
WANDERING DOMAINS

CHRISTOPHER J. BISHOP

Abstract. This expository article sketches a proof of Sullivan’s no-wandering-
domains theorem for polynomials, and summarizes some of what is known about
wandering domains for entire functions. The proof is intended to be self-contained,
except for references to standard results in complex analysis, real analysis and
topology.

1. Introduction

One of the most famous questions in complex dynamics, asked by Fatou, is whether
the Fatou set of a rational map f can have a wandering component, i.e., a connected
component of the Fatou set whose orbit under f is not periodic or pre-periodic. In
[58] Dennis Sullivan famously showed the answer is no: rational functions do not have
wandering components. The result was quickly extended to entire functions that have
only finitely many singular values by Alex Eremenko and Misha Lyubich [27], and
by Lisa Goldberg and Linda Keen [33], with a special case also being given by Irvine
Noel Baker [9]. On the other hand, Baker [8] had earlier shown that transcendental
(i.e., non-polynomial) entire functions can have wandering domains, and there are
now variety of such examples. Indeed, the existence of wandering domains is one
of the primary distinctions between polynomial and transcendental dynamics and
transcendental wandering domains are currently the subject of intense investigation.
Sullivan’s theorem has had a huge impact. Besides completing the characterization

of periodic Fatou components started by Fatou and Julia, it introduced quasiconfor-
mal methods into the subject, a powerful idea that has had many other applications.
On August 25, 2021, the online version of Mathematical Reviews listed 177 papers
referring to his paper [58]. However, these 177 did not include the papers [9], [27],
[33], mentioned above, since these were written before Mathematical Reviews started
to routinely list references are part of the review. No doubt the true list of citations
is substantially longer. At the end of this paper I give the list of citations from Math.
Reviews, as well as few more that I am aware of. 1
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In this note we shall give a proof of Sullivan’s theorem that is as self-contained as
seems reasonable; all proofs require some version of the measurable Riemann map-
ping theorem, but we will attempt to replace some of the more technical analytic
aspects of this result with (equally involved, but perhaps more elementary) topologi-
cal arguments. We omit the case of general rational functions since this simplifies the
argument (an extra argument is needed to reduce to the case of simply connected do-
mains; see Appendix F of Jack Milnor’s book [50]). For other treatments of Sullivan’s
theorem see [5], [23], [27], [33], [37], [50], [58], [62], [65].
Sullivan’s proof was motivated by the proof of Ahlfors’ Finiteness Theorem: if G

is a finitely generated Kleinian group acting discontinuously on an open set Ω of the
2-sphere, then Ω/G is a (possibly branched) Riemann surface of finite area. Ahlfors’
theorem can now be proved without using quasiconformal mappings, as a consequence
of the solution of the tameness conjecture for hyperbolic 3-manifolds ([1], [24]; see
[25] for an expository account) but is seems doubtful that such methods can easily
be adapted to the case of polynomial or transcendental dynamics.
I thank Walter Bergweiler and Phil Rippon for numerous comments on an earlier

draft of this paper, and particularly for many very helpful remarks concerning the
history of various results (any remaining errors are my fault). James Waterman
provided numerous helpful suggestions and corrections that greatly improved the
readability of the text. I also thank Núria Fagella, Kirill Lazebnik and David Sixsmith
for additional suggestions and references.

2. Polynomials have no wandering domains

The Fatou set, F(f), of a polynomial or a transcendental entire function f is
the union of open disks on which {fn} forms a normal family. It is also clear that
f(F(f)) ⊂ F(f) (forward invariance) but equality need not hold for general entire
functions, e.g., ez/10 has a Fatou component that contains 0, but 0 6∈ f(F(f)).
However, if Ω is a bounded Fatou component of f , then the image is a full component
(Lemma D.9). In general, if U, V are Fatou components of f so that f(U) ⊂ V , then
V \U can contain at most one point. This is Theorem 4’ of [35] by Maurice Heins: if
f is entire, V is open and connected and U is a connected component of f−1(V ), then
f−1(z) ∩ U either has finite constant size for z ∈ V or is finite for at most one point.
See also the papers by M.E. Herring [36] and Walter Bergweiler and Steffen Rohde
[20]. Similarly, f−1(F(f)) ⊂ F(f) (backwards invariance). Thus we can think of f as
inducing a map between Fatou components and a wandering domain is a component
of the Fatou set all of whose forward images are disjoint. The grand orbit of a Fatou
component is the union of all its forward and backwards images. The complement
J (f) = C \ F(f) is called the Julia set of f and is clearly a closed, totally invariant
set. One can show J (f) = J (fn) for every n ∈ N. For polynomials of degree
≥ 2 and all transcendental entire functions, the Julia set is non-empty, indeed, has
uncountably many points. We shall see later (Corollary D.8) that for transcendental
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entire functions, the Julia set always contains a non-trivial continuum (this is due to
Baker, [7]).

Lemma 2.1. A wandering domain for a polynomial must be simply connected.

Proof. For a polynomial, a neighborhood of ∞ is attracted to ∞, so any wandering
domain Ω must be bounded and have a bounded orbit. By the maximum principle,
the iterates of f are bounded in the interior of any closed curve in the wandering
domain and hence form a normal family inside the curve. Thus the curve does not
surround any Julia points and so Ω must be simply connected. �

Lemma 2.2. Suppose X is connected and {ψt}t∈X is a family of homeomorphisms
of C so that ψt(z) : X → C is continuous in t for each fixed z. Suppose also that
ψt0 is the identity for some t0 ∈ X and that f is a polynomial with the property that
ψt ◦ f = f ◦ ψt for all t ∈ X. Then ψt(z) = z for all t ∈ X and all z ∈ J (f), i.e.,
every ψt is the identity when restricted to the Julia set of f .

Proof. A periodic point z for f is a point such that fn(z) = z for some n ≥ 1. A
point is pre-periodic if some iterate of it is periodic. For a non-constant polynomial,
the periodic points are clearly a finite set for each n, hence the sets of all periodic or
pre-periodic points are countable. Because ψt conjugates the action of f to itself, pre-
periodic points are mapped to pre-periodic points. Since there are only countable
many such points, {ψt(z) : t ∈ X} ⊂ ψt0(X) must be a single point, since X is
connected. Since one of these maps is the identity, every map must fix every pre-
periodic point. Finally, since the Julia set is contained in the closure of the pre-
periodic points (Theorem A.9), each map ψt must fix every point in J (f). �

Theorem 2.3. Polynomials have no wandering domains.

Proof. Choose a smooth function h : C → [0, 1
2
] supported in D with gradient bounded

by 1 and such that h(0) > 0. Define a family of mappings of the upper half-plane to
itself by Φt(z) = z+th(z), for |t| ≤ 1. It is easy to check that these are quasiconformal
self-maps of H2

+ = {x+ iy : y > 0} (the definition of a QC map is given in Appendix
B), at least if we restrict t to a small enough interval [0, ǫ] and that Φ0 is the identity.
If t 6= 0, then the mapping is definitely not the identity since Φt(0) = t · h(0) 6= 0.
Choose N disjoint intervals Ik = {[4k − 1, 4k + 1]}N1 and define an N -dimensional
family of maps by t = (t1, . . . , tN), and

Φt(z) = z +
N
∑

k=1

tkh(z − 4k).

The main point we need below is that t is uniquely determined by knowing the cross
ratio of the images of all quadruples on the boundary; in particular by knowing this
for quadruples of the form (0, 1, 4k,∞), k = 1, . . . , N .
Suppose p is a polynomial of degree d and suppose Ω is a wandering domain for

p. Since p has only finitely many critical values, we can replace Ω, if necessary, by
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an iterate of itself so that the forward orbit contains no critical points. Therefore we
may assume p is univalent on Ω and on all forward orbits of Ω.
By Lemma 2.1, Ω is simply connected, so we can map it conformally by f to H2

+

and define a quasiconformal map ϕt = f−1 ◦ Φt ◦ f that maps Ω to itself. The
dilatation of ϕt defines a smooth dilatation µt on Ω that we can extend to the grand
orbit of Ω using the composition rule for dilatations, Equation B.1. A version of the
measurable Riemann mapping theorem (Theorem B.19) implies there is a family of
quasiconformal maps Ψt that conjugate p to a function

pt = Ψ−1
t

◦ p ◦Ψt,

that is entire and d-to-1, hence a polynomial of degree d. Doing the extension back-
wards is always possible; extending to the forward iterates uses the assumption that
p and all its iterates are univalent on Ω. Moreover, we will show pt(z) moves contin-
uously as a function of t for each fixed z. See Theorem B.19.
Theorem C.1 says that given any continuous map of an open set in Rn into Rk

for k < n there is a point z ∈ Rk whose preimage has topological dimension ≥ 1
and hence contains a connected set X. Apply this to the mapping t → pt from
the N -dimensional set of parameters t to the (d + 1)-dimensional space of degree d
polynomials. If we take N > d+ 1, then we obtain a connected set X of parameters
that all map to the same polynomial p.
Choose some s ∈ X and consider the maps ψt = Ψt ◦ Ψ−1

s
for t ∈ X. The maps

p → ψ−1
t

◦ p ◦ ψt all conjugate p to itself, and ψs is the identity. Thus by Lemma
2.2, for t ∈ X, we have that ψt is the identity on J (p), hence these maps are all
the identity on ∂Ω (a subset of the Julia set). Thus Ψt = Ψs on ∂Ω for all t ∈ X.
Note that Ψt and ϕt are both quasiconformal maps of the wandering domain Ω to
itself and that they have the same dilatation inside Ω by definition. Thus they differ
by a conformal self-map of Ω. Since we have just seen that Ψt is the identity on
∂Ω for t ∈ X, we deduce that ϕt is the boundary value of a conformal self-map of
Ω, and hence Φt ◦ Φs agrees with a Möbius transformation on the boundary of the
upper half-plane. Thus for any t, s ∈ X, the map boundary values of Φt preserve
the cross ratio of any four points on the boundary. However, this is manifestly false
by construction; the boundary maps don’t preserve all cross ratios unless t = s. The
contradiction proves that a polynomial can have no wandering domains. �

This completes the proof of Sullivan’s theorem, except for the following facts:
• Theorem A.9: the Julia set is contained in the closure of the pre-periodic points,
• Theorem B.19: a weak version of the measurable Riemann mapping theorem,
• Theorem C.1: if f : Rn+1 → Rn is continuous, then f maps some non-trivial
continuum to a point.
We will prove these in the Appendices A-C (thus, while Sullivan’s theorem is not

as easy as abc, it is as easy as ABC). In Appendix D we will sketch some of what
is know about wandering domains for entire functions. Our goal in Appendices A-C
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is to be as self-contained as possible, attempting to prove everything not found in
standard first year graduate courses in real analysis, complex analysis and topology.
Our main sources for these topics will be
• [30]: Gerald Folland’s Real Analysis,
• [44]: Don Marshall’s Complex Analysis,
• [51]: James Munkres’ Topology: a first course.
The most advanced result we use without proof is the uniformization theorem: every
non-compact simply connected Riemann surface is either D or C. A proof of this is
given in Marshall’s book above.

Appendix A. Normal families and extremal length

The theory of covering spaces says that every Riemann surface has a universal
covering surface that is also a Riemann surface. Koebe’s uniformization theorem
says that there are only three simply connected Riemann surfaces (up to conformal
isomorphism): D, C and the 2-sphere. Any other Riemann surface (and there are
many) is the quotient of one of these by a discrete group of Möbius transformations.
An element of such group can’t have a fixed point, and this implies that the sphere
covers only itself and the plane covers only genus one tori and the once punctured
plane C∗ = C \ {0}. Every other Riemann surface is the quotient of the disk by
a Fuchsian group (i.e., a discrete group of Möbius transformations acting on D).
There are proofs of this in several recent textbooks, e.g., Don Marshall’s [44] or Dror
Varolin’s [61]. A planar domain Ω is called hyperbolic if C\Ω has at least two points.
Thus the following is a special case of the uniformization theorem.

Theorem A.1. Every hyperbolic plane domain Ω is holomorphically covered by D

(i.e., there is a locally 1-to-1, holomorphic covering map from D to Ω).

For us, the most important example is the twice punctured plane C∗∗ = C \ {0, 1}.
The fact that its universal cover is the unit disk (which can also be proven by a direct
construction of the covering map) implies several very useful facts.

Theorem A.2 (Picard’s little theorem). If f is a non-constant entire function, then
E = C \ f(C) contains at most one point.

Proof. If E contains two points {a, b}, then using the covering map p : D → C\{a, b},
f can be lifted to a holomorphic map f : C → D. By Liouville’s theorem, the lift is
constant and hence so must f . �

A family F of meromorphic functions on a planar domain Ω is a normal family
if every sequence in F contains a subsequence that converges uniformly on every
compact set or converges uniformly to ∞ on every compact set. The following can
be found in several texts, e.g., Folland’s [30].

Theorem A.3 (Arzela-Ascoli). A family F of continuous functions from a planar
domain Ω to a metric space (X, d) is normal if and only if
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(1) F is equicontinuous on every compact E ⊂ Ω.
(2) For any z ∈ Ω, {f(z) : f ∈ F} is pre-compact (lies in a compact subset).

By the Cauchy estimates, a holomorphic map f from a planar domain Ω to the
unit disk satisfies

|f ′(z)| ≤ C/dist(z, ∂Ω).

By the Arzela-Ascoli Theorem, the family of such functions is normal; we call this
the “first version” of Montel’s theorem. More generally, we have the following.

Theorem A.4 (Montel’s theorem). If F is a family of holomorphic functions on a
planar domain Ω all taking values in W = C \ {a, b} for some a 6= b, then F is a
normal family.

Proof. Since C∗∗ = C\{0, 1} is covered by by the disk, each map f : Ω → C∗∗ can be
lifted to a map F : Ω → D. The family of lifted maps is normal by the first version
of Montel’s theorem. Thus any sequence {fn} in F can be lifted to a sequence {Fn}
that has a convergent subsequence {Fnk

} and {fnk
} = {p ◦ Fnk

} is convergent in the
original family. �

Thus omitting two values has two consequences: it implies normality when applied
to functions on a hyperbolic domain and it implies constancy when applied to func-
tions on C. Bloch’s principle says that a property of a family of functions implies
one of these conclusions if and only if it implies the other. This is not always true,
but it does hold for a number of interesting cases (such as families that are uni-
formly bounded or omitting two values, as above) and it can be made into a precise
mathematical statement. See Bergweiler’s paper [17].

Theorem A.5 (Picard’s great theorem). If f is meromorphic on AR = {R < |z| <
∞} and has an essential singularity at ∞, then for every r ≥ R, E = C \ f(Ar)
contains at most one point.

Proof. Let Dr = {|z| > r}. For r sufficiently large, f(Dr) omits two points, and
therefore f has a lift to a map Dr → D. This is a bounded holomorphic function on
Dr, which is conformally a punctured disk. So by the Riemann removability theorem
(Corollary 5.10, [44]) the lift extends holomorphically across the puncture. Thus f
cannot have an essentially singularity at ∞, a contradiction. �

A.1. Pre-periodic points. The following was known to Fatou [29], and made ex-
plicit by Rosenbloom [54].

Lemma A.6. If g is entire and h(z) = (g(g(z))− z)/(g(z)− z) is constant then g is
constant or linear.

Proof. If h ≡ 0, then g(g((z)) = z implying g is 1-to-1, hence linear. If h ≡ 1, then
g ◦ g = g so g is constant or g(z) = z. So assume h is a constant c 6= 0, 1, i.e,

g2(z)− z = c(g(z)− z),
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and differentiate to get

g′(g(z))g′(z)− 1 = c(g′(z)− 1),

or
g′(z)(g′(g(z))− c) = 1− c.

Since c 6= 1, the left side is never zero, hence both factors are never zero. Thus g′

omits 0. It also omits c, for if g covers the whole plane this is obvious; if g′ = c only
at the single possible omitted value of g, then g′ takes the values 0, c only finitely
often; by the great Picard theorem g′ is a polynomial omitting 0, hence constant.
Thus g is linear. �

We leave it to the reader to show that if h is rational, then g must be rational too.

Theorem A.7. If g is entire and not constant or linear then it has at least two
pre-periodic points.

Proof. Consider the function

h(z) = (g(g(z))− z)/(g(z)− z),

as in Lemma A.6. Our assumption implies that h is a non-constant meromorphic
function. If h(z) = ∞ then g(z) = z, so every such point is a fixed point of g. If
h(z) = 0 then g2(z) = z so every such point is periodic or period 2. If h(z) = 1, then
g2(z) = g(z) so g(z) is a fixed point of g and hence z is pre-periodic.
If h is a rational of degree d ≥ 1, then each of {0, 1} has at least one preimage and

hence g has at least two pre-periodic points. Otherwise h has an essential singularity
at ∞ and then Picard’s great theorem says that it takes on at least one of the values
{0, 1,∞} infinitely often. Hence g has infinitely many pre-periodic points. �

Lemma A.8. The Julia set is contained in the accumulation set of the backwards
orbits ∪nf

−n(z), except possibly for one exceptional point z.

Proof. Suppose z ∈ J (f) and V is a neighborhood of z. Then {fn} is not normal on
V , so takes every complex value except possibly one (Theorem A.4). Thus given any
two points, at least one of them is eventually covered by fn(V ). �

Thus the Julia set is contained in the closure of any backwards invariant set with at
least two elements. For polynomials of degree ≥ 2 or transcendental entire functions,
this includes the set of pre-periodic points.

Theorem A.9. The Julia set is contained in the closure of the pre-periodic points.

In fact, a much stronger statement is true: the Julia set is the closure of the repelling
periodic points of f (all of which must be contained in the Julia set). For entire
functions this is due to Baker [6], and to Baker, Kotus and Lu [10] for meromorphic
functions. The early proofs of this depended on the Ahlfors islands theorem; a
deep result giving the normality of meromorphic families satisfying certain geometric
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conditions. See Bergweiler’s paper [16] for an illuminating discussion of Ahlfors’
theorem and its applications to dynamics. More elementary proofs of the density of
repelling fixed points have been found by Bargmann [12], Berteloot and Duval [21],
and Schwick [56]. The proof in [21] is particularly short and elementary, depending on
Picard’s theorem and an extremely useful characterization of non-normality known
as Zalcman’s lemma [63].
In general, the Julia set need not be the whole accumulation set of a backwards

orbit. For example, there can be simply connected Fatou components where f is
conjugate to an irrational rotation (Siegel disks) and the accumulation set of a point
in such a component contains a closed curve inside the Fatou component.

A.2. Modulus and extremal length. Suppose Γ is a family of locally rectifiable
paths in a planar domain Ω and ρ is a non-negative Borel function on Ω. We say ρ
is admissible for Γ (and write ρ ∈ A(Γ)) if

ℓ(Γ) = ℓρ(Γ) = inf
γ∈Γ

∫

γ

ρds ≥ 1,

and define the modulus of Γ as

Mod(Γ) = inf
ρ

∫

M

ρ2dxdy,

where the infimum is over all admissible ρ for Γ. This is a well known conformal
invariant whose basic properties are discussed in many sources such as Ahlfors’ book
[3]. Its reciprocal is called the extremal length of the path family and is denoted

λ(Γ) = 1/M(Γ).

Modulus and extremal length satisfy several properties that are helpful in estimating
these quantities.

Lemma A.10 (Conformal invariance). If F is a family of curves in a domain Ω and
f is a one-to-one analytic mapping from Ω to Ω′ then M(F) =M(f(F)).

Proof. This is just the change of variables formulas
∫

γ

ρ ◦ f |f ′|ds =
∫

f(γ)

ρds,

∫

Ω

(ρ ◦ f)2|f ′|2dxdy =

∫

f(Ω)

ρdxdy.

These imply that if ρ ∈ A(f(F)) then |f ′| · ρ ◦ f−1 ∈ A(f(F)), and thus M(f(F)) ≤
M(F). We get the other direction by considering f−1. �

Lemma A.11 (Monotonicity). If F1 and F2 are collections such that every γ ∈ F1

contains some curve in F2 then M(F1) ≤M(F2) and λ(F1) ≥ λ(F2).

The proof is immediate since A(F1) ⊃ A(F2).
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Lemma A.12 (Grötzsch Principle). If F1 and F2 are families of curves in disjoint
domains then M(F1 ∪ F2) =M(F1) +M(F2).

Proof. Suppose ρ1 and ρ2 are admissible for F1 and F2. Take ρ = ρ1 and ρ = ρ2 in
their respective domains. Then it is easy to check that ρ is admissible for F1∪F2 and
∫

ρ2 =
∫

ρ21+
∫

ρ22 so domains thenM(F1∪F2) ≤M(F1)+M(F2). By restricting an
admissible metric ρ to each domain, a similar argument proves the other direction. �

Lemma A.13 (Series Rule). If F1 and F2 are families of curves in disjoint domains
and every curve of F contains both a curve from F1 and F2, then λ(F) ≥ λ(F1) +
λ(F2).

Proof. If ρi ∈ A(Fi) for i = 1, 2, then ρ = tρ1 + (1 − t)ρ2 is admissible for F . Since
the domains are disjoint we may assume ρ1ρ2 = 0 everywhere so for 0 ≤ t ≤ 1,

ρ2 = t2ρ21 + (1− t)2ρ22.

Integrating ρ2 then shows

M(F) ≤ t2M(F1) + (1− t)2M(F2),

for each t. To find the optimal t set a = M(F1), b = M(F2), differentiate the right
hand side above, and set it equal to zero

2at− 2b(1− t) = 0.

Solving gives t = b/(a+ b) and plugging this in above gives

M(F) ≤ t2a+ (1− t)2b =
b2a+ a2b

(a+ b)2

=
ab(a+ b)

(a+ b)2
=

ab

a+ b
=

1
1
a
+ 1

b

or
1

M(F)
≥ 1

M(F1)
+

1

M(F2)
,

which, by definition, is the same as

λ(F) ≥ λ(F1) + λ(F2),

�

Next we actually compute the modulus of some path families. The fundamental
example is to compute the modulus of the path family connecting opposite sides of a
a× b rectangle; this serves as the model of almost all modulus estimates. So suppose
R = [0, b] × [0, a] is a b wide and a high rectangle and Γ consists of all rectifiable
curves in R with one endpoint on each of the sides of length a. Then each such curve
has length at least b, so if we let ρ be the constant 1/b function on R we have

∫

γ

ρds ≥ 1,
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for all γ ∈ Γ. Thus this metric is admissible and so

Mod(Γ) ≤
∫∫

T

ρ2dxdy =
1

b2
ab =

a

b
.

To prove a lower bound, we use the well known Cauchy-Schwarz inequality:

(

∫

fgdx)2 ≤ (

∫

f 2dx)(

∫

g2dx).

To apply this, suppose ρ is an admissible metric on R for γ. Every horizontal segment
in R connecting the two sides of length a is in Γ, so since γ is admissible, the Cauchy-
Schwarz inequality gives

1 ≤
∫ b

0

(1 · ρ(x, y))dx ≤
∫ b

0

12dx ·
∫ b

0

ρ2(x, y)dx.

Now integrate with respect to y to get

a =

∫ a

0

1dy ≤ b

∫ a

0

∫ b

0

ρ2(x, y)dxdy,

which implies Mod(Γ) ≥ b
a
. Thus we must have equality. Let T = ∂D = {|z| = 1}

denote the unit circle.

Lemma A.14. If A = {z : r < |z| < R} then the modulus of the path family
connecting the two boundary components is 1

2π
log R

r
. More generally, if F is the

family of paths connecting rT to a set E ⊂ RT, then M(F) ≥ |E| log R
r
.

Proof. By conformal invariance, we can rescale and assume r = 1. Suppose ρ is
admissible for F . Then for each z ∈ E ⊂ T,

1 ≤ (

∫ R

1

ρdr)2 ≤ (

∫ R

1

dr

r
)(

∫ R

1

ρ2rdr) = logR

∫ R

1

ρ2rdr

so
∫ 2π

0

∫ R

1

ρ2rdrdθ ≥
∫

E

∫ R

r

ρ2rdrdθ ≥ |E|
∫ R

1

ρ2rdr ≥ |E| logR �

A quadrilateral Q is a Jordan curve in the plane with two distinguished, disjoint,
closed subarcs. The modulus of Q is the modulus of the path family in Q connecting
these two boundary arcs. We will use without proof that there is a conformal map
of the interior of Q to a rectangle that extends homeomorphically to the boundary
with the four marked points mapping to the four corners of the rectangle. If the
rectangle has side lengths a, b > 0, and the distinguished arcs of Q map to the then
the modulus of the quadrilateral is a/b.

Lemma A.15. Suppose Q is a quadrilateral with opposite pairs of sides E,F and
C,D. Assume

(1) E and F can be connected in Q by a curve of diameter ≤ ǫ,
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(2) any curve connecting C and D in Q has diameter at least 1.

Then the modulus of the path family connecting E and F in Q is larger than M(ǫ)
where M(ǫ) → ∞ as ǫ→ 0.

Proof. There is a segment (a, b) ⊂ Q with |a − b| ≤ ǫ and a ∈ E and b ∈ F . Define
a metric on Q by ρ(z) = 1

2
|z − a|−1/ log(1/2ǫ) for ǫ < |z − a| < 1/2. Any curve γ

connecting C and D must cross S and since γ has diameter ≥ 1 it must leave the
annulus where ρ is non-zero. As before this shows that the modulus of the path
family in Q separating E and F is small, hence the modulus of the family connecting
them is large. See Figure 1. �

E

F

C

D

Figure 1. Proof of Lemma A.15.

Lemma A.16. Suppose Ω ⊂ C is a topological annulus of modulusM whose boundary
consists of two Jordan curves γ1, γ2 with γ2 separating γ1 from ∞. Then diam(γ1) ≤
(1− ǫ)diam(γ2) where ǫ > 0 depends only on M .

Proof. Rescale so diam(γ2) = diam(Ω) = 1 and suppose diam(γ1) > 1 − ǫ. Then
there are points a ∈ γ1 and b ∈ γ2 with |a− b| ≤ ǫ. Let ρ be the metric on Ω defined
by ρ(z) = 1

|z−a| log(1/2ǫ)
for ǫ < |z− a| < 1/2. Then any curve γ ⊂ Ω that separates γ1

and γ2 satisfies
∫

γ
ρds ≥ 1 and

M ≤
∫

ρ2dxdy ≤ π

4
log−2 1

2ǫ
.

Thus the modulus of the path family separating the boundary components is bounded
above by the right hand side, and the modulus of the reciprocal family connecting the
boundary components is bounded below by π

4
log2 1

2ǫ
. Thus ǫ ≥ 1

2
exp(−

√

πM/4). �

A.3. Koebe’s 1
4
-theorem. In this sub-section we give a proof of Koebe’ theorem

using extremal length (the usual proof uses the area theorem, e.g. Theorem I.4.1 of
[31]).
If γ is a path in the plane let γ̄ be its reflection across the real line and let γ+ =

(γ ∩ H2
+) ∪ γ ∩Hl, where H2

+,Hl denote the upper and lower half-planes. If Γ is a

path family in the plane then Γ = {γ̄ : γ ∈ Γ} and Γ+ = {γ+ : γ ∈ Γ}.
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γ
γ+

Figure 2. The curves γ and γ+

Lemma A.17. If Γ = Γ then M(Γ) = 2M(Γ+).

Proof. We start by proving M(Γ) ≤ 2M(Γ+). Given a metric ρ, define σ(z) =
max(ρ(z), ρ(z̄)). Then for any γ ∈ Γ,

∫

+γ+σds ≥
∫

γ+

ρds ≥ inf
γ∈Γ

∫

γ

ρds.

Thus if ρ admissible for Γ+, then σ is admissible for Γ Thus, since max(a, b)2 ≤ a2+b2,

M(Γ) ≤
∫

σ2dxdy ≤
∫

ρ2(z)dxdy +

∫

ρ2(z̄)dxdy ≤ 2

∫

ρ2(z)dxdy.

Taking the infimum over admissible ρ’s for Γ+ makes the right hand side equal to
2M(Γ+), proving the claim.
For the other direction, given ρ define σ(z) = ρ(z) + ρ(z̄) for z ∈ H2

+ and σ = 0 if
z ∈ Hl. Then

∫

γ+

σds =

∫

γ+

ρ(z) + ρ(z̄)ds

=

∫

γ∩H2
+

ρ(z)ds+

∫

γ∩H2
+

ρ(z̄)ds+

∫

γ∩Hl

ρ(z) +

∫

γ∩Hl

ρ(z̄)ds

=

∫

γ

ρ(z)ds+

∫

γ̄

ρ(z)ds ≥ 2 inf
ρ

∫

γ

ρds.

Thus if ρ is admissible for Γ, 1
2
σ is admissible for Γ+. Hence, since (a+b)2 ≤ 2(a2+b2),

M(Γ+) ≤
∫

(
1

2
σ)2dxdy =

1

4

∫

H2
+

(ρ(z) + ρ(z̄))2dxdy

≤ 1

2

∫

H2
+

ρ2(z)dxdy +

∫

H2
+

ρ2(z̄)dxdy

=
1

2

∫

ρ2dxdy.



WANDERING DOMAINS 13

Taking the infimum over all admissible ρ’s for Γ gives 1
2
M(Γ) on the right hand side,

proving the lemma. �

Lemma A.18. Let D∗ = {z : |z| > 1} and Ω0 = D∗ \ [R,∞) for some R > 1. Let
Ω = D∗ \K, where K is a closed, unbounded, connected set in D∗ which contains the
point {R}. Let Γ0,Γ denote the path families in these domains with separate the two
boundary components. Then M(Γ0) ≤M(Γ).

Proof. We use the symmetry principle we just proved. The family Γ0 is clearly sym-
metric (i.e., Γ = Γ, soM(Γ+) = 1

2
M(Γ0). The family Γ may not be symmetric, but we

can replace it by a larger family that is. Let ΓR be the collection of rectifiable curves
in D∗\{R} which have zero winding number around {R}, but non-zero winding num-
ber around 0. Clearly Γ ⊂ ΓR and ΓR is symmetric so M(Γ) ≥ M(ΓR) = 2M(Γ+

R).
Thus all we have to do is show M(Γ+

R) = M(Γ+
0 ). We will actually show Γ+

R = Γ+
0 .

Since Γ0 ⊂ ΓR is obvious, we need only show Γ+
R ⊂ Γ+

0 . Suppose γ ∈ ΓR. Since γ has

Figure 3. The annulus on top has smaller modulus than any other
annulus formed by connecting R to ∞.

non-zero winding around 0 it must cross both the negative and positive real axes. If it
never crossed (0, R) then the winding around 0 and R would be the same, which false,
so γ must cross (0, R) as well. Choose points z− ∈ γ ∩ (−∞, 0) and z+ ∈ γ ∩ (0, R).
These points divide γ into two subarcs γ1 and γ2. Then γ+ = γ+1 ∪ γ+2 . But if we
reflect γ+2 into the lower half-plane and join it to γ+1 it forms a closed curve γ0 that
is in Γ0 and γ+0 = γ+. Thus γ+ ∈ Γ+

0 , as desired. �

Let Ωǫ,R = {z : |z| > ǫ} \ [R,∞). Thus Ω1,R is the domain considered in the
previous lemma. We can estimate the moduli of these domains using the Koebe map

k(z) =
z

(1 + z)2
= z − 2z2 + 3z3 − 4z4 + 5z5 − . . . ,

which conformal maps the unit disk to R2 \ [1
4
,∞) and satisfies k(0) = 0, k′(0) = 1.

Then k−1( 1
4R
z) maps Ωǫ,R conformally to an annular domain in the disk whose outer
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boundary is the unit circle and whose inner boundary is trapped between the circle
of radius ǫ

4R
(1±O( ǫ

R
). Thus the modulus of Ωǫ,R is 2π log 4R

ǫ
+O( ǫ

R
).

Lemma A.19. Suppose z, w ∈ D and K is a compact connected set in D which
contains both these points. Let Γ be the path family that separates K and T. Then
the modulus of this family is maximized when K is the hyperbolic geodesic between z
and w in which case the modulus is 2π log 4

ρ
(z, w) + O(ρ(z, w)), where ρ denotes the

hyperbolic distance.

Proof. By conformal invariance we may use a Möbius transformation to move z to 0
and move w onto the positive axis. Applying an inversion, the path family is mapped
to one as in Lemma A.18, showing that the radial line from z to w maximizes the
modulus. The estimate of the modulus follows from our previous remarks. �

We now give an elegant proof of the Koebe 1
4
-theorem due to Mateljevic [47].

Theorem A.20 (The Koebe 1
4
Theorem). Suppose f is holomorphic, 1-1 on D and

f(0) = 0, f ′(0) = 1. Then D(0, 1
4
) ⊂ f(D).

Proof. Recall that the modulus of a doubly connected domain is the modulus of
the path family that separates the two boundary components (and is equal to the
extremal distance between the boundary components). Let R = dist(0, ∂f(D)). Let
Aǫ,r = {z : ǫ < |z| < r} and note that by conformal invariance

2π log
1

ǫ
=M(Aǫ,1) =M(f(Aǫ,1)).

Let δ = min|z|=ǫ |f(z)|. Since f ′(0) = 1, δ = ǫ + O(ǫ2). Note that f(D) \ D(0, δ) ⊃
f(Aǫ,1), so

M(f(D) \D(0, δ)) ≥M(f(Aǫ,1)).

By Lemma A.18

M(f(D) \D(0, δ)) ≤M(Ωδ,R) = 2π log
4R

δ
+O(

δ

R
).

Putting these together gives

2π log
4R

δ
+O(

δ

R
) ≥ 2π log

1

ǫ
,

or

log 4R− log(ǫ+O(ǫ2)) +O(
ǫ

R
) ≥ − log ǫ.

Taking ǫ→ 0 shows log 4R ≥ 0, or R ≥ 1
4
. �
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A.4. The Gehring-Hayman theorem and radial limits of conformal maps.

In [32] Gehring and Hayman proved the following fundamental inequality that says
that the hyperbolic geodesic is (up to a constant factor) the most efficient way to
connect two points in a simply connected plane domain. This is a fundamental (and
very useful) property of the hyperbolic metric that has been generalized in many
directions, e.g., [34], [41], [60].

Theorem A.21 (Gehring-Hayman inequality). There is an absolute constant C <∞
to that the following holds. Suppose Ω ⊂ C is hyperbolic and simply connected. Given
two points in Ω, let γ be the hyperbolic geodesic connecting these two points and let
γ′ be any other curve in Ω connecting them. Then ℓ(γ) ≤ Cℓ(γ′).

Proof. Let
Qn = {z ∈ D : 2−n−1 < |z − 1| < 2−n},

and let
γn = {z ∈ D : |z − 1| = 2−n},

zn = γn ∩ [0, 1).

Let f : D → Ω be conformal, normalized so that γ is the image of I = [0, r] ⊂ D for
some 0 < r < 1. Without loss of generality we may assume r = zN+1 for some N
(if not we truncate a segment of the form J = [zN+1, r] and use Koebe’s theorem to
compare the lengths of f(J) and γ′ ∩ f(QN+1)).
Let Q′

n ⊂ Qn be the sub-quadrilateral of points with | arg(z − 1)| < π/6. Each
of these has bounded hyperbolic diameter and hence by Koebe’s theorem its image
is bounded by four arcs of diameter ≃ dn and opposite sides are ≃ dn apart. In
particular, this means that any curve in f(Qn) separating γn and γn+1 must cross
f(Q′

n) and hence has diameter & dn. Since Qn has bounded modulus, so does f(Qn)
and so Lemma A.15 says that the shortest curve in f(Qn) connecting γn and γn+1

has length ℓn ≃ dn. Thus any curve γ in Q connecting γn and γn+1 has length at
least ℓn, and so

ℓ(γ) = O(
∑

dn) = O(
∑

ℓn) ≤ O(ℓ(γ′)).

�

Given E ⊂ T we will denote the capacity of E to be the modulus of the path family
in the annulus {1

2
< |z| < 1} that has one endpoint on {|z| = 1

2
} and one endpoint on

E. This definition of capacity is non-standard, and is a substitute for the logarithmic
capacity cap(E) of E. By Pfluger’s theorem (e.g., see [31]) If K ⊂ D is a compact
connected set, the logarithmic capacity satisfies the estimates

1

cap(E)
+ C1 ≤

π

M(FE)
≤ 1

cap(E)
+ C2,

where FE is the path family connecting {|z| = 1
2
} to E. Here C1, C2 are universal

constants. If {|z| = 1/2} was replaced by some other nontrivial, compact, connected
subset K of the unit disk, these constants would only depend on K. In particular,
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one of these quantities is zero iff the other is. We will not use this connection be-
tween logarithmic capacity and modulus, but we will need the following (rather weak)
statement that zero capacity sets are small. We leave it to the reader to check that
replacing {|z| < 1/2} by some other compact subset of D does not change whether
the corresponding capacity of a boundary set is zero or not.

Lemma A.22. If E has zero capacity, then it has zero length.

Proof. We prove the contrapositive. If E has positive length, suppose ρ is an ad-
missible metric for the corresponding path family. Considering the radial segments
connecting E to {|z| = 1/2}, we see

|E| ≤ 2

∫

E

∫ 1

1/2

ρ(z)drdθ ≤ 4

∫

E

∫ 1

1/2

ρ(z)rdrdθ

≤ 4

(
∫

E

∫ 1

1/2

ρ2(z)dxdy

)1/2

·
(
∫

E

∫ 1

1/2

1dxdy

)1/2

≤ 2

(
∫

E

∫ 1

1/2

ρ2(z)dxdy

)1/2

·
√

|E|.

Hence
∫

ρ2dxdy ≥ 1
4
|E|. �

Lemma A.23. Suppose f : D → Ω is conformal, and for R ≥ 1,

ER = {x ∈ T : |f(x)− f(0)| ≥ R dist(f(0), ∂Ω)}.
Then ER has capacity O(1/ logR) if R is large enough.

Proof. Assume f(0) = 0 and dist(0, ∂Ω) = 1 and let ρ(z) = |z|−1/ logR for z ∈
Ω ∩ {1 < |z| < R}. Then ρ is admissible for the path family F connecting D(0, 1/2)
to ∂Ω \ D(0, R) and

∫∫

ρ2dxdy ≤ 2π/ logR. By definition M(F) ≤ 2π/ logR and
λ(F) ≥ (logR)/2π. By the Koebe distortion theorem K = f−1(D(0, 1/2)) is con-
tained in a compact subset of D, independent of Ω, one can show that the extremal
length connecting K to the E is comparable to the extremal length connecting
{|z| = 1/2} to E. �

Corollary A.24. Suppose f : D → Ω is conformal and a ∈ C ∪ {∞}. Then the set
where f has radial limit a has zero capacity.

Proof. When a = ∞, this is immediate from the previous result. If a ∈ ∂Ω\{∞}, we
can reduce to the case a = ∞ by applying the conformal transformation z → 1/(a−z).
The cases a 6∈ ∂Ω are trivial. �

Lemma A.25. There is a C < ∞ so that the following holds. Suppose f : D → Ω
and 1

2
≤ r < 1. Let E(δ, r) = {x ∈ T : |f(sx)−f(rx)| ≥ δ for some s ∈ (r, 1)}. Then

the extremal length of the path family P connecting D(0, r) to E is bounded below by
δ2/Ca(r).
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Proof. Suppose z, w ∈ Ω, suppose γ is the hyperbolic geodesic connecting z and w
and suppose γ̃ is any path in Ω connecting these points. By the Gehring-Hayman
inequality (Theorem A.21) there is a universal C <∞ such that ℓ(γ) ≤ Cℓ(γ̃) (here
ℓ(γ) denotes the length of γ).
Now suppose we apply this with z = f(sx) and w ∈ f(D(0, r)). By the Gehring-

Hayman estimate, the length of any curve from w to z is at least 1/C times the length
of the hyperbolic geodesic γ between them. But this geodesic has a segment γ0 that
lies within a uniformly bounded distance of the geodesic γ1 from f(rx) to z. By the
Koebe distortion theorem γ0 and γ1 have comparable Euclidean lengths, and clearly
the length of γ1 is at least δ. Thus the length of any path from f(D(0, r)) to f(sx) is
at least δ/C. Now let ρ = C/δ in Ω\f(D(0, r)) and 0 elsewhere. Then ρ is admissible

for f(P) and
∫∫

ρ2dxdy is bounded by C2a(r)/δ2. Thus λ(P) ≥ δ2

C2a(r)
. �

Corollary A.26. If f : D → Ω is conformal, then f has radial limits except on a set
of zero capacity (and hence has finite radial limits a.e. on T).

Proof. Let Er,δ ⊂ T be the set of x ∈ T so that diam(f(rx, x)) > δ, and let Eδ =
∩0<r<1Er,δ. If f does not have a radial limit at x ∈ T, then x ∈ Eδ for some δ > 0,
and this has zero capacity by Lemma A.25. Taking the union over a sequence of
δ’s tending to zero proves the result. The set where f has a radial limit ∞ has
zero capacity by Lemma A.23, so we deduce f has finite radial limits except on zero
capacity. �

Appendix B. Quasiconformal mappings

B.1. Continuity of modulus. A quadrilateral Q is a Jordan curve in the plane
with two distinguished, disjoint, closed subarcs. We will use without proof that there
is a conformal map of the interior of Q to a rectangle that extends homeomorphically
to the boundary with the four marked points mapping to the four corners of the
rectangle. If the rectangle has side lengths a, b > 0, and the distinguished arcs of Q
map to the then the modulus of the quadrilateral is a/b. Our first goal is to show this
is continuous under perturbation, at least for an appropriate version of convergence
of quadrilaterals.

Lemma B.1. Suppose {fn} are conformal maps of D → Ωn that converge uniformly
on compact subsets of D to a conformal map f : D → Ω. Suppose that the boundary of
each Ωn is the homeomorphic image ∂Ωn = σn(T) and that {σn} converges uniformly
on T to a homeomorphism σ : T → ∂Ω. Then fn → f uniformly on the D.

Proof. Fix ǫ > 0 and choose n so large that if we divide T into n equal sized intervals
{Jj}n1 , then σ maps each of them to a set Ij of diameter at most ǫ/2. Let Ikj = fk(Jj).
Because σk → σ uniformly, the sets Ij all have diameter at most ǫ, if k is large enough.
Next choose η > 0 so small that if k,m > 1/η and σm(Jj) and σk(Ji) contain points

at most distance Cη apart, then Ji and Jk are the same or adjacent to each other.
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We can do this because of the uniform convergence and the fact that σ is 1-to-1. By
passing to the limit the same property holds if we replace σm by σ.
Next choose m so large that f(D) \ f({|z| < 1 − 1

m
}) is contained in an η-

neighborhood of ∂Ω. Choose m points {zj} equally spaced on the circle |z| = 1− 1
m
,

and let Kj ⊂ T be the arc centered at zj/|zj| of length 4π/m. Fix a small number
δ > 0 (δ will be determined below, depending only on η). By Lemmas A.22 and A.23,
we may choose a point wj ∈ Kj so that |wj − zj| ≤ 2/m and

|f(wj)− f(wj(1−
1

m
))| ≤ Cδ.

Similarly, choose points wk
j ∈ Kj so that

|fk(wk
j )− fk(zj)| ≤ 2Cδ.

This is possible since fk → f uniformly on the compact set {|z| ≤ 1 − 1
m
} and

thus ∂fk(D) is contained in an 2δ-neighborhood of ∂Ω for k large enough and ∂Ωk

is contained in a δ-neighborhood of ∂Ω because of the uniform convergence of the
parameterizations.
By taking m larger, if necessary, we can also arrange that each Ij contains at least

one of the points f(zm/|zm|). Thus each f(Kj) is mapped into the union of at most
2 of the Ij and hence its image has diameter at most 2ǫ. Also, the points f(wk

p) and

f(wk
p+1) are at most Cδ apart, so belong to the same or adjacent sets Ij. Thus fk(Kp)

is a union of at most 4 such adjacent sets and hence has diameter O(ǫ).
For each wk

p there is an arc Jj so that fk(w
k
p) ⊂ σk(Jj). Similarly, there is an arc Ji

so that f(wp) ∈ Ii = σ(Ji). Since fk → f uniformly on the finite set {zn}, we have,
for k sufficiently large

|fk(wk
n)− f(wn)| ≤ |fk(wk

n)− fk(zn)|+ |fk(zn)− f(zn)|
+|f(zn)− f(wn)|

≤ (2C + 1 + C)δ.

This is less than η if δ is small enough.
Since Ii and Ij each have diameter at most ǫ, their union has diameter < 2ǫ and the

union of the intervals adjacent to these is at most 4ǫ. Similarly for Iki and Jk
j . Thus

fk(Kp) and f(Kp) are contained in O(ǫ)-neighborhoods of each other. Thus fk → f
uniformly on T. By the maximum principle, this implies uniform convergence on the
closed disk, as desired. �

Corollary B.2. Suppose {fn} are homeomorphisms C → C that converge uniformly
to a homeomorphism f and that Q is a quadrilateral. If Qn = fn(Q), then the moduli
of Qn converge to the modulus of f(Q)

B.2. Angle distortion of linear maps. Conformal maps preserves angles; qua-
siconformal maps can distort angles, but only in a controlled way. To make this
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distinction more precise we must have a way to measure angle distortion and we
start with a discussion of linear maps.
Consider the linear map

(

x
y

)

→M

(

x
y

)

=

(

a b
c d

)(

x
y

)

= (ax+ by, cx+ dy).

LetMT denote the transpose of the real matrixM , i.e., its reflection over the main
diagonal. Then

MT ·M =

(

a c
b d

)

·
(

a b
c d

)

=

(

a2 + c2 ab+ cd
ab+ cd b2 + d2

)

≡
(

E F
F G

)

is positive and symmetric and hence has two positive eigenvalues λ1, λ2, assuming M
in non-degenerate. The square roots s1 =

√
λ1, s2 =

√
λ2 are the singular values of

A (without loss of generality we assume s1 ≥ s2). Then

M = U ·
(

s1 0
0 s2

)

· V,

where U, V are rotations. ThusM maps the unit circle to an ellipse whose major and
minor axes have length s1 and s2. Thus M preserves angles iff it maps the unit circle
to a circle iff s1 = s2. Otherwise M distorts angles and we let D = s1/s2 denote the
dilatation of the linear map M . This is the eccentricity of the image ellipse and is
≥ 1, with equality iff M conformal.
The inverse of a linear map with singular values {s1, s2} has singular values { 1

s2
, 1
s1
}

and hence dilatation D = (1/s2)/(1/s1) = s1/s2. Thus the dilatation of a linear map
and its inverse are the same.
Given two linear maps M,N with singular values s1 ≥ s2 and t1 ≥ t2 respectively,

the singular values of the composition MN are trapped between s1t1 and s2t2 (this
occurs for the maximum singular values since they give the operator norms of the
matrices and these are multiplicative; a similar argument works for the minimum
singular values and the inverse maps). Thus the dilation is less than (s1t1)/(s2t2) i.e.,
dilatations satisfy

DM◦N ≤ DM ·DN .

The dilatation D can be computed in terms of a, b, c, d as follows. The eigenvalues
λ1, λ2 are roots of the

0 = det(MT ·M − λI),

which is the same as

0 = (E − λ)(G− λ)− F 2 = EG− F 2 − (E +G)λ+ λ2.
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Thus

λ1λ2 = EG− F 2

= (a2 + c2)(b2 + d2)− (ab+ cd)2

= a2b2 + a2d2 + c2b2 + d2c2 − (a2b2 + 2abcd+ c2d2)

= a2d2 + c2b2 − 2abcd

= (ad− bc)2

Similarly,

λ1 + λ2 = E +G = a2 + b2 + c2 + d2.

The values of λ1, λ2 can be found using the quadratic formula:

{λ1, λ2} =
1

2
[E +G±

√

(E +G)2 − 4(EG− F 2)]

=
1

2
[E +G±

√

(E −G)2 + 4F 2)].

Thus

λ1
λ2

=
E +G+

√

(E −G)2 + 4F 2

E +G−
√

(E −G)2 + 4F 2

=
(E +G+

√

(E −G)2 + 4F 2)2

(E +G)2 − (E −G)2 − 4F 2

=
(E +G+

√

(E −G)2 + 4F 2)2

4(EG+ F 2)
.

and hence

D =
s1
s2

=

√

λ1
λ2

=
E +G+

√

(E −G)2 + 4F 2

2
√
EG+ F 2

.

This formula can be made simpler by complexifying. Think of the linear map M
on R2 as a map f on C:

x+ iy → ax+ by + i(cx+ dy) = u(x, y) + iv(x, y) = f(x+ iy)

Then

M =

(

ux uy
vx vy

)

and we define

fz =
1

2
(fx−ify) =

1

2
(ux+vy)+

i

2
(vx−uy), fz =

1

2
(fx+ify) =

1

2
(ux−vy)+

i

2
(vx+uy).
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Some tedious arithmetic now shows that

4|fz|2 = (ux + vy)
2 + (vx − uy)

2

= u2x + 2uxvy + v2y + v2x − 2vxuy + u2y

4|fz|2 = (ux − vy)
2 + (vx + uy)

2

= u2x − 2uxvy + v2y + v2x + 2vxuy + u2y

so

(|fz|+ |fz|)(|fz| − |fz|) = |fz|2 − |fz|2 = uxvy − vxuy = s1s2 = det(M).

In particular, if we assumeM is orientation preserving and full rank, then det(M) > 0
and we deduce |fz| > |fz|. Similarly,

(|fz|+ |fz|)2 + (|fz| − |fz|)2 = 2(|fz|2 + |fz|2)
= u2x + v2x + u2y + v2x
= E +G

= λ1 + λ2

= s21 + s22.

From these equations and the facts s1 ≥ s2, |fz| > |fz| we can deduce

s1 = |fz|+ |fz|, s2 = |fz| − |fz|,
and hence

D =
s1
s2

=
|fz|+ |fz|
|fz| − |fz|

.

Note that D ≥ 1 with equality iff f is a conformal linear map.

B.3. Dilatations. It is often more convenient to deal with the complex number

µ =
fz
fz
,

which is called the complex dilatation (although sometimes we abuse notation and
just call thus the dilatation, if the meaning is clear from context). Since |fz| < |fz|,
we have |µ| < 1 and it is easy to verify that

D =
1 + |µ|
1− |µ| , |µ| = D − 1

D + 1
,

so that either D or |µ| can be used to measure the degree of non-conformality.
We leave it to the reader to check that the map

x+ iy → (ax+ by) + i(cx+ dy)
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can also be written as
(z, z) → αz + βz,

where z = x+ iy, z = x− iy and α = α1 + iα2, β = β1 + iβ2, satisfy

α1 =
a+ d

2
, α2 =

a− d

2
, β1 =

c− b

2
, β2 =

b+ c

2
,

In this notation µ = β/α and

D =
|β|+ |α|
|α| − |β| .

As noted above, the linear map f sends the unit circle to an ellipse of eccentricity
D. What point on the circle is mapped furthest from the origin? Since

s1 = |fz|+ |fz|,
the maximum stretching is attained when fzz and fz̄ z̄ have the same argument, i.e.,
when

0 <
fzz

fzz
=

z2

µ|z|2 ,
or

arg(z) =
1

2
arg(µ),

Thus |µ| encodes the eccentricity of the ellipse and arg(µ) encodes the direction of
its major axis.
If we follow f by a conformal map g, then the same infinitesimal ellipse is mapped

to a circle, so we must have µg◦f = µf . If f is preceded by a conformal map g,
then the ellipse that is mapped to a circle is the original one rotated by − arg(gz), so
µf◦g = (|gz|/gz)2µf . To obtain the correct formula in general we need to do a little
linear algebra. Consider the composition g ◦ f and let w = f(z) so that the usual
chain rule gives

(g ◦ f)z = (gw ◦ f)fz + (gw̄ ◦ f)f̄z,
(g ◦ f)z = (gw ◦ f)fz + (gw̄ ◦ f)f̄z.

or in vector notation
(

(g ◦ f)z
(g ◦ f)z

)

=

(

fz f̄z
fz f̄z

)(

(gw ◦ f)
(gw̄ ◦ f)

)

The determinate of the matrix is

fzf̄z − f̄zfz = fzfz − fzfz = |fz|2 − |fz|2 = s1 · s2 = J,

which is the Jacobian of f , so by Cramer’s Rule,

(gw ◦ f) = 1

J
[(g ◦ f)zf̄z − (g ◦ f)zf̄z],

(gw̄ ◦ f) = 1

J
[(g ◦ f)zfz − (g ◦ f)zfz],
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so

µg◦f =
(g ◦ f)zfz − (g ◦ f)zfz
(g ◦ f)zf̄z − (g ◦ f)zf̄z

=
µg◦ffz − fz
f̄z − µg◦f f̄z

=
fz

fz

µg◦f − µf

1− µg◦fµf

.

Now set h = g ◦ f or g = h ◦ f−1 to get

µh◦f−1 ◦ f =
fz

fz

µh − µf

1− µhµf

.(B.1)

Thus if h and f are differentiable and have the same dilatation µ, then g = h ◦ f−1

is conformal.

B.4. Definition of quasiconformal maps. There are two alternate definitions of
quasiconformal maps that we will work with. It is well known that these are equiva-
lent, but we will not need this fact, and we only prove one definition gives a subset
of the other (this will cause a certain awkwardness in the presentation, but shortens
the paper). The first definition is in terms of the dilatations described above.
The piecewise differentiable definition: h is K-quasiconformal on Ω if there

are countable many analytic curves whose union is a closed set Γ of Ω such that h is
continuously differentiable on each connected component of Ω′ = Ω \ Γ and Dh ≤ K
on Ω′.
The main motivating example is when Ω = C, Γ is a triangulation of the plane and

µh is constant on the interior of each triangle. Such maps arise as piecewise linear
maps between compatible triangulations. We will show the above definition implies
the following one.
The geometric definition: A homeomorphism h, defined on a planar domain Ω,

is K-quasiconformal if the

1

K
M(Q) ≤M(h(Q)) ≤ KM(Q),

for every quadrilateral Q ⊂ Ω.
One can prove that this definition implies the map is absolutely continuous on

almost all lines and differentiable almost everywhere (for Lebesgue are measure), so
the partials exist almost everywhere, and the tangent maps have bounded dilatation
almost everywhere. Thus the geometric definition implies an “almost everywhere”
version of the differentiable definition, but one of our goals in this paper is to avoid
using this fact.
Next we check that the first definition implies the second. Suppose Q ⊂ Ω and

h(Q) are respectively equivalent to 1× a and 1× b rectangles and h is has dilatation
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bounded byK. Since the dilatation is unchanged by composing with conformal maps,
it suffices to show

Lemma B.3. If we have a piecewise differentiable K-quasiconformal map between a
1× a and 1× b rectangle with dilatation ≤ K, then a

K
≤ b ≤ Ka. Thus the piecewise

differentiable definition implies the geometric definition.

Proof. By integrating over horizontal lines in the first rectangle, we see

b ≤
∫ a

0

(|fz|+ |fz|)dx,

and integrating in the other variable,

b ≤
∫ 1

0

∫ a

0

(|fz|+ |fz|)dxdy.

Thus by Cauchy-Schwarz

b2 ≤ (

∫ 1

0

∫ a

0

(|fz|+ |fz|)(|fz| − |fz|)dxdy)(
∫ 1

0

∫ a

0

|fz|+ |fz|
|fz| − |fz|

dxdy)

≤ (

∫ 1

0

∫ a

0

(|fz|2 − |fz|2)dxdy)(
∫ 1

0

∫ a

0

|fz|+ |fz|
|fz| − |fz|

dxdy)

≤ (

∫ 1

0

∫ a

0

Jfdxdy)(

∫ 1

0

∫ a

0

Dfdxdy)

≤ baK,

so b ≤ Ka. The other direction follows by considering the inverse map. �

In order for the above proof to work we need two things: (1) the area of the
range to be bounded above by integrating the Jacobian over the domain and (2)
each horizontal line segment S to have an image whose length is bounded above by
the integral of |fz| + |fz| over S. This certainly holds if fz and fz are piecewise
continuous on a partition of the plane given by countable many analytic curves, as
we have assumed. Recall that µn tends to zero in measure if area({z : |µ(z)| > ǫ) →
for any ǫ > 0. We leave it to the reader to deduce the following results.

Corollary B.4. If f is a piecewise differentiable K-quasiconformal on the whole
rectangle and (1+ ǫ)-quasiconformal except on a set of area δ, then b/a ≤ 1+ ǫ+Kδ.
In particular, a sequence of such maps whose dilatations satisfy supn ‖µn‖∞ ≤ k < 1
and so that {µn} tends to 0 in measure, will tend to a 1-quasiconformal map.

Corollary B.5. A K quasiconformal map satisfying the piecewise differentiable def-
inition on Ω changes the modulus of any path family in Ω by at most a multiplicative
factor of K.
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B.5. Compactness of K-quasiconformal maps. The Arzela-Ascoli theorem states
that a collection of continuous functions is relatively compact if and only if it is
equicontinuous and pointwise bounded. Here we prove that K-quasiconformal maps
of the plane, normalized to fix both 0 and 1, have both these properties, and are also
closed under uniform convergence on compact sets. Thus normalizedK-quasiconformal
maps are compact. Some normalization is necessary; the maps fn(z) = nz are all
1-quasiconformal, but are not pointwise bounded or equicontinuous.

Lemma B.6. If {fn} is a sequence of K-quasiconformal maps on Ω that converge
uniformly on compact subsets to a homeomorphism f , then f is K-quasiconformal.

Proof. Any quadrilateral Q ⊂ Ω has compact closure in Ω so Q′ = limn fn(Q) is
a quadrilateral in f(Ω) and we need only check that if Q is a quadrilateral then
M(limn fn(Q)) = limnM(fn(Q)). However, this follows from Lemma B.1. �

Lemma B.7. Suppose f : C → C is a K-quasiconformal map that fixes both 0 and
1. Then |f(x)| is bounded with an estimate depending on |x| and K, but not on f .

Proof. First suppose Re(x) ≤ 1/2 and consider the topological annulus with boundary
component [0, x] and [1,∞). The modulus of the path family separating the two
boundary components is bounded below depending only on |x|. But if R = |f(x)|
then by using the metric ρ(z) = 1/(|z| logR), we see that the modulus of f(F) is at
most 1/ logR. This is a contradiction if R is too large. �

0 1

f(x)

Figure 4. If |f(x)| ≫ |x| then the modulus of the path family sepa-
rating [0, x] and [0,∞) must change by more than a factor of K.

Theorem B.8. A K-quasiconformal map of the plane that fixes both 0 and 1 is
locally Hölder continuous.

Proof. Suppose f is as in the lemma and x, y ∈ D(0, r). By Lemma B.7, D(0, 2r)
is mapped into D(0, R) for some R = R(r,K). Surround {x, y} by N = ⌊log2 r

|x−y|
⌋

annuli {Aj} of modulus log 2. See Figure 5. The image annuli {f(Aj)} have moduli
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bounded away from zero, and hence diam(f(Aj+1)) ≤ (1− ǫ)diam(f(Aj)) by Lemma
A.16. Therefore

|f(x)− f(y)| ≤ R(1− ǫ)N ≤ R2log2(1−ǫ)(1+log2 R−log2 |x−y|) ≤ C(R)|x− y|log2(1−ǫ).

�

One can prove the actual Hölder exponent is α = 1/K.

Figure 5. Annuli of fixed modulus map to annuli with modulus
bounded below, and whose diameters shrink geometrically. Thus f
is Hölder continuous.

Lemma B.9. If ϕ : D → D is quasiconformal and onto, then ϕ extends continuously
to a homeomorphism of T = ∂D to itself.

Proof. We may assume f(0) = 0; the general case follows after composing with a
Möbius transformation.
Suppose w, z ∈ D. We will show that

|f(z)− f(w)| ≤ C|z − w|α,
for constants C <∞, α > 0 that depend only on the quasiconstant K of f . This im-
plies f is uniformly continuous and hence has a continuous extension to the boundary
of D.
Let d = |z − w| and r = min(1 − |z|, 1 − |w|). There are several cases depending

on the positions of the points z, w and the relative sizes of d and r. See Figure 5.
To start, note that if |z − w| ≥ 1

10
we can just take C = 20 and α = 1. So from

here on, we assume |z − w| < 1/10.
Suppose r > 1/4, so z, w ∈ 3

4
D. Surround the segment [z, w] by N ≃ log d annuli

with moduli ≃ 1. Then just as in the proof of Theorem B.8, the image annuli have
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moduli ≃ 1 (with a constant depending on K) and hence

|f(z)− f(w)| ≤ (1− ǫ(K))N = O(|z − w|α),
for some α > 0 depending only on K.
Next suppose |z| ≥ 3/4 and d > r. Then separate [z, w] from 0 by N ≃ log d

disjoint quadrilaterals with a pair of opposite sides being arcs of T, and all with
moduli ≃ 1. Since f(0) = 0 and the image quadrilaterals have moduli ≃ 1, there
diameters shrink geometrically, so |z − w| = (1− ǫ(K))N = O(dα), as desired.

Figure 6. The proof of Hölder estimates in the disk is similar to the
proof in the plane,except that we need to use quadrilaterals, as well as
annuli, if the pair of points in near the boundary.

Finally, if r ≤ d we combine the two previous ideas: we start by separating [z, w]
from 0 by ≃ log d quadrilaterals with as above. The smallest quadrilateral then
bounds a region of diameter approximately r containing [z, w] and we then construct
≃ log r/d disjoint annuli with moduli ≃ 1 that each separate [z, w] from this smallest
quadrilateral. See Figure 6. The same arguments as before now show

|z − w| = (1− ǫ(K))− log r(1− ǫ(K))log r/d = O(dα) = O(|z − w|α).
�

B.6. Continuous dependence on dilatation. In this section we want to prove
that if a quasiconformal map f on the plane has dilatation µ with small supremum
norm, then f is close to linear az+ b in a precise way. This follows from compactness
of K-quasiconformal maps, once we know that µ ≡ 0 implies f is conformal on the
plane, and hence linear. I follow Ahlfors presentation in [3], but add details where I
found his argument hard to understand.

Corollary B.10. There is an absolute C < ∞ so that the following holds. Suppose
ϕ is a conformal map from a ǫ× 1 rectangle R to a Jordan domain that contains no
disk larger than δ. Then for every y ∈ [0, 1] there is a t ∈ (0, 1) with |t− y| < ǫ and
such that the horizontal cross-cut of R at height t maps to a arc of length Cδ.
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Proof. First assume y ∈ ( ǫ
2
, 1 − ǫ

2
) and choose a conformal map ψ : D → R that

sends 0 to ( ǫ
2
, y). By Lemmas A.23 and A.26, except for a set of small measure in

I = [y − ǫ
4
, y + ǫ

4
], all the horizontal cross-cuts corresponding to this interval have

length bounded by |Φ′(0)| ≤ Cδ. �

Lemma B.11. If f is a homeomorphism of Ω ⊂ C that is K-quasiconformal in a
neighborhood of each point of Ω, then f is K-quasiconformal on all of Ω.

Proof. Suppose Q ⊂ Ω is a quadrilateral that is conformally equivalent via a map ϕ
to a 1 ×m rectangle R and Q′ = f(Q) is conformally equivalent a 1 ×m′ rectangle
R′. Divide R into M equal vertical strips {Sj} of dimension 1 ×m/M . We have to
choose M sufficiently large that two things happen.
First choose δ > 0 so that f−1 is K-quasiconformal on any disk of radius δ centered

at any point of Q′ (we can do this since Q′ has compact closure in Ω). Next, note
that the closure of Q′ is a union of Jordan arcs γ corresponding via f ◦ϕ−1 to vertical
line segments in R. By the continuity of f ◦ φ−1 there is an η > 0 so that if z ∈ R
then f(φ−1(D(z, η))) has diameter ≤ δ. By the continuity of the inverse map, there
is an ǫ > 0 so that x, y ∈ Q′ and |x − y| < ǫ implies |ϕ(f−1(x)) − ϕ(f−1(y))| ≤ η.
Thus for any δ > 0 there is an ǫ > 0 so that if x, y ∈ γ ⊂ Q′ are at most distance ǫ
apart, then the arc of γ between then has diameter at most δ (and ǫ is independent
of which γ we use).
Choose M so large that each region Q′

j = f(ϕ−1(Sj)) contains a disk of radius
at most ρ, where ρ will be chosen small depending on ǫ. Map Ωj conformally to a
1×m′

j rectangle R
′
j. By Lemma B.10 there is an absolute constant C so that every

for every y ∈ [0, 1], there is a t ∈ (0, 1) with |t− y| ≤ Cmj and so that the horizontal
cross-cut of R′

j at height t maps via φ−1
j to a Jordan arc of length ≤ Cρ. Thus we

can divide R′
j by horizontal cross-cuts into rectangles {R′

ij} of modulus m′
ij ≃ 1 so

that the preimages of these rectangles under φj are quadrilaterals with two opposite
sides of length ≤ Cρ and which can be connected inside the quadrilateral by a curve
of length ≤ Cρ.
Taking δ as above, choose ǫ as above corresponding to δ/4 and choose ρ so that

3Cρ < min(ǫ, δ/4). Then all four sides of the quadrilateral Q′
ij have diameter ≤ δ/4

and hence Q′
ij has diameter less than δ and hence lies in a disk where f−1 is K-

quasiconformal. Let mij be the modulus of corresponding preimage quadrilateral
Qij = f−1(Q′

ij). See Figure 7.
Then using the rules of extremal length

M

m
≥

∑

i

1

mij

,
1

m′
j

=
∑

i

1

m′
ij

, m′ ≥
∑

j

m′
j,

and by the definition of K-quasiconformal,

1

K
≤ mij

m′
ij

≤ K.
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φ’

f

φ j

R’j

R j

Q j
Q’j

Q
Q’

R

Figure 7. Notation in the proof of Theorem B.11.

Hence

M

m
≥

∑

i

1

mij

≥ 1

K

∑

i

1

m′
ij

=
1

Km′
j

or
m

M
≤ Km′

j

for every j. Thus

m ≤
M
∑

j=1

m

M
≤

∑

j

Km′
j ≤ Km′.

Applying the same result to the inverse map shows f is K-quasiconformal. �

If K = 1, then m = m′ the last line of the above proof becomes

m′ = m ≤
∑

j

m

M
≤

∑

j

m′
j ≤ m′.

so we deduce
∑

j

m′
j = m′,

whereas in general, we only have
∑

j m
′
j ≤ m′. We want to use this to deduce that

1-quasiconformal map must be conformal. We start with
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Lemma B.12. Consider a 1×m rectangle R that is divided into two quadrilaterals
Q1, Q2 of modulus m1 and m2 by a Jordan arc γ the connects the top and bottom
edges of R. Then if m = m1 +m2, the curve γ is a vertical line segment.

Proof. See Figure 8. Let ϕ1, ϕ2 be the conformal maps of Q1, Q2 onto 1 × m1 and
1×m2 rectangles R1, R2 respectively. Set ρ = |f ′

1| on Q1 and ρ = |f ′
2| in Q2 and zero

elsewhere. Then each horizontal line is cut by γ into pieces one of which connects
the left vertical edge of R to γ, and another that connect γ to the right edge of R.
The images of these connect the vertical edges of R1 and R2 respectively. Thus the
images have lengths at least m1 and m2 respectively, there length of the image of
the entire horizontal segment in Q is ≥ m1 +m2. If we integrate over all horizontal
segments in Q, we see

∫

Q

(ρ− 1)dxdy ≥ m1 +m1 −m = 0.

Similarly,
∫

Q

(ρ2 − 1)dxdy = area(f1(Q1) + area(f2(Q2))− area(q) = (m1 +m2)−m = 0.

Thus
∫

Q

(ρ− 1)2dxdy =

∫

Q

(ρ2 − 1)− 2(ρ− 1)dxdy = 0.

Since (ρ − 1)2 ≥ 0, this implies ρ = 1 almost everywhere, i.e., f1 and f2 are both
linear and the curve γ is a vertical line segment. �

m 1 m2

1

m

γ

Figure 8. A partition of a rectangle as in the proof of Lemma B.13.

Lemma B.13. If f is 1-quasiconformal on Ω, then it is conformal on Ω.

Proof. If f is 1-quasiconformal in the proof of Theorem B.11, then as noted before
Lemma B.12, we must have

M

m
=

∑

i

1

mij

,
1

m′
j

=
∑

i

1

m′
ij

, m′ =
∑

j

m′
j,

Thus the map ψ = ϕ′ ◦f ◦ϕ−1 between identical rectangles must be the identity map.
Thus f = (ϕ′)−1 ◦ ϕ is a composition of conformal maps, hence conformal. �
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Corollary B.14. For any δ > 0 and and any r > 0 there is an ǫ > 0 so that the
following holds. If f : C → C is (1 + ǫ)-quasiconformal and f fixes 0 and 1, then
|z − f(z)| ≤ δ for all |z| < r.

Proof. If not, there is a sequence of (1 + 1
n
)-quasiconformal maps that all fix 0 and 1

and points zn ∈ D(0, r) so that |zn−fn(zn)| > δ. However, there is a subsequence that
converges uniformly on compact subsets of the plane to a 1-quasiconformal map that
fixes 0 and 1 and that moves some point by at least δ. However a 1-quasiconformal
map is conformal on C, hence of form az + b and since it fixes both 0 and 1, it is the
identity and hence doesn’t move any points, a contradiction. �

Corollary B.15. Suppose µt is a 1-parameter family of dilatations on C that move
continuously in L∞, and that Ft are quasiconformal maps with dilatation µt that all
fix 0 and 1. Then t→ Ft(z) is continuous in t for any fixed z ∈ C.

Lemma B.16. If f : D → Ω ⊂ C is conformal and ϕ : Ω → Ω is a quasiconformal
map (satisfying the piecewise differentiable definition) that extends continuously to
the identity on ∂Ω, then Φ = f−1 ◦ϕ ◦ f is a quasiconformal map of the disk to itself
that extends to the identity on ∂D.

Proof. Clearly Φ : D → D is quasiconformal and hence extends continuously to a
homeomorphism of the unit circle (see Theorem B.9). If the extension of Φ to ∂D is
not the identity, then there is an arc I ⊂ T such that I ∩ Φ(I) = ∅. Choose a point
w ∈ I so that f has a finite radial limit at both z and Φ(z); we can do this because (1)
conformal maps have finite radial limits except on a set of zero capacity (Corollary
A.26), and (2) sets of zero capacity map to zero capacity under quasiconformal maps
(Corollary B.5).
Take the union of the two radial line segments [0, w] and [0,Φ(w)]. Because ϕ

extends as the identity to ∂Ω, the images of these radial segments under f have the
same endpoint on ∂Ω and hence their union is a a closed Jordan curve γw. Now, choose
a distinct point z ∈ I with the same properties and form the closed Jordan curve γz.
Choose z so that the intersection of γz with ∂Ω is different that the intersection of
γw with ∂Ω; we can do this because only a set of logarithmic capacity zero on the
circle can have the same radial limit. Then γz ∩ γw = f(0) and γz hits both sides
of γw (since z and Φ(z) are in different components of T \ ([0, w] ∪ [0,Φ(w)]). This
contradicts the Jordan curve theorem (Theorem 12.9 in [44] or Theorem 13.4 in [51]),
and thus Φ must extend to the identity on the boundary of D. �

B.7. A weak version of measurable Riemann mapping. Recall that the uni-
formization theorem states that the only non-compact, simply connected Riemann
surfaces are the plane and the disk. Liouville’s theorem implies these surfaces are
not conformally equivalent. To see they are not even quasiconformally equivalent,
consider the path family connecting {|z| = 1

2
} to T in the disk. It is easy to see this

has positive modulus, but it is also an easy computation to show that the path family
connecting any compact set in C to ∞ has zero modulus.



32 CHRISTOPHER J. BISHOP

Theorem B.17. Suppose Γ is a triangulation of the plane, 0 ≤ k < 1 and µ(z) is
constant on the interior of each triangle with |µ| < k. Then there is a homeomorphism
f of the plane with µf = µ.

Proof. For each triangle T let A be the affine map with dilatation µ(T ) and Tµ be the
image of T under A. Form an Riemann surface by identifying the triangles Tµ along
the same edges as in Γ. This defines a Riemann surface that is quasiconformally
equivalent to the plane via the map Φ : R → C that is affine on each triangle. By
the uniformization theorem, there is also a conformal map Ψ : R → C. Since R is
simply connected and not-compact, it is conformally equivalent to either the disk or
the plane and since it quasiconformally equivalent to the plane we know the extremal
length of the path family connected an disk to ∞ on R is infinite, and hence it must
be conformally equivalent to the plane. Then Ψ ◦ Φ−1 : C → C is quasiconformal
with dilatation µ. �

Theorem B.18. For any measurable µ on the plane with |µ| ≤ k < 1, there is
a quasiconformal map f with f = limn fn and µn = µfn where {µn} satisfy the
conditions of Theorem B.17 and {fn} are the corresponding maps.

Proof. Take the standard equilateral triangulation of the plane and a series of re-
finements by recursively subdividing each triangle into four equilateral sub-triangles.
Define a piecewise constant dilatation on the nth triangulation by taking the average
of µ on each triangle and let {fn} be the corresponding sequence of quasiconformal
maps, normalized to fix 0, 1,∞. Since these are all quasiconformal with the same
bound, they form an equicontinuous family and we can extract a subsequence that
converges uniformly on compact subsets of the plane. The limit function f is also
K-quasiconformal by Lemma B.6. If µ is continuous on a disk D, then the dilatations
µn converge uniformly to µ on compact subsets of the plane. �

Theorem B.19. Suppose f is polynomial of degree ≥ 2, or a transcendental entire
function and that Ω is a simply connected wandering domain whose forward orbit
contains no critical values of f . Let µt be the f invariant dilatation defined in the
proof of Theorem 2.3. There is a family {Φt} of quasiconformal maps so that

(1) the dilatation of Φt equals µt on Ω,
(2) Φt(z) is continuous in t for each z,
(3) Φt ◦ f ◦ Φ−1

t
is entire.

Proof. Suppose we are given an f -invariant dilatation µ that is non-zero only on the
orbit (backwards and forwards) of a wandering component Ω. By conjugating by a
Möbius transformation, we may assume that ∞ ∈ Ω, and that the entire support of µ
is contained inside a bounded set. Choose nested, increasing compact sets {Kn} inside
the grand orbit of Ω, so that the union E = ∪nKn is a bounded set containing the
set {µ 6= 0}. Choose continuous dilatations µn so that µn = µ on Kn, and ‖µn‖∞ ≤
‖µ‖∞. Using our weak version of the measurable Riemann mapping theorem, we can
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find quasiconformal maps Φn with dilatation µn. The map Gn = Φn ◦ f ◦ Φ−1
n is

holomorphic off Φn(E) and at points z ∈ Φn(Kn) that have a neighborhood whose
image under f lies in Φn(Kn+1). Thus Gn is holomorphic except on the closure of
Φn(Kn) \ f−1(Φn(Kn).
Every point z ∈ E satisfies this for large enough n, and hence Gn is a sequence

of maps that holomorphic except on a sequence of bounded, nested, decreasing sets
with empty intersection, and are locally K-quasiconformal (with a uniform K) except
at the countably many critical points of f . The areas of these sets therefore tend
to zero and Lemmas B.5 and B.13 imply Gn converges locally uniformly to a locally
bounded holomorphic function G off the critical points of f . Since the critical points
are isolated, each is a removable singularity, hence G is entire.
If we repeat this argument for each element of a 1-parameter family of f -dilatations

µt, moving continuously in L∞, and all with L∞ norm ≤ k < 1, we obtain a family
of K-quasiconformal mappings Φt with K = (k + 1)/(k − 1), and so that each Φt

conjugates f to a holomorphic function Gt. If s, t are close, then the dilatations of
(Φt)n and (Φs)n are close, and hence by Corollary B.15, these maps are close in the
supremum norm on a large ball containing E, with an estimate that tends to zero as
|s− t| tends to zero and is independent of n. Thus the limiting maps Φs,Φt are also
close on any compact set, so Φt(z) is continuous in t for a fixed z. In particular, for
a fixed z, Gt(z) moves continuously as a function of t. �

Appendix C. Topological dimension

C.1. The definition. In this appendix we prove that if n > k, and f : Rn → Rk is
continuous, then there is a point y in the image so that f−1(y) contains a non-trivial
continuum. The particular map f in this application is

µ(t) → {fµ(t)(zj)}kj=1,

where µ(t) is a finite dimensional family of dilatations that varies continuously in the
L∞ norm, fµ is the normalized quasiconformal map given by the measurable Riemann
mapping theorem, and {zj} are a finite number of distinct points in the plane.
The usual proof of Sullivan’s theorem is to use the fact that fµ(t)(zj) is a differ-

entiable function of t and hence the desired result about f−1 follows from the rank
theorem. This requires a significant amount of background on singular integrals and
the almost everywhere differentiability of quasiconformal maps. It is somewhat eas-
ier to see that fµ(t)(zj) is a continuous function of t, and in this case the desired
conclusion follows from the following purely topological result.

Theorem C.1. If n > k and f : In = [0, 1]n → Rk is continuous, then there is a
point y ∈ f(In) ⊂ R⊂Rkk so that f−1(y) contains a compact connected set with more
than one point.

This result is far from obvious and is closely related to Brouwer’s “invariance of
domain” theorem that states that Rn and Rk are not homeomorphic. We shall prove
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this along the way. The presentation here closely follows the proof in the classic book
“Dimension Theory” by Hurewicz and Wallman, [38]; indeed, I will label results with
the numbers from that book to make it easier to refer to them there. The book
is written about separable metric spaces, although for our purposes, it suffices to
consider subsets of Euclidean space and I will make this extra assumption to simplify
the discussion.
The (topological) dimension of a set is defined inductively as follows:

(1) The empty set has dimension −1.
(2) A set X has dimension ≤ n if every point has arbitrarily small open neigh-

borhoods whose boundaries have dimension ≤ n− 1.
(3) The set X has dimension = n if it has dimension ≤ n but does not have

dimension ≤ n− 1.

This says that X has dimension ≤ n if there is a basis for the topology of X made up
of open sets whose boundaries have dimension ≤ n− 1. We shall let Dim(X) denote
the topological dimension of X. In the course of this chapter we shall see that the
topological dimension has several equivalent formulations, namely, Dim(X) ≤ n if
and only if

(1) X can be written as union of n+ 1 sets of dimension ≤ 0,
(2) any n + 1 pairs of closed subsets of X can be separated by (n + 1) closed

subsets that have empty intersection,
(3) Some continuous map of X into the n-cube has a stable value (a value that is

attained by every continuous function sufficiently close to f in the supremum
norm),

(4) every continuous function from any closed subset of X to the n-sphere can be
continuously extended to all of X,

(5) X is homeomorphic to a zero (n+ 1)-measure subset of R2n+1.

In this language, the theorem we want follows immediately from two results in [38]:

Theorem C.2 (Proposition II.4.D). If X is compact, then X has dimension zero iff
it is totally disconnected (i.e., contains no non-trivial connected components).

Theorem C.3 (Theorem VI.7). If f : Rn → Rk is a closed mapping (it is contin-
uous and sends closed sets to closed sets), then there is an image point y so that
Dim(f−1(y)) ≥ n− k.

The first result is fairly easy, but the second is quite involved and takes up most of
this appendix. It interesting to note that the first result can fail if X is not compact.
Knaster and Kuratowski [40] constructed a set X ⊂ R2 that is totally disconnected,
but so that adding a single point {a} makes it a connected set Y = X∪{a}. Corollary
II.3.2 of [38] states that adding a point to a set cannot change its dimension, so
Dim(X) = Dim(Y ). Proposition II.2.D says that any zero dimensional set is totally
disconnected, so Dim(X) = Dim(Y ) ≥ 1. A much harder result (Theorem IV.3 of
[38]) says that a subset of Rn has dimension n if and only if it contains an open
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subset, The Knaster-Kuratowski example does not, so X is a totally disconnected set
of topological dimension 1.
Suppose C ⊂ R is the usual middle thirds Cantor set, let E ⊂ C be the countable

set of endpoints of intervals in R\C and let P = C \E be the remaining points. Let
a = (1

2
, 1
2
) ∈ R2 and for each x ∈ C, let Lx be the line segment connecting x to a.

For x ∈ E, let L∗
x be the points on Lx with rational y-coordinates, and for x ∈ P let

it denote the points on Lx with irrational y-coordinate. Then X = ∪
x∈CL∗

x is the
desired set. See [40] or [57].
The point a is called an explosion point for the set X. This phenomenon is partic-

ularly interesting in transcendental dynamics, since similar sets arise naturally there:
Mayer has shown that the set of landing points of dynamic rays for λ(z) s totally dis-
connected, but becomes connected when we add {∞} [48], i.e., {∞} is an explosion
point.

C.2. Zero dimensional sets. We say that two subsets A1, A2 ⊂ X can be separated
if there are disjoint open subsets U1, U2 that contain A1 and A2 respectively. Consider
the four following properties:

(1) X is totally disconnected.
(2) Any two distinct points can be separated.
(3) Any point can be separated from any closed set not containing it.
(4) Any two disjoint closed sets can be separated.

For general X, (4) ⇒ (3) ⇒ (2) ⇒ (1). We shall see that for compact X all four
conditions are equivalent We say that A1, A2 are separated by a set B ⊂ X if the
open sets U1, U2 can be chosen to be in different connected components of X \B.

Lemma C.4 (Definition II.1’). A space X has dimension zero iff every point can be
separated from any disjoint closed set E ⊂ X.

Proof. If X is zero dimensional and p ∈ X then p has an open and closed neighbor-
hood U inside the open set X \E. Thus p and E are separated by B = X \ (E ∪U).
The other direction is similar. �

Lemma C.5 (Proposition II.2.E). If a space X is zero dimensional, then any two
closed sets can be separated in X.

Proof. Suppose K,L are disjoint closed sets in X. Every p ∈ X has an open-closed
neighborhood that is disjoint from either K or L (or maybe both) and a countable

union {Uj} of these cover X. Let Vj = Uj \
∑j−1

k=1 Uk; this gives a disjoint open cover
of X and each Vj is disjoint from either K or L. Taking the unions of Vj’s that hit
each of these sets gives disjoint open sets separating them. �

Theorem C.6 (Theorem II.2). If X = ∪Xj is a countable union of closed (in X),
zero dimensional subsets, then X is also zero dimensional.
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Proof. It suffices to show that any two closed subsetsK,L can be separated (contained
in disjoint open sets). Since X1 is zero dimensional, the sets can be separated in X1

by Lemma C.5, so X1 can be divide into two disjoint, closed subsets A1, B1 containing
K ∩ X1 and L ∩ X1 respectively. Thus K ∪ A1, L ∪ B1 are disjoint closed sets in
X and hence are contained in disjoint open subsets G1, H1 of X that have disjoint
closures. Now repeat the argument replacing K and L by G1 and H1. By induction
we obtain nested sequences of open sets so that

Gj ⊂ Gj ⊂ Gj+1, Hj ⊂ Hj ⊂ Hj+1.

Then ∪Gj, ∪Hj are open, disjoint subsets of X that contain K ∩ Xj and L ∩ Xj

respectively for every j and hence contain K and L respectively. �

Corollary C.7. A union of two zero dimensional spaces, one of which is closed, is
zero dimensional.

This follows since if A,B are zero dimensional and B is closed, then X = A \B is
open in A ∪B. But any open set in the separable metric space A ∪B is a countable
union of closed sets, and these sets have dimension zero, since they are subsets of A.
Thus the corollary follows from the theorem. Since points are closed, we also get:

Corollary C.8. Adding a point to a zero dimensional set does not increase its di-
mension.

Lemma C.9. Let Rm
n be the set of points in Rn that have exactly m rational coordi-

nates. Then Rn
m has dimension zero.

Proof. If n = m then Rm
n is a countable union of points and hence has dimension zero

(most small spheres around any point miss a countable set). If m = 0, then every
point has small neighborhoods that are cubes whose faces have a rational coordinate,
and again we get dimension 0.
For 0 < m < n, fix a choice of m coordinates and fix m rational values and let H be

the k = n−m dimensional (in terms of linear algebra) subspace determined by these
choices. Then Rm

n ∩H is a linear image of R0
k and hence has dimension 0, and it is

a closed subspace of Rm
n (although not closed in Rn. Thus Rm

n is a countable union
of closed, dimension zero, subspaces of itself, and hence has dimension zero. �

Lemma C.10 (Proposition II.4.B). Suppose X is compact and dimension zero, p ∈
X and K ⊂ X closed. If p can be separated from each point of K, it can be separated
from K by open-closed sets.

Proof. Fore each q ∈ K there are disjoint neighborhoods U and V of p and q. Since
K is compact, a finite union of V ’s cover K and the corresponding intersection of the
U ’s is open and disjoint from the union. �

Lemma C.11 (Proposition II.4.C). If X is compact and dimension zero, and p ∈ X,
then the set M(p) of points that can’t be separated from p is connected.
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Proof. Each point not in M(p) has an open neighborhood disjoint from an neigh-
borhood of p, so X \M(p) is open, so M(p) is closed and contains p. If M(p) were
disconnected thenM(p) = K∪L where K,L are open-closed inM(p) hence closed in
X. We may assume p ∈ K. There exists open U in X so K ⊂ U and U∩L = ∅. Then
∂U ∩M(p) = ∅ (since it hits neither K nor L), and each point of ∂U is separated
from p. Since ∂U is closed, Lemma C.10 says ∂U can be separated from p by disjoint
open-closed neighborhood V of ∂U and W = U \ V = U \ V of p. But W is disjoint
from L, so p is separated from points in L, contrary to the definition of M(p). The
contradiction shows M(p) is indeed connected. �

Corollary C.12. For compact sets X conditions (1)-(4) are equivalent. In particular,
compact totally disconnected sets have dimension zero.

Proof. Assume X is totally disconnected, i.e., no connected subset contains more
than one point. Then by Lemma C.11 for each p ∈ X M(p) is connected, hence
equals p. Thus (1) implies (2). Lemma C.10 gives (2) implies (3). The implication
(3) implies (4) is Lemma C.5 and opposite directions are all trivial. �

C.3. Subsets, unions and products.

Lemma C.13. A subset Y of a set X of dimension n has dimension ≤ n.

Proof. We use induction and note it is trivial for n = −1. Suppose p ∈ Y ⊂ X.
By definition, for any δ > 0, there is a neighborhood U of p in X with U ⊂ B(p, δ)
and Dim(∂U) ≤ n − 1. Let V = U ∩ Y . Then V is a neighborhood of p in Y and
∂V ⊂ ∂U ∩ Y and this has dimension ≤ n− 1 by induction. �

Lemma C.14 (Proposition III.2.A). A subset Y ⊂ X has dimension ≤ n, if and
only if every point p ∈ Y has arbitrarily small neighborhoods in X whose boundaries
have intersections with Y of dimension ≤ n− 1.

Proof. Suppose the condition holds. For any δ > 0 choose a neighborhood U ⊂
B(p, δ) of p in X so that Dim(∂U ∩ Y ) ≤ n− 1. Then V = U∩ has ∂V ⊂ ∂U ∩ Y so
also has dimension ≤ n− 1. This proves Dim(Y ) ≤ n.
Conversely, suppose Dim(Y ) ≤ n and let p ∈ Y . For any δ we can choose a

neighborhood V ⊂ B(p, , δ) of p and Dim(∂V ) ≤ n − 1. Since V and Y \ V are
disjoint open subsets of Y , there is an open setW in X so that V ⊂ W ⊂ B(p, δ) and
W ∩ (Y \V ) = ∅. It follows that ∂W ∩Y ⊂ ∂V and hence Dim(∂W ∩Y ) ≤ n−1. �

Note that R = Q∪(R\Q) writes a 1-dimensional set as a union of two 0-dimensional
sets. We will show this is true much more generally.

Lemma C.15. If A,B ⊂ X, then Dim(A ∪ B) ≤ 1 + Dim(A) + Dim(B). Thus a
union of n zero dimensional sets has dimension at most n− 1.

Proof. We use induction on both the dimension of A and B, noting that the cases
(m,−1) and (−1, n) are all trivial. Assume it is true for the cases (m,n − 1) and
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(m− 1, n) and we will deduce it for (m,n); this suffices since we can then fill in the
whole quadrant (m,n),m ≥ 0, n ≥ 0.
Suppose p ∈ A ∪ B; we may assume p ∈ A. Let U be a neighborhood of p in X.

By Lemma C.14 there is a neighborhood V ⊂ U of p with dim(∂V ∩ A) ≤ m − 1.
Since ∂V ∩ B ⊂ B it also has dimension ≤ n, so by the induction hypothesis,

Dim(∂V ∩ (A ∪ B)) ≤ 1 + (m− 1) + n = m+ n,

and this proves Dim(A ∪ B) ≤ m+ n+ 1 by Lemma C.14. �

Lemma C.16. Let Mm
n be the set of points in Rn that have at most m rational

coordinates. Then Mn
m has dimension ≤ m.

Proof. Since Mm
n = ∪m

j=0Rj
n, it is a union of m + 1 sets of dimension 0. The result

follows from the final conclusion of Lemma C.15. �

Lemma C.17 (Theorem III.2, Sum Theorem). A countable union of closed sets of
dimension n has dimension ≤ n.

Before starting the proof of this, note that if we know the theorem for n− 1, then
we can deduce the following lemma.

Lemma C.18 (∆n). Any space X of dimension ≤ n is a union of a subset of di-
mension ≤ n− 1 and a space of dimension ≤ 0.

Proof. By the definition of dimension, there is a basis of open sets whose boundaries
have dimension ≤ n− 1 and since X is separable, this may be taken to be countable,
{Uk}. Assuming Lemma C.17 for n− 1, B = ∪∂Uk has dimension ≤ n− 1. It is easy
to check that Dim(X \B) ≤ 0. The lemma then follows from Lemma C.14. �

By induction we get a fact we will need later.

Corollary C.19 (Theorem III.3). A space has dimension ≤ n iff it can be written
as a union of n+ 1 zero dimensional spaces.

Proof of Lemma C.17. We use induction. The case n = −1 is trivial and the case
n = 0 was proven as Theorem C.6. By Lemma C.18 the case n− 1 implies
We now resume the proof of Lemma C.17. Suppose X = ∪Kj where each Kj is a

closed set of dimension ≤ n. Let X1 = K1 and

Xk = Kk \
k−1
⋃

j=1

Kj.

Then these sets are disjoint, cover X, and have dimension ≤ n since Xk ⊂ Kk.
Moreover each Xk is a Fσ, i.e., a countable union of closed sets. This holds since
X \⋃k−1

j=1 Kj is open and hence Fσ; thus Xk is the intersection of a closed set and a
Fσ and hence is Fσ.
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By Lemma C.18, XkMk ∪ Nk where Dim(Mk) ≤ n − 1 and Dim(Nk) ≤ 0. Thus
X =M ∪N = (∪kMk) ∪ (∪kNk). Note that Mk is Fσ inside M since

Mk =Mk ∩Xk = (M1 ∪ . . . ) ∩Xk =M ∩Xk,

is the intersection of a the Fσ set Xk and M (which is closed in itself). Thus by the
induction hypothesis, Dim(M) = n−1 and Dim(N) = 0. Since X =M ∪N , we have

Dim(X) ≤ 1 + Dim(M) + Dim(N) ≤ 1 + (n− 1) + 0 = n.

�

Using the same arguments as with Theorem C.6 we obtain:

Corollary C.20. The union of two sets of dimension ≤ n, one of which is closed,
has dimension ≤ n

Corollary C.21. Adding a single point to a set does not increase its dimension.

Lemma C.22 (Proposition II.2.F). If K,L are disjoint, closed subsets of X and
Y ⊂ X has dimension ≤ 0 then there is a separating set B for K and L so that
B ∩ A = ∅.
Proof. There are open sets U, V with disjoint closures that contain K and L respec-
tively. Since U ∩ A and V ∩ A are closed in A, they can be separated in A using
Lemma C.5, since Dim(A) = 0. Thus A = Y ∪Z where Y, Z are disjoint open-closed
sets in A and U ∩ A ⊂ Y . Then there is an open set W in X such that K ∪ Y ⊂ W
and W ∩ (L ∪ Z) = ∅. Thus B = ∂W separated K from L and B is disjoint from
both Y and Z and hence B ∩ A = ∅. �

Lemma C.23 (Proposition III.5.B). If K,L are disjoint, closed subsets of X and
Y ⊂ X has dimension ≤ n then there is a separating set B for K and L so that
Dim(B ∩ A) ≤ n − 1. If we take A = X, this says that disjoint, closed sets of a
n-dimensional space X can always be separated by a (n− 1)-dimensional set.

Proof. We use induction. If Dim(A) = −1, then A = ∅ and the result is obvious. If
Dim(A) = 0 then we proved this in Lemma C.22. Suppose n > 0. By Lemma C.18,
We can write A = D∪E as a union of sets of dimension ≤ n−1 and ≤ 0 respectively.
By the case n = 0 of the induction, there is a separating set C for K and L that does
not intersect E, so A ∩B ⊂ D has dimension ≤ n− 1. �

Lemma C.24 (Proposition III.5.C). Suppose X is a set of dimension ≤ n− 1, and
suppose {Cj, C

′
j}nj=1 be n pairs of closed sets so that Cj ∩ Cj = ∅ for j = 1, . . . n.

Then there are n closed sets {Bj} so that Bj separates Cj from C ′
j and ∩n

j=1Bj = ∅.
Proof. By Lemma C.23 C1, C

′
1 can be separated by a set B1 of dimension ≤ n − 2.

By Lemma C.23 C2, C
′
2 can be separated by a set B2 so that Dim(B1 ∩B2) ≤ n− 3.

Continuing in this way we get separating sets {Bk} whose intersection has dimension
n− (n+ 1) = −1, i.e., is empty. �
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Theorem C.25 (Theorem III.4, Product Theorem). Dim(A × B) ≤ Dim(A) +
Dim(B).

Proof. We use induction. The result is trivial if either A or B is empty, i.e., for
dimensions pairs (m,−1) or (−1, n), so we may assume it for both (m,n − 1) and
(m− 1, n) and deduce it for (m,n).
Each point of A×B has a neighborhood of the form U × V where the boundaries

of U and V have dimensions ≤ m− 1 and ≤ n− 1 respectively. Since

∂(U × V ) ⊂ U × ∂V ∪ ∂U × V ,

the induction hypothesis and Theorem C.17 imply

Dim(∂(U × V )) ≤ (m− 1) + (n− 1) + 1 = m+ n− 1,

which proves the result. �

Equality holds in Theorem C.25 if Dim(B) = 0, but not in general.

C.4. The topological dimension of Rn is n. The direction Dim(Rn) ≤ n is a
rather obvious induction since points in Rk have small neighborhoods whose bound-
aries are k − 1-spheres and one can show Dim(Sk) = Dim(Rk) since dimension is
unchanged by homeomorphisms and adding a single point. The hard part is to show
Dim(Rn) ≥ n. We showed in Lemma C.24 that if X is a set of dimension ≤ n − 1,
and {Cj, C

′
j}nj=1 are n pairs of closed sets so that Cj ∩ Cj = ∅ for j = 1, . . . n, then

there are n closed sets {Bj} so that Bj separates Cj from C ′
j and ∩n

j=1Bj = ∅. We
will show that Rn does not have this property, and hence Dim(Rn) ≥ n. We will
make use of the following famous result.

Theorem C.26 (Brouwer’s fixed point theorem). Every continuous map of In into
itself has a fixed point.

Proof. This is a “standard” result of algebraic topology: the idea is that given a map
f : In → In with no fixed points, we can define a continuous retraction r from In to
its boundary by following the ray from x to f(x) until it hits the boundary at a point
r(x). Since the homology group Hn−1 of In is trivial and Hn−1 of its boundary is not,
we get a contradiction. To avoid getting into homology groups, we give another well
known proof, using Sperner’s lemma in combinatorics.
If suffices to prove Brouwer’s theorem for any homeomorphic space; it is convenient

to consider the n-simplex

Sn = {x ∈ Rn+1 :
n+1
∑

k=1

xk = 1, xk ≥ 0 for all k}.

Every point of the simplex has at least one non-zero coordinate, and a map f of the
simplex into the discrete set {1, . . . , n+1} is “proper” if it maps each point x to the
index of a non-zero coordinate of x. Note that the kth vertex of the simplex must
map to k. Sperner’s lemma say that any simplicial subdivision must contain a cell
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whose n + 1 vertices map to n + 1 different values. In fact, there must be an odd
number of such cells.
This is proven by induction on n. When n = 1, we are simply cutting [0, 1] into

finitely many subintervals. Since f(0) = 0 and f(1) = 0, there must be an odd
number of subinterval whose endpoints have different values.
In general, suppose we have a proper map f on the n-simplex with a simplicial

subdivision. Let Z be the number of (n− 1)-faces whose vertices attain the n values
{1, . . . , n}. We will compute Z in two different ways.
LetM be the number of n-cells with the maximal possible number of vertex values,

namely n+1. These have one face counted by Z. Let N be the number of n-cells that
have values in {1, . . . , n}. These have two faces counted by Z. Thus Z =M + 2N .
Let B be the number of (n − 1)-faces on the boundary of the simplex that have

values exactly {1, . . . , n} and the I be the corresponding faces in the interior of the
simplex. Then Z = B + I. Thus M = Z − 2N = B + 2I − 2N . By induction, B is
odd, and hence M is odd, proving Sperner’s lemma.
To deduce Brouwer’s theorem, consider a sequence of simplicial subdivisions Sk

with the cell sizes tending to zero. Assume f is a continuous selfmap of the n-
simplex with no fixed points. For each vertex x in Sk assign a value j = f(x) so that
f(x)j < xj; there is such a value if f(x) 6= x. This implies xj > 0, so the map is
proper. By Sperner’s lemma there is a n-cell with n + 1 distinct labels. Taking the
limit, we see there is a point y in the simplex with f(y)j ≤ yj for j = 1, . . . n + 1.
Since

∑

j f(x)j =
∑

j xj = 1 we have f(y) = y, so a fixed point exists. �

Lemma C.27 (Proposition IV.1.D). Let X = In = [−1, 1]n ⊂ Rn and let {C−
j , C

+
j }

be the two components of In ∩ {x = (x1, . . . , xn) : xj = ±1} (i.e., pairs of opposite
faces of the cube). If {Bj} are closed subsets of In so that Bj separates Cj and C ′

j,
then ∩jBj 6= ∅. In particular, we must have Dim(In) ≥ n.

Proof. To see how to deduce the lemma from Brouwer’s theorem, let U−
j , U

+
j be open

subsets of distinct components of In \ Bj and define v : In → Rn by setting the jth
component to be

v(x) = ±dist(x,Bj),

with sign being chosen > 0 on the component of In \ Bj containing U+
j and < 0

on the component containing U−
j (and arbitrarily on any other components). Then

f(x) = x+ v(x) is continuous and maps In into itself, because if x is not in U+
j , then

1− xj = dist(x, C+
j ) ≥ dist(x,Bj) = vj(x),

so adding v(x) to x can’t make the jth coordinate larger than 1. Thus by Brouwer’s
theorem f has a fixed point y and so v(y) = 0, which means dist(y,Bj) = 0 for
j = 1, . . . , n, Since each Bj is closed, this means y ∈ ∩jBj, so the latter set in
non-empty, as claimed. �

Now that we know Dim(Rn) = n, we have proven the following fundamental result.
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Theorem C.28 (Invariance of domain). If n 6= m then Rn and Rm are not homeo-
morphic.

Thus in the setting of our goal, Theorem C.3, we now know that there must be an
image point so that f−1(y) has more than one point. We need to improve this to a
preimage of dimension ≥ 1.

C.5. Embedding in R2n+1. A cover of a set X is a collection of open sets whose
unions containsX. We say it uses diameter δ if every set in the collection has diameter
≤ δ. The cover has order n is at most n+ 1 elements can contain a common point.

Lemma C.29. If X is compact and Dim(X) = 0 then X has a cover of order 0
using diameter ≤ δ (i.e., a pairwise disjoint cover by small elements).

Proof. By definition, each point has a neighborhood of diameter ≤ δ and empty
boundary (hence the set is both open and closed in X) and since X is compact, a
finite number of these cover X. Replacing each open set by itself with the other
removed gives a pairwise disjoint cover with even smaller diameters. �

Lemma C.30 (Corollary to Theorem V.1). If X is compact and Dim(X) ≤ n, then
X has open covers using arbitrarily small diameters and order ≤ n.

Proof. By Theorem C.19 X is the union of n + 1 dimension zero sets X1, . . . , Xn+1,
and each of these can be covered by collection of disjoint open sets using diameters
≤ δ. We claim the union of these n + 1 collections has order n + 1; if n + 2 of the
sets all contained the point p then by the pigeon hole principle, two come from the
same collection and they can’t both contain p since they are disjoint. �

Lemma C.31 (Theorem V.2). If X is compact and Dim(X) ≤ n then the set of
homeomorphisms from X into I2n+1 is a dense Gδ in the set of all continuous maps
X → I2n+1. (the latter set is non-empty since it contains the constant maps.)

Proof. We say g is an ǫ-mapping if diam(g−1(y)) < ǫ for every y (the empty set has
diameter 0). It is easy to check that if X is compact and a continuous map g on X
is an ǫ-mapping for every ǫ > 0 then g is a homeomorphism. Similarly, compactness
implies the ǫ-mappings form an open set: if h is close enough to g in the supremum
norm and g is an ǫ-mapping, then so is h. We leave this as an exercise for the reader.
So by Baire’s theorem suffices to show that ǫ-maps are dense. Given any continuous

f : X → I2n+1 we must approximate it to within η > 0 in the supremum norm by an
ǫ-map g. Since continuous on a compact set implies uniformly continuous, we may
choose δ > 0 so that |x − y| < δ implies |f(x) − f(y)| ≤ η/2. Let {Uj} be a cover
of X of order n using diameters ≤ δ and for each Uj choose a point pj ∈ I2n+2 so
that dist(pj, f(Uj)) ≤ η/2 and the pj’s are in general position, i.e., if we take two
disjoint sets of the pj’s each with ≤ n + 1 points then the convex hulls in I2n+1 do
not intersect.
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For x ∈ X let wj = dist(x,X \ Uj) and define

g(x) =

∑

wj(x)pj
∑

wj(x)
.

This is well defined and continuous since wj(x) > 0 holds for at least one j for each x.
Moreover, g approximates f at x since at most n+ 1 terms in the sum are non-zero,
corresponding to the at most n + 1 elements of the cover containing x. Since these
all have diameter ≤ δ, the values of f at these points differs from f(x) by at most
η/2 and hence the same is true for any weighted average.
Finally, associate to each x ∈ X the linear space spanned by the points pj where

wj(x) > 0. If g(x) = g(y) then the convex hulls of the points pj corresponding
to x and y overlap, so the set of points themselves overlap by our general position
condition. Thus x and y are in a common Uj and hence within δ < ǫ of each other,
as desired. �

C.6. Stable values. If f : X → Y is continuous and y ∈ f(X), we call y a stable
value of f if y ∈ g(X) for every continuous g : X → Y that is sufficiently close to f
in the supremum metric. Otherwise, we can make arbitrarily small perturbations of
f that omit the value y. In this case, y is called an unstable value of f . For example,
a constant map f : [0, 1] → [0, 1] has no stable values, whereas any non-constant
continuous map from [0, 1] into itself has a stable value by the intermediate value
theorem.

Lemma C.32 (Theorem VI.1). If X has dimension < n and f : X → In is contin-
uous, then f has no stable values.

Proof. No value in ∂In can be stable since we can approximate f by (1 − δ)f . If y
is an interior point we may apply a homeomorphism of In that maps y to 0 and so
assume y = 0. Fix a small δ > 0 and let C+

j = {x : fj(x) ≥ δ} where fj is the jth

coordinate of f , and similarly define C−
j = {x : fj(x) ≤ −δ}. By Lemma C.24 there

are separating sets Bj for these pairs so that ∩Bj = ∅. Define gj = fj on C+
j ∪ C−

j ,
gj = 0 on Bj and

gj(x) =
dist(x,Bj)

dist(x, C+
j ) + dist(x,Bj)

,

on U+
j \ C+

j where U+
j is the component of In \ Bj that contains C+

j . Define gj on

U−
j \C−

j analogously. Then g is continuous, approximates f and never take the value
0, since the Bj’s contain no common point. Thus 0 is an unstable value. �

Lemma C.33 (Remark VI.A). Suppose f : X → In and y ∈ In \ f(X). Then for
every δ < 0 there is a map g : X → In so that |f(x) − g(x)| < δ for all x ∈ X and

y ∈ In \ g(X).
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Proof. If y ∈ ∂In we can take g = (1 − δ)f . Otherwise let d = min(δ, dist(y, ∂In)),
let B the ball of radius d around y and let ϕ be the identity outside B and the radial
projection onto ∂B inside B \ y. then g = ϕ ◦ f is the desired map. �

We can now state and prove the converse of Lemma C.32. Note that this gives a
characterization of n-dimensional sets in terms of the existence of stable values: X
has dimension n if and only if there is a continuous map f : X → In that has a stable
value.

Lemma C.34 (Theorem VI.2). If X ⊂ In has dimension n, then there exists a
continuous map f : X → In with a stable value.

Proof. We prove the contrapositive: if no function from X to In has a stable value,
then X is homeomorphic to a subset of Mn−1

2n+1 (points with at most n − 1 rational
coordinates), and hence has dimension ≤ n− 1 by Lemma C.16.
Consider a continuous map f : X → I2n+1. Choose n coordinates i1, . . . in of

R2n+1 and let M ⊂ R2n+1 be the affine space where these coordinates have fixed
values c1, . . . cn. We claim the set of maps g : X → R2n+1 can approximate any
continuous f : X → R2n+1. Given such an f , if we follow it by the orthogonal
projection onto the chosen n coordinates, the resulting map has no stable values by
assumption. In particular, c = (c1, . . . cn) is not a stable value, and (using Lemma

C.33) we can approximate the composition by a map h so that c 6∈ h(X). Replacing
f in this coordinates by h gives the desired approximation g. Moreover, any small
perturbation of g also approximates f and avoids c, so the set of maps avoiding M
is open and dense.
Now consider all possible M ’s taking all possible combinations of n coordinates

(finitely many) and all possible values c ∈ Qn (countably many). For each of the
countably many possible choices, the set of maps avoiding M is open and dense, so
by Baire’s theorem there is a dense set of maps that avoid every such M . By Lemma
C.34 there is also a dense Gδ of homeomorphisms X → I2n+1 and applying Baire’s
theorem again gives a homeomorphism sending X into Mn−1

2n+1, as desired. �

Lemma C.35 (Proposition VI.1.B). Suppose f : X → In is continuous and y is an
interior point of In that is unstable. Fix δ > 0. Then f can be approximated within
δ by a map g that omits the value y but agrees with f whenever it takes values more
than δ away from y. Thus stability is a local property.

Proof. Without loss of generality we assume y is the origin and U = B(0, δ). Since y
is unstable there is a h : X → In that approximates f and omits the value y. Define
g = h when |f(x)| ≤ δ/2, g = f when |f(x)| ≥ δ and

g(x) = (1− φ(t))h(x) + φ(t)f(x),

otherwise where t = |f(x)| and φ increases linearly from 0 to 1 as t goes from δ/2 to
δ. It is easy to check g has the desired properties. �
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C.7. Continuous extensions. The following is standard, e.g., see Theorem 4.16 of
[30] or Theorem 3.2 of [51].

Theorem C.36 (Tietze Extension Theorem). If K is a closed subset if a space X
and f : K → I1 is continuous, then f can be extended to a continuous F : X → I1.

Clearly I1 can be replaced by In by extending the coordinates separately. Also since
Sn is homeomorphic to ∂In+1, the Tietze theorem implies that a map f : K → Sn

can be extended to an open neighborhood of K, by replacing Sn by ∂In+1, extending
to In+1, restricting to the open subset where F avoids the origin and composing by
radial projection back onto ∂In+1.

Lemma C.37 (Theorem VI.4). X has dimension ≤ n if and only if for each closed
set K ⊂ X and each continuous mapping f : K → Sn, f has a continuous extension
X → Sn.

Proof. Sufficiency: By Lemma C.34, it is enough to show that that no continuous
mapping f : X → In+1 has stable values. A stable value can’t occur on the boundary
of In, so assume there is a stable interior value y, and let U be a small ball around y.
Let K = f−1(∂U). This set is closed and by assumption there is a map F : X → Sn

that extends f : K → ∂U = Sn. Define g by setting g = f on f−1(U) and g = F
otherwise. Then g approximates f uniformly and never equals y, so y is not a stable
value of f .
Necessity: Suppose X has dimension ≤ n, K ⊂ X is closed and f : K → Sn is

continuous. With loss of generality we may assume f maps into ∂In+1 instead. By
the Tietze extension theorem, f can be extended to a map F : X → In+1. Lemma
C.32 implies F has no stable values, so in particular, origin in not stable, so we can
approximate F by a map G that never vanishes and agrees with F for values on
∂In+1. Hence G can be composed with radial projection to give a continuous map
onto ∂In+1 that extends f . �

Lemma C.38 (Corollary to Theorem VI.4). Suppose K is a closed subset of X. If
Dim(X \K) ≤ n, then every continuous map f : K → Sn has a continuous extension
to X.

Proof. Suppose f : K → Sn is continuous. Using Tietze’s extension theorem as
before, f has a continuous extension F to an open neighborhood U of K. Choose an
open V with K ⊂ V ⊂ V ⊂ U and note that the restriction maps V \K to Sn. Thus
by the necessity part of Lemma C.37, this map can be extended to a continuous map
G of X \ K → Sn and since this agrees with F on V , setting G = f on K gives a
continuous extension of f to all of X. �

We say f, g : X → Sn are homotopic if there is a continuous map h : X×[0, 1] → Sn

so that h(x, 0) = f(x) and h(x, 1) = g(x).
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Theorem C.39 (Borsuk’s theorem, Theorem VI.5). Suppose K is closed subset of
X and f, g : K → Sn are homotopic. If there is an extension of f to X, then then
there is an extension of g and the extensions are homotopic.

Proof. We follow the proof in [38], which , in turn, follows a proof due to Dowker.
We are assuming there is a map F : X → Sn that equals f on K. Let K ′ be the
closed set (X × {0}) ∪ (K × [0, 1]) ⊂ X × [0, 1]. Extend F by setting F : K ′ → Sn

by F (x, 0) = F (x) and F (x, t) = h(x, t). The Tietze’s extension theorem implies F
can be extended to some open neighborhood U of K ′; the extension is still denoted
F . There is an open set V in X so that V × [0, 1] ⊂ U , so F makes sense on this
cylinder set.
The closed sets K and X \ V are disjoint, so there is a continuous p : X → [0, 1]

that is 1 on K and 0 off V . Therefore G(x, t) = F (x, tp(x)) is continuous and defined
on all of X × [0, 1]. Clearly for x ∈ K we have G(x, 1) = F (x, p(x)) = h(x, 1) = g(x)
and G(x, 0) = F (x, 0) = f(x). Thus G(x) = G(x, 1) is an extension of g that is
homotopic to F , the extension of f . �

Lemma C.40 (Proposition VI.3.B). Suppose f, g : X → Sn are continuous and
disagree on a set Y of dimension ≤ n− 1. Then f and g are homotopic.

Proof. Y is open. Define a closed set Z ⊂ X × [0, 1] by

Z = (X × {0}) ∪ (X × {1} ∪ (X \ Y )× (0, 1).

Define the homotopy F by F (x, t) = f(x) = g(x) for x 6∈ Y , F (x, 0) = f(x),
F (x, 1) = g(x). The complement of Z is the product Y × (0, 1) which has dimension
≤ n by the product theorem Theorem C.25. By Lemma C.38 we can extend F to all
of X × [0, 1], proving f and g are homotopic. �

Lemma C.41 (Proposition VI.3.C). Suppose X is the union of two closed subspaces
K,L and F : K → Sn an G : L→ Sn are continuous and they agree on K ∩L except
possibly on a set of dimension ≤ n− 1. Then F can be extended to all of X.

Proof. The mappings are homotopic by Lemma C.40, so it follows from Borsuk’s
theorem that F extends from K ∩ L to a function H on L. Taking F on K and H
on L gives the extension to X. �

Lemma C.42 (Proposition VI.3.F). Suppose K ⊂ X is closed and {Vλ} is a col-
lection of open sets that cover X and whose boundaries all have dimension ≤ n− 1.
If f : K → Sn can be extended continuously to each Vλ, then it can be extended
continuously to all of X.

Proof. Since X is separable we may assume {Vλ} is a countable collection {Vj}.
Assume we have already extended f to Fk on Xk = K ∪ V1 ∪ · · · ∪ Vk and set
Yk = (K ∪Vk+1)\ (V1∪· · ·∪Vk). By hypothesis f has a continuous extension to both
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these sets and these extensions can only disagree in

(Yk ∩ Zk) \K ⊂
k
⋃

j=1

∂Vk

which has dimension ≤ n−1 by Lemma C.17. Hence we may apply Lemma C.41. �

C.8. Preimages with large dimension.

Lemma C.43 (Proposition VI.3.G). Suppose a set X is a union of sets Kλ of di-
mension ≤ m and each Kλ has the property that any open neighborhood U of Kλ

contains an open neighborhood V of Kλ whose boundary has dimension ≤ m − 1.
Then X has dimension ≤ m.

Proof. Suppose K is compact and f : K → Sn is continuous. By Lemma C.38, f can
be extended to K ∪ Kλ and hence to an open neighborhood Uλ of K ∪ Kλ (by the
Tietze extension theorem each coordinate function can be extended to some fj since
it is real-valued and then we restrict to an open neighborhood where

∑

f 2
j > 0).

By hypothesis, each Uλ contains a sub-neighborhood Vλ whose boundary has di-
mension ≤ m− 1 and hence f extends to K ∪ Vλ ⊂ Uλ. By Lemma C.42, f extends
to all of X, and by Lemma C.37 this proves Lemma C.43 �

Theorem C.3 clearly follows from

Lemma C.44. Suppose X has dimension n, Y has dimension k and f : X → Y has
the property that Dim(f−1(y)) ≤ m for all y ∈ Y . Then n ≤ k +m.

Proof. To prove this, we use induction on k, keeping m fixed. If k = −1, the set Y
is empty and the result is trivially true. Next we assume the result for k − 1 and
deduce it for k.
Consider the family of all preimages {Ky} = {f−1(y)} for y ∈ f(X). This is a

decomposition of X into disjoint compact sets of dimension ≤ m. We claim that
these sets satisfy the hypotheses of Lemma C.43. To see this, take any neighborhood
U of Ky and let C = f(In \ U). There is a ball V around y that is disjoint from
C and has boundary of dimension k − 1. Then f−1(V ) is an open neighborhood of
Ky inside U and its boundary has dimension ≤ k − 1 +m by induction on k. Thus
Lemma C.43 can be applied to deduce Lemma C.44. �

Appendix D. Entire functions

D.1. The Speiser class and Eremenko-Lyubich class. Suppose f is a transcen-
dental entire function. The singular set, S(f), is the closure of the union of all the
critical values of f and a the finite asymptotic values (limits of f along curves tending
to infinity). If S(f) is finite, we say f is in the Speiser class, denoted S. If S(f) is
bounded, we say f is in the Eremenko-Lyubich class, denoted B. In this section we
prove that any Fatou component of an Eremenko-Lyubich class function is simply
connected, the transcendental analog of Lemma 2.1.
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Lemma D.1. If Ω is multiply connected Fatou component of an entire function f ,
and γ ⊂ Ω surrounds a point of the Julia set, then fn(γ) has positive index with
respect to 0 for all sufficiently large n.

Proof. Suppose the index is zero for an infinite subsequence of γ, and tends to ∞
uniformly on γ. By the argument principle, fn(γ) having index zero implies implies
fn has no zeros inside γ. Thus the infimum of |fn| over the interior of γ is attained on
γ. Hence fn tends to ∞ inside γ. But γ surrounds a point of the Julia set and hence
it surrounds a pre-periodic point (Theorem A.9), which necessarily has a bounded
orbit. This gives a contradiction. �

Corollary D.2. If f is a transcendental entire function that is bounded along a curve
σ tending to ∞, then all Fatou components are simply connected.

Proof. If U is a multiply connected component, then by Lemma D.1, it contains a
curve γ whose iterates fn(γ) intersect σ for all sufficiently large n. This contradicts
the assumption that f is bounded on σ since f(fn(U)∩σ) ⊂ fn+1(U) is as far from the
origin as we wish. Thus f can’t have any multiply connected Fatou components. �

Lemma D.3. Suppose f is entire and U contain no critical values. Then f is a
smooth covering map from V = f−1(U) to U .

Proof. If z ∈ V then f(p) 6= S(f), so f ′(z) exists and is non-zero. Thus a small
enough disk around z maps homeomorphically to a neighborhood of f(z). �

The map is called a regular covering map if given any y ∈ Y and any x ∈ X such
that f(x) = y, then any arc in Y starting at y can be lifted to an arc in X starting at
x. It is a standard result (e.g., Theorem 14C of [4]) that any two liftings of the same
arc with the same initial point must agree, but the existence of a lifting is not always
true. The monodromy theorem say that if two arcs in Y have the same endpoints
and are homotopic by a homotopy that keeps the endpoints fixed, then any lifts of
these arcs that have the same initial point, must also have the same terminal point.
This is proved by noting that the homotopy lifts to a homotopy whose terminal point
must always lie in f−1(b); since this is a discrete set, any continuous motion within
it must be constant.

Lemma D.4. Suppose f is entire and U contain no singular points. Then f is a
regular covering map from V = f−1(U)

Proof. From the previous lemma we know f is smooth covering map on V . Choose
points z ∈ V , w ∈ U such that f(z) = w and let D = D(w, ǫ) be so small that
D ∩ S(f) = ∅. Define a branch g of f−1 so that g(w) = z and extend it along a
radius of D as far as possible. Because f is a smooth covering map, this extension
is possible along some maximal open interval [0, t). If t < ǫ, consider the lifted arc
corresponding to this radial segment. We claim it leaves every compact set, for if it
stayed within some compact set then we could take a sequence of points on the lifted
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path that converged to a point that, by continuity of f , must map to w + teiθ. This
contradicts the maximality of t. Thus the lift leaves every compact set, but f has a
limit along the lift, showing f has an asymptotic value in D, a contradiction. Thus g
can be defined on all of D. Thus the connected component W of f−1(D) containing
z is mapped onto D by f . If two points of this component map to the same point
of D, then an arc connecting these points maps to a closed loop in D. Since D is
simply connected, this loop is homotopic to constant path, hence the arc in W must
have been constant, hence the two points were actually a single point. Thus f is a
bijection from W to D. This proves that f is a regular covering map over U . �

Corollary D.5. Suppose f is entire and S(f) ⊂ DR = {z : |a| < R}. Let D∗
R =

{z : |z| > R}. Then f is covering map from Ω = f−1(D∗
R) = {z : |f(z)| > R} to

D∗
R. Each connected component of Ω (called a tract of f) is an unbounded, simply

connected domain whose boundary is an analytic Jordan curve that tends to ∞ in
both directions.

Lemma D.6. If f ∈ B, then every component of F(f) is simply connected.

Proof. Suppose f ∈ B and choose R > 0 so that S(f) ⊂ DR. Let Ω = f−1(D∗
R). By

Lemma D.4, f is a regular covering map from each component of Ω to D∗
R. Since

D∗
R is unbounded, each component of Ω is unbounded, but |f | = R on the boundary.

Thus Corollary D.2 applies. �

D.2. Multiply connected Fatou components wander.

Theorem D.7 (Baker [7]). If f is a transcendental entire function, then every mul-
tiply connected component of the Fatou set is bounded.

Proof. Suppose not, i.e., suppose Ω is an unbounded multiply connected Fatou com-
ponent and let γ ⊂ Ω is a closed curve surrounding a point of the Julia set. Then
by Lemma D.1 the iterates of γn = fn(γ) hit Ω (and hence are contained in Ω for all
large enough n. Thus Ω is forwards invariant.
Choose a compact, connected set K ⊂ Ω that contains both γ and f(γ) and choose

a domain V so that K ⊂ V ⊂ V ⊂ Ω. Since |fn| → ∞ uniformly on V , log |fn|
is a sequence of well defined, positive harmonic functions on V and so by Harnack’s
inequality there is a constant C = C(K) so that

log |fn(w)| ≤ C log |fn(z)|,
for all z, w ∈ K, independent of n. Thus

|fn(w)| ≤ |fn(z)|C .
Since γn−1 ∪ γn ⊃ fn−1(K), we have

sup
γn

|f(z)| ≤ inf
γn−1

|f(z)|C = inf
γn

|z|C .
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In particular, |f(z)| ≤ |z|C for every z ∈ γn. Since the curves {γn} eventually
surround every point and we can easily deduce f is a polynomial. This contradiction
proves the theorem. �

Corollary D.8. The Julia set of transcendental entire function can’t be a Cantor
set. Thus it always contains a non-trivial connected component.

For a survey of Baker’s many contributions to transcendental dynamics, see [53].
As noted in Section 2, the following is due to Matthew Herring. It was proved
independently by Andreas Bolsch, who also showed that in the unbounded case, at
most one point it omitted.

Lemma D.9. If Ω is a bounded Fatou component of f , then f(Ω) is contained in a
bounded Fatou component and equals the whole component. The map is a branched
covering.

Proof. Suppose W is the Fatou component containing f(Ω). Since Ω is bounded,
f(Ω) ⊂ W is bounded. Suppose f(Ω) 6= W . Then there is w ∈ W ∩ ∂f(Ω), and
hence there are points {zk} ⊂ Ω so that f(zk) → w. Since Ω is bounded, we can pass
to a subsequence so that zk → z ∈ Ω. If z ∈ ∂Ω ⊂ J (f), then w = f(z) ∈ J (f),
a contradiction. If z ∈ Ω, then w = f(z) ∈ f(Ω), also a contradiction. Therefore
f(Ω) = W �

Corollary D.10. If f is a transcendental entire function then every multiply con-
nected component of the Fatou set is a wandering domain.

Proof. We already know that multiply connected components are bounded and iterate
to infinity uniformly on compact sets, so they can’t be periodic. If they were pre-
periodic they would have to land on a periodic domain where every point iterates
to infinity (such a Fatou component is called a Baker domain). However, such a
domain must be unbounded, whereas f(U) must be bounded, contradicting Lemma
D.9. Thus there are no pre-periodic, multiply connected Fatou components. �

D.3. Baker’s example. Lemma D.10 suggests how to build an entire function with
a wandering domain: build a function with a multiply connected Fatou component.
Here we give such an example due, again, to Baker.

Theorem D.11 (Baker). There exists an entire function with a multiply connected
Fatou component, hence with a wandering domain.

Proof. The function will be

f(z) = z2
∞
∏

k=1

(1 +
z

Rk

),

where Rk ր ∞ is a sequence of positive real numbers that we define inductively.
Suppose R0 > 0 is large and and set f0(z) = F0(z) = z2. In general, let Rn =
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max|z|=Rn−1
|fn−1(z)| and let

Fn(z) = (1 +
z

Rn

).

Set

fn(z) =
n
∏

k=0

Fk(z), and f(z) = lim
n→∞

fn(z) = z2
∏

k∈S

(1 +
z

Rk

).

The first step is to check that the product defining f converges and for this we
need to know that Rk ր ∞ fast enough. However, each Fk (and hence each fk) takes
its maximum modulus on {|z| = r} where this circle intersects (0,∞), so

Rn = max
|z|=Rn−1

|fn−1(z)| ≥ Rn−1
2

∏

k∈S,k<n

(1 +
Rn−1

Rk

) ≥ Rn−1
2,

since every term in the product is ≥ 1. Thus Rn ≥ R2n

0 and, more generally, Rn ≥
R2n−k

k for 1 ≤ k ≤ n. From this it easily follows that the product defining f converges
uniformly on compact sets.
Next, for n ∈ N, define the annulus

An = {z : 1
4
Rn ≤ |z| ≤ 4Rn},

and let Bn be the annulus separating An and An+1, i.e.,

Bn = {z : 4Rn < |z| ≤ 1

4
Rn+1}.

We claim that f(Bn) ⊂ Bn+1. If this is true, then the iterates of Bn clearly converge
uniformly to ∞, so that Bn ⊂ F(f). On the other hand, if n ∈ N, then An contains
a zero of f and 0 is a super-attracting fixed point of f . Thus An contains a Fatou
component that does not iterate to ∞ and hence must contain some point of the
Julia set (in fact a continuum of such points). Thus Bn surrounds a point of J (f)
and the Fatou component containing it must be multiply connected.
Thus we must prove f(Bn) ⊂ Bn+1. The idea is that An is bounded by two circles

and that after applying f these two circles are further apart; enough so that the
region between them contains An+1. We break the product for f into three pieces

f(z) = (z2
∏

k∈S,k<n

(1 +
z

Rk

)) · Fn(z) · (
∏

k∈S,k>n

(1 +
z

Rk

))(D.1)

= I(z) · II(z) · III(z)(D.2)

For z ∈ An, the third term is bounded between

∏

k∈S,k>n

(1− Rn

Rk

)) ≤ III ≤
∏

k∈S,k>n

(1 +
Rn

Rk

))
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Now use the estimate Rk ≥ R2k−n

n for k > n,
∏

k∈S,k>n

(1−Rn
1−2n−k

) ≤ III ≤
∏

k∈S,k>n

(1 +Rn
1−2k−n

)

1−O(R−1
n ) ≤ III ≤ 1 +O(R−1

n )

and this gives
9

10
≤ III ≤ 10

9
,

if R0 is large enough.
The second term in (D.1) satisfies

|II(z)| ≤ 3, |z| = 2Rn,

|II(z)| ≥ 1

2
, |z| = Rn/2,

and

|II(z)| ≤ 2, |z| = Rn.

Define Cn =
∏

k<nR
−1
k . Then the first term in (D.1) satisfies

z2
∏

k<n

(1 +
z

Rk

) = z2
∏

k<n

z

Rk

(1 +
Rk

z
)

= Cnz
2+n

∏

k<n

(1 +
Rk

z
)

= Cnz
2+n

∏

k<n

(1 +O(
Rk

Rn

)

= Cnz
2+n(1 +O(Rn

−1/2)).

Thus if R0 is large enough,

I = (1 + o(1))Cnz
2+n.

Thus we can deduce that

Rn+1 = (1 + o(1))2CnR
2+n
n

|f(z)| ≤ 2(1 + o(1))2−2−n <
1

4
Rn+1, |z| = Rn/2,

|f(z)| ≥ 2(1 + o(1))22+n > 4Rn+1, |z| = 2Rn.

Thus the two boundaries of Bn both land inside Bn+1, and since f has no zeros in
Bn (they all lie in the An’s) the minimum and maximum principles imply f(Bn) ⊂
Bn+1. �
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It is not immediately clear whether the wandering domains constructed above are
finitely or infinitely connected, but it is easy to make a small change which forces
infinite connectivity. With the same inductive definition of {Rn}, place the zeros
slightly outside the circles of radius Rn, i.e.,

f(z) =
∏

k∈S

(1− z

3Rk

).

Everything goes through as above to show that f(Bn) ⊂ Bn+1 and hence f has
multiply connected wandering domains, but now we also can show that for z ∈ γ,
γ = {z : |z + 3Rn| = Rn},

|f(z)| ≥ 4Rn+1,

Hence γ iterates into Bn+1, so is in the Fatou set. Moreover, γ is clearly not homotopic
to {|z| = 4Rn} in the Fatou set since DRn

contains points of the Julia set. Thus the
Fatou component containing Bn always has connectivity at least 3. By a result of
Kisaka and Shishikura [39], the eventual connectivity must be 2 or ∞, so in this case
the wandering component has infinite connectivity.

D.4. Other examples.

Theorem D.12 (Herman). f(z) = z − 1 + e−z + 2πi has a wandering domain.

Proof. This was published by Baker [9] with credit to Herman. See also the survey by
Dierk Schleicher, [55]. The map N(z) = z− 1+ e−z is the Newton’s method map for
g(z) = ez − 1. The basin of attraction for z = 0 is invariant under N and the basins
for z = 2πin are each translates of this basin (and are disjoint since they iterate to
different points). Note that N(z + 2πi) = N(z) + 2πi so the Julia and Fatou sets of
N are 2πi periodic. Since f(z) = N(z) + 2πi = N(z + 2πi), if z is a repelling fixed
point of N of period k and multiplier λ, then fnk(z) = z + 2πink and

DS
Ef

nk(z) ≥ |λ|n
1 + (|z|+ |2πnk|)2 → ∞,

so {fn} is not normal at z by Marty’s theorem (e.g. see Ahlfors’ book [2]):

Theorem D.13 (Marty’s theorem). A family F of meromorphic functions on a
hyperbolic planar domain Ω is normal iff

sup
f∈F

sup
z∈K

DS
Ef(z) <∞,

for every compact K ⊂ Ω. Here DS
Ef(z) denotes the norm of the gradient of f from

the Euclidean metric on the domain to the spherical metric on the image.

As noted earlier, it is known that the repelling fixed points of N are dense in J (N),
so we can deduce J (N) ⊂ J (f). On the other hand, since f preserves the Fatou
components of N , it is normal on these components, hence F(N) ⊂ F(f). Thus
equality holds. Thus each basin for 2πin moves by up by 2πi under f and hence are
wandering domains. �
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The following example appears in Baker’s paper [9], but may have been known
earlier.

Theorem D.14. f(z) = z + sin z + 2π has a bounded, simply connected wandering
domain.

Proof. For g(z) = z + sin z, all points (2n + 1)π are super-attracting fixed points,
hence in different Fatou components. Since g(z + 2π) = g(z) + 2π, the Julia set is
2π-periodic and arguing as in the previous proof, J (f) = J (g). Thus f maps the
g-basin for (2n+1)π to the g-basin for (2n+3)π and so these are wandering domains
for f . All the critical points of g are super-attracting fixed points, so their basins of
attraction are simply connected (otherwise they are in the escaping set, but a fixed
point of f can’t escape).
To see that these components are bounded, note that the imaginary axis is pre-

served by g, as are its translates by 2πZ and that all points on these lines iterate to∞,
except for those on the real line. Thus these vertical lines cannot be in the basins of
attraction of {(2n+1)π}, so these basins are separated by these lines. We claim these
basins are bounded. Suppose Ωn is the basin of attraction of (2n + 1)π. We know
it is trapped between the vertical lines L0 = {x = 2nπ} and L1 = {x = (2n + 2)π}.
Suppose Ω intersects the horizontal segment S = {2nπ < x < (2n + 2)π, y = π

2
}

and let γ be the shortest hyperbolic curve connecting the fixed point (2n+1)π to S.
Suppose the endpoint on S is x+ iy (y = π/2). By the Schwarz lemma, f(γ) has at
most the hyperbolic length of γ. Since y = π/2,

Im(g(x+iy)) = y+Im(sin(x+iy)) = y+
1

2
(ex sin(y)−e−x sin(−y)) = y+

1

2
(ex+e−x) > y,

so g(γ) connects the fixed point to a point above S. By the Schwarz lemma the
hyperbolic length of g(γ) is less or equal the hyperbolic length of γ. Thus a subset
of g(γ) connects the fixed point to S and has strictly shorter hyperbolic length than
γ, a contradiction. Thus the attracting basins do not intersect the lines |y| = π/2,
and hence the basins are bounded sets. �

In [26] Eremenko and Lyubich use Runge’s approximation theorem to build entire
functions with wandering domains. They build one example where every orbit fn(z)
for z in the wandering component has an infinite accumulation set, and another
in for which the maps fn are univalent on the wandering component. In a third
example, every wandering orbit tends to∞, and fn are all univalent on the wandering
component (the latter does not occur for multiply connected wandering components).
The approximation methods used by Eremenko and Lyubich do not give good

control of the singular values of the constructed function, so it remained open whether
an Eremenko-Lyubich function could have a wandering component (their paper [27]
shows such a component cannot be escaping). In [22], the author used quasiconformal
methods to construct such an example, and several variations were given by Kirill
Lazebnik [42], Yanhua Zhang and Gaofei Zhang [64], Núria Fagella, Xavier Jarque,
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and Lazebnik [28]. A simpler method of obtaining examples with bounded singular
set is given in [46] by David Mart́ı-Pete and Mitsuhiro Shishikura. Recent (and as yet
unpublished) work of Anna Miriam Benini, Vasiliki Evdoridou, Núria Fagella, Phil
Rippon, and Gwyneth Stallard describes the internal dynamics of simply connected
wandering domains. See [13]. A detailed description of the internal dynamics and
geometry of multiply connected wandering domains is given in [19] by Bergweiler,
Rippon and Stallard.
Very recently, Luka Boc Thaler [59] has shown that every bounded connected

regular open set, whose closure has a connected complement, is a wandering domain
of some entire function. In particular, every Jordan curve is the boundary of a
wandering Fatou component of some entire function. Even more exotic examples
have been produced Mart́ı-Pete, Lasse Rempe and James Waterman [45]. They show
that a wandering Fatou components can form “lakes of Wada”, i.e., three or more
simply connected regions that all have a common boundary.
Finally, we should at least mention that holomorphic polynomials in several vari-

ables can have wandering domains: see the construction in [5] by Matthieu Astorg,
Xavier Buff, Romain Dujardin, Han Peters and Jasmin Raissy, based on an idea of
Misha Lyubich.

D.5. No wandering in the Speiser class. In this section we sketch the proof that
functions in the Speiser class do not have wandering domains. The proof follows the
case of polynomials. Theorem A.9 stated that the Julia set of a transcendental entire
function is contained in the closure of the pre-periodic points, and that the Fatou
components of a Speiser class function are simply connected (we proved this for the
larger Eremenko-Lyubich class). The only non-trivial new step is to prove that the
collection of entire functions with a given finite singular set is finite dimensional. This
is due to Eremenko and Lyubich in [27] and independently to Goldberg and Keen in
[33].
By Lemma D.6, Ω is simply connected. Let Mg denote the collection of all entire

functions f that are topologically equivalent to g. To entire functions are called
quasiconformally equivalent if there are quasiconformal maps ϕ, ψ of the plane to itself
so that ψ◦f = g◦ϕ. Eremenko and Lyubich proved that for g ∈ S, the collectionMg

of all f that are quasiconformally equivalent to g form a finite dimensional, complex
analytic manifold. We shall just prove a part of this, showing that Mg is finite
dimensional in the following sense.

Lemma D.15. If f, g ∈ S have the same singular values then there is an ǫ > 0 so
that the following holds. If

ψ ◦ g = f ◦ ϕ,
where ψ, ϕ are (1+ǫ)-quasiconformal, then g(z) = f(az+b) for some a, b ∈ C, a 6= 0.

Proof. The proof is essentially an exercise about covering spaces, and we will need
the following lifting lemma that is Theorem 14.3 of Munkres’ book [51]:
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Theorem D.16 (The general lifting lemma). Let p : E → B be a covering map; let
p(e0) = b0. Let f : Y → B be a continuous map with f(y0) = b0. Suppose Y is path
connected and locally path connected. The map f can be lifted to a map F : Y → E
such that F (y0) = e0 if and only if

f∗(π1(Y, y0)) ⊂ p∗(π1(E, e0)).

Here π1 denotes the fundamental group and f∗ is the map between fundamental groups
induced by the continuous map f .

In our application, we let X = C\S(f) = C\S(g) and let Yf = C\f−1(S(f)), Yg =
C \ g−1(S(g)). Choose some point z0 ∈ Yg. One can prove that f : Yf → X and
g : Yg → X are covering maps. Since S(g) is a finite set, there is a positive lower
bound δ > 0 for the distance between any two points in S(g). Since S(g) is bounded,
there is an ǫ > 0 so that any (1 + ǫ)-quasiconformal map fixing 0, 1,∞ moves each
point of S(f) by less than δ/10. Thus if ϕ is (1 + ǫ)-quasiconformal, it is isotopic
to the identity via a path of quasiconformal maps that fix each point of S(g). Thus
for any closed loop γ in Yg, the image loop g(γ) = ψ−1 ◦ f ◦ ϕ(γ) is homotopic
to f ◦ ϕ(γ). Thus g∗(π1(Yg, z0)) ⊂ f∗(π1(Yf , ϕ(z0))). In fact, we have equality, since
π1(Yf ) is isometric to π1(Yg) via the homeomorphism ϕ. By the general lifting lemma
we get a homeomorphism h : F : Yg → Yf and this map is locally a composition of
g and a branch of f−1 and hence is holomorphic. Thus it must be conformal linear,
i.e., h(z) = az + b, a 6= 0, as claimed. �

This completes the proof that there are no wandering domains for Speiser class
functions. Some other classes with no wandering domains are functions of the form:
• f(z) = z + r(z)ep(z),
• f has finite order and f ′(z) = r(z)ep(z)(f(z)− z),
• f so that f ′(z) = r(z)(f(z)− z)2 or f ′(z) = r(z)(f(z)− z)(f(z)− c),
all where r is rational, p is a polynomial and c ∈ C. These are described given
in Bergweiler’s survey [14]. Bergweiler’s paper [15] shows non-existence of wander-
ing domains for certain maps arising from Newton’s method. Another collection
of entire functions without wandering domains (based on the behavior of singu-
lar orbits) is given in [49] by Helena Mihaljević-Brandt and Lasse Rempe. Sup-
pose f is an Eremenko-Lyubich function for which the singular values escape to ∞
uniformly, let A be a forward invariant closed set in the plane containing the sin-
gular set so that all the connected components of A are unbounded and suppose
there exist ǫ > 0 and 0 < c < 1 so that when z ∈ A s sufficiently large then
dist(f({w : |w − z| < c|z|})S(f)) > ǫ. Then f has no wandering domain. Similarly
if f is Eremenko-Lyubich class and S(f) ∪ f(R) ⊂ R, and there are constants r,K
such that |f ′(x)| · |x| ≤ K|f(x)| · log |f(x)| for |x| > r and |f(x)| > r, then f has
no wandering domain. For example, this result applies to λ

z
sinh z + a when a, λ ∈ R

and λ 6= 0. A conjecture from [49] is disproven by Lazebnik [43] who constructs
an Eremenko-Lyubich functions with wandering domains even though each singular
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value escapes to ∞. The question of whether wandering domains can occur if the
singular values escape uniformly to ∞ remains open (as of this writing).
Bergweiler, Haruta, Kriete, Meier, and Terglane [18] give another criteria for f not

to have wandering domains: they show that, if Ω is a wandering domain of f , then
all the limit functions of iterates of f on Ω are contained in the set of limit points of
P (f), the the orbit of the singular set (plus the point ∞).
Barański, Fagella, Jarque and Karpińska [11] prove that if {Ωn} is the orbit of

a wandering domain Ω then for for every z ∈ Ω, there is a sequence pn ∈ P (f)
such that dist(pn,Ωn) = o(dist(fn(z), ∂Ωn). If we assume the map f is topologically
hyperbolic, i.e., dist(P (f),J (f), and if Ωn∩P (f) = ∅ for all n, then for every compact
set K ⊂ Ω and every r > 0, we have {w : |w − fn(z)| < r} ⊂ Ωn for every z ∈ K
and all sufficiently large n. In particular, diam(Ωn) → ∞ and dist(fn(z), ∂Ωn) → ∞.
This is used to prove the non-existence of wandering domains for Newton maps of
entire functions of the form aez + bz + c for some values of a, b and c.
In [52], Nicks, Rippon, and Stallard investigates Baker’s conjecture: the Fatou

components of a transcendental entire function with order of growth < 1/2 must
be bounded. Among other interesting results, the authors prove that if f is a real
(i.e., f(R) ⊂ R) transcendental entire function of order less than 1 with only real
zeros, then f has no unbounded wandering domains. Bounded multiply connected
wandering domains of this type can be created by modifying the construction in
Section D.3. In general, simply connected wandering domains can be either bounded
or unbounded open sets.
Is there an entire function with a wandering domain whose orbit is bounded?

Here we mean either a bounded wandering domain whose forward orbit lies within
a bounded set, or an unbounded wandering component for which the forward orbit
of each point is bounded. Since a wandering domain (if any existed) of a polynomial
would have to have a bounded orbit in order to avoid the attracting basin at infinity,
proving there is no transcendental example is, perhaps, the most natural extension
of Sullivan’s theorem to entire functions. As of this writing, it remains one of the
most important open problems in transcendental dynamics.
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[Erëmenko and Lyubich, 1984] Erëmenko, A. E. and Lyubich, M. Y. Iterations of entire functions.
Dokl. Akad. Nauk SSSR, 279(1):25–27, 1984. ISSN 0002-3264.

[Goldberg and Keen, 1986] Goldberg, L. R. and Keen, L. A finiteness theorem for a dynamical class
of entire functions. Ergodic Theory Dynam. Systems, 6(2):183–192, 1986. ISSN 0143-3857. doi:
10.1017/S0143385700003394.

[de Melo, 1987] de Melo, W. A finiteness problem for one-dimensional maps. Proc. Amer. Math.
Soc., 101(4):721–727, 1987. ISSN 0002-9939. doi:10.2307/2046678.



WANDERING DOMAINS 61
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Math., 133(1):69–96, 1998. ISSN 0020-9910. doi:10.1007/s002220050239.

[McMullen and Sullivan, 1998] McMullen, C. T. and Sullivan, D. P. Quasiconformal homeomor-
phisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system. Adv.
Math., 135(2):351–395, 1998. ISSN 0001-8708. doi:10.1006/aima.1998.1726.

[Bamón and Bobenrieth, 1999] Bamón, R. and Bobenrieth, J. The rational maps z 7→ 1 + 1/ωzd

have no Herman rings. Proc. Amer. Math. Soc., 127(2):633–636, 1999. ISSN 0002-9939. doi:
10.1090/S0002-9939-99-04566-9.

[de Faria, 1999] de Faria, E. Asymptotic rigidity of scaling ratios for critical circle map-
pings. Ergodic Theory Dynam. Systems, 19(4):995–1035, 1999. ISSN 0143-3857. doi:
10.1017/S0143385799133959.
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