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We strengthen the Weierstrass approximation theorem by 
proving that any real-valued continuous function on an 
interval I ⊂ R can be uniformly approximated by a 
real-valued polynomial with only real critical points and 
whose derivatives converge to zero almost everywhere on 
I. Alternatively, the approximants may be chosen so that 
the derivatives converge to plus infinity almost everywhere, 
or so that these behaviors each occur almost everywhere 
on specified sets. This extends work by the second author, 
showing that the derivatives can also be taken to diverge 
pointwise almost everywhere. Together, these results prove 
that a 1994 theorem of Clunie and Kuijlaars is sharp.
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1. Introduction

This paper is a sequel to [1]. In that paper, the classic Weierstrass approximation 
theorem [14] was strengthened by proving the following.
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Proposition 1.1. Any real-valued, continuous function f on a compact interval I ⊂ R, 
can be uniformly approximated by real polynomials {pn} so that all their critical points lie 
in I. If, in addition, f is K-Lipschitz, then we can take the {pn} to be O(K)-Lipschitz. 
Moreover, p′n converges weak-∗ to f ′ as elements of L∞(I), but p′n diverges pointwise 
almost everywhere.

In this paper, we give a different variation of this result in which p′n may be chosen 
to converge almost everywhere to either 0 or ∞. A theorem of Clunie and Kuijlaars [4] 
states that if {p′n} has only real zeros and converges pointwise to finite, non-zero, real 
values on a set E ⊂ R of positive Lebesgue measure, then {p′n} must actually converge 
uniformly on every compact subset of C to an entire function in the Laguerre-Pólya 
class (defined below). Thus if {pn} are polynomials with only real critical points that 
converge uniformly to a general function f (not the anti-derivative of a Laguerre-Pólya 
function), then at almost every point x ∈ I, the sequence {p′n(x)} either diverges or it 
converges to either 0, −∞ or +∞. The approximating sequences {pn} constructed in [1] 
have derivatives that diverge almost everywhere on I, showing the first alternative can 
occur. In this paper, we construct approximating sequences so that {p′n} converges to 0, 
or −∞, or +∞. Thus all the behaviors allowed by the Clunie-Kuijlaars theorem actually 
occur.

In analogy to singular functions in real analysis (non-constant, continuous functions 
that have derivative zero almost everywhere), we shall say that {pn} is a singular sequence 
of polynomials if {pn} converges uniformly to a continuous, non-constant function f , 
but {p′n} converges to zero almost everywhere. Our main result is that every real-valued, 
continuous function can be uniformly approximated by such a sequence.

Theorem 1.2. If f is real-valued and continuous on I, then there is a sequence of poly
nomials {pn} with only real critical points, so that pn → f uniformly on I and {p′n}
converges to zero almost everywhere. If f is increasing on I, then the elements of {pn}
may be chosen to be increasing on I as well.

Increasing polynomials pn obviously satisfy p′n ≥ 0, but it turns out that one cannot 
always take strict inequality in the final part of Theorem 1.2.

Theorem 1.3. Suppose f is real-valued and continuous on I, and that {pn} are real-valued 
polynomials that converge uniformly to f , and that the polynomials {pn} only have real 
critical points. If f is not the anti-derivative of the restriction of a Laguerre-Pólya entire 
function to I, and if J ⊂ I is a non-trivial interval on which f is non-constant, then 
J contains a critical point of pn for all sufficiently large n (depending on J). In other 
words, the critical points of {pn} accumulate everywhere that f is non-constant.

The theorem of Clunie and Kuijlaars also allows for the possibility that {p′n} converges 
pointwise almost everywhere to −∞ or +∞. We will show this can occur.
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Theorem 1.4. If f is real-valued and continuous on I, then there is a sequence of poly
nomials {pn} with only real critical points so that {pn} converges uniformly to f on I, 
and {p′n} converges to +∞ almost everywhere on I.

Without the restriction on the critical points, it is easy to obtain the weaker condition 
|p′n| → ∞ almost everywhere: if qn → f uniformly, then it is not hard to verify that 
pn = qn + 1 

nTkn
→ f uniformly as well, and that |p′n| → ∞ almost everywhere if 

kn ↗ ∞ quickly enough, depending on the choice of {qn}. Here, Tn is the nth Chebyshev 
polynomial, defined later in this introduction. Thus the point of Theorem 1.4 is to get 
the ``one sided'' divergence to +∞, while restricting the critical points to the interval I. 
By first approximating −f by a sequence {pn} with derivatives tending to +∞ almost 
everywhere, and then changing signs, it is clear that Theorem 1.4 also holds with +∞
replaced by −∞. In Section 5, we will also note that similar constructions give sequences 
{pn} with only real critical points so that pn → f uniformly and with p′n tending to 0, 
−∞ or +∞ respectively, almost everywhere on any three disjoint, measurable sets whose 
union is I.

Polynomials with only real critical points have played a role in several problems, e.g., 
density of hyperbolicity in dynamics [10], rigidity of conjugate polynomials [7], Smale’s 
conjecture on solving polynomial systems [8], and Sendov’s conjecture on locations of 
critical points [3]. In holomorphic dynamics, the orbits of critical points play an essential 
role. Various constructions in the field make use of approximation theorems such as 
Weierstrass’s and Runge’s theorems, and it is desirable to control the locations of the 
critical points of the approximating functions. In [2], a version of Runge’s theorem is 
proven where all critical points may be taken to lie within any open ϵ-neighborhood 
of a connected set K. In [1], this is further improved to ϵ = 0 when K = I ⊂ R is 
an interval, i.e., Weierstrass’s theorem holds even if we require all critical points to lie 
in I. However, [1] also constructs disconnected sets K ⊂ R where CR(K) (real valued, 
continuous functions on K) is not the uniform closure of polynomials with all critical 
points in K. Classifying the sets K when this does occur remains an open problem.

The Laguerre-Pólya class, mentioned above, is the collection of entire functions (holo
morphic functions on C) that are limits, uniformly on compact sets, of real polynomials 
with only real zeros. These have been characterized as follows [13]: it is the collec
tion of entire functions f so that (1) all roots are real, (2) the nonzero roots satisfy ∑︁

n |zn|−2 < ∞ and (3) we have a Hadamard factorization

f(z) = zmea+bz+cz2 ∏︂
n 

(1 − z

zn
)ez/zn , (1.1)

with m ∈ {0, 1, 2, . . . }, a, b ∈ R and c ≤ 0. In particular, functions like exp(−z2) and 
sin(z) are in the Laguerre-Pólya class, but exp(z2) and sinh(z) are not.

A theorem of Korevaar and Loewner [9], extending earlier work of Laguerre [11] and 
Pólya [13], says that if {pn} are polynomials with only real zeros that converge uniformly 
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Fig. 1. A 2-point perturbation of T33, shown over the full interval [−1, 1] (left) and an enlargement around 
the perturbed roots (right). Separating two adjacent roots creates a larger node between them, while having 
little effect on the size of more distant nodes.

to f on an interval I ⊂ R, then f must be the restriction to I of a Laguerre-Pólya entire 
function, and that pn converges to f on the whole complex plane (uniformly on compact 
sets). See also [5]. Clunie and Kuijlaars [4] later proved that this also holds if we only 
assume pn converges in measure to f on a subset E ⊂ R of positive measure. Since almost 
everywhere convergence on a set of finite measure implies convergence in measure, we 
obtain the pointwise version of their theorem quoted earlier.

If a real polynomial p of degree n + 1 has all n critical points in [−1, 1], then its 
derivative can be written in the form

p′(x) = C
n ∏︂

k=1

(x− znk ), (1.2)

where C ∈ R and {znk }nk=1 ⊂ [−1, 1]. The polynomials used in this paper are all of this 
form, where {znk } are perturbations of the roots {rnk} of nth Chebyshev polynomial Tn. 
We briefly recall the definition of these polynomials.

Let J(z) = 1
2 (z+1/z) be the Joukowsky map. It is easy to verify that this map sends a 

point z = x+ iy on the unit circle to x ∈ [−1, 1], and that J is a 1-1 holomorphic map of 
D∗ = {z : |z| > 1} to U = C \ [−1, 1]. Thus it has a holomorphic inverse J−1 : U → D∗. 
Therefore Tn = J((J−1)n) is a n-to-1 holomorphic map of U to U that is continuous 
across ∂U = [−1, 1], so by Morera’s theorem (e.g., Theorem 4.19 of [12]) it is holomorphic 
on the whole plane, and hence it is a degree n polynomial. Unwinding the definition, 
we see that Tn maps [−1, 1] into itself and is given by Tn(x) = cos(n arccosx). It takes 
the values ±1 at the points {xn

k} = {cos(π k
n )}nk=0 (the vertical projections of the nth 

roots of unity), and has its zeros at {rkn} = {cos(π 2k−1
2n )}nk=1 (the vertical projections of 

the midpoints on T between the roots of unity). See Fig. 1 for an example. This figure 
(and many others in this paper) was drawn using the MATLAB program Chebfun by L.N. 
Trefethen and his collaborators. See [6].

Fix a large positive integer n and consider the Chebyshev polynomial Tn. Order the 
n roots of Tn from left to right, and for k = 1, . . . , n − 1, let Ink denote the interval 
between the kth and (k + 1)st roots of Tn. We call these the ``nodal intervals'', and call 
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Fig. 2. A Chebyshev polynomial of degree 300 near the origin, and the polynomials obtained by moving N
pairs of roots for N = 1, 2, 3. The white dots represent roots that are moved; all others are kept fixed. The 
thinner curve is the original Chebyshev polynomial and the thicker is the perturbed polynomial. The height 
of the new nodes is better illustrated in logarithmic coordinates in Fig. 3.

the restriction of Tn to Ink a ``node'' of Tn. Every node of Tn is either positive or negative. 
Suppose it is positive. If we move the roots of Tn at the endpoints of Ink farther apart 
(and leave all the other roots of Tn fixed), then the node between them becomes higher, 
and the two adjacent negative nodes each get smaller (less negative). More distant nodes 
are changed slightly, but the effect diminishes with distance from Ink . This will be made 
precise in Section 3. See Fig. 1 for the basic idea.

This is the fundamental operation that we use to create the polynomials we want: 
choose an interval J bounded by two roots of Tn and move each root by equal amounts 
away from each other. This procedure was introduced in [1], where roots were moved 
using small perturbations. Here ``small'' means that a root rnk of Tn is only moved within 
the interval [rnk−1, r

n
k+1], i.e., it is moved no further than the nearest adjacent root on 

either side, and usually it is only moved a small fraction of this distance. When the 
perturbations are small in this sense, then the perturbed Chebyshev polynomials created 
are uniformly bounded. This was important in [1] in order to prove that a K-Lipschitz 
function f can be approximated by polynomials (with only real critical points) that are 
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Fig. 3. On top is log |p| for perturbations of a degree 300 Chebyshev polynomial after moving N pairs of 
points, for N = 1, . . . , 5. The maximums are growing exponentially with N . On the bottom are the anti
derivatives of the perturbations, renormalized so 

∫︁ 1
−1 p(t)dt = 1. These anti-derivatives converge to a step 

function with jump at 0. In both pictures, the horizontal axis is restricted to [−.2, .2].

(CK̇)-Lipschitz, for some fixed C < ∞. [1] shows we must have C > 1, but the optimal 
value remains unknown.

In this paper, we will be concerned with ``large'' perturbations, i.e., roots that are 
moved farther than the closest adjacent roots. We will choose an even number of adjacent 
Chebyshev roots {rnk+1, r

n
k+2, . . . , r

n
k+2N}, and then move half these to points close to 

(but larger than) a = rnk , and move the other half to points close to (but less than) 
b = rnk+2N+1. This creates a very large node inside the interval (a, b); we will show that 
the height of this node grows exponentially with N , e.g., Equation (3.6). By choosing the 
size and sign of these nodes correctly, and rescaling appropriately, the anti-derivatives 
form polynomial sequences satisfying Theorems 1.2 and 1.4. Some examples of multi
point perturbations are shown in Fig. 2.

Fig. 3 gives essentially the same plots (superimposed on top of each other) but with 
a logarithmic scale on the vertical axis. The heights of the new nodes do appear to grow 
exponentially in N (linearly on the logarithmic scale) and we will verify this in Section 3. 
The bottom picture in Fig. 3 shows anti-derivatives of the perturbed polynomials, nor
malized to have total integral 1. Because the un-normalized mass grows exponentially 
with N , the normalized functions are exponentially smaller than the originals. In par
ticular, since the un-normalized perturbations are bounded by 1 outside of the interval 
I where the perturbations occur, the normalized polynomials are exponentially small 
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Fig. 4. At top, a smooth function is approximated by step function, which in turn is approximated by the 
anti-derivative p of a perturbed Chebyshev polynomial. In this example, we have moved four roots near each 
jump. The step function and p are easier to distinguish in an enlargement over [−.2, 0] (bottom picture).

outside this interval. Fig. 3 suggests that we can approximate a step function using anti
derivatives of perturbed Chebyshev polynomials as described above. This will be made 
precise in later sections.

The idea behind Theorem 1.2 is that we can create a perturbed Chebyshev polynomial 
that has nodes with exponentially large area near specified points of [−1, 1], and these 
nodes can be chosen to be either positive or negative. By multiplying by a scalar, we 
can make these nodes have area ±ϵ, while the function is much smaller away from these 
nodes. The integral of such a function looks like a step function with jumps of size 
±ϵ, and by choosing the signs and areas of the large nodes correctly we can uniformly 
approximate any continuous function by polynomials of this form, i.e., a polynomial with 
only real critical points and with derivative less than ϵ except on a set of length ϵ. Taking 
a sequence of such polynomials with 

∑︁
ϵn < ∞, and applying the Borel-Cantelli Lemma, 

gives a singular sequence of polynomials converging uniformly to f , proving the first part 
of Theorem 1.2 (once we have verified several details). See Fig. 4 for an example. Note 
the numerous critical points of the approximating polynomial; these are consistent with 
Theorem 1.3.

Our other results are proved using variations on this construction. For example, to 
obtain monotone approximations in Theorem 1.2, we follow the procedure above, but 
applied to T 2

n and perturbing each double root as a single point. Then every root of 
the new polynomial has even degree, and hence the corresponding anti-derivative is 
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monotone. This will allow us to approximate any monotone function f by a monotone 
singular sequence. For details, see Section 4.

If A and B are both quantities that depend on a common parameter, then we use 
the usual notation A = O(B) to mean that the ratio A/B is bounded independent of 
the parameter. The notation A ≲ B means the same as A = O(B). The more precise 
notation A = OC(B) will mean |A| ≤ C|B|. For example x = 1+O2( 1 

n ) is simply a more 
concise way of writing 1 − 2 

n ≤ x ≤ 1 + 2 
n . The notation A = ΩC(B) (or A ≳ B) means 

A ≥ CB or, equivalently, B = OC(A). We use A ≃ B to mean that both A ≲ B and 
A ≳ B hold, i.e., that A and B are comparable up to a fixed multiplicative constant, 
independent of the implicit parameter. In general, the notation A = B means that 
two previously defined quantities are equal, and A := B defines A in terms of B. This 
paper is mostly self-contained, except for a few standard estimates involving Chebyshev 
polynomials, quoted from [1].

We thank two anonymous referees for detailed reports that caught several minor errors 
and greatly improved the exposition.

2. Forced accumulation of real critical points

In this section, we will prove Theorem 1.3, but we start by gathering together various 
facts that we will need for the proof. Recall, from the introduction, the theorem of Clunie 
and Kuijlaars: if {qn} has only real roots and converges pointwise to finite, non-zero limits 
on a set of positive Lebesgue measure, then it must converge uniformly on all compact 
planar sets to a Laguerre-Pólya function. As a consequence of this, we will deduce the 
following result.

Lemma 2.1. Suppose J = [a, b] ⊂ R is a compact interval and {qn} is sequence of real 
polynomials with only real roots, and that all the roots of all the qn are in R\J . Suppose 
also that m ≤ qn ≤ M on J , for some 0 < m < M < ∞ independent of n. Then there 
is a subsequence of {qn} that converges uniformly on compact subsets of the plane to a 
Laguerre-Pólya function.

Proof. Suppose q(x) = C
∏︁

(x − rk) is a polynomial with roots {rk} ⊂ R \ J . Since q
does not change sign on J , without loss of generality we may assume q > 0 on J . Then

log q(x) = log |q(x)| = log |C| +
∑︂

log |x− rk|,

is a finite sum of continuous, concave down functions on J . This means that there is a 
cn ∈ [a, b] so that log qn (and hence qn) is increasing on [a, cn] and decreasing on [cn, b]
(possibly cn = a or cn = b). For every n, cn is either ≤ (a+ b)/2 or ≥ (a+ b)/2. Assume 
≥ (a + b)/2 occurs infinitely often. Then by passing to a subsequence we may assume 
every qn is increasing on J ′ = [a, 1

2 (a + b)], the left half of J . The other case, where we 
have that {qn} is decreasing on J ′′ = [ 12 (a + b), b], is almost identical to what follows, 
and is left to the reader.
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Let Q ⊂ R denote the rational numbers. For each x ∈ J ′∩Q we can take a subsequence 
so that {qnk

(x)} converges to a limit in [m,M ]. By a diagonalization argument, we can 
find a subsequence that converges for every rational number in J ′, and at the endpoints 
of J ′. The limiting function q must be increasing on J ′ ∩Q, and it can be extended to 
an increasing function on all of J ′ by the formula

q(x) = inf{q(y) : y ∈ J ′ ∩Q ∩ [x,∞)}.

An increasing function has only countably many discontinuities (all jump discontinu
ities), so q is continuous almost everywhere on J ′, and 0 < m ≤ q ≤ M < ∞.

If q is continuous at x, then we claim qn(x) converges to q(x). To prove this, suppose 
ϵ > 0 and use the continuity of q at x to choose δ > 0 so that |x − y| < δ implies 
|q(x) − q(y)| < ϵ. For y ∈ Q ∩ (x, x + δ), we have (since qn is increasing)

qn(x) ≤ qn(y) ≤ q(y) + ϵ ≤ q(x) + 2ϵ

for large enough n (depending on ϵ), and hence lim sup qn(x) ≤ q(x). Similarly, if z ∈
Q ∩ (x− δ, x), then

qn(x) ≥ qn(z) ≥ q(z) − ϵ ≥ q(x) − 2ϵ

for large enough n, and hence lim inf qn(x) ≥ q(x). Thus qn(x) → q(x) at every point of 
continuity of q. Since q is continuous on a set of positive measure, the conclusion of the 
lemma follows from the theorem of Clunie and Kuijlaars. □

We will say a real-valued, continuous function f on an interval J = [a, b] is ``inflection 
type'' if there is a division point c ∈ [a, b] so that f is convex up on [a, c] and concave 
down on [c, b] (there may be many such points if f is linear on some subinterval of J). 
We allow c = a or c = b, hence convex and concave functions on J are also considered 
inflection type.

Lemma 2.2. If {fn}∞1 are all inflection type on J = [a, b], and fn → f uniformly on J , 
then f is also inflection type.

Proof. Let {cn} be a division point for fn. By taking a subsequence, if necessary, we 
may assume cn → c ∈ [a, b]. First assume a < c < b. Then for any ϵ ∈ (0, c − a), fn is 
convex up on [a, c− ϵ], if n is large enough so that cn > c− ϵ. Uniformly limits of convex 
functions are convex, so we deduce f is convex up on [a, c]. A similar argument shows f
is concave down on [c, b]. If c ∈ {a, b} then one of these arguments shows f is convex up 
or concave down on all of J , hence it is still of inflection type. □

An increasing function on an interval need not be strictly increasing on any sub
interval, (e.g., the Cantor singular function), but an increasing, inflection-type function 
does have this property.
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Lemma 2.3. Suppose f is inflection type and increasing on J = [a, b]. Then there is 
[x, y] ⊂ [a, b] so that f is constant on both [a, x] and [y, b], and so that f is strictly 
increasing on [x, y]. In particular, either f is constant on J (if x = y) or it is strictly 
increasing on some non-trivial sub-interval J (if x < y).

Proof. If not, then there is a non-trivial interval [s, t] ⊂ [a, b] such that f is constant on 
[s, t] but non-constant on both [a, s] and [t, b]. Thus f(s) > f(a), and this implies that 
f is not convex up on [a, u] for any s < u < t. Thus the division point for f satisfies 
c ≤ s. Therefore f must be concave down on all of [s, b]. Since it is constant on [s, t] and 
increasing on [a, b] this implies it is constant on [s, b], a contradiction. This proves the 
lemma. □
Proof of Theorem 1.3. Suppose f is real-valued and continuous on [−1, 1], that {pn} are 
real-valued polynomials converging uniformly to f on [−1, 1], and that these polynomials 
have only real critical points. Assume J ⊂ [−1, 1] is a non-trivial interval, that f is not 
constant on J , and that all the critical points of every pn are contained in R\J . Then p′n
is non-zero in J and by multiplying f by −1 (if necessary) and passing to a subsequence, 
we may assume every p′n is positive in J . By Lemma 2.1 it suffices to show that there 
is a non-trivial subinterval of J where {p′n} is uniformly bounded above and uniformly 
bounded away from zero.

As in the proof of Lemma 2.1, J divides into left and right sub-intervals so that p′n
is increasing on the first sub-interval and decreasing on the second (possibly, just one 
of these sub-intervals occur). Thus each pn is inflection type on J . Thus by Lemma 2.2, 
f is also inflection type on J . Since we assume f is not constant on J , Lemma 2.3
implies there is a non-trivial subinterval J ′ = [a, b] ⊂ J where f is strictly increasing. 
Let J ′′ = [c, d] = [ 23a + 1

3b,
1
3a + 2

3b] be the middle third of J ′. We will show that {p′n}
has the desired lower and upper bounds on this interval.

First we prove the lower bound. Let ϵ = min(f(c)−f(a), f(d)−f(c), f(b)−f(d)). Since 
f is strictly increasing on [a, b] this is positive. Assume n is so large than |f − pn| ≤ ϵ/4
on [a, b]. Suppose s ∈ [c, d]. If p′n is increasing on [a, s], then

(s− a)p′n(s) ≥
s ∫︂

a 

p′n = pn(s) − pn(a) ≥ f(s) − f(a) − ϵ 
2 ≥ f(c) − f(a) − ϵ 

2 ≥ ϵ 
2 .

Hence

p′n(s) ≥ ϵ/2 
s− a

≥ ϵ 
2(c− a) = 3ϵ 

2(b− a) >
ϵ 

b− a
.

Otherwise, if p′n is decreasing on [s, d], we have

(b− s)p′n(s) ≥
b ∫︂

s 

p′n = pn(b) − pn(s) ≥ f(b) − f(s) − ϵ 
2 ≥ f(b) − f(d) − ϵ 

2 ≥ ϵ 
2 ,
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and hence

p′n(s) ≥ ϵ/2 
b− s

≥ ϵ 
2(b− d) = 3ϵ 

2(b− a) >
ϵ 

b− a
.

Since p′n increases then decreases over J ′ (possible just increasing or just decreasing), 
one of these two options must hold, so we get the lower bound p′n(s) ≥ m := ϵ/(b− a).

To prove the upper bound, we use the fact that log p′n is concave down on J . Suppose 
Mn is the maximum of p′n over J ′′ and that the maximum is attained at x ∈ J ′′. Then 
log p′n is bounded between logm and logMn, and by concavity the graph of log p′n lies 
above the triangle with vertices (c, logm), (x, logMn) and (d, logm). Hence log p′n ≥
1
2(logMn + logm) on an interval I ⊂ J ′′ of length |I| = 1

2 |J ′′| = (d − c)/2. Therefore 
p′n ≥

√
mMn on I, which implies

∫︂
I

p′n ≥ |I|
√︁

mMn.

By the Fundamental Theorem of Calculus, this integral equals pn(d) − pn(c). Thus if n
is so large that |f(d) − pn(d)| ≤ ϵ/4 and |f(c) − pn(c)| ≤ ϵ/4, then

Mn ≤ (pn(d) − pn(c))2

m|I|2 ≤ (f(d) − f(c) + ϵ/2)2

m|I|2

≤ 4(f(b) − f(a))2

m((d− c))2

≤ 36((f(b) − f(a))2

m(b− a)2

= 36(f(b) − f(a))2

ϵ(b− a) .

This proves Mn = sup[c,d] p
′
n is bounded independent of n, as desired. By Lemma 2.1, 

this implies that f must be a Laguerre-Pólya function, contrary to our assumption. This 
contradiction proves Theorem 1.3. □
Example. If f(x) =

∫︁
ex

2
dx then log f ′ = x2 is not concave down in any sub-interval of 

[−1, 1]. Although f is entire, if pn → f uniformly on [−1, 1], and if every pn has only real 
critical values, then these critical values must accumulate everywhere on [−1, 1], even 
though f itself only has a critical point at zero.

3. 2-point and multi-point distortions

In this section, we record some simple algebra that shows how a polynomial changes 
as we move some of its roots. This will verify certain claims made in the introduction.
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Fig. 5. On top is a plot of R(t) = (x2 − 1)/(x2 − a2) for a = .5 and below it are superimposed plots for 
a = .1, .2, . . . , .9. The horizontal dashed lines are at heights ±1. Outside the interval [−1, 1] all these graphs 
are between 1 − x−2 and 1.

If a polynomial p has zeros at ±a, for a ∈ (0, 1), and if we move these roots respectively 
to ±1, then we obtain a new polynomial ˜︁p = R · p, where R is the rational function

R(x) = (x− 1)(x + 1) 
(x− a)(x + a) = x2 − 1 

x2 − a2 = x2 − a2 + a2 − 1
x2 − a2 = 1 − 1 − a2

x2 − a2 . (3.1)

It is also easy to check that R is even, and that on the interval (−a, a) we have R(x) ≥
R(0) = a−2. See Fig. 5.

Lemma 3.1. For |x| ≥ 1 we have 1 − x−2 ≤ R(x) ≤ 1.

Proof. To prove the lower bound, note that

|x| > 1 ⇒ −a2x2 ≤ −a2

⇒ x2(1 − a2) ≤ x2 − a2

⇒ 1 − a2

x2 − a2 ≤ 1 
x2

⇒ R(x) ≥ 1 − 1 
x2 .
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For the upper bound, observe that if |x| ≥ a, then x2 − a2 > 0, so R(x) ≤ 1. □
Lemma 3.2. If α := 1 − a ∈ (0, 1), then

|R(x)| < 1 for |x| > (3 + a)/4 = 1 − α/4. (3.2)

Proof. As noted above, if |x| ≥ a, then R(x) ≤ 1. Thus R(x) < 1 if |x| > a = 1 − α. 
So we only need to check that R(x) > −1 for |x| > 1 − α/4. To prove this, note that if 
x2 > a2, then R(x) > −1 is equivalent to

x2 − 1 > a2 − x2

⇔ x2 > 1
2 (a2 + 1)

⇔ |x| >
√︂

1
2 ((1 − α)2 + 1)

⇔ |x| >
√︁

1 − α + α2/2.

The right side is less than 1 − α/4 if and only if

√︁
1 − α + α2/2 < 1 − α/4

⇔ 1 − α + α2/2 < 1 − α/2 + α2/16

⇔ α2(1
2 − 1 

16 ) < α/2

⇔ α < 8
7 ,

which is certainly true, since we assumed α = 1 − a ∈ (0, 1). Thus |x| > 1 − α/4 implies 
R(x) > −1. □

We can apply a linear transformation to the points in the preceding estimates. Note 
that translating the points {±1,±a}, all by the same amount just translates R. Similarly, 
dilating to get new points {±λ,±λa} just replaces R(x) by R(lx/λ). In particular, if 
b1 < a1 < a2 < b2 are chosen so that c = 1

2 (a1 + a2) = 1
2(b1 + b2), and a1, a2 = c ± r, 

b1, b2 = c ± s, then these four points are images of {±1,±a} (where a = r/s) under a 
linear map. Hence, the distortion function only changes by pre-composition with a linear 
map, and we deduce the following result.

Corollary 3.3. With notation as above, the distortion function R corresponding moving 
a1, a2 = c± r to b1, b2 = c± s satisfies

(1) R(x) ≥ (s/r)2 on (a1, a2),
(2) 0 < R(x) < 1 on R \ [b1, b2],
(3) |R(x)| < 1 on {|x− c| > (1 − α/4)s} where α = 1 − s/r.
(4) 1 − x−2 ≤ R(x) < 1 on {|x− c| ≥ s}.
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If we move multiple pairs of zeros in this way, then the distortion function for the 
combined moves is just the product of the distortion functions for each pair. More pre
cisely, suppose N is a positive integer and we have 2N points {ak}N|k|=1 (note that there 
is no point a0) such that

−1 < a−N < a−N+1 < · · · < a−1 < 0 < a1 < · · · < aN < 1.

Suppose we move the pair (a−k, ak) to a pair (b−k, bk) ⊂ [−1, 1], again with the property 
that b−k + bk = a−k +ak. Given a small δ > 0, we will also assume that 1− δ ≤ |bk| ≤ 1, 
so that the new zeros are all quite close to ±1. In particular, |bk− b−k| ≥ 2− 2δ. We can 
place b−k and bk so that this happens as long as |a−k + ak| < δ; this will occur in our 
construction. Indeed, we will take the {ak} to be approximately evenly spread in [−1, 1], 
i.e., ak ≈ sign(k) · (2|k| − 1)/(2N + 1) for |k| = 1, . . . , N and we will choose δ < 1/N .

For the moment, we make the weaker assumption that

1/(2N + 2) ≤ |ak| ≤ |k|/N. (3.3)

This implies |ak − a−k| ≤ 2k/N . In later applications, we will renormalize the points in 
an interval J = [a, b], and use the analogous condition

1/(2N + 2) ≤ |ak − (a + b)/2|
(b− a)/2 

≤ |k|/N. (3.4)

The 2N -point distortion function RN , resulting from moving the points {ak} ⊂ [−1, 1]
to points {bk} ⊂ [−1, 1], is the product of N different 2-point distortion functions as 
described above, one for moving each pair {a−k, ak}. Thus we have 0 < RN (x) < 1 on 
{|x| > 1}. Moreover, taking logarithms and using some calculus, it is easy to check that 
for |x| > 1

max(0, 1 −N/x2) ≤ (1 − x−2)N ≤ RN (x) ≤ 1. (3.5)

We also claim that our perturbed polynomial ˜︁p = p · RN satisfies |˜︁p| ≫ |p| near the 
orgin. Assume that we have chosen δ so that δ < 1/N . By Part (1) of Lemma 3.3, on 
the interval |x| < 1/(2N + 2), the 2N -point distortion satisfies

RN (x) ≥
N∏︂

k=1

(︃
bk − b−k

ak − a−k

)︃2

≥ (2 − 2δ)2N∏︁N
k=1(2k/N)2

= (2 − 2δ)2NN2N2−2N (N !)−2

> (1 − 1 
N

)2NN2N (N !)−2

for x ∈ [a−1, a1]. Using the upper bound in Stirling’s approximation for N !,
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√
2πN

(︃
N

e 

)︃N

≤ N ! ≤
√

2πN
(︃
N

e 

)︃N

exp( 1 
12N )

and the inequality e−1/6N ≥ e−1/6 > 1/2, the above lower bound for RN becomes

RN (x) ≥
(1 − 1 

N )2Ne2N−1/6NN2N

2πNN2N ≥
(1 − 1 

N )2Ne2N

4πN 

Recalling from calculus that 1/4 ≤ (1 − 1/N)N ↗ e−1 for N ≥ 2, this becomes

RN (x) ≥ [(1 − 1/N)N ]2e2N

2πN 
≥ e2N

32πN . (3.6)

For large N , this is bigger than eN , so the size of the perturbed node grows at least 
exponentially with N .

Fig. 6. Logarithmic plots of 2N-point distortion functions RN for N = 1, . . . , 9. Here we are moving the 
points {±(2k−1)/(2N+1)}N

k=1 to {±1}; these points are evenly spaced in [−1, 1], and moved to the nearest 
endpoint. In each plot, one dashed line is at height 1, and the other shows the minimum value of RN over 
the central interval. The final plot shows a linear approximation (with slope ≈ 2) to the log-plot of these 
minima versus N , indicating the minima grow like ≈ exp(2N).

Thus the central node of the 2N -perturbed polynomial is exponentially larger than 
the original node. The area of the original node is comparable to |a1 − a−1|, so the area 
of the new node is larger than this by a factor of at least e2N/32πN . A logarithmic plot 
of the actual distortion in the cases M = 1, . . . , 9 is shown in Fig. 6. As expected, the 
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growth of the distortion function near the origin is exponential. Numerically, the growth 
rate appears to be ≈ e2N , which is what we expect from (3.6).

4. Approximation by polynomials with small derivatives

The idea of the proof of Theorem 1.2 is to approximate a continuous function f by a 
step function g, and then approximate g by the anti-derivative p of a scalar multiple of 
a polynomial q that is constructed by perturbing the zeros of a Chebyshev polynomial 
Tn. The basic idea was illustrated in Fig. 4.

This proof is the most intricate in the paper, so to make the argument easier to follow, 
we break it into a number of steps. We list them here, and give the details later in this 
section. After translation and rescaling, it suffices to prove the theorem for the interval 
I = [−1, 1].

(1) Approximate f to within ϵ by a step function g, where the jumps of g are all of 
size ±ϵ. Let K denote the number of jumps of g and let −1 < s1 < · · · < sK < 1
denoted their locations. Define s0 = −1 and sK+1 = 1. Let δ > 0 be the minimum 
distance between the points of {sj}K+1

0 .
(2) We will define K disjoint intervals {Gj}K1 ⊂ [−1, 1], so that for each j = 1, . . . ,K, 

the interval Gj contains (and is approximately centered at) the jump point sj. Each 
Gj will be a union of 2N + 1 nodal intervals of a Chebyshev polynomial Tn where 
N := 4⌈logn⌉. The disjointness will follow if n is sufficiently large, depending on 
δ. Since each Gj is a union of an odd number of nodal intervals of Tn, there is a 
central nodal interval which we denote GC

j . We will choose Gj so the sign of Tn on 
the central interval GC

j is the same as the sign of the jump of g at sj . The leftmost 
and rightmost nodal intervals of Tn contained in Gj will be denoted GL

j and GR
j

respectively.
(3) We let ηj denote the length of the shortest nodal interval contained in Gj. Clearly 

ηj ≤ |Gj |/(2N + 1), and will show that if n is large enough, then the ratio 
|Gj |/ηj(2N + 1) is as close to 1 as we wish.

(4) For each j, we choose points {bk}N|k|=1 ⊂ Gj to be the new roots of the perturbation 
of Tn. Half of these bk’s will be located in a subinterval J− ⊂ GL

j of length ηj/10, 
and the other half within an interval J+ ⊂ GR

j of equal length.
(5) If we perturb only the roots of Tn in Gj , then the perturbed polynomial will have 

one large node covering most of Gj. We will estimate the area of this node, showing 
it is exponentially large in N .

(6) By continuously moving the new roots {bk} back towards the center of Gj, the area 
under this large central node decreases continuously. Thus we can make it attain 
any value we want within a specified range. In particular, we will be able to attain 
the value ±ϵ · eN/2, where ϵ and N are as chosen in Steps 1 and 2 above. The nodal 
interval corresponding to this large central node will be denoted Jj ⊂ Gj .
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(7) We create a polynomial q from Tn by making the perturbations described in Step 
6 in every Gj simultaneously. Then set p′ = e−N/2 · q. We will show that |q| ≤ 1 on 
X = [−1, 1] \ ∪jJj , and hence that |p′| is exponentially small there.

(8) Next we will show that the perturbations performed in one interval Gk have only 
a small effect on the size of the large central node in any other Gj, j ̸= k. Thus 
each of the ``large nodes'' of p′ has integral 

∫︁
Jj

p′ ≈ ±ϵ with errors that tend to 
zero as n increases. This completes the proof that the step function g (and hence 
the original function f) is uniformly approximated by p =

∫︁
p′, a polynomial with 

only real critical points.
(9) We verified in Step 7 that |p′| is very small except possibly on the set ∪jJj , which 

has small length. By taking an appropriate sequence of such approximants and 
applying the Borel-Cantelli lemma, we will deduce that f can be approximated by 
a singular sequence of polynomials.

(10) The final step is to verify that if f is increasing, then it can be approximated by a 
singular sequence of increasing polynomials. This requires only a minor modification 
of the proof sketched above, obtained by repeating the proof, but now applied to 
T 2
n , and moving roots in pairs. The resulting polynomial q will then have only roots 

of multiplicity two, so we can choose q, and hence p′, to be non-negative everywhere.

Before filling in the details of the preceding sketch, we recall some estimates concerning 
nodal intervals and integrals for Chebyshev polynomials. These are quoted from [1], but 
are standard facts. Recall that the nodal intervals of Tn are the n− 1 intervals between 
adjacent roots of Tn, and are denoted {Ink }n−1

k=1 from left to right. The intervals are 
symmetric with respect to zero, so the estimates below only have to be given for nodal 
intervals hitting [−1, 0].

Lemma 4.1 (Lemma 2.3, [1]). For 1 ≤ k ≤ (n− 1)/2, 4k 
n2 ≤ |Ink | ≤ kπ2

n2 .

Lemma 4.2 (Lemma 2.4, [1]). If 1 ≤ k ≤ k + j ≤ n/2 then

1 ≤
|Ink+j |
|Ink | 

≤ 1 + π

2 
j

k
.

Lemma 4.3 (Lemma 3.2, [1]). 
∫︁
In
k
|Tn| ≥ 2 

π |Ink |.

Proof of Theorem 1.2.
• Step 1: Without loss of generality, we may assume f(−1) = 0. Fix ϵ ∈ (0, 1). Choose 
an ordered set of points {−1 = s0 < s1 < · · · < sK < sK+1 = 1} so that

|f(sj+1) − f(sj)| = ϵ, for j = 0, 1, . . . ,K − 1
|f(sK) − f(sK−1)| ≤ ϵ,

and
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|f(t) − f(sj)| < ϵ, for t ∈ [sj , sj+1).

Define a step function g(t) on [−1, 1] by g(t) = f(sj) for t ∈ [sj , sj+1), for j = 0, . . .K. 
Clearly ∥f − g∥I ≤ ϵ. Let δ = min1≤j≤K+1(sj − sj−1).
• Step 2: Suppose n is a large positive integer, that will be fixed at the end of the proof, 
depending only on ϵ, δ and K from Step 1. Consider the Chebyshev polynomial Tn. 
Choose K nodal intervals {Inkj

}Kj=1 so that Inkj
either contains sj or it is adjacent to a 

nodal interval that does contain sj . We choose the interval so that Tn has the same sign 
on Inkj

as the sign of the jump of g at sj .
Set N = 4⌈logn⌉, and let Gj be the union of Inkj

and the N nodal intervals on 
either side of it. Thus Gj is the union of 2N + 1 nodal intervals; the central interval 
Inkj

is denoted GC
j for brevity, and the leftmost and rightmost are denoted GL

j and 
GR

j respectively. By Lemma 4.1, the intervals {Gj} are pairwise disjoint if n is large 
enough (depending only on δ). Indeed, this lemma implies the length of Gj is less than 
4π2⌈logn⌉/n, so the distance between any two of these intervals is at least δ/2, if n
is large enough. (To simplify notation, we have omitted a superscript n, writing Gj

instead of Gn
j . This convention will also apply to other points and intervals below, but 

the implicit dependence on n should be clear.)
• Step 3: For each j = 1, . . . ,K, we are going to move the 2N roots of Tn inside Gj

to new points near the endpoints of Gj. This procedure was described in Section 1 and 
illustrated in Fig. 2. The endpoints of Gj will be left fixed. The 2N roots of Tn in the 
interior of Gj are denoted (again omitting the dependence on j and n from the notation)

a−N < · · · < a−1 < a1 < · · · < aN

as in Section 3 (there is no a0). According to Lemma 4.2, any 2N + 1 adjacent nodal 
intervals in [−1, 1] that are at least distance δ > 0 from the endpoints ±1, all have 
comparable lengths to each other, with a multiplicative factor 1 + O(N/nδ) = 1 +
O((logn)/nδ). In particular, if n is large enough (depending on δ), then the roots of 
Tn contained in Gj satisfy the renormalized estimate (3.4). Let ηj denote the smallest 
length of a nodal interval for Tn inside Gj . Note that ηj ≤ |Gj |/(2N + 1), and that we 
can make (2N +1)ηj/|Gj | as close to 1 as we wish by taking n sufficiently large. In other 
words, the roots of Tn inside Gj are as evenly spread as we wish, if n is large enough.
• Step 4: If 1 ≤ M ≤ N , we say a set of 2M points {bj}M|j|=1 ⊂ Gj is admissible if

(1) {b−N , . . . , b−1} and {b1, . . . bN} are each contained in disjoint subintervals J−, J+ of 
Gj of length at most ηj/10, and

(2) 1
2 (b−k + bk) = ck := 1

2 (a−k + ak) for k = 1, . . . ,M .

We start with M = N and claim we can choose an admissible set {b−1 < · · · < b−N <

bN < · · · < b1} so that J− ⊂ GL
j (the leftmost nodal interval) and J+ ⊂ GR

j (the 
rightmost). Note that the ordering of the bj’s is different than for the aj’s. To see that 
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we can meet the two required conditions for admissibility if n is sufficiently large, observe 
that by Lemma 4.2, the {ak} are as evenly spaced as we need, and thus all the ck’s are 
as close to the center of Gj as we wish (e.g., within ηj/100 of the center). This implies 
that we can place all the points bk within ηj/20 of the centers of GL

j or GR
j . We denote 

these centered intervals of length ηj/10 as J− and J+.
• Step 5: If we perturb Tn by moving only the points {ak} ⊂ Gj to the points {bk} ⊂ Gj , 
for a single j, then by (3.6) the new polynomial qj has a node that is at least 10eN larger 
than the original one. By Lemma 4.3 the perturbed polynomial has integral over Inkj

that 
is at least 2eN |Inkj

| ≥ 2 exp(4 logn)4/n2 ≥ 8n2. Since the perturbed polynomial qj has 
the same sign over its entire central node, the area of this central node of qj is at least 
the integral of qj over the subinterval Inkj

, and hence it satisfies the same lower bound.
• Step 6: We can obtain smaller areas over the central nodal interval by translating 
each point bk by the same amount towards the center of Gj. Clearly such a translation 
preserves the distance between the points, so they still form two clusters of diameters at 
most ηj/10. The first contact between the bk’s and ak’s occurs when bN hits aN , (and 
b−N hits a−N at the same time). After this point, we stop moving bN and b−N , but 
keep translating the remaining points towards the center of Gj. Note that the remaining 
points form a (N − 1)-admissible set, since they are still as tightly clustered as before 
(more so, since a point has been removed from each cluster). When any bk reaches the 
corresponding point ak, we stop moving it (and b−k), but continue to move the remaining 
clusters. We finish when b−1 and b1 reach a−1 and a1 respectively. At that point we have 
returned to the original Chebyshev polynomial, which is bounded above by 1 on Gj , 
and hence has integral over this interval of at most |Gj|. Since the perturbed polynomial 
changes continuously with these movements, we can attain a node with any area between 
|Gj | ≤ 4π2(logn)/n and 2eN |Inkj

| ≥ 8n2. The roots {bj} that have not been matched 
with the corresponding aj still form a M -admissible set for some 1 ≤ M ≤ N .

We choose root positions so that the large central node in Gj of the perturbed poly
nomial has area ϵ · eN/2 ≃ ϵ ·n2, where ϵ > 0 was the jump size used to define g. We can 
do this as long as |Gj | < ϵ and eN |Inkj

| ≥ ϵ ·eN/2. By Lemma 4.1, the first condition holds 
if n is large enough. The second condition holds if |Inkj

| ≥ ϵ ·e−N/2. Again by Lemma 4.1, 
the nodal intervals Ink of Tn have length |Ink | ≥ 4 

n2 , so this is true if 4 
n2 ≥ ϵ · e−N/2, or 

equivalently (since ϵ ≤ 1), if

N ≥ 2 log ϵn2

4 
= 4 logn− 2 log 4 + 2 log ϵ > 4 logn.

In particular, the node is large enough for our choice N = ⌈4 logn⌉.
• Step 7: Let q be the polynomial obtained by making this perturbation in every Gj , for 
j = 1, . . . ,K, and define p(x) =

∫︁ x

−1 e
−N/2 · q(t) dt. We claim that the distortion function 

Rj corresponding to moving the roots from {aj} to {bj} in Gj satisfies

|Rj(x)| ≤ 1 for x ∈ [−1, 1] \ Jj . (4.1)
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This is easy for x outside Gj , because by Part (2) of Corollary 3.3, we have 0 < Rj(x) < 1, 
for x outside [b−1, b1], and hence outside Gj .

On the two components of Gj \ Jj , the argument is only slightly more involved. We 
can use Part (3) of Corollary 3.3 because of the condition we imposed in Step 3 that the 
roots b1 < · · · < bM are an M -admissible set. Since |bk−ak| ≥ ηj for 1 ≤ k ≤ M , we can 
deduce that the distortion function corresponding to moving the pair ak, a−k to bk, b−k

satisfies |R| < 1 on an interval of length at least ηj/4 to the left of bk and to the right of 
b−k. These intervals, together with {x < b−k} and {x > bk} contain all the points {bj}
and thus cover all of Gj \ Jj (recall that Jj = (b−1, b1)). This proves (4.1). Therefore 
|p′| ≤ e−N/2 in the set X = [−1, 1] \ ∪K

j=1Jj and hence the total variation of p over all 
the components of X is less than 2e−N/2. In particular, p is very close to constant on 
each connected component of X.
• Step 8: On each Gj , q has a large central node where it equals qj (the perturbation 
due to perturbations inside Gj only) multiplied by the distortion due to each of the 
2-point perturbations in the other intervals Gk, k ̸= j. The distortion on Gj due to 
the perturbations in Gk is at most 1 + d−2 where d := dist(Gj , Gk)/|Gk|. If we keep ϵ
(and hence K) fixed, then max1≤k≤K |Gk| tends to zero with n, but dist(Gj , Gk) ≥ δ/2, 
independent of n. Thus d tends to infinity as n tends to infinity.

Increasing n if necessary, we can assume that the distortion on Gj due to perturbations 
in other Gk’s is as close to 1 as we wish. To be a little more precise, We have d ≃ δ/n log n
so the distortion due to all the 2-point distortions in Gj in some different Gk is bounded 
above by 1 and below by

(1 − 1 
d2 )O(N) = (1 −O( δ2

n2 log2 n
))O(logn).

By taking logarithms, it is easy to check the right-hand side tends to 1 as n ↗ ∞.
Thus the integral of p′ over Gj is as close to ±ϵ as we wish, say within ϵ/K, if n is 

large enough. Then the anti-derivative p =
∫︁
p′ =

∫︁
e−N/2q equals g with an error of 

at most 2e−N/2 + ϵ. The first term, 2e−N/2, is due to the intervals between the {Gj}, 
and the second term, ϵ, is due to adding up at most K errors of size ϵ/K due to the 
distortions of the large nodes. By taking n (and hence N) large enough, we see that we 
can take sup[−1,1] |f − p| ≤ 2ϵ.
• Step 9: It is now easy to check that we can choose a sequence {pm}∞1 that forms a 
singular sequence converging to the continuous function f . Each pm will have a derivative 
that is a multiple e−Nm/2 of a perturbation qm of the Chebyshev polynomial Tnm

, with 
Nm = ⌈4nm⌉ and the degrees nm growing as quickly as we wish. Such polynomials were 
constructed in Steps 1 to 8. Each pm approximates a step function gm with some number 
Km of ``steps'', as described above, and we may suppose that {Gm

j }Km
j=1 are the intervals 

where we performed the 2Nm-point perturbations on the Chebyshev polynomial Tnm
. 

Let Gm = ∪Km
j=1G

m
j be the union of these intervals. Note that |p′m| ≤ e−N/2 off Gm. The 

length of Gm is
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|Gm| =
∑︂
j

|Gm
j | ≤ Km(2Nm + 1) max

k
|Inm

k | = O

(︃
Km log nm

nm

)︃
.

We are free to choose a sequence {pm}∞1 so that Km and nm independently grow as 
quickly as we wish, so we choose it so that Km ≥ m and nm ≥ K3

m. Then

|Gm| = O

(︃
Km log nm

nm

)︃
= O

(︃
Km logKm

K3
m

)︃
= O

(︃
logKm

K2
m

)︃
= O

(︃
logm
m2

)︃
,

since (log x)/x and (log x)/x2 are both decreasing for x ≥ e. This is summable over 
m ≥ 1, so by the Borel-Cantelli lemma, almost every point of [−1, 1] is in only finitely 
many of the sets {Gm}∞1 . Thus |p′m| → 0 almost everywhere. This proves the first part 
of Theorem 1.2: every real-valued, continuous function f can be uniformly approximated 
by singular sequence of polynomials with only real critical points.
• Step 10: To prove the second part of the theorem, we need to show that if f is increasing, 
then we can choose p′ ≥ 0 everywhere on [−1, 1]. This is fairly simple: replace q in the 
proof above by a q2 and choose the points {bj} to represent pairs of roots that move 
together. As before, we can choose the new root locations so that 

∫︁
Jj

q2 = eN/2. We then 
finish the proof as before. □

The proof of Theorem 1.2 given above shows that any sum of finite, real-valued point 
masses on [−1, 1] can be weakly approximated by a polynomial with only real roots. If 
the point masses are all positive, then we can take the polynomial to be nonnegative. 
Finite sums of point masses are weakly dense in all finite measures on [−1, 1], so we 
obtain the following consequence.

Corollary 4.4. If μ is a finite Borel measure on [−1, 1], then there is a sequence of real 
polynomials {pn} with only real zeros so that pn (restricted to [−1, 1]) converges to μ
weakly. If μ is positive, the polynomials {pn} can be chosen to be non-negative.

5. Approximation by polynomials with large derivatives

In the previous section, we constructed polynomials that have large positive or neg
ative spikes near specified locations, but that are small elsewhere, so that their anti
derivatives approximate a step function. Thus we could uniformly approximate any 
continuous function f by a sequence of polynomials whose derivatives tend to zero point
wise almost everywhere. In this section, we want to construct approximating polynomials 
whose derivatives tend to +∞ almost everywhere. Instead of approximating step func
tions, the graphs of our polynomial approximants will resemble ``sawtooth'' functions, 
i.e., functions that are piecewise linear, and have large positive slope on intervals that 
partition [−1, 1], but that have large downward jumps at the endpoints of these in
tervals. See Figs. 11 and 12 in Section 6 for such approximations of f(x) = |x| and 
f(x) = cos(2πx).
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We will need the following estimate that roughly holds because the nodes of a Cheby
shev polynomial closely resemble rescalings of the nodes of cos t:

1
2 ≤ 1 

|Ink |

∫︂
In
k

|Tn|2(t) dt ≤
1
2 + π2

24n2 , (5.1)

where Ink is a nodal interval of Tn. Equation (5.1) is Equation (3.3) in [1] (there is a 
typo in that equation omitting the 1/|Ink | in front of the integral, but the proof of the 
equation with this additional normalization is correct). From (5.1) it is easy to deduce 
that p(x) =

∫︁ x

−1 T
2
n(t) dt uniformly approximates the linear function (x+ 1)/2 on [−1, 1]

as n tends to infinity.
All the nodes of T 2

n are positive, but if we separate a double root of T 2
n into two separate 

single roots, we introduce a single negative node between these roots. By moving these 
two simple roots further and further apart, we can create a very large negative node 
(we also move some of the double roots of T 2

n to make room). The anti-derivative p
of this perturbed polynomial q will look linear with slope 1/2 sufficiently far from the 
perturbed roots, but it will have a sudden drop between the two simple roots; the size of 
the drop depends on the area of the negative node. By replacing T 2

n by a large positive 
scalar multiple of itself, and by placing throughout [−1, 1] very large negative nodes, we 
will be able to uniformly approximate any continuous function f by a polynomial with 
the ``sawtooth'' structure described above. See Fig. 7 for a perturbation creating several 
negative nodes, all of the same size. In this figure, the negative nodes are too small to 
counteract the effect of the smaller, but more numerous positive nodes, and the anti
derivative resembles a linear function with positive slope. In Fig. 8, we have more carefully 
selected the negative nodes to balance the positive ones, and the resulting polynomial 
resembles a constant function, although its slope is very large at most points of [−1, 1]. 
By choosing the size of the negative nodes more carefully, we can make the graph of the 
approximating polynomial approximate any Lipschitz function, as illustrated in Figs. 11
and 12.

Proof of Theorem 1.4. As in the Section 4, we will break the proof into a series of steps, 
although here we will omit listing them first, and simply start the proof. Several of 
the steps here are very similar to those used in Section 4, and we will refer back to 
those arguments when appropriate. We start with an important fact about Chebyshev 
polynomials, that will be used in Step 9 below.

Lemma 5.1. Suppose n is a large, positive integer and consider Tn, the nth Chebyshev 
polynomial. Then |{x ∈ [−1, 1] : |Tn(x)| ≤ δ}| ≤ πδ.

Proof. Recall from Section 1 that Tn = J((J−1)n) where J is the vertical projection from 
the unit circle onto [−1, 1]. In this formula, J−1 is interpreted as a 2 valued function on 
[−1, 1] taking x to x ± i

√
1 − x2. Thus J−1 maps the interval [−δ, δ] to two symmetric 



C.J. Bishop, D.L. Bishop / Advances in Mathematics 490 (2026) 110819 23

Fig. 7. Here we move six roots of q (three pairs of double roots) to form two roots of degree three each. Each 
such perturbation creates one large negative node. A single such node is shown, on top. Several, equal sized, 
nodes are shown in the middle picture. However, these negative nodes are ``too small'': the bottom figure 
shows the anti-derivative and the upward trend means the positive nodes dominate the negative ones. This 
is adjusted in Fig. 8.

arcs on T , each of length 2 arcsin(δ), and centered at ±i. Then taking nth roots maps 
these two intervals to 2n intervals with the same total length, and the projection J maps 
these arcs 2-to-1 to n intervals, while deceasing the length of each interval. Thus the 
preimage of [−δ, δ] under Tn has total length at most 2 arcsin(δ) ≤ πδ. □
• Step 1 (reduction to flat functions): Since Lipschitz functions on [−1, 1] are dense in 
continuous functions, it suffices to assume f is Lipschitz. Moreover, if Theorem 1.4 holds 
for a function, then it also holds for any positive scalar multiple of f , so we may further 
assume that f is 1-Lipschitz. Finally, if M is a large positive number, and if we can 
approximate f/M to within ϵ/M by a polynomial p so that p′ > M−1/2 except on a set 
of length M−1/4, then M · p will approximate f to within ϵ and we have (Mp)′ > M1/2

except of a set of length M−1/4. So it actually suffices to assume f is (1/M)-Lipschitz, 
and to approximate f by polynomials with these estimates. Fix a large value of M , say 
M > 10.
• Step 2 (subdivide [−1, 1]): Fix ϵ ∈ (0, 1/2) and set J = 2⌊M/ϵ⌋. Note that M/ϵ ≤
J ≤ 2M/ϵ. Define J + 2 equally spaced points −1 = s0 < s1 < . . . sJ < sJ+1 = 1. 
The distance between adjacent points is 2/(J + 1) < 2/J < 2ϵ/M . Since f is (1/M)
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Fig. 8. Here we have adjusted the odd degree roots in Fig. 7 so each negative node has area equal to the 
mass of the following interval of positive nodes. The anti-derivative is shown at bottom. Nodes are larger 
near ±1, to account for the shorter nodal intervals near the endpoints. The negative nodes take up about 
20% of the length here, but this percentage can be made arbitrarily small by taking n and N larger.

Lipschitz, it varies by at most (1/M)(2ϵ/M) = 2ϵ/M2 over each segment Sj = [sj , sj+1]
for j = 0, . . . , J . We will make perturbations of T 2

n in very small intervals (size at most 
O((logn)/n)) around the J points s1, . . . sJ .
• Step 3 (selecting the roots of the perturbed polynomial): Suppose n is a large positive 
integer (chosen later depending on ϵ and M), and for each j = 1, . . . J , let rj be a root 
of Tn that is closest to sj ; rj is unique unless sj happens to be the center of a nodal 
interval; in that case, let sj be either endpoint of that interval. (As before, we suppress 
the dependence on n in the notation.) Set N := 4⌈logn⌉, and let Hj be the union of 
the N + 1 nodal intervals of Tn to either side of rj . Thus Hj is the union of 2N + 2
nodal intervals, and there are 2N + 1 roots of Tn interior to Hj ; each is double root of 
T 2
n . We let ηj be the minimal length of a nodal interval in Hj and we let HL

j and HR
j

denote the leftmost and rightmost nodal intervals in Hj. As in Step 3 of the proof of 
Theorem 1.2, we may assume (2N + 2)ηj/|Hj | is as close to 1 as we wish, if n is large 
enough, depending only on J (hence only on ϵ and M).

We label the 2N + 1 roots of Tn inside Hj as a−N < · · · < a0 < · · · < aN . Note 
that there is a point a0 now, and that a0 = rj . (We ought to also label the a’s with 
a superscript j, to indicate which Hj we are talking about, but this should always be 
clear from context, so we omit it to simplify notation.) As in Step 4 of Section 4, we 
define corresponding points {bk} ⊂ Hj that we move the roots at {ak} to (again, we 
omit adding a superscript j to the b’s). However, there are 2N + 2 such points, instead 
of 2N + 1, since the double root of T 2

n at a0 will be split into two separate simple roots 
b−0 , b

+
0 . We assume these points satisfy
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b−N < · · · < b−1 < b−0 < b+0 < b1 < · · · < bN .

As in Step 4 of the proof of Theorem 1.2, we also assume the points {bk}N−N are admissible 
in the sense that they satisfy two conditions:

(1) The set {b−N , . . . , b−1, b
−
0 } is contained in an interval J− of length at most ηj/10 to 

the left of a0, and the set {b+0 , b1, . . . , bN} is contained in an interval J+ of the same 
length, but to the right of a0.

(2) We have 1
2 (b−k + bk) = ck := 1

2 (a−k + ak) for k = 1, . . . N , and 1
2 (b−0 + b+0 ) = a0.

These conditions allow us to apply our estimates for 2-point distortion functions.
To start with, we choose admissible points {bk} so that J− ⊂ HL

j and J+ ⊂ HR
j . We 

can do this for exactly the same reason as described in Step 4 of the proof of Theorem 1.2: 
if n is large enough, then the ak’s are as evenly distributed as we wish, so the ck’s are 
all as close to a0 as desired, and hence the bk’s can be placed as close to the centers of 
HL

j and HR
j as needed.

• Step 4 (defining perturbed polynomials): For each k with 1 ≤ |k| ≤ N we will move 
the double root of T 2

n at ak to a double root at bk. But for k = 0, the double root of T 2
n

at a0 is split into two single roots, b−0 and b+0 . Note that b−0 and b+0 are the closest to 
a0 among the {bk}. Since these are the only roots with odd multiplicity, these are the 
only points where the perturbed polynomial changes sign. Thus Jj = (b−0 , b

+
0 ) ⊂ Hj is a 

nodal interval of the perturbed polynomial, and it is the only nodal interval in Hj where 
this polynomial is negative. Let qj denote the perturbation of T 2

n obtained by moving 
the roots of T 2

n to the points {bk} only in a single interval Hj. Let q be the polynomial 
obtained by perturbing the roots in all the intervals Hj , j = 1, . . . J . Then q has J
negative nodes, one in each interval Hj for j = 1, . . . , J . Each perturbed polynomial qj
is equal to T 2

n multiplied by (4N +2) 2-point distortion functions. The polynomial q will 
be the product of T 2

n and J · (4N + 2) different 2-point distortion functions. Since each 
2-point distortion function tends towards 1 as we move away from the perturbed roots, 
we will have q ≈ T 2

n away from H = ∪J
1Hj . We will make this idea more precise below.

• Step 5 (definition of p): We define p as the anti-derivative of q so that p(−1) = f(−1). 
Unlike the previous section, we do not multiply q a scalar (we used e−N/2 in Section 4). 
Thus p will approximate a function of slope 1/2 except near the intervals {Hj}, where 
it decreases rapidly due to the large negative nodes of q.
• Step 6 (distortion far from the Hj’s): Set μ := ϵ/M . The distortion function for the 
perturbations inside Hj tends to 1 away from the interval Hj . In particular, for any 
μ > 0, we can choose a C < ∞ (depending on μ) so that the distortion function satisfies 
1 − μ < R(x) < 1 at points x that are outside ˜︁Hj = (2C + 1)Hj (where (2C + 1)Hj

denotes the interval concentric with Hj but (2C +1) times longer). We want to estimate 
the size of C in terms of μ.

By Part 4 of Lemma 3.3, the distortion function R due to a moving a single pair 
of points inside Hj satisfies 1 − C2 ≤ R ≤ 1 at points of ˜︁X = [−1, 1] \ ˜︁Hj . Because 
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∑︁
n−2 is summable, and because the intervals Hj are approximately evenly spaced, 

the product of distortion functions for moving one pair of roots in each Hj satisfies 
1 − aC−2 ≤ R(x) ≤ 1, for some fixed a > 0 and all x ∈ ˜︁X. Since 4N + 4 pairs of points 
are moved in each Hj , the distortion function corresponding to moving all 4N + 4 the 
roots satisfies 1− (aC−2)4N+4 ≤ R ≤ 1. If we want R > 1−μ, solving for C leads to the 
inequality C2 ≳ N/μ = 4⌈logn⌉ ·M/ϵ. Therefore, if we fix C to be a sufficiently large 
multiple of ⌈

√︁
(logn)M/ϵ⌉, then for t ∈ ˜︁X, we have

(1 − ϵ 
M

)T 2
n(t) ≤ q(t) ≤ T 2

n(t).

For two points x < y in the same connected component of ˜︁X, we therefore have

(1 − ϵ 
M

)
y∫︂

x 

T 2
n(t) dt ≤ p(y) − p(x) =

y∫︂
x 

q(t) dt ≤
y∫︂

x 

T 2
n(t) dt,

and hence, by (5.1), as n ↗ ∞ we have

|[p(y) − p(x)] − [ 12(y − x)]| ≤ ϵ 
M

+ O(n−2).

• Step 7 (distortion near Hj): Outside the negative nodal interval Jj , the distortion 
function Rj due to the perturbations inside Hj satisfies |Rj | ≤ 1, for exactly the same 
reasons as in Step 7 of Section 4. Thus |q| ≤ T 2

n outside these intervals, and so the 
variation of p =

∫︁
q over (2C + 1)Hj \ Jj is bounded by the length of this set (since 

|Tn| ≤ 1), which is at most (2C +1)|Hj | = O(
√︁

(logn)M/ϵ(logn)/n). This clearly tends 
to zero as n tends to infinity (and ϵ and M are held fixed).
• Step 8 (choosing the size of the negative nodes): By Equation (3.6), that gives ex
ponential growth of the nodes, we can choose the perturbation inside each Hj so that ∫︁
Jj

qj has a large negative value, up to size −eN |Inkj
|, and we can achieve smaller values 

by translating the points {bk} towards the center of Hj, just as described in Step 6 in 
Section 4. In this case, we stop moving the double root at bk, k ̸= 0 when it reaches ak. 
Thus b±0 are the last points to stop moving when they reach a0; when this happens, we 
have returned to the unperturbed T 2

n . We choose the perturbation so that

∫︂
Jj

qj = −1
2 · |sk − sk−1| + (f(sk) − f(sk−1)).

Note that this implies 
∫︁
Jj

qj < −1
4 · |sk − sk−1| since f is (1/M)-Lipschitz and hence

f(sk) − f(sk−1) ≤
1 
M

(sk − sk−1) <
1
4(sk − sk−1)
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if M ≥ 4. A negative node of this size can be obtained if N is large enough, i.e., by (3.6) 
we need eN |Inkj

| ≥ sk − sk−1 = 2/(J + 1). Similar to Step 6 of Section 4, this holds for 
our choice N = 4⌈log n⌉, if n is so large that log n ≥ logM − log ϵ.
• Step 9 (conclusion): We have now proven that for any 1 ≤ j ≤ J , p(sj) approximates 
f(sj) as closely as wish, if n is large enough. Moreover, as noted in Step 3, f varies by at 
most ϵ/M2 over Sj = [sj , sj+1]. On Sj , the polynomial p is decreasing (due to the node 
Jj), then increases by at most 1/J (since p′ ≤ 1 between Jj and Jj+1) and then decreases 
again (due to Jj+1). Therefore the variation of p over Sj is at most O(1/J) = O(ϵ/M)
if n is large enough. Thus |f − p| ≤ O(ϵ/M) on all of [−1, 1] if n is sufficiently large.

We have also shown that p′ = q is larger than M−1/2 except inside ˜︁H = ∪j
˜︁H and near 

the zeros of q that are outside this set. Outside ˜︁H, we have |q| ≥ (1 − μ)|Tn| ≥ |Tn|/2, 
so by Lemma 5.1, |q| ≥ M−1/2 except on a union of intervals of total length at most 
O(M−1/4). On the other hand, ∪j

˜︁Hj has total length bounded by

O (J · (2C + 1) ·N/n) = O
(︂
(M/ϵ) ·

√︁
(logn)M/ϵ · (logn)/n

)︂
,

(this is J , times the total number of nodal intervals in ∪j
˜︁Hj , times the maximal possible 

length of a nodal interval, as given by Lemma 4.1). Clearly this estimate tends to zero 
as n increases, so it is less than M−1/4 for n large enough. To complete the proof of 
Theorem 1.4, take a sequence of polynomial approximants {pn} constructed as above, 
and so that the corresponding values {Mn} satisfy 

∑︁
M

−1/4
n < ∞. Then applying the 

Borel-Cantelli lemma, as we did in the proof of Theorem 1.2, gives the result. □
Our methods can be adapted to prove the following result.

Theorem 5.2. Suppose E1, E2, and E3 are disjoint measurable sets in I. If f is real
valued and continuous on I, then there is a sequence of polynomials {pn} with only real 
critical points so that

(1) on E1, {p′n} converges almost everywhere to 0,
(2) on E2, {p′n} converges almost everywhere to +∞
(3) on E3, {p′n} converges almost everywhere to −∞.

We shall leave the details to the reader, but the basic idea is as follows. Fix ϵ > 0 and 
split [−1, 1] into finitely many intervals so that f varies by less than ϵ over each. Within 
each interval that intersects E2 in more than three quarters of its length, we perturb the 
roots to form large positive nodes; in the intervals that hits E3 at least three quarters of 
their length, we form large negative nodes. In both cases the nodes are chosen with the 
same very large area (positive or negative). We then rescale the perturbed function so 
the absolute mass of each interval is approximately its length. The remaining intervals 
each hit E1 in at least half their length. On these, the renormalized polynomial is very 
close to zero. Finally, we introduce large nodes near the endpoint of intervals whose 
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Fig. 9. A degree 500 polynomial p approximating a step function and a plot of log10 |p′|. The polynomial 
has large slope near the ``jumps'' but small slope elsewhere. We have moved 5 pairs of points per jump.

total mass is the sum of the change in the target function f over the interval to the left, 
minus the mass (positive or negative) of the interval to the left. The anti-derivative p of 
resulting polynomial will approximate f uniformly and p′ will be close to 0, −∞ or +∞
on large measure on the three specified sets respectively. Taking appropriate sequences 
formed in this way and applying the Borel-Cantelli theorem proves Theorem 5.2.

6. Some numerical examples

The proof of Theorem 1.2 is illustrated in Fig. 9. The top picture shows a degree 
500 polynomial p approximating a step function. The bottom picture shows a graph of 
log10 |p′| with the vertical range limited to [−12, 1]. The polynomial is approximately 
10-Lipschitz, but outside the intervals where we move the roots of the Chebyshev poly
nomial, |p′| is everywhere less than 10−3, and is less than 10−4 except near ±1. At each 
“jump'' of the function we have moved 10 roots.

To simplify the computation of this example, we made the new nodes about the same 
height, without adjusting for the width of the nodal interval. Hence |p′| has about the 
same maximum at each jump, but the steps of p are smaller near the endpoints because 
the nodal intervals are shorter. As described in the proof of Theorem 1.2 above, this can 
be adjusted so that the jumps all have same height.

Fig. 10 shows an approximation to a Cantor singular function. We have squared T450

and moved some roots to new roots of degree six. The steps have derivatives that are 
almost four orders of magnitudes larger than in the intervening intervals.
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Fig. 10. An increasing, degree 900 polynomial approximating a Cantor singular function. Below is a plot of 
the derivative with a logarithmic vertical scale.

Fig. 11. A polynomial p of degree 1600 approximating f(x) = |x|, and a graph of p′. The derivative p′ is 
given by squaring T800 and then moving certain groups of adjacent roots to form large negative nodes that 
mostly cancels the positive nodes.

To prove Theorem 1.4, we constructed polynomials q = p′ that are bigger than some 
large constant M on most of [−1, 1] but have even larger negative nodes supported on 
very small length. Thus the anti-derivative p looks like a ``sawtooth'', i.e., p resembles a 
function of the form Mx− g(x) where g is a step function. See Figs. 11 and 12 for some 
examples where we have implemented the idea to approximate |x| and cos 2πx using two 
polynomials of degree 1600. The approximations are very rough; even higher degrees are 
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Fig. 12. A polynomial approximation of cos(2πx), and a graph of p′. The derivative is large and positive 
on a set of large measure (close to measure 1) but is balanced by even larger negative spikes supported on 
small length.

necessary to get close approximations by polynomials with large, positive derivatives on 
a large set.
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