
constant on J, and that all the critical points of every p,, are contained in R\ .J. Then p/,
is non-zero in J and by multiplying f by —1 (if necessary) and passing to a subsequence,
we may assume every p), is positive in J. By Lemma 2.1 it suffices to show that there
is a non-trivial subinterval of J where {p/,} is uniformly bounded above and uniformly
bounded away from zero.

As in the proof of Lemma 2.1, J divides into left and right sub-intervals so that p/,
is increasing on the first sub-interval and decreasing on the second (possibly, just one
of these sub-intervals occur). Thus each p,, is inflection type on J. Thus by Lemma 2.2,
f is also inflection type on J. Since we assume f is not constant on .J, Lemma 2.3
implies there is a non-trivial subinterval J' = [a,b] C J where f is strictly increasing.
Let J” = [c,d] = [3a + 3b, 3a + 2b] be the middle third of J’. We will show that {p],}
has the desired lower and upper bounds on this interval.

First we prove the lower bound. Let € = min(f(c)— f(a), f(d)—f(c), f(b)— f(d)). Since
f is strictly increasing on [a, b] this is positive. Assume n is so large than |f — p,| < €/4
on [a,b]. Suppose s € [¢,d]. If p, is increasing on [a, s, then

S

(s = () 2 [ = pa(s) = pula) 2 (5) ~ fla) = § = f(0) ~ fa) = § = 5.
Hence
/ 6/2 € . 3e €
Puls) 2 s—a = 20c—a) 2(b—a) o b—a’
Otherwise, if p), is decreasing on [s,d], we have
b
0= h(5) 2 [ 8= 5al®) = pal9) 2 J0) — F(5) — 5 2 FO) ~ J@) - 5 > 5,
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and hence

, €/2 € 3e €
> > = .
Pl 2 S 25— " 2—a)  h—a

Since p!, increases then decreases over J' (possible just increasing or just decreasing),
one of these two options must hold, so we get the lower bound p/,(s) > m :=¢€/(b— a).

To prove the upper bound, we use the fact that log p!, is concave down on J. Suppose
M, is the maximum of p}, over J” and that the maximum is attained at « € J”. Then
logp}, is bounded between logm and log M,,, and by concavity the graph of logp!, lies
above the triangle with vertices (c,logm), (x,log M,,) and (d,logm). Hence logp), >
5(log M, + logm) on an interval I C J” of length |I| = 3|J”| = (d — ¢)/2. Therefore
pl, > v/mM, on I, which implies

/p; > |1/ mMy.
I

By the Fundamental Theorem of Calculus, this integral equals p,(d) — p,(c). Thus if n
is so large that | f(d) — pn(d)| < €/4 and |f(c) — pn(c)| < €/4, then

(pn(d) = pu()® _ (f(d) — f(c) +¢/2)

M, <
- m|I[? - m|I[?

((b) — f(a))?
(T
((F(6) — f(a))?
< 36 m(b— a)?
L (F0) — f()?
=30 e(b—a)

This proves M, = sup|. g pl, is bounded independent of n, as desired. By Lemma 2.1,
this implies that f must be a Laguerre-Pdlya function, contrary to our assumption. This
contradiction proves Theorem 1.3. O

Example. If f(z) = [ ¢ dz then log f' = 2? is not concave down in any sub-interval of
[—1,1]. Although f is entire, if p,, — f uniformly on [—1, 1], and if every p,, has only real
critical values, then these critical values must accumulate everywhere on [—1,1], even
though f itself only has a critical point at zero.

3. 2-point and multi-point distortions

In this section, we record some simple algebra that shows how a polynomial changes
as we move some of its roots. This will verify certain claims made in the introduction.
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Fig. 5. On top is a plot of R(t) = (% — 1)/(2® — a?) for a = .5 and below it are superimposed plots for
a=.1,.2,...,.9. The horizontal dashed lines are at heights +1. Outside the interval [—1, 1] all these graphs
are between 1 — z~2 and 1.

If a polynomial p has zeros at +a, for a € (0, 1), and if we move these roots respectively
to +1, then we obtain a new polynomial p = R - p, where R is the rational function
(x—D(x+1) 22—-1 2?2—-a®+a®>-1 1—a?

k(z) = (r—a)z+a) a2-a x? — a? :1im' (3-1)

It is also easy to check that R is even, and that on the interval (—a,a) we have R(x) >
R(0) = a~2. See Fig. 5.

Lemma 3.1. For |z| > 1 we have 1 — 272 < R(z) < 1.

Proof. To prove the lower bound, note that

x| > 1= —a?x? < —a?

= 22(1 —a?) < 2? — d?

1—a? 1
foaQSF

1
= R(zx)>1—- —.

x2
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For the upper bound, observe that if |x| > a, then 22 —a? > 0,50 R(z) <1. O

Lemma 3.2. If o :=1—a € (0,1), then
|R(z)| <1 for|z| > (B3+a)/d=1-a/4 (3.2)

Proof. As noted above, if |z] > a, then R(x) < 1. Thus R(z) < 1if || >a=1—a.
So we only need to check that R(z) > —1 for |z| > 1 — «/4. To prove this, note that if
z? > a?, then R(x) > —1 is equivalent to

22 —1>a2%— 22
&% > $(a®+1)
& x| > %((1—01)24—1)

&zl > /1 —a+a?/2.

The right side is less than 1 — «/4 if and only if

Vi—a+a2/2<1—a/4

sl-a+a?/2<1—-a/2+a%/16

which is certainly true, since we assumed v =1 —a € (0, 1). Thus |z| > 1 — a/4 implies
R(z)>-1. O

We can apply a linear transformation to the points in the preceding estimates. Note
that translating the points {£1, £a}, all by the same amount just translates R. Similarly,
dilating to get new points {£A, £Aa} just replaces R(x) by R(lz/)). In particular, if
b1 < a1 < as < by are chosen so that ¢ = %(al +as) = %(bl +b2), and ay,a9 = c 1,
b1,be = ¢ £ s, then these four points are images of {£1,+a} (where a = r/s) under a
linear map. Hence, the distortion function only changes by pre-composition with a linear
map, and we deduce the following result.

Corollary 3.3. With notation as above, the distortion function R corresponding moving
a1,as = c=Er to by,bs = ¢t s satisfies

(1) R(z) = (s/r)* on (a1, a2),

(2) 0< R(l’) <1 on R\[bl,bg],

(3) |R(z)| <1 on{|lx—cl>(1—a/d)s} wherea =1—s/r.
(4) B

3 1
—2 2 < R(x) <1 on{|lz—c|>s}

4

—
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If we move multiple pairs of zeros in this way, then the distortion function for the
combined moves is just the product of the distortion functions for each pair. More pre-
cisely, suppose N is a positive integer and we have 2N points {ak}%zl (note that there
is no point ap) such that

—1<a_ny<a_yp < - <a_1<0<a; <---<any <1

Suppose we move the pair (a_, ar) to a pair (b_g,bx) C [—1, 1], again with the property

that b_r +br = a— + ai. Given a small § > 0, we will also assume that 1 —§ < |bg| < 1,

so that the new zeros are all quite close to 1. In particular, |by, —b_x| > 2 — 26. We can

place b_j and by so that this happens as long as |a_j + ag| < d; this will occur in our

construction. Indeed, we will take the {a} to be approximately evenly spread in [—1, 1],

ie., ap ~sign(k) - (2lk] —1)/(2N +1) for |k| =1,..., N and we will choose 6 < 1/N.
For the moment, we make the weaker assumption that

1/(2N +2) < |ax| < |K|/N. (3:3)

This implies |ax — a—g| < 2k/N. In later applications, we will renormalize the points in
an interval J = [a, b], and use the analogous condition

|ax — (a +0)/2]
(b—a)/2

The 2N-point distortion function Ry, resulting from moving the points {ax} C [—1,1]

1/(2N +2) < < |k|/N. (3.4)

to points {b;} C [-1,1], is the product of N different 2-point distortion functions as
described above, one for moving each pair {a_g,ax}. Thus we have 0 < Ry(z) < 1 on
{|z| > 1}. Moreover, taking logarithms and using some calculus, it is easy to check that
for x| > 1

max (0,1 — N/z?) < (1 — m_Q)N < Ry(x) < 1. (3.5)

We also claim that our perturbed polynomial p = p - Ry satisfies |p] > |p| near the
orgin. Assume that we have chosen ¢ so that § < 1/N. By Part (1) of Lemma 3.3, on
the interval || < 1/(2N + 2), the 2N-point distortion satisfies

N b — by (2 — 26)2N

kr:[ (k —a- k> " I kN
( )2NN2N2 2N(N|)

> (1 - %)WN?N(N!)—2

for « € [a—1,a1]. Using the upper bound in Stirling’s approximation for N,
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VN (g)N < N < VarN (g)Nexp(ﬁ)

and the inequality e~ 1/6N > ¢=1/6 > 1/2, the above lower bound for Ry becomes

(1 _ %)2N€2N71/6NN2N (1 _ %)ZNEZN

2r N N2N - AT N

RN(.’E) >
Recalling from calculus that 1/4 < (1 —1/N)¥ 7 e~! for N > 2, this becomes

[(1 _ 1/N)N]262N - €2N
27N = 327N’

RN(.’L') > (3.6)

For large N, this is bigger than e”, so the size of the perturbed node grows at least
exponentially with N.

N=2

1010 1010 1010

10 100 10"

10" 100 10°

10° 10°

Fig. 6. Logarithmic plots of 2N-point distortion functions Ry for N = 1,...,9. Here we are moving the
points {£(2k — 1)/(2N+1)}fc\7=1 to {£1}; these points are evenly spaced in [—1, 1], and moved to the nearest
endpoint. In each plot, one dashed line is at height 1, and the other shows the minimum value of Ry over
the central interval. The final plot shows a linear approximation (with slope & 2) to the log-plot of these
minima versus N, indicating the minima grow like =~ exp(2N).

Thus the central node of the 2N-perturbed polynomial is exponentially larger than
the original node. The area of the original node is comparable to |a; — a_1]|, so the area
of the new node is larger than this by a factor of at least €2V /327 N. A logarithmic plot
of the actual distortion in the cases M = 1,...,9 is shown in Fig. 6. As expected, the
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growth of the distortion function near the origin is exponential. Numerically, the growth

2N

rate appears to be & e*, which is what we expect from (3.6).

4. Approximation by polynomials with small derivatives

The idea of the proof of Theorem 1.2 is to approximate a continuous function f by a
step function g, and then approximate g by the anti-derivative p of a scalar multiple of
a polynomial g that is constructed by perturbing the zeros of a Chebyshev polynomial
T,. The basic idea was illustrated in Fig. 4.

This proof is the most intricate in the paper, so to make the argument easier to follow,
we break it into a number of steps. We list them here, and give the details later in this
section. After translation and rescaling, it suffices to prove the theorem for the interval
I=[-1,1].

(1) Approximate f to within € by a step function g, where the jumps of g are all of
size +e. Let K denote the number of jumps of g and let —1 < 57 < -+ < sg <1
denoted their locations. Define sg = —1 and sgy1 = 1. Let § > 0 be the minimum
distance between the points of {s;}o .

(2) We will define K disjoint intervals {G;}£ C [~1,1], so that for each j =1,..., K,
the interval G; contains (and is approximately centered at) the jump point s;. Each
G; will be a union of 2V + 1 nodal intervals of a Chebyshev polynomial 7}, where
N := 4]logn]. The disjointness will follow if n is sufficiently large, depending on
0. Since each G is a union of an odd number of nodal intervals of T},, there is a
central nodal interval which we denote G§'. We will choose G so the sign of T, on
the central interval G]C is the same as the sign of the jump of g at s;. The leftmost
and rightmost nodal intervals of 7T}, contained in G; will be denoted GJL and Gf
respectively.

(3) We let n; denote the length of the shortest nodal interval contained in G;. Clearly
n; < |G;|/(2N + 1), and will show that if n is large enough, then the ratio
|G;|/n; (2N + 1) is as close to 1 as we wish.

(4) For each j, we choose points {bk}f\li|:1 C Gj to be the new roots of the perturbation
of T,,. Half of these by’s will be located in a subinterval J_ C G]L of length 7;/10,
and the other half within an interval Jy C GF* of equal length.

(5) If we perturb only the roots of T}, in G, then the perturbed polynomial will have
one large node covering most of ;. We will estimate the area of this node, showing
it is exponentially large in V.

(6) By continuously moving the new roots {by} back towards the center of G, the area
under this large central node decreases continuously. Thus we can make it attain
any value we want within a specified range. In particular, we will be able to attain

N/2

the value +¢e-e'"/# where € and N are as chosen in Steps 1 and 2 above. The nodal

interval corresponding to this large central node will be denoted J; C Gj;.
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We create a polynomial ¢ from 7, by making the perturbations described in Step
6 in every G; simultaneously. Then set p’ = e~V/2. ¢q. We will show that |g| <1 on
X = [-1,1] \ U;J;, and hence that |p'| is exponentially small there.

Next we will show that the perturbations performed in one interval Gy have only
a small effect on the size of the large central node in any other G;, j # k. Thus
each of the “large nodes” of p’ has integral [ J; p' ~ e with errors that tend to
zero as n increases. This completes the proof that the step function g (and hence
the original function f) is uniformly approximated by p = [ p’, a polynomial with
only real critical points.

We verified in Step 7 that [p/| is very small except possibly on the set U;.J;, which
has small length. By taking an appropriate sequence of such approximants and
applying the Borel-Cantelli lemma, we will deduce that f can be approximated by
a singular sequence of polynomials.

The final step is to verify that if f is increasing, then it can be approximated by a
singular sequence of increasing polynomials. This requires only a minor modification
of the proof sketched above, obtained by repeating the proof, but now applied to
T2, and moving roots in pairs. The resulting polynomial ¢ will then have only roots
of multiplicity two, so we can choose ¢, and hence p’, to be non-negative everywhere.

Before filling in the details of the preceding sketch, we recall some estimates concerning

nodal intervals and integrals for Chebyshev polynomials. These are quoted from [1], but

are standard facts. Recall that the nodal intervals of T}, are the n — 1 intervals between

adjacent roots of T, and are denoted {I}};Z] from left to right. The intervals are

symmetric with respect to zero, so the estimates below only have to be given for nodal
intervals hitting [—1,0].

Lemma 4.1 (Lemma 2.3, [1]). For 1 <k < (n—1)/2, % < |[p| < b’

Lemma 4.2 (Lemma 2.4, [1]). If 1 <k < Ek+j <n/2 then

|Il?+" 7Tj
1< <14 ==,
ST STk

Lemma 4.3 (Lemma 3.2, [1]). fl;g T,| > 2|I7.

Proof of Theorem 1.2.
e Step 1: Without loss of generality, we may assume f(—1) = 0. Fix € € (0,1). Choose
an ordered set of points {—1 =59 < s1 < -+ < Sg < Sg4+1 = 1} so that

and

|f(sj+1) — f(s;)] =€ for j=0,1,..., K —1
[f(sk) = flsk-1) <,
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If(t) — f(s;)| <e, forte[s;,sj41).

Define a step function g(t) on [—1,1] by g(t) = f(s;) for t € [s;,s;41), for j =0,... K.
Clearly || f —gllr <€ Let § = mini<j<rx41(s; — sj-1).

e Step 2: Suppose n is a large positive integer, that will be fixed at the end of the proof,
depending only on €, 6 and K from Step 1. Consider the Chebyshev polynomial T,.
Choose K nodal intervals {I & le so that ;! either contains s; or it is adjacent to a
nodal interval that does contain s;. We choose the interval so that 7;, has the same sign
on I,?j as the sign of the jump of g at s;.

Set N = 4[logn], and let G; be the union of I}’ and the N nodal intervals on
either side of it. Thus G; is the union of 2N 4 1 nodal intervals; the central interval
1! is denoted jS for brevity, and the leftmost and rightmost are denoted G]L and
G} respectively. By Lemma 4.1, the intervals {G;} are pairwise disjoint if n is large
enough (depending only on ¢). Indeed, this lemma implies the length of G; is less than
47%[logn]/n, so the distance between any two of these intervals is at least §/2, if n
is large enough. (To simplify notation, we have omitted a superscript n, writing G,
instead of G7. This convention will also apply to other points and intervals below, but
the implicit dependence on n should be clear.)

e Step 3: For each j = 1,..., K, we are going to move the 2N roots of 7}, inside G;
to new points near the endpoints of G;. This procedure was described in Section 1 and
illustrated in Fig. 2. The endpoints of G; will be left fixed. The 2N roots of T;, in the
interior of G; are denoted (again omitting the dependence on j and n from the notation)

a_nNy < ---<a-1<a;<---<an

as in Section 3 (there is no ag). According to Lemma 4.2, any 2N + 1 adjacent nodal
intervals in [—1,1] that are at least distance § > 0 from the endpoints +1, all have
comparable lengths to each other, with a multiplicative factor 1 + O(N/nd) = 1 +
O((logn)/nd). In particular, if n is large enough (depending on ¢), then the roots of
T, contained in G; satisfy the renormalized estimate (3.4). Let 7; denote the smallest
length of a nodal interval for T,, inside G;. Note that n; < |G;|/(2N + 1), and that we
can make (2N +1)n;/|G;| as close to 1 as we wish by taking n sufficiently large. In other
words, the roots of 7T}, inside G; are as evenly spread as we wish, if n is large enough.

e Step 4: If 1 < M < N, we say a set of 2M points {bj}ﬁzl C G, is admissible if

(1) {b_n,...,b_1} and {b1,...bn} are each contained in disjoint subintervals J_, J; of
G of length at most 7;/10, and
(2) %(b,k + bk> =Cp = %(a,k + ak) fork=1,..., M.

We start with M = N and claim we can choose an admissible set {b_1 < -+ < b_y <
by < .-+ < bi} so that J- C G¥ (the leftmost nodal interval) and J, C GF (the
rightmost). Note that the ordering of the b;’s is different than for the a;’s. To see that
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we can meet the two required conditions for admissibility if n is sufficiently large, observe
that by Lemma 4.2, the {a} are as evenly spaced as we need, and thus all the ¢;’s are
as close to the center of G; as we wish (e.g., within 7,/100 of the center). This implies
that we can place all the points by, within 7;/20 of the centers of G]L or Gf. We denote
these centered intervals of length 7;/10 as J_ and J;.

o Step 5: If we perturb 7,, by moving only the points {ay} C G, to the points {bx} C Gj,
for a single j, then by (3.6) the new polynomial ¢; has a node that is at least 10e" larger
than the original one. By Lemma 4.3 the perturbed polynomial has integral over I,’;j that
is at least 26N|I,?j| > 2exp(4logn)4/n? > 8n?. Since the perturbed polynomial g; has
the same sign over its entire central node, the area of this central node of g; is at least
the integral of ¢; over the subinterval I,?j, and hence it satisfies the same lower bound.
e Step 6: We can obtain smaller areas over the central nodal interval by translating
each point by by the same amount towards the center of G;. Clearly such a translation
preserves the distance between the points, so they still form two clusters of diameters at
most nj/10. The first contact between the by’s and ay’s occurs when by hits an, (and
b_n hits a_pn at the same time). After this point, we stop moving by and b_p, but
keep translating the remaining points towards the center of G;. Note that the remaining
points form a (N — 1)-admissible set, since they are still as tightly clustered as before
(more so, since a point has been removed from each cluster). When any by reaches the
corresponding point ax, we stop moving it (and b_g), but continue to move the remaining
clusters. We finish when b_; and by reach a_; and a; respectively. At that point we have
returned to the original Chebyshev polynomial, which is bounded above by 1 on Gj,
and hence has integral over this interval of at most |G;|. Since the perturbed polynomial
changes continuously with these movements, we can attain a node with any area between
|G;| < 4n*(logn)/n and 26N|I,?j| > 8n?. The roots {b;} that have not been matched
with the corresponding a; still form a M-admissible set for some 1 < M < N.

We choose root positions so that the large central node in G; of the perturbed poly-
nomial has area - eV/2 ~ ¢-n?, where ¢ > 0 was the jump size used to define g. We can
do this as long as |G| < € and eN|I,?j| > e-eV/2. By Lemma 4.1, the first condition holds
if n is large enough. The second condition holds if |I,?J| > e-e~V/2. Again by Lemma 4.1,
the nodal intervals I} of T,, have length |I}| > %, so this is true if % >e-e N2 or

equivalently (since € < 1), if

2
N > 2log% =4logn — 2log4 + 2loge > 4logn.

In particular, the node is large enough for our choice N = [4logn].

e Step 7: Let ¢ be the polynomial obtained by making this perturbation in every G, for
j=1,...,K, and define p(z) = [*, e=N/%.¢(t) dt. We claim that the distortion function
R; corresponding to moving the roots from {a;} to {b;} in G; satisfies

|Rj(z)] <1 for ze[-1,1]\J;. (4.1)
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This is easy for z outside G, because by Part (2) of Corollary 3.3, we have 0 < R;(x) < 1,
for x outside [b_1, b1], and hence outside G;.

On the two components of G \ J;, the argument is only slightly more involved. We

can use Part (3) of Corollary 3.3 because of the condition we imposed in Step 3 that the
roots by < --- < by are an M-admissible set. Since |by —ay| > n; for 1 < k < M, we can
deduce that the distortion function corresponding to moving the pair ag,a_x to by, b_g
satisfies |[R| < 1 on an interval of length at least 7;/4 to the left of bj, and to the right of
b_i. These intervals, together with {x < b_j} and {x > b} contain all the points {b;}
and thus cover all of G; \ J; (recall that J; = (b_1,b1)). This proves (4.1). Therefore
Ip'| < e N2 in the set X = [~1,1] \ UL, J; and hence the total variation of p over all
the components of X is less than 2e~"V/2. In particular, p is very close to constant on
each connected component of X.
o Step 8: On each G, ¢ has a large central node where it equals g; (the perturbation
due to perturbations inside G; only) multiplied by the distortion due to each of the
2-point perturbations in the other intervals Gy, k # j. The distortion on G; due to
the perturbations in Gy, is at most 1+ d~2? where d := dist(G;, Gx)/|Gx|. If we keep €
(and hence K) fixed, then max;<p<x |Gk tends to zero with n, but dist(G,, Gx) > 6/2,
independent of n. Thus d tends to infinity as n tends to infinity.

Increasing n if necessary, we can assume that the distortion on G; due to perturbations
in other G}’s is as close to 1 as we wish. To be a little more precise, We have d ~ §/nlogn
so the distortion due to all the 2-point distortions in Gj in some different G, is bounded
above by 1 and below by

(1- L)O(N) =(1- O(L))O(logn).

d? n2log?n

By taking logarithms, it is easy to check the right-hand side tends to 1 as n 7 co.
Thus the integral of p’ over G; is as close to fe as we wish, say within €/K, if n is
large enough. Then the anti-derivative p = [p' = [ e~ N/2¢ equals g with an error of
at most 2e~N/2 4 ¢. The first term, 2e~™/2, is due to the intervals between the {G,},
and the second term, ¢, is due to adding up at most K errors of size ¢/K due to the
distortions of the large nodes. By taking n (and hence N) large enough, we see that we
can take supi_y 17 [f — p[ < 2e.
o Step 9: It is now easy to check that we can choose a sequence {p,,};° that forms a
singular sequence converging to the continuous function f. Each p,, will have a derivative
N /2 with

Ny, = [4n,,] and the degrees n., growing as quickly as we wish. Such polynomials were

that is a multiple e of a perturbation g, of the Chebyshev polynomial T,

Ym
constructed in Steps 1 to 8. Each p,, approximates a step function g, with some number

]K:"i are the intervals

K, of “steps”, as described above, and we may suppose that {G}"}
where we performed the 2N,,-point perturbations on the Chebyshev polynomial T, .
Let G™ = UJK:"i G7' be the union of these intervals. Note that [p],| < e~ N/2 off G™. The

length of G™ is
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_0 (Kmlognm> .

Nm

G = |G| < K (2N, + 1) max I}
J

We are free to choose a sequence {p,,}° so that K, and n,, independently grow as
quickly as we wish, so we choose it so that K, > m and n,, > K3 Then

m Kplogn,\ Kplog Ky \ log Kipn\ logm
o (B ) —o(Fgte) —o (Mign) o ().

since (logz)/z and (logr)/x? are both decreasing for x > e. This is summable over

m > 1, so by the Borel-Cantelli lemma, almost every point of [—1,1] is in only finitely
many of the sets {G™}7°. Thus |p],| — 0 almost everywhere. This proves the first part
of Theorem 1.2: every real-valued, continuous function f can be uniformly approximated
by singular sequence of polynomials with only real critical points.

e Step 10: To prove the second part of the theorem, we need to show that if f is increasing,
then we can choose p’ > 0 everywhere on [—1,1]. This is fairly simple: replace ¢ in the
proof above by a ¢? and choose the points {b;} to represent pairs of roots that move
together. As before, we can choose the new root locations so that ij ¢® = eN/?2. We then
finish the proof as before. 0O

The proof of Theorem 1.2 given above shows that any sum of finite, real-valued point
masses on [—1, 1] can be weakly approximated by a polynomial with only real roots. If
the point masses are all positive, then we can take the polynomial to be nonnegative.
Finite sums of point masses are weakly dense in all finite measures on [—1,1], so we
obtain the following consequence.

Corollary 4.4. If u is a finite Borel measure on [—1,1], then there is a sequence of real
polynomials {p,} with only real zeros so that p, (restricted to [—1,1]) converges to u
weakly. If p is positive, the polynomials {p,} can be chosen to be non-negative.

5. Approximation by polynomials with large derivatives

In the previous section, we constructed polynomials that have large positive or neg-
ative spikes near specified locations, but that are small elsewhere, so that their anti-
derivatives approximate a step function. Thus we could uniformly approximate any
continuous function f by a sequence of polynomials whose derivatives tend to zero point-
wise almost everywhere. In this section, we want to construct approximating polynomials
whose derivatives tend to 400 almost everywhere. Instead of approximating step func-
tions, the graphs of our polynomial approximants will resemble “sawtooth” functions,
i.e., functions that are piecewise linear, and have large positive slope on intervals that
partition [—1,1], but that have large downward jumps at the endpoints of these in-
tervals. See Figs. 11 and 12 in Section 6 for such approximations of f(x) = |z| and
f(z) = cos(2mx).
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We will need the following estimate that roughly holds because the nodes of a Cheby-
shev polynomial closely resemble rescalings of the nodes of cost:

1 72
g " , 5.1
2~ I” /l | 24n2 (5.1)

where I}’ is a nodal interval of T),. Equation (5.1) is Equation (3.3) in [1] (there is a
typo in that equation omitting the 1/|I7| in front of the integral, but the proof of the
equation with this additional normalization is correct). From (5.1) it is easy to deduce
that p(z) = [, TZ(t) dt uniformly approximates the linear function (z+1)/2 on [—1,1]
as n tends to mﬁmty.

All the nodes of T2 are positive, but if we separate a double root of T'? into two separate
single roots, we introduce a single negative node between these roots. By moving these
two simple roots further and further apart, we can create a very large negative node
(we also move some of the double roots of T2 to make room). The anti-derivative p
of this perturbed polynomial ¢ will look linear with slope 1/2 sufficiently far from the
perturbed roots, but it will have a sudden drop between the two simple roots; the size of
the drop depends on the area of the negative node. By replacing T2 by a large positive
scalar multiple of itself, and by placing throughout [—1, 1] very large negative nodes, we
will be able to uniformly approximate any continuous function f by a polynomial with
the “sawtooth” structure described above. See Fig. 7 for a perturbation creating several
negative nodes, all of the same size. In this figure, the negative nodes are too small to
counteract the effect of the smaller, but more numerous positive nodes, and the anti-
derivative resembles a linear function with positive slope. In Fig. 8, we have more carefully
selected the negative nodes to balance the positive ones, and the resulting polynomial
resembles a constant function, although its slope is very large at most points of [—1, 1].
By choosing the size of the negative nodes more carefully, we can make the graph of the
approximating polynomial approximate any Lipschitz function, as illustrated in Figs. 11
and 12.

Proof of Theorem 1.4. As in the Section 4, we will break the proof into a series of steps,
although here we will omit listing them first, and simply start the proof. Several of
the steps here are very similar to those used in Section 4, and we will refer back to
those arguments when appropriate. We start with an important fact about Chebyshev
polynomials, that will be used in Step 9 below.

Lemma 5.1. Suppose n is a large, positive integer and consider T,,, the nth Chebyshev
polynomial. Then [{x € [-1,1] : |T,,(z)| < §}| < wd.

Proof. Recall from Section 1 that T;, = J((J~1)™) where J is the vertical projection from
the unit circle onto [—1, 1]. In this formula, J~! is interpreted as a 2 valued function on
[—1,1] taking = to x + iv/1 — x2. Thus J~! maps the interval [—4, §] to two symmetric
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Fig. 7. Here we move six roots of g (three pairs of double roots) to form two roots of degree three each. Each
such perturbation creates one large negative node. A single such node is shown, on top. Several, equal sized,
nodes are shown in the middle picture. However, these negative nodes are “too small”: the bottom figure
shows the anti-derivative and the upward trend means the positive nodes dominate the negative ones. This
is adjusted in Fig. 8.

arcs on T, each of length 2arcsin(d), and centered at +i. Then taking nth roots maps
these two intervals to 2n intervals with the same total length, and the projection J maps
these arcs 2-to-1 to n intervals, while deceasing the length of each interval. Thus the
preimage of [—d, ] under T;, has total length at most 2arcsin(d) < 7d. O

e Step 1 (reduction to flat functions): Since Lipschitz functions on [—1,1] are dense in
continuous functions, it suffices to assume f is Lipschitz. Moreover, if Theorem 1.4 holds
for a function, then it also holds for any positive scalar multiple of f, so we may further
assume that f is 1-Lipschitz. Finally, if M is a large positive number, and if we can
approximate f/M to within ¢/M by a polynomial p so that p’ > M~1/2 except on a set
of length M ~'/4 then M - p will approximate f to within ¢ and we have (Mp)' > M'/?
except of a set of length M~1/%. So it actually suffices to assume f is (1/M)-Lipschitz,
and to approximate f by polynomials with these estimates. Fix a large value of M, say
M > 10.

e Step 2 (subdivide [—1,1]): Fix € € (0,1/2) and set J = 2| M/e]. Note that M/e <
J < 2M/e. Define J + 2 equally spaced points —1 = sg < 51 < ...85 < Sj41 = L.
The distance between adjacent points is 2/(J + 1) < 2/J < 2¢/M. Since f is (1/M)-
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Fig. 8. Here we have adjusted the odd degree roots in Fig. 7 so each negative node has area equal to the
mass of the following interval of positive nodes. The anti-derivative is shown at bottom. Nodes are larger
near 1, to account for the shorter nodal intervals near the endpoints. The negative nodes take up about
20% of the length here, but this percentage can be made arbitrarily small by taking n and N larger.

Lipschitz, it varies by at most (1/M)(2¢/M) = 2¢/M? over each segment S; = [s;, s;+1]
for j =0,...,J. We will make perturbations of T2 in very small intervals (size at most
O((logn)/n)) around the J points s1,...s7.

e Step 3 (selecting the roots of the perturbed polynomial): Suppose n is a large positive
integer (chosen later depending on € and M), and for each j =1,...J, let r; be a root
of T}, that is closest to s;; 7; is unique unless s; happens to be the center of a nodal
interval; in that case, let s; be either endpoint of that interval. (As before, we suppress
the dependence on n in the notation.) Set N := 4[logn], and let H; be the union of
the N + 1 nodal intervals of T}, to either side of r;. Thus H; is the union of 2N + 2
nodal intervals, and there are 2IV + 1 roots of T;, interior to Hj; each is double root of
T?2. We let n; be the minimal length of a nodal interval in H; and we let H ]L and H jR
denote the leftmost and rightmost nodal intervals in H;. As in Step 3 of the proof of
Theorem 1.2, we may assume (2N + 2)n;/|H;| is as close to 1 as we wish, if n is large
enough, depending only on J (hence only on e and M).

We label the 2V + 1 roots of T;, inside H; as a_y < --- < ag < --- < an. Note
that there is a point agp now, and that ay = r;. (We ought to also label the a’s with
a superscript j, to indicate which H; we are talking about, but this should always be
clear from context, so we omit it to simplify notation.) As in Step 4 of Section 4, we
define corresponding points {by} C H; that we move the roots at {ax} to (again, we
omit adding a superscript j to the b’s). However, there are 2N + 2 such points, instead
of 2N + 1, since the double root of T2 at ay will be split into two separate simple roots
by , by . We assume these points satisfy
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bon <o <b_y<by <bl <by <---<by.

As in Step 4 of the proof of Theorem 1.2, we also assume the points {by} ", are admissible
in the sense that they satisfy two conditions:

(1) The set {b_n,...,b_1,by } is contained in an interval J_ of length at most 7;/10 to
the left of ag, and the set {b(‘)"7 b1,...,bn} is contained in an interval J of the same
length, but to the right of ag.

(2) We have & (b_i +by) = ¢ := 3(a—p + ay) for k=1,...N, and % (by + bJ) = ao.

These conditions allow us to apply our estimates for 2-point distortion functions.

To start with, we choose admissible points {b;} so that J_ C HjL and J; C HJR. We
can do this for exactly the same reason as described in Step 4 of the proof of Theorem 1.2:
if n is large enough, then the ax’s are as evenly distributed as we wish, so the ¢;’s are
all as close to ag as desired, and hence the b;’s can be placed as close to the centers of
HJL and H]R as needed.

e Step 4 (defining perturbed polynomials): For each k with 1 < |k| < N we will move
the double root of T2 at aj to a double root at by. But for k = 0, the double root of T'2
at ap is split into two single roots, b, and bar . Note that b, and bg are the closest to
ap among the {bx}. Since these are the only roots with odd multiplicity, these are the
only points where the perturbed polynomial changes sign. Thus J; = (by,bd) C H; is a
nodal interval of the perturbed polynomial, and it is the only nodal interval in H; where
this polynomial is negative. Let g; denote the perturbation of T2 obtained by moving
the roots of T2 to the points {b;} only in a single interval H;. Let g be the polynomial
obtained by perturbing the roots in all the intervals H;, 7 = 1,...J. Then g has J
negative nodes, one in each interval H; for j =1,...,J. Each perturbed polynomial g;
is equal to T2 multiplied by (4N +2) 2-point distortion functions. The polynomial ¢ will
be the product of T2 and J - (4N + 2) different 2-point distortion functions. Since each
2-point distortion function tends towards 1 as we move away from the perturbed roots,
we will have ¢ ~ T? away from H = U{ H - We will make this idea more precise below.
e Step 5 (definition of p): We define p as the anti-derivative of ¢ so that p(—1) = f(-1).

Unlike the previous section, we do not multiply ¢ a scalar (we used e~V /2

in Section 4).
Thus p will approximate a function of slope 1/2 except near the intervals {H;}, where
it decreases rapidly due to the large negative nodes of q.
o Step 6 (distortion far from the H;’s): Set p := ¢/M. The distortion function for the
perturbations inside H; tends to 1 away from the interval H;. In particular, for any
> 0, we can choose a C' < oo (depending on p) so that the distortion function satisfies
1—p < R(z) < 1 at points x that are outside ij = (2C + 1)H; (where (2C + 1)H;
denotes the interval concentric with H; but (2C + 1) times longer). We want to estimate
the size of C in terms of pu.

By Part 4 of Lemma 3.3, the distortion function R due to a moving a single pair
of points inside H; satisfies 1 — C? < R < 1 at points of X = [—1,1]\ ij. Because



26 C.J. Bishop, D.L. Bishop / Advances in Mathematics 490 (2026) 110819

S n~2 is summable, and because the intervals H ; are approximately evenly spaced,
the product of distortion functions for moving one pair of roots in each H; satisfies
1—aC~2 < R(z) < 1, for some fixed a > 0 and all z € X. Since 4N + 4 pairs of points
are moved in each Hj, the distortion function corresponding to moving all 4N + 4 the
roots satisfies 1 — (aC~2)*N*+4 < R < 1. If we want R > 1 — p, solving for C' leads to the
inequality C? > N/p = 4[logn] - M/e. Therefore, if we fix C to be a sufficiently large

multiple of [/(logn)M /€], then for t € X, we have

(1= T2 < ) < TX0).

For two points x < y in the same connected component of X , we therefore have

Y

(1— %)/Tﬁ(t) dt < p(y) — p(x) =/q(t) dt < /Tf(t) dt,

x

and hence, by (5.1), as n / co we have

)~ p@)] ~ [3 v~ )] < 7 +0(~2),

o Step 7 (distortion near H;): Outside the negative nodal interval J;, the distortion
function R; due to the perturbations inside H; satisfies |R;| < 1, for exactly the same
reasons as in Step 7 of Section 4. Thus |q| < T? outside these intervals, and so the
variation of p = [¢ over (2C' + 1)H; \ J; is bounded by the length of this set (since
|T,,| < 1), which is at most (2C'+1)|H;| = O(y/(logn)M/e(logn)/n). This clearly tends
to zero as n tends to infinity (and e and M are held fixed).

e Step 8 (choosing the size of the negative nodes): By Equation (3.6), that gives ex-
ponential growth of the nodes, we can choose the perturbation inside each H; so that
f 7, 3 has a large negative value, up to size —e™v |I,’JJ |, and we can achieve smaller values
by translating the points {by} towards the center of Hj, just as described in Step 6 in
Section 4. In this case, we stop moving the double root at by, k # 0 when it reaches ay.
Thus bg are the last points to stop moving when they reach ag; when this happens, we
have returned to the unperturbed 7. We choose the perturbation so that

[ 4= =5 s = sucal+ (se) = Tl

Jj
Note that this implies [, q; < —1 - |sg — sk—1| since f is (1/M)-Lipschitz and hence
v

1

Flsw) = flsn-1) = 77(

1
Sk — Sp—1) < Z(Sk — Sk—1)
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if M > 4. A negative node of this size can be obtained if N is large enough, i.e., by (3.6)
we need eN|I,?j| > s — Sp—1 = 2/(J + 1). Similar to Step 6 of Section 4, this holds for
our choice N = 4[logn], if n is so large that logn > log M — loge.
e Step 9 (conclusion): We have now proven that for any 1 < j < J, p(s;) approximates
f(s;) as closely as wish, if n is large enough. Moreover, as noted in Step 3, f varies by at
most e/M? over S; = [sj,5j+1]. On S}, the polynomial p is decreasing (due to the node
J;), then increases by at most 1/.J (since p’ < 1 between J; and Jj41) and then decreases
again (due to Jj;1). Therefore the variation of p over S; is at most O(1/J) = O(e/M)
if n is large enough. Thus |f — p| < O(e/M) on all of [—1,1] if n is sufficiently large.
We have also shown that p’ = ¢ is larger than M ~'/2 except inside H= UjI;T and near
the zeros of ¢ that are outside this set. Outside H, we have |q| > (1 — p)|Th| > |T,|/2,
so by Lemma 5.1, |¢| > M~1/2 except on a union of intervals of total length at most
O(M~'/%). On the other hand, UijIj has total length bounded by

O(J-(2C+1)-N/n)=0 ((M/e) -/(logn)M/e - (log n)/n) ,

(this is J, times the total number of nodal intervals in U]f{f j, times the maximal possible
length of a nodal interval, as given by Lemma 4.1). Clearly this estimate tends to zero
as n increases, so it is less than M~/ for n large enough. To complete the proof of
Theorem 1.4, take a sequence of polynomial approximants {p,} constructed as above,
and so that the corresponding values {M,,} satisfy > M, 4 < 5. Then applying the
Borel-Cantelli lemma, as we did in the proof of Theorem 1.2, gives the result. O

Our methods can be adapted to prove the following result.

Theorem 5.2. Suppose E1, Es, and E3 are disjoint measurable sets in I. If f is real-
valued and continuous on I, then there is a sequence of polynomials {py,} with only real
critical points so that

(1) on Ey, {p),} converges almost everywhere to 0,
(2) on Es, {p,,} converges almost everywhere to +0oo
(3) on Es, {p),} converges almost everywhere to —oo.

We shall leave the details to the reader, but the basic idea is as follows. Fix ¢ > 0 and
split [—1, 1] into finitely many intervals so that f varies by less than e over each. Within
each interval that intersects F> in more than three quarters of its length, we perturb the
roots to form large positive nodes; in the intervals that hits F3 at least three quarters of
their length, we form large negative nodes. In both cases the nodes are chosen with the
same very large area (positive or negative). We then rescale the perturbed function so
the absolute mass of each interval is approximately its length. The remaining intervals
each hit F; in at least half their length. On these, the renormalized polynomial is very
close to zero. Finally, we introduce large nodes near the endpoint of intervals whose
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Fig. 9. A degree 500 polynomial p approximating a step function and a plot of log;, |p’|. The polynomial
has large slope near the “jumps” but small slope elsewhere. We have moved 5 pairs of points per jump.

total mass is the sum of the change in the target function f over the interval to the left,
minus the mass (positive or negative) of the interval to the left. The anti-derivative p of
resulting polynomial will approximate f uniformly and p’ will be close to 0, —oo or +00
on large measure on the three specified sets respectively. Taking appropriate sequences
formed in this way and applying the Borel-Cantelli theorem proves Theorem 5.2.

6. Some numerical examples

The proof of Theorem 1.2 is illustrated in Fig. 9. The top picture shows a degree
500 polynomial p approximating a step function. The bottom picture shows a graph of
log |[p| with the vertical range limited to [—-12,1]. The polynomial is approximately
10-Lipschitz, but outside the intervals where we move the roots of the Chebyshev poly-
nomial, [p'| is everywhere less than 1073, and is less than 10~% except near +1. At each
“jump” of the function we have moved 10 roots.

To simplify the computation of this example, we made the new nodes about the same
height, without adjusting for the width of the nodal interval. Hence [p’| has about the
same maximum at each jump, but the steps of p are smaller near the endpoints because
the nodal intervals are shorter. As described in the proof of Theorem 1.2 above, this can
be adjusted so that the jumps all have same height.

Fig. 10 shows an approximation to a Cantor singular function. We have squared Tys9
and moved some roots to new roots of degree six. The steps have derivatives that are
almost four orders of magnitudes larger than in the intervening intervals.
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Fig. 10. An increasing, degree 900 polynomial approximating a Cantor singular function. Below is a plot of
the derivative with a logarithmic vertical scale.
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Fig. 11. A polynomial p of degree 1600 approximating f(z) = |z|, and a graph of p’. The derivative p’ is
given by squaring Tgop and then moving certain groups of adjacent roots to form large negative nodes that
mostly cancels the positive nodes.

To prove Theorem 1.4, we constructed polynomials ¢ = p’ that are bigger than some
large constant M on most of [—1,1] but have even larger negative nodes supported on
very small length. Thus the anti-derivative p looks like a “sawtooth”, i.e., p resembles a
function of the form Mz — g(x) where g is a step function. See Figs. 11 and 12 for some
examples where we have implemented the idea to approximate |z| and cos 27z using two
polynomials of degree 1600. The approximations are very rough; even higher degrees are
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Fig. 12. A polynomial approximation of cos(2mz), and a graph of p’. The derivative is large and positive
on a set of large measure (close to measure 1) but is balanced by even larger negative spikes supported on
small length.

necessary to get close approximations by polynomials with large, positive derivatives on
a large set.
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