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Abstract. If Γ ⊂ R
n, n ≥ 2, is a Jordan arc with endpoints z and w, we show

that the arclength of Γ satisfies

ℓ(Γ)− |z − w| ≃
∑

Q

β2
Γ(Q)diam(Q),

where the sum is over all dyadic cubes in R
n and βΓ(Q) is Peter Jones’s β-number

that measures the deviation of Γ from a straight line inside 3Q. This estimate
sharpens previously known results by replacing an O(diam(Γ)) term by |z − w|.
Applications of this improvement to the study of Weil-Petersson curves are de-
scribed, and a new proof of Jones’s traveling salesman theorem is given.
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1. Introduction

Given a finite set E ⊂ R
n, the traveling salesman problem asks for the shortest

curve γ that contains E. This is one of the most famous intractable problems of

combinatorial optimization and its study has had a profound impact on the devel-

opment of computational geometry and discrete geometry. The “analyst’s traveling

salesman problem” asks whether an infinite set E ⊂ R
n is contained in any curve of

finite length, i.e., it asks to characterize subsets of rectifiable curves. This problem

has had a powerful influence on the development of harmonic analysis and geometric

measure theory over the last three decades. For sets in R
2 it was solved by Peter

Jones in [16]; this is known as Jones’s “traveling salesman theorem” (TST): he gave

an infinite series whose sum estimates the length of the optimal curve containing E

up to a bounded factor; thus E lies on a rectifiable curve if and only if the series

converges. Jones’s TST was extended to higher (finite) dimensions by Kate Okiki-

olu [27], but with constants that grow exponentially with the dimension, and later

Raanan Schul [31] proved a version that holds for sets in Hilbert space, and thus in R
n

with constants that are independent of n. This is one of only a handful of problems

in Euclidean analysis where dimension independent bounds are known. Extensions

to curves in other metric spaces are given in [10], [13], [21], [22]. There has also been

much work in extending Jones’ result from curves to higher dimensional objects in

R
n, e.g., what is the “smallest” surface containing a given set. This problem has

proved extremely subtly, and is central to recent developments in harmonic analysis,

geometric measure theory and rectifiability. For a sampling of applications of Jones

TST and related work, see [3], [4], [6], [9], [20], [22], [28], [34].

The purpose of this paper is to return to the original setting of curves in R
n, and

prove a sharper version of Jones’s and Okikiolu’s theorems. In order to state their

results precisely and explain the proposed improvement, we need a few definitions.

A dyadic interval I in R is one of the form (2−nj, 2−n(j+1)] for j, n ∈ Z. A dyadic

cube Q in R
n is the product of n dyadic intervals of the same length. This common

length is called the side length of Q and is denoted ℓ(Q). Note that diam(Q) =
√
nℓ(Q). For a positive number λ > 0, we let λQ denote the cube concentric with Q

but with diameter λdiam(Q), e.g., 3Q is the “triple” of Q, a union of Q and 3n − 1
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adjacent copies of itself. Given a set E ⊂ R
n, λ > 0 and a dyadic cube Q, define

β(E, λ,Q) =
1

diam(Q)
inf
L

sup{dist(z, L) : z ∈ λQ ∩ E},

where the infimum is over all lines L that hit Q. In most cases we take λ = 3 and

for brevity we set βE(Q) = β(E, 3, Q). Note that 0 ≤ βE(Q) ≤ 2, and equals 0 if

and only if E is a subset of a line. See Figure 1. There are several other versions

of the β-numbers that can be used to state equivalent versions of Jones’s TST; see

Appendix B for a few of these.

Q

3Q

Q

3Q

Figure 1. The definition of the β-numbers. The left shows a situation
where βE(Q) is small and the right a situation where it is large. The
shaded region represents the thinest strip containing E ∩ 3Q and the
dashed line is its axis, the line L in the definition of βE(Q).

Jones’s theorem in [16] says that the shortest curve Γ containing E ⊂ R
2 has length

ℓ(Γ) ≃ diam(E) +
∑

Q

β2
E(Q)diam(Q).(1.1)

In this paper A . B means the same as A = O(B), i.e., A,B both depend on some

parameter and A ≤ C · B where C is independent of the parameter. If A . B and

B . A, we write A ≃ B, and say that A and B are comparable. Thus Jones’s β-sum

estimates the length of the optimal curve up to a bounded factor.

Actually, [16] states that for any δ > 0 and E ⊂ R
n, 2 ≤ n < ∞,

ℓ(Γ) ≤ (1 + δ)diam(E) + C(δ)
∑

Q

β2
E(Q)diam(Q).(1.2)

For general sets E, this does not hold for δ = 0. For example, if E = {0, 1, iβ} ⊂ R
2

with 0 < β << 1, then the shortest curve Γ containing E satisfies ℓ(Γ) = 1 + β, but

diam(Γ) =
√
1 + β2 = 1 + O(β2). It is not hard to check that the β2-sum for E is
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O(β2) ≪ β. Thus the term C(δ) must tend to ∞ as δ ց 0. However, we will show

that (1.2) does hold for δ = 0 when E = Γ a Jordan curve:

Theorem 1.1. For any Jordan arc in R
n,

ℓ(Γ)− diam(Γ) ≃
∑

Q

β2
Γ(Q)diam(Q),(1.3)

where the sum is over all dyadic cubes.

In fact, we can do even better than this. Let crd(Γ) = |z−w| where {z, w} are the

endpoints of Γ; this is the “chord length” of Γ. We always have crd(Γ) ≤ diam(γ),

so Theorem 1.1 implies

ℓ(Γ)− crd(Γ) &
∑

Q

β2
Γ(Q)diam(Q).(1.4)

The opposite direction is less obvious, but also holds:

Theorem 1.2. For any Jordan arc Γ ⊂ R
n,

ℓ(Γ)− crd(Γ) ≃
∑

Q

β2
Γ(Q)diam(Q),(1.5)

where the sum is over all dyadic cubes.

One obvious consequence is that for any Jordan arc Γ,

diam(Γ)− crd(Γ) .
∑

Q

β2
Γ(Q)diam(Q),

and another is:

Corollary 1.3. If Γ is a closed Jordan curve, then

ℓ(Γ) ≃
∑

Q

β2
Γ(Q)diam(Q),(1.6)

where the sum is over all dyadic cubes.

In Sections 2 and 3 we prove Theorem 1.1, and in Section 4 we use it prove Theorem

1.2. In Appendix A we show how to adapt our proof of Theorem 1.1 to give a new

proof of (1.2) for general sets E ⊂ R
n, and in Appendix B we discusses equivalent

formulations of the β-numbers and Jones’s theorem.

We end the introduction by describing one motivation for wanting this improved

version of Jones’s theorem. Although changing O(diam(Γ)) to crd(Γ) may seem
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minor, it is crucial for proving the following result in [5]. Recall that a closed curve

Γ is called chord-arc if any two points z, w ∈ Γ are joined by a sub-arc γ with length

ℓ(γ) = O(|z − w|).

Theorem 1.4. The following are equivalent for a closed Jordan curve in R
n, n ≥ 2:

(1) Γ satisfies
∑

Q

β2
Γ(Q) < ∞.

(2) Γ is chord-arc and for any dyadic decomposition of Γ, the inscribed polygons

{Γn} defined by the nth generation points satisfy
∞∑

n=1

2n [ℓ(Γ)− ℓ(Γn)] < ∞,

with a bound that is independent of the choice of the decomposition.

(3) Γ has finite Möbius energy, i.e.,

Möb(Γ) =

∫

Γ

∫

Γ

(
1

|x− y|2 − 1

ℓ(x, y)2

)
dxdy < ∞,

where dx, dy denotes integration with respect to arclength measure.

Note that (1) is Jones’s sum without the diam(Q) factor; thus this condition rep-

resents something stronger than rectifiability. The β’s represent a measurement of

local curvature of Γ, so (1) makes precise the idea that the that curvature of Γ is

square integrable over all locations and scales.

If a closed Jordan curve Γ has finite length ℓ(Γ), choose a base point z01 ∈ Γ and

for each n ≥ 1, let {znj }, j = 1, . . . , 2n be the unique set of ordered points with

zn1 = z01 that divides Γ into 2n equal length intervals (called the nth generation

dyadic subintervals of Γ). Let Γn be the inscribed 2n-gon with these vertices. Clearly

ℓ(Γn) ր ℓ(Γ) and condition (2) measures the rate of convergence.

In (3), the Möbius energy of a curve is one of several “knot energies” on curves

introduced by O’Hara [24], [25], [26], that blows up when the curve is close to self-

intersecting, so continuously deforming a curve in R
3 to minimize it should lead to

a canonical “nice” representative of each knot type. This was proven by Freedman,

He and Wang [15] for irreducible knots. They also showed that Möb(Γ) is Möbius

invariant (hence the name) and that Möb(Γ) attains its minimal value 4 only for
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circles. Theorem 1.4 provides a geometric characterization of the curves for which

this energy is finite. Function theoretic arguments suffice to prove Theorem 1.4 in

the plane, but for n ≥ 3, Theorem 1.2 is used in [5] to prove (1) ⇒ (2); the other

implications (2) ⇒ (3) ⇒ (1) follow by more elementary arguments.

In the special case n = 2, the class of closed curves described by Theorem 1.4 is

known as the Weil-Petersson class. This is the closure of the smooth curves in the

Weil-Petersson metric on universal Teichmüller space defined by Takhtajan and Teo

[33]; their work was motivated by problems arising in string theory. Before [5] it

had been an open problem to give a geometrical characterization of these curves, a

question that also arose in the work of David Mumford and his students on computer

vision and pattern recognition, e.g., [11], [12], and [32]. The Weil-Petersson class is

also connected to the study of Schramm-Loewner evolutions (random Jordan paths)

and the Brownian “loop soup” of Lawler and Werner. See [29], [35], [36], [37]. In

addition to the conditions in Theorem 1.4, there are numerous other characteriza-

tions of the Weil-Petersson class involving conformal maps, Schwarzian derivatives,

quasiconformal mappings, Sobolev spaces and minimal surfaces in hyperbolic 3-space

with asymptotic boundary Γ. The results of this paper allow many of these charac-

terizations to be extended to higher dimensions and proven equivalent there. They

should also prove useful in a number of other constructions involving β-numbers in

higher dimensions.

I thank Jack Burkart, Maŕıa González, Joe Mitchell, David Mumford, and Raanan

Schul for reading early drafts of this paper and for numerous helpful comments and

suggestions.

2. Proof of the upper bound in Theorem 1.1

In this section we prove the inequality

ℓ(Γ)− diam(Γ) .
∑

Q

β2
Γ(Q)diam(Q),(2.1)

and we will prove the opposite direction in the next section.

Proof of (2.1). This direction closely follows the proof of Theorem 10.5.1 in [7] in the

planar case, which itself is inspired by the argument in Section X.2 of [14] (but that
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proof contains a minor gap, fixed in [7]). However, several facts that are easy in the

plane require more intricate proofs in higher dimensions.

We will define a sequence of nested, compact sets {Γn}∞0 that shrinks down to Γ.

Γ0 is the convex hull of Γ. In general, suppose that Γn is the union of a collection

Rn of compact, convex sets that cover Γ and that each set R ∈ Rn is the convex hull

of R ∩ Γ. For each such set R, choose a diameter segment I of R and divide I into

two equal halves. Let R1, R2 be the convex hulls of the parts of R ∩ Γ than project

orthogonally onto each of these segments. See Figure 2. We call this process splitting

R. The collection Rn+1 is obtained by splitting every element of Rn in this way.

Thus Rn+1 has twice as many elements as Rn and we will think of these elements

as the nth generation of a binary tree whose root is R0 = Γ0. Below we will show

that the diameters of these sets tend to zero uniformly in n and that the sets are

well dispersed in space (only a bounded number with diameter ≃ r can be within

distance r of each other).

G

R

R1
R2

I

Figure 2. The convex set R is split into two smaller convex sets.

For a convex set R we define

β(R) = inf
I
sup
z∈R

dist(z, I)

diam(R)
,

and the infimum over all diameters I of R. (diameters are segments connecting pairs

of points z, w ∈ ∂R with |z − w| = diam(R)).

Lemma 2.1. If R is split into R1, R2 as above, then

diam(R1) + diam(R2) ≤ diam(R) +O
(
β2(R)diam(R)

)
.

Proof. The subset R1 ⊂ R is contained in a cylinder W with axis length diam(R)/2

and radius β(R)diam(R), so diam(R1) ≤ diam(W ) = 1
2
diam(R)+O(β2(R)diam(R)).

Similarly for R2, and adding the estimates proves the lemma. �
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Lemma 2.2. There is a constant M = M(n), so that if the splitting operation is per-

formed M times, then each of the 2M resulting sets has diameter at most 3
4
diam(R).

Proof. Suppose not, that is, suppose there is an R with diam(R) = 1 and a large

integer M , so that after M splittings some subset still has diameter > 3/4. After the

first subdivision the projection onto the direction of the first diameter segment has

length 1/2, so the second diameter segment (or any of the next M diameter segments)

can’t point in the same direction. Indeed, since all the next M diameters are > 3/4

then can’t lie within angle θ = cos−1(2/3) of the first direction. Similarly, the third

direction can’t be within θ of either the first or second directions, and so on. Since

the (n−1)-sphere is compact, it contains at most a bounded number C(n) of disjoint

spherical caps of this size and so M ≤ C(n) + 1, as desired. �

By considering an n-dimensional ball, we see that n splittings may have to occur

before the diameter drops at all. As a side remark, Borsuk’s conjecture [8] asked

if any bounded set in R
n could be partitioned into n + 1 subsets of strictly smaller

diameter, but this was disproven by Kahn and Kalai [17] who gave examples of sets

requiring ≥ (1.1)
√
n subsets when n is large. Schramm had earlier shown that (1.3)n

subsets always suffice. See also Chapter 18 of [1] for some history and related results.

Using Lemma 2.1, induction and diam(Γ0) = diam(Γ), we get

∑

R∈Rn+1

diam(R) ≤
∑

R∈Rn

diam(R) +O

(
∑

R∈Rn

β2(R)diam(R)

)

≤ diam(Γ) +O

(
n∑

k=1

∑

R∈Rk

β2(R)diam(R)

)

The following is a standard fact.

Lemma 2.3. For a Jordan curve, the definition of ℓ(Γ) via the supremum of lengths

of inscribed polygons agrees with the definition of 1-dimensional Hausdorff measure

H1(Γ) as the limit limδց0 inf
∑

j diam(XJ), where the infimum is over all coverings

of Γ by set of diameter less than δ.

Proof. For any arc σ, we have H1(σ) ≥ crd(σ) so for any polygon P inscribed in γ,

we have H1(γ) ≤ ℓ(P ). By taking limits we get H1(γ) ≤ ℓ(γ). On the other hand,
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we can cover γ by finitely many disjoint (except for endpoints) subarcs {γk} each of

length ≤ δ. Hence
∑

k diam(γk) ≤
∑

l ℓ(γk) ≤ ℓ(γ). Taking the limit as δ ց 0 we

get H−1(γ) ≤ ℓ(γ). �

By Lemma 2.2 our collections Rn form such coverings and hence

ℓ(Γ) = H1(Γ) ≤ lim sup
n→∞

∑

R∈Rn

diam(R).(2.2)

Therefore,

ℓ(Γ) ≤ diam(Γ) +O

( ∞∑

n=0

∑

R∈Rn

β2(R)diam(R)

)
.(2.3)

So all that remains to do is to show that the β2-sum over all the convex sets in the

tree T is dominated by the usual β2-sum over dyadic cubes. Given a set R in some

Rn there is a dyadic cube Q that intersects R and satisfies diam(Q) ≤ diam(R) ≤
2 · diam(Q). Then R ⊂ C(n) · Q and β(R) = O(β(Q)). We will be done once we

know that only a uniformly bounded number of R’s can be associated to the same

Q. This is implied by:

Lemma 2.4. Suppose R is the convex hull of Γ ⊂ R
n, n ≥ 2. Consider the binary tree

of subsets obtained by the subdivision rule described above. Given 0 < ǫ < diam(Γ)

and a point x ∈ R
n, the number of descendants of R that hit the ball B(x, ǫ) and have

diameter between ǫ/2 and ǫ is bounded depending only on the dimension n.

Proof. Rescale so ǫ = 1/1000 and x = 0. Let C be the collection of sets described in

the lemma. Choose a large integer N and remove all the sets that are within tree

distance N of the root; there are at most 2N of these, so it suffices to bound the

number of remaining sets. Replace each remaining set by its smallest (in terms of

containment) ancestor to have diameter larger than 4. By Lemma 2.2 there must be

such an ancestor, if N is large enough (depending only on n), and at most 2N sets in

C have the same replacement. Thus it suffices to bound the number of minimal sets

R′ in T so that diam(R′) ≥ 4 and R′ ∩ Bǫ 6= ∅. We call these sets R′ the admissible

descendents of R and denote them by A.

We say a set R′ in A has rank k if it contains a k-dimensional ball of radius

10−k centered on the unit n-sphere. We will call the center of this ball the center of

R′. Since every admissible descendent hits Bǫ and has diameter ≥ 4, it contains a



THE TRAVELING SALESMAN THEOREM FOR JORDAN CURVES 9

segment that connects {|x| = 1/2} to {|x| = 3/2} and hence has rank at least 1. The

maximum possible rank is n, and there are only a bounded number of such sets in A
since they contain disjoint balls of fixed volume centered on the unit sphere. When

considering the tree T , we will say a vertex has rank k if the corresponding set does.

The key observation is the following. Suppose that δ = 10−n−4 and that R1, R2 are

two descendent sets whose center points are within δ of each other. Suppose also that

R2 has rank less than or equal to k, the rank of R1. Let R0 be the smallest common

ancestor of R1 and R2 (on the tree T , this is the vertex where the paths from R1 and

R2 to root first meet). Then R1 and R2 are on opposite sides of the hyperplane H

(possibly each intersecting H) bisecting some diameter I of R0, and hence H must

come within δ of the center of R1. Thus the k-ball Bk in R1 is very close to parallel

to H. The segment I is perpendicular to H and hits H at a point at most distance

diam(R0) from the center of Bk. By definition, R0 contains the convex hull of its

endpoints and the k-ball Bk. Since diam(I) = diam(R0) ≥ diam(R1), R0 contains a

(k+1)-ball Bk+1 with the same center as Bk and with radius at least 1/10 as big, in

particular, bigger than 10−k−1. Thus any common ancestor of two sets whose center

points are δ-close has strictly higher rank than either of them. See Figure 3.

Bk

I

Bε H

|x|=1

Bk+1

Figure 3. If the hyperplane H passes very close to the center of a k-
dimensional ball Bk that lies on one side of H, then Bk is nearly parallel
to H and a concentric ball of comparable radius and dimension k + 1
lies in the convex hull of Bk and any segment I that is bisected and
perpendicular to H, and whose length is comparable to its distance
from Bk. This implies the common ancestor of two disjoint sets with
very close centers must have strictly larger rank than either of them.
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Now choose a point x on the unit sphere in R
n and consider all the admissible

descendents whose centers are within δ of this point. These sets form the leaves of a

finite subtree of T , where the only vertices of degree 3 are smallest common ancestors

of some subcollection of the sets. By our remarks above, each vertex of degree three

has strictly larger rank than any of the degree three vertices below it (closer to the

leaves). Thus each leaf is connected to the root by a path that has at most n degree

three vertices on it and so the tree is homeomorphic to a rooted binary tree with

depth ≤ n. Thus there are at most 2n leaves.

Since the unit sphere in R
n is compact, we can partition the set of all admissible

descendents into N(n, δ) collections, each of which has all their centers contained

inside some ball of radius δ. By our previous argument, each such collection has at

most 2n elements, and this proves the lemma. �

As noted earlier, this completes the proof of (2.1). �

3. Proof of the lower bound in Theorem 1.1

Next we consider the opposite direction:

ℓ(Γ)− diam(Γ) &
∑

Q

β2
Γ(Q)diam(Q).(3.1)

In the case n = 2 we will actually prove that

ℓ(Γ)− 1

2
prm(Γ) &

∑

Q

β2
Γ(Q)diam(Q),(3.2)

where prm(Γ) = ℓ(∂(ch(Γ))) denotes the perimeter of Γ, i.e., the length of the bound-

ary of its planar convex hull (twice the length of Γ if it is a line segment). By

noting that the orthogonal projection of a closed curve onto a diameter segment is

1-Lipschitz and at least 2-to-1, we see that the perimeter of Γ is at least twice its

diameter. Hence (3.2) implies (3.1). In higher dimensions, the perimeter is replaced

by a quantity called the “mean width” of Γ, defined below.

Proof of (3.1). Estimate (3.1) is proven using ideas from integral geometry. For the

following facts, see [30].

There is a standard measure µ on the space of (n − 1)-hyperplanes in R
n, that is

invariant under rigid motions of Rn. In this proof “hyperplane” will always mean

a (n − 1)-dimensional affine space, and we will drop the explicit mention of the



THE TRAVELING SALESMAN THEOREM FOR JORDAN CURVES 11

dimension. Each hyperplane H ⊂ R
n (except those passing though the origin; a set

of µ measure zero) is determined by the point p ∈ H closest to the origin. If p = rx

with r > 0, x ∈ S
n−1 = {x ∈ R

n : |x| = 1}, the measure µ on hyperplanes is given by

dr times (n− 1)-measure on the unit sphere S
n−1 ⊂ R

n.

Crofton’s formula says there is a constant cn > 0 so that

ℓ(Γ) = cn

∫
n(H,Γ)dµ(H),

where n(H,Γ) is number of points in H ∩ Γ. See [30]. As a special case the measure

of the set of hyperplanes hitting a line segment I is cnℓ(I) (almost every hyperplane

hits a given segment at most once). The value of cn is explicitly known, but not

important to us; indeed, from this point on we normalize µ so that cn = 1. Note that

if S is the chord of Γ then

µ({H : H ∩ Γ 6= ∅}) ≥ µ(H : H ∩ S 6= ∅}) = crd(Γ).(3.3)

The leftmost quantity in (3.3) is called the mean width of Γ; it is the average over

Sn−1 of the length of the projection of Γ onto the line every direction. For n = 2,

this is a multiple of the perimeter of the convex hull K of Γ, and for n = 3 it is a

multiple of the integral of the mean curvature over the surface of K (and this is often

easier to compute). More generally, it is the coefficient V1 of ǫ in Steiner’s formula

vol(Kǫ) = vol(K) + V1ǫ + V2ǫ
2 + · · · + Vnǫ

n, where Kǫ is the ǫ-neighborhood of K.

The Vk’s are the intrinsic volumes of K and every rigid motion invariant on convex

sets is a combination of these. See, e.g., [18], [30].

Let D denote the collection of dyadic cubes in R
n and let D∗ be the union of all

possible translates of D by {−1
3
, 0, 1

3
} along any subset of the n coordinates. The

family D∗ has the property that any bounded subset of R
n is contained in some

member of D∗ of comparable size (the 1
3
-trick, [27]). Also, the translate of any dyadic

cube by ℓ(Q)/3 along any subset of the coordinates is in D∗ (to see this, note that

one of 2n ± 1 is divisible by 3 hence 1
3
2−n = ±1

3
+ k2−n has a solution). The set of

all such translates of Q is denoted D∗(Q).

For Q ∈ D∗ let S(Q,Γ) be the set of hyperplanes that intersect both 5
3
Q ∩ Γ and

(3Q\2Q)∩Γ. For a hyperplane H, let N(H,Γ) be the number of cubes Q ∈ D∗ such

that H ∈ S(Q,Γ).

Lemma 3.1. n(H,Γ)− 1 & N(H,Γ) whenever n(H,Γ) > 0.
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Proof. Assume n(H,Γ) is finite (otherwise there is nothing to do). Since D∗ consists

of a finite union of families of translations of the dyadic cubes D, its suffices to

bound the number of cubes belonging to each family. Since the argument is the

same for each family, we just consider the dyadic cubes. By breaking the dyadic

family into a finite number of sub-families, we may also assume the cubes are “M -

sparse”, i.e., there is a large constant M so that any two cubes Q,Q′ of the same

size satisfy dist(Q,Q′) ≥ Mdiam(Q) and cubes Q,Q′ of different sizes satisfy either

diam(Q) ≥ Mdiam(Q′) or the reverse inequality. Let Q be one such a collection of

sparse dyadic cubes.

We define a graph G = (V,E) with vertices V = H ∩ Γ and an edge between

z, w ∈ V if there is some cube Q ∈ Q with z ∈ 5
3
Q and w ∈ 3Q \ 2Q. Let C ⊂ Q

be the cubes Q for which such a pair (z, w) exists. Note that diam(Q) ≃ |z − w|, so
the number of dyadic cubes associated to this pair is uniformly bounded. Moreover,

by sparseness there is at most one Q ∈ Q associated to any pair (z, w). Thus

#(C) ≤ #(E) (where # is cardinality). In fact, if Q is associated to more than one

edge in G, we remove all but one of these edges from the graph (that we still call G),

so that #(C) = #(E). If G has no cycles, i.e., all its connected components are trees,

then #(C) = #(E) ≤ #(V )− 1 = n(H,Γ)− 1 and we are done.

Note that if M is chosen large enough, and e1, e2 ∈ E are adjacent edges of G

whose lengths are comparable to within a factor of 100, then by sparseness, e1 and

e2 must correspond to the same cube Q, and hence e1 = e2. Thus adjacent edges in

G have lengths differing by a factor of at least 100.

It suffices to prove G has no cycles, so suppose e1, . . . eN are the ordered edges of

cycle in G. We want to show this is impossible. We will call a pair of edges ej, ek in

the cycle a “good pair” if they have sizes that are comparable within a factor of 100,

but are connected by a non-empty path of edges that are all smaller by a factor of

100. We may assume e1 is the longest edge. Thus it is one element of a good pair;

the other element is either itself (if it is the only edge with comparable length in the

cycle) or another edge ek; in the latter case e1 and ek can’t be adjacent by our earlier

remarks. We claim there must be another good pair on the path connecting e1 to ek.

Let f be the largest edge between e1 and ek. Since e1, ek is a good pair, ℓ(f) ≤
min(ℓ(e1), ℓ(ek))/100. If there is a second edge with length comparable to f (within
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a factor of 100), then since the path from e1, e2 is finite, then some pair of these

comparable edges gives another good pair. Otherwise there is no other edge with

length comparable to f . Now consider the largest edge f ′ between e1 and f . As

above, there is either another edge between e1 and f of comparable size (and hence

another good pair), or just a single such edge f ′ with ℓ(f ′) ≤ ℓ(f ′)/100 (since we have

assumed there are no edges with length that is within a factor of 100 of f ’s). The

same argument applies to the path from f to ek. Thus either we find a good pair or

there are at most two edges (besides f) that are longer than ℓ(e1)/100
2. Continuing

in the same way, we either find a good pair or we prove that there are at most 2n− 1

edges of length ≥ 100−n−1ℓ(e1). Thus the total length of all the edges in the path

from e1 to ek is at most
∑∞

n=1 2
n · 100−nℓ(e1) ≪ ℓ(e1). However, the path either

connects the endpoints of e1, or connects e1 to an edge ek whose distance from e1 is

≥ 100 · ℓ(e1). In either case, the path is too short, so the assumption that there are

no good pairs must be wrong.

So a good pair of edges ej, ei with diameters ≤ 100 · diam(e1) must exist. But

these edges are separated by distance at least 100 · diam(ej) and the same argument

as above implies the path between them contains another good pair smaller by at

least a factor of 100. Continuing in this way, we see the proposed cycle in G contains

arbitrarily many edges, and this contradicts the fact that G is a finite graph. Thus

G is a forest, and the lemma is proven. �

Continuing with the proof of (3.1), note that by (3.3)

ℓ(Γ)− crd(Γ) ≥
∫

n(H,Γ)dµ(H)−
∫

H∩Γ 6=∅
1dµ(H)

&

∫
N(H,Γ)dµ(H)

=
∑

Q∗

µ(S(Q∗,Γ)).

To complete the proof we need

Lemma 3.2. For every dyadic cube Q there is a intersecting Q∗ ∈ D∗ of comparable

size so that β2
Γ(Q)diam(Q) . µ(S(Q∗,Γ)).



14 CHRISTOPHER J. BISHOP

Given the lemma, we deduce that
∑

Q∈D
β2(Q)diam(Q) .

∑

Q∗∈D∗

µ(S(Q∗,Γ)),

and hence

ℓ(Γ)− crd(Γ) &
∑

Q∈D
β2(Q)diam(Q),

as desired. To prove Lemma 3.2 we will need some preliminary facts.

Lemma 3.3. Suppose I is the unit segment between 0 and 1 on the x1-axis, and

suppose J is another unit length segment in R
n with dist(I, J) ≥ 1 and with at least

one endpoint inside {|x| < 100} that is distance β > 0 from the x1-axis. Then the

µ-measure of the hyperplanes hitting both I and J is & β2.

Proof. Think of I as fixed and J as variable. The measure of the hyperplanes hitting

both I and J is a continuous function of J and is non-zero as long as J is not a subset

of X1, the x1-axis. Thus it is bounded away from zero as long as J has one endpoint

outside the cylinder of radius 1/100 around X1.

Since the lemma is true if β ≥ 1/100, now suppose β < 1/100. Then the hyper-

planes that hit both I and J have unit perpendicular vectors that within O(β) of

the (n− 1)-unit-sphere Sn−1 in X⊥
1 , the orthogonal complement of X1. Consider the

linear map that is the identity on X1 and expands by a factor of b = 1/(100β) on

X⊥
1 . In the p = rx parameterization of hyperplanes, this map can change r by a

factor of O(b) and changes the x1 coordinate of x by at most a factor of b. Therefore

the µ measure of hyperplanes hitting I and J is increased by at most a factor of

O(b2) = O(β−2) and the new measure is bounded uniformly away from zero. This

proves the lemma. �

Lemma 3.4. Suppose Q is a dyadic cube in R
n and Q∗ ∈ D∗ is cube of the same

size and is a translation of Q by at most ℓ(Q)/3 in each coordinate direction. Then

the distance from 2Q ∪ 2Q∗ to R
n \ (3Q ∩ 3Q∗) is at least ℓ(Q)/6.

Proof. If z ∈ 2Q ∪ 2Q∗ then Pk(z) ∈ 2I ∪ 2I∗ = Pk(2Q) ∪ Pk(2Q
∗) for every k =

1, . . . , n, where Pk is the orthogonal projection onto the kth coordinate axis. Similarly,

if w 6∈ (3Q ∩ 3Q∗) then Pk(z) 6∈ 3I ∩ 3I∗ = Pk(3Q) ∩ Pk(3Q
∗) for some choice of

k. But in dimension 1, the distance between 2I ∪ 2I∗ and R \ (3I ∩ 3I∗) is easily
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computed to be ℓ(I)/6, e.g., if I = [0, 1] and I∗ = [1
3
, 4
3
], then 2I ∪ 2I∗ = [−1

2
, 11

6
] and

3I ∩ 3I∗ = [−2
3
, 2]. Hence |z − w| is at least this big. �

Proof of Lemma 3.2. The idea is simple: by Lemma 3.3 and the fact that any hyper-

plane hitting a chord S of a sub-arc γ ⊂ Γ also hits γ, the estimate reduces to finding

two sub-arcs γ1, γ2 of Γ ∩ 3Q with length ≥ ell(Q)/100 and ≤ ℓ(Q)/2 and so that

dist(γ1, γ2) ≥ ℓ(Q)/2, and also whose chords are β far from lying one the same line.

The separation property will hold if one chord lies in 3
2
Q and the other in 3Q \ 2Q.

By rescaling we may assume Q has side length 1, and that Γ hits both Q and

3Qc. Set β = βΓ(2
23
24
, Q). For any child Q′ of Q, 3Q′ ⊂ 2Q ⊂ 223

24
Q, so βΓ(Q

′) ≤ β =

βΓ(2
23
24
, Q). Thus the β-numbers for the children ofQ are all bounded by O(β), and we

will show that this is either O(µ(S(Q,Γ))) or O(µ(S(Q∗,Γ))) for some Q∗ ∈ D∗(Q).

Thus finding the two chords in Γ ∩ Q will actually bound the β numbers for the

children of Q.

Choose z ∈ Γ∩ ∂Q and define the ball B1 = B(z, 1
24
). Choose w ∈ Γ∩ ∂B1 so that

z and w are connected by a sub-arc γ1 ⊂ Γ ∩ B1. Let S1 = [z, w] be the segment

connecting them. Then S1 ⊂ 12
3
Q and any hyperplane that hits S1 must also hit

γ1 ⊂ Γ ∩ 12
3
Q. Let L1 be the line that contains S1 and let W0 ⊂ W1 be the cylinders

of radius β/1000 and β/2 respectively, both with axis L1. Since these radii are less

than β, we know Γ ∩ 223
24
Q contains a point outside the cylinder W1. There are two

cases to consider, depending on where this point is.

Case 1: Suppose there is a point

v ∈ Γ ∩
(
2
23

24
Q \ 2 1

24
Q

)
\W0.

See left side of Figure 4. Since Γ is path connected and has diameter ≥ diam(Q), v

can be connected to a point u ∈ Γ with |u − v| = 1
24

(we may assume u and v are

connected by a sub-arc γ2 ⊂ Γ that stays inside the ball B2 = B(v, 1
24
) by starting at

v and following γ until it first leaves B2). Let S2 = [u, v] be the segment connecting

these two points and note that any line that hits S2 also hits γ2 ⊂ Γ∩D2 ⊂ 3Q \ 2Q.

Since S2 has an endpoint outside W0, the measure of the set of lines that hits both

S1 and S2 is & β2 by Lemma 3.3. Thus µ(S(Q,Γ)) & β2 as well and the lemma is

satisfied with Q∗ = Q.
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u
v

1
242  Q

W0

W1
L1

z w

242  Q23

Q

3Q

Γ

u v

1
242  Q

L1

W1

W0

242  Q23

Q

3Q

L4

Γ
p

q

Figure 4. In both cases, we can find two segments inside 3Q that
have lengths comparable to diam(Q) and are not both close to common
line. Lemma 3.3 them implies at least measure ≃ β2 of hyperplanes
hit both segments. For clarity, the pictures are not quite to scale.

Case 2: Suppose Case 1 does not hold. Then there must be a point p ∈ Γ∩ (2 1
24
Q \

W1). Choose q with |p − q| ≤ 1
12

that is connected to p by a sub-arc γ3 ⊂ Γ ∩ B3,

where B3 = B(p, 1
12
) ⊂ 21

3
Q. See right side of Figure 4. Let S3 = [p, q]. As before,

any line that hits S3 must also hit γ3. Choose an element Q∗ ∈ D∗(Q) that is the

same size as Q and translated by at most 1
3
ℓ(Q) in each coordinate direction (possibly

Q itself) and so that B3 ⊂ 12
3
Q∗ (it is easy to check there is at least one such cube

Q∗ by considering the projections onto each coordinate).

By Lemma 3.4, Γ must contain a point u ∈ (3Q ∩ 3Q∗) \ (2Q ∪ 2Q∗) that is at

least distance ≥ 1
12

from the boundaries of both 2Q and 3Q. Therefore the ball

B4 = B(u, 1
24
) is inside of 223

24
Q \ 2 1

24
Q. As before, we can find a radius S4 of B4 so

that any line that hits S4 also hits a sub-arc γ4 ⊂ Γ∩B4. Since γ4 lies inside the very

thin cylinder W0, the line L4 containing S4 is almost parallel to L1 (the axis of W0)

and so L4 ∩ 3Q lies inside a cylinder of radius β/4 around L1. Since p is outside the

larger cylinder W1 we see that S3 and S4 satisfy Lemma 3.3, hence the measure of the

set of lines that hit both S4 and S3 is & β2 by Lemma 3.3. Thus µ(S(Q∗,Γ)) & β2,

as desired. �

This completes the proof of (3.1), and hence of Theorem 1.1. �
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4. Proof of Theorem 1.2

Proof. As noted earlier, “&” is immediate from Theorem 1.1 since crd(Γ) ≤ diam(Γ).

To prove the other direction, we may assume the β2-sum in (1.4) is finite, for

otherwise there is nothing to prove. Thus we may assume γ is rectifiable. We may

also assume diam(Γ) = 1. Let Q0 be a dyadic cube hitting Γ with 1 ≤ diam(Q0) ≤ 2,

hence Γ ⊂ 3Q. Suppose β0 is a small positive number (chosen to satisfy various

conditions described below). If βΓ(Q0) > β0, then the result is trivially true since

then

crd(Γ) ≤ diam(Γ) = 1 ≤ 1

β2
0

β2
Γ(Q0)diam(Q0) . β2

Γ(Q0)diam(Q0),

(with constant depending on β0) and hence the crd(Γ) term in (1.4) can be absorbed

into the β2-sum term.

Therefore we may assume βΓ(Q0) ≤ β0. Let S = [x, y] be a diameter segment of Γ

and let γ0 be the open subarc of Γ connecting x and y. Then Γ \ γ0 consists of two

arcs, γ1 connecting x to an endpoint z (possibly z = x) and γ2 connecting y to the

other endpoint w (possibly w = y).

γ1γ2 γ
0

y
w

x Qβ(     )0

z

Figure 5. Definitions for the proof of Theorem 1.2.

By rotating and rescaling, we may assume that x = 1, y = −1 on the x1-axis. See

Figure 5. Note that

crd(Γ) ≥ diam(Γ)− ℓ(γ1)− ℓ(γ2)

and hence using Theorem 1.1 (in particular (2.1)) we get

ℓ(Γ)− crd(Γ) ≤ ℓ(Γ)− diam(Γ) + ℓ(γ1) + ℓ(γ2)

≤ O

(
∑

Q

β2
Γ(Q)diam(Q)

)
+ ℓ(γ1) + ℓ(γ2).

Thus Theorem 1.2 will follow if we can show that both ℓ(γ1) and ℓ(γ2) are bounded by

a multiple of the β2-sum for Γ. Because of (1.2), i.e., the usual form of the traveling

salesman theorem, and the fact that βγ1(Q), βγ2(Q) are both at most βΓ(Q), it is
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enough to bound the diameters of these arcs by the β2
Γ-sum; then the diameters

can be absorbed into the sum by making the comparability constant larger. The

arguments for both arcs are the same, so we only discuss γ1.

Let ǫ = diam(γ1). Assume ǫ > 0 (otherwise there is nothing to do). Let Q1, . . . , Qk

be the nested dyadic cubes containing x with diameters going from diam(Q0) to ǫ.

Note that k ≃ log(diam(Q0)/ǫ). If any one of these cubes satisfies βΓ(Qj) ≥ β0, then

diam(γ1) ≤
β2
Γ(Qj)

β2
0

diam(γ1) . β2
Γ(Qj)

diam(Qj),

and hence diam(γ1) is dominated by the β2-sum, as desired. For the remainder of

the proof we may therefore assume that βΓ(Qj) ≤ β0 for all j ∈ {0, 1, . . . , k}. Let Lj

be a best line in the definition of βΓ(Qj).

Case 1: Assume that for some j ∈ {1, . . . , k}, the line Lj makes an angle larger

than 10β0 with the x1-axis. Since the angle between L0 and Lj is bounded by

O
(∑j

i=0 β(Qi)
)
, and we have normalized so that the best line for Q0 is within β0

of the x1-axis, we must have
∑k

j=1 βΓ(Qj) & β0 & 1. The Cauchy-Schwarz inequality

then implies

1 .

(
k∑

j=1

βΓ(Qj)

)2

≤
(

k∑

j=1

β2
Γ(Qj)2

−j

)
·
(

k∑

j=1

2j

)
≃ 2k

k∑

j=1

β2
Γ(Qj)2

−j

so
∑k

j=1 β
2
Γ(Qj)2

−j & 2−k & ǫ, and hence

ǫ = diam(γ1) .
k∑

j=1

β2
Γ(Qj)diam(Qj),

as desired.

Case 2: Next we assume that all the lines Lj, j = 0, . . . , k make angle ≤ 10β0

with the x1-axis. Consider a subarc γ′
1 ⊂ γ1 that is contained in, and connects the

boundary components of, the annulus

{p ∈ R
2 :

1

10
diam(γ1) ≤ |p− x| ≤ 1

5
diam(γ1)}.

Since γ1 and γ′
1 have comparable diameters, it is enough to bound diam(γ′

1).

For each p ∈ γ′
1 a dichotomy holds: either every dyadic cube Q containing p with

diam(Q) ≤ diam(γ1)/10 satisfies βΓ(Q) ≤ β0 or there is a cube Qp of this form such
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that βΓ(Qp) > β0. Let E ⊂ γ′
1 be the set of points p where such a Qp exists. Since

we can assume γ1 is rectifiable, almost every point of γ1 is a tangent point.

Lemma 4.1. If p ∈ γ′
1 \ E and p is a tangent point of Γ, then p has the following

“crossing property”: if Q is a dyadic cube containing p with diam(Q) ≤ diam(γ1)/10

then γ1 must “cross” Q in the sense that the orthogonal projection of γ1∩3Q onto LQ

covers LQ ∩Q, where LQ is a best approximating line for the definition of βΓ(Q). In

other words, γ1 must connect the two components of W ∩ ∂3Q where W is a cylinder

of radius 1/10 with axis LQ passing through p.

Proof. Note that because p is not in E, that γ has small β-number for Q and for

every dyadic subcube of Q that contains p. Using this, we claim we can construct a

(n− 1)-surface σ so that

(1) σ cuts 3Q into two pieces,

(2) σ separates the endpoints of γ1 ∩ 3Q,

(3) σ contains p, but no other points of γ1, and

(4) σ ∩ 3Q′ \Q′ is nearly orthogonal to LQ′ for each dyadic Q′ with p ∈ Q′ ⊂ Q.

To do this, choose a (n− 1)-sphere of the n-sphere of radius t = diam(Q)2−n around

p that is nearly orthogonal to the optimal line Ln passing through p for the definition

of β(p, 2−n) and then connecting these (n−1)-spheres by a surface (e.g., project both

onto the (n− 1)-plane L⊥
n orthogonal to Ln and connect two points if the projections

are on the same ray in L⊥
n ). See Figure 6 for the planar picture.

If p is a tangent point of γ1, then σ has a tangent plane at p that is perpendicular to

γ1’s tangent direction. From this we see that γ1 crosses σ, i.e., it hits both components

of 3Q \ σ. Since γ1 only hits σ once, it must leave 3Q through a different component

of ∂(3Q) ∩W than it entered through. This implies Lemma 4.1. �

Note in the previous proof, that if Γ contains two sub-arcs that connect different

ends of the cylinder W , then both sub-arcs must cross through p and hence Γ is not

a Jordan curve. This observation will be used later to prove Corollary 5.1.

Lemma 4.2. ℓ(E) = ℓ(γ′
1).

Proof. If not, then we can choose a non-empty subset F ⊂ γ′
1 \ E that consists

entirely of tangent points of γ. Suppose p ∈ F and define d to be the distance
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W

3Q
σ

γ

Q
L

Figure 6. If all the β’s are small at p, and p is a tangent point of
γ, then γ must cross Q in the sense that the orthogonal projection of
γ ∩ 3Q on the line L must cover L∩Q, i.e., γ can’t “double back” and
leave using the same end of W that it entered.

from p to γ0. By the assumption that every Lj is close to horizontal, we know

d = O(β0 diam(γ1)) < diam(γ1)/10. Also note that d is positive since p is not on

γ0. Let Qp be the dyadic square containing p with diameter 2d < diam(Qp) ≤ 4d.

Because diam(Qp) ≤ diam(γ1)/10, the argument in the previous paragraph applies,

and γ1 must cross Qp inside a cylinder S of width β0diam(Qp). Moreover, since

diam(Qp) > 2d, the curve γ0 also hits 3Q and hence contains a point q in the same

cylinder S, and hence γ0 is at most distance β0 diam(Qp) from γ1. For β0 small, this

value is much smaller than d, giving a contradiction. Thus no such p exists, and

hence ℓ(E) = ℓ(γ′
1), so Lemma 4.2 holds. �

By the nested property of dyadic cubes, we can find a collection {Qj
p} of cubes as

in the definition of E that have disjoint interiors and that covers E. Hence

ℓ(γ′
1) ≃ ℓ(E) ≤

∑

j

ℓ(Qj
p ∩ E) .

∑

j


diam(Qj

p) +
∑

Q⊂Qj
p

β2
E(Q)diam(Q)




where we have applied (1.2), say with δ = 1, to each set Qj
p ∩ E. Note that usual

formulation of the traveling salesman theorem is to sum over all dyadic cubes in R
n,

but if E ⊂ Q, then it suffices to sum over all cubes contained in Q (including Q itself)
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since the β2-sum over all larger cubes that hit E form a geometric series whose sum

is O(β2(Q)diam(Q)). See also Lemma B.2.

Now we use (1.2) and the fact that βE ≤ βΓ, to show

ℓ(γ′
1) .

∑

j

∑

Q⊂Qj
p

β2
Γ(Q)diam(Q),

where we have also used βΓ(Q
j
p) ≃ 1 to absorb the diam(Qj

p) terms into the β2-sums.

Since this is a β2-sum over disjoint collections of dyadic cubes, it is dominated by the

full β2-sum, and this completes the proof of Theorem 1.2. �

For the proof of (1.2) we can refer to [16], or note that it is also proven in Appendix

A of this paper. This proof uses a slight modification of the arguments in Section 2

and is independent of the current argument.

5. Corollaries and questions

Next we derive some consequences of our arguments that are used to derive the

characterizations of Weil-Petersson curves given in [5]. As noted in the introduction,

such curves satisfy the condition
∑

Q β2(Q) < ∞, where the “diam(Q)” has been

dropped from Jones’s characterization of rectifiable curves.

Corollary 5.1. If Γ is a closed Jordan curve and S =
∑

Q β2
Γ(Q) < ∞, then Γ has

bounded turning, i.e., there is an M < ∞ so that any pair z, w ∈ Γ is connected by

a sub-arc γ with diam(γ) ≤ M |z − w|. We may take M = O(eO(S)).

Proof. Suppose not. Then given any M < ∞ there are z, w ∈ Γ, so that both subarcs

connecting them have diameter ≥ M |z − w|. Rescale so that |z − w| = 1. Then we

can find disjoint arcs z ∈ γ1, w ∈ γ2 with endpoints z′, z′′ and w′, w′′ respectively, so

that all four of these points are at least distance M from v = (z + w)/2. Choose

a positive integer N so that M/2 < 2N ≤ M . See Figure 7. Consider the annuli

An = {y : 2n ≤ |y−v| < 2n+1} for n = 1, . . . , N and let Qn be the collection of dyadic

cubes that hit An and have diameter ≤ 2n+1. These collections have bounded overlap,

so
∑

n

∑
Qn

β2
Γ(Q) ≤ C · S, and hence there is some n so that

∑
Qn

β2
Γ(Q) ≤ 1/10, if

logM ≥ 10 ·C · S. Both components of γ1 \ {z} cross An, as do both components of

γ2 \{w}. Thus there is a radial cylinder of radius 2n/100 and length 2n that connects

the two boundary components of An and contains two disjoint sub-arcs of Γ that also
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cross An. The proof of Lemma 4.1, however, shows that there is a point p on in An

that both arcs must pass through, a contradiction. Thus Γ has the bounded turning

property for some M with logM . S =
∑

Q β2
γ(Q). �

z

w

v

z

z

w w

Figure 7. If Γ does not have bounded turning, then there are points
z, w that cannot be connect by a subarc of diameter O(|z − w|). This
means these points lie on disjoint subarcs whose four endpoints are all
distance ≫ |z − w| from z and w.

Corollary 5.2. If Γ is a closed Jordan curve and S =
∑

Q β2
Γ(Q) < ∞, then Γ

is chord-arc, i.e., any pair of points z, w ∈ Γ are connected by a sub-arc γ with

ℓ(γ) . |z − w|.

Proof. Suppose z, w ∈ Γ and γ ⊂ Γ is a sub-arc with endpoints z, w and diam(γ) ≤
M |z −w| = Mcrd(γ), with M = O(exp(O(S)) as in the previous corollary. Then by

Theorem 1.2 and the fact that it suffices to sum over cubesQ with diam(Q) . diam(γ)

we get

ℓ(γ) ≤ crd(Γ) +O

(
∑

Q

β2
γ(Q)diam(Q)

)

≤ crd(γ) +O

(
diam(γ)

∑

Q

β2
γ(Q)

diam(Q)

diam(γ)

)

≤ crd(γ) +Mcrd(γ) ·
∑

Q

β2
γ(Q) ·O(1)

= crd(γ) · (1 +O(MS)) = crd(γ) · (1 +O(S exp(O(S)))). �
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The corollaries fail if Γ is not a closed arc, e.g., take a circle with an ǫ-long arc

removed. Is it true that if
∑

Q β2
Γ < ∞ for a Jordan arc Γ, then Γ is a subarc of a

chord-arc curve Γ′? It seems likely that an argument similar to the proof of Lemma

4.1 can be used to extend Γ past an endpoint on scales where β is small, but something

more clever is needed on scales where β is large. More generally, if E is a general

set and
∑

Q β2
Q(E) < ∞, is E a subset of a curve Γ with

∑
Γ β

2
Γ(E) < ∞? Jones’s

traveling salesman theorem shows this is true for sums of the form
∑

Q β2
Q(E)diam(Q).

What about sets satisfying
∑

Q β2
Q(E)diams(Q) for 0 < s < 1?

An earlier draft of this paper asked if Theorem 1.2 is true in Hilbert space. This

has since been verified by Jared Krandel in [19]. Does this theorem hold in other

metric spaces where the usual TST is known to hold? Does (1.2) hold for general sets

in a metric space if (1.1) does? What about (1.3)? These questions seem analogous to

the fact, proven independently by Arora [2] and Mitchell [23], that one can compute

(1+ǫ)-approximations to the classical traveling salesman problem in polynomial time

for finite sets in Euclidean space, but this is unknown for ǫ < 1/2 in metric spaces,

and computing any bounded approximation is NP hard for general weighted graphs.

What is the proper “analytic” version of this?

Appendix A. The TST for general sets

We have done most of the work needed to prove the traveling salesman theorem for

general sets E ⊂ R
n, not just for Jordan curves. For the convenience of the reader,

we explain how to prove (1.2) by modifying the argument in Section 2..

The only change is in the splitting procedure. As before, we start with Γ0 the

convex hull of E. In general, we will have a collection of convex sets Rn and line

segments Sn whose union is a closed, connected set Γn that contains E. As before,

each convex, compact set R ∈ Rn, will be convex hull of R ∩ E. The intersection

Γ = ∩Γn is a compact, connected set containing E and we wish to bound its 1-

dimensional Hausdorff measure.

Given R ∈ Rn, we take a diameter segment I and split it into three equal thirds:

the middle segment J0 and the two ends J1, J2. If the orthogonal projection of R∩E

contains a point v ∈ J0, then cut I into two pieces I1, I2 using this point and replace

R by two pieces R1, R2 that are the convex hulls of the parts of R ∩ E that project
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onto I1, I2 respectively. If the projection of onto J0 is empty, then define R1, R2 as the

convex hulls of the parts of R∩E that project onto J1, J2 respectively and a shortest

possible line segment S connecting R1 and R2. The union of the nth generation

sets and segments is clearly a connected compact covering of E, so the sum of the

diameters of these sets and segments is an upper bound for the shortest connected

set containing E (shortest in the sense of 1-dimensional Hausdorff measure).

The only change needed in the earlier proof is to Lemma 2.1. It becomes

Lemma A.1. If R is split into R1, R2 sets and a segment S as above, then

diam(R1) + diam(R2) + (1− δ)ℓ(S) ≤ diam(R) +O(
1

δ
)β2(R)diam(R).

Proof. For the first case of the new splitting procedure, there is no segment S and

each subset has diameter comparable to R, and the proof of Lemma 2.1 is the same

as before. For the second case, first note that if β(R) ≥ δ/20, then

diam(R1) + diam(R2) + (1− δ)ℓ(S) ≤ ℓ(J1) + ℓ(J2) + ℓ(J0) + 6β(R)diam(R)

≤ diam(R) +
120

δ
β2(R)diam(R)

If β(R) < δ/6, then because ℓ(J0) = diam(R)/3,

diam(R1) + diam(R2) + (1− δ)ℓ(S) ≤ ℓ(J1) + ℓ(J2) + 8β2(R)diam(R)

+(1− δ)(ℓ(J0) + 4β2(R)|R|)

≤ (1− δ

3
)diam(R) + 12β2(R)diam(R)

≤ (1− δ

3
)diam(R) + 12(δ/6)2diam(R)

≤ diam(R).

This proves the lemma. �

The rest of the proof now proceeds as before, except that since

∑

n

∑

S∈Sn

ℓ(S) ≤ ℓ(Γ),
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we can replace (2.3) by

(1− δ)ℓ(Γ) ≤ diam(Γ) + lim sup
n

∑

R∈Rn

diam(R) +
n∑

k=1

∑

S∈Sn

(1− δ)ℓ(S)

≤ diam(Γ) +O(
1

δ
)
∑

n

∑

R∈Rn

β2(R)diam(R).

Dividing both sides by (1− δ) proves (1.2). This implies the smallest connected set

Γ containing a set E satisfies

C1

∑

Q

β2
E(Q)diam(Q) ≤ ℓ(Γ)− diam(E) ≤ (1 + δ)diam(E) +

C2

δ

∑

Q

β2
E(Q)diam(Q),

for some constants 0 < C1, C2 < ∞, since the proof of the lower bound in Section 3

applies to any curve Γ containing E.

Appendix B. Equivalent formulations of TST

There are several formulations of Peter Jones’s traveling salesman theorem and it

is folklore that they are all equivalent to one another. Responding to requests from

readers of an earlier draft of this paper, I give a precise formulation and proof of this

“well known” fact.

A multi-resolution family in a metric space X is a collection of bounded sets {Xj}
in X such that there are N,M < ∞ so that

(1) For each r > 0, the sets with diameter between r and Mr cover X,

(2) each bounded subset of X hits at most N of the sets Xk with diam(X)/M ≤
diam(Xk) ≤ Mdiam(X).

(3) any subset of X with positive, finite diameter is contained in at least one Xj

with diam(Xj) ≤ Mdiam(X).

Dyadic intervals do not form a multi-resolution family, e.g., X = [−1, 1] ⊂ R is not

contained in any dyadic interval, violating (3) above. However, the family of triples

of all dyadic intervals (or cubes) do form a multi-resolution family. Similarly, if we

“triple” the collection of dyadic intervals by adding all translates by ±1/3, we get a

multi-resolution family (this is sometimes called the “1
3
-trick”, [27]). The analogous

construction for dyadic cubes in R
n is to take all translates by elements of {−1

3
, 0, 1

3
}

on each of the coordinates; this 3n families of translates of D (including D itself).

The union of these families is denoted D∗.
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We often deal with functions α that map a collection of sets into the non-negative

reals (the β-numbers are an example), and will wish to decide if the sum
∑

j α(Xj)

over some multi-resolution family converges or diverges. The following observation

allows us to switch between various multi-resolution families without comment.

Lemma B.1. Suppose {Xj}, {Yk} are two multi-resolution families on a space X

and that α is a function mapping subsets of X to [0,∞) that satisfies α(E) . α(F ),

whenever E ⊂ F and diam(F ) . diam(E). Then
∑

j

α(Xj) ≃
∑

k

α(Yk).

Proof. By Condition (3) in the definition of a multi-resolution family, each Xj is

contained in some set Yk(j) of comparable diameter. Hence α(Xj) . α(Yk(j)) by

assumption. By Condition (2), each Yk can only contain a bounded number of Xj’s

of comparable size, so each Yk is only chosen a bounded number of times as a Yk(j).

Thus
∑

j α(Xj) .
∑

k α(Yk). The opposite direction follows by reversing the roles of

the two families. �

It is often convenient to consider several different formulations of the β-numbers.

For x ∈ R
n and t > 0, define

βΓ(x, t) =
1

t
inf
L
max{dist(z, L) : z ∈ Γ, |x− z| ≤ t},

where the infimum is over all lines hitting the ball B = B(x, t) and let β̃Γ(x, t) be

the same, but where the infimum is only taken over lines L hitting x. Since this

is a smaller collection, clearly β(x, t) ≤ β̃(x, t) and it is not hard to prove that

β̃(x, t) ≤ 2β(x, t) if x ∈ Γ. See the center picture in Figure 8.

Given a Jordan arc γ with endpoints z, w we let

β(γ) =
max{dist(z, L) : z ∈ γ}

|z − w| ,

where L is the line passing through z and w. See the right side of Figure 8.

Lemma B.2. Suppose −1 < s < 2 and Γ ⊂ R
n is bounded Jordan curve (either

closed or an arc). Then the following are equivalent:
∑

Q∈D
β2
Γ(Q)diam(Q)s < ∞,(B.1)
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3Q

x

t

Q

Figure 8. Three equivalent versions of the β-numbers.

∫ ∞

0

∫∫

Rn

β2(x, t)
dxdt

tn+1−s
< ∞,(B.2)

If Γ is chord-arc, then (B.1) and (B.2) are also equivalent to
∫ ∞

0

∫

Γ

β̃2(x, t)
dsdt

t2−s
< ∞,(B.3)

∑

j

β2(Γj)diam(Γj)
s < ∞,(B.4)

where dx is volume measure on R
n, ds is arclength measure on Γ, and the sum in (B.4)

is over a multi-resolution family {Γj} for Γ. All four quantities are comparable with

constants that depend only on the dimension n. Moreover, convergence or divergence

in (B.2) and (B.3) is not changed if
∫∞
0

is replaced by
∫M

0
(for any M > 0) and the

values are all comparable for M ≥ diam(γ). The convergence of the sum in (B.1)

is unchanged if we only sum over cubes of diameter ≤ M , for any M > 0 and are

comparable for all values M ≥ diam(Γ).

Since β(x, t) ≃ β̃(x, t) if x ∈ Γ, the integral in (B.3) is finite iff it is finite with β

replacing β̃. However, putting β̃ into (B.2) gives a divergent integral for every closed

Jordan curve Γ. The case s = 1 in the lemma corresponds to Peter Jones’s traveling

salesman theorem characterizing rectifiable curves, and s = 0 corresponds to the

characterization of Weil-Petersson curves in [5]. Do other values of s correspond to

interesting curve families?

Proof of Lemma B.2. Without loss of generality we may assume diam(Γ) = 1.

(B.1) ⇔ (B.2): If Q is a dyadic cube and x ∈ Q, then diam(Q) ≥ √
nt implies then

B(x, t) ⊂ 3Q. In this case β(x, t) ≤ √
nβ(Q). Therefore

∫ diam(Q)/2

diam(Q)/4

∫∫

Q

β2(x, t)
dxdt

tn+1−s
. β2(Q)

vol(Q)

diamn−s(Q)
. β2(Q)diam(Q)s.
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Since the domains of integration on the left are disjoint for distinct (but not neces-

sarily disjoint) dyadic cubes Q, we see that

∫ ∞

0

∫∫

Rn

β2(x, t)
dxdt

tn+1−s
.
∑

Q

β2(Q)diam(Q)s.

Conversely, if x ∈ Q and t ≥ 2diam(Q), then 3Q ⊂ D(x, t), so β(x, t) ≥ 1
2
β(Q). This

shows the β2-integral is also bounded below by a multiple of the β2-sum.

(B.1) ⇒ (B.3): Assume (B.1) holds and that Γ is chord-arc. If x ∈ Γ, 0 <

t ≤ diam(Γ), then ℓ(Γ ∩ D(x, t)) ≃ t. If γ ⊂ Γ is a subarc of length t, then its

diameter is at most t and we can choose a dyadic cube Q containing x and so that

2t ≤ diam(Q) ≤ 4t. Then B(x, t) ⊂ 3Q and so β̃(x, t) . β(Q), and hence (if ds

denotes arclength measure on Γ),

∫ diam(Q)/2

diam(Q)/4

∫

γ

β̃2(x, t)
dsdt

t2−s
.

diam(Q)β2(Q)

diam(Q)1−s
. β2(Q)diam(Q)s.

Now divide Γ into dyadic subintervals, {γj} and let Qj be the dyadic cube associated

to γj as above. Then

∫ ∞

0

∫∫

Γ

β̃2(x, t)
dsdt

t2−s
=

∑

j

∫ ℓ(γj)/2

ℓ(γj)/2

∫

γj

β̃2(x, t)
dsdt

t2−s

≃
∑

j

β2(Qj)diam(Qj)
s

.
∑

Q

β2(Q)diam(Q)s,

where the last line holds if we know that each dyadic Q is only chosen a bounded

number of times as a Qj. But if Q is chosen for γj then γj hits Q and has length

comparable to diam(Q). By the chord-arc condition,only a bounded number of such

arcs can hit Q, for otherwise the arclength of Γ∩ 3Q would be too large. This proves

the arclength integral is bounded by the sum.

(B.3) ⇒ (B.4): For each element Γj of the multi-resolution family, choose a dyadic

arc γk ⊂ Γ that hits Γj and and has comparable length. Since β(Γj) . β̃(x, 2diam(Γj)),

β2(Γj)diam(Γj)
s .

∫ 2diam(Γj)

diam(Γj)

∫

γk

β̃Γ(x, t)
dxdt

t2−s
.
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Since each γk can be associated to at most O(1) arcs Γk (Γj can only hit a bounded

number of dyadic arcs of comparable size), the multi-resolution sum over the whole

family is bounded by the β̃-integral over all Γ and all scales.

(B.4) ⇒ (B.2): Suppose Γ is chord-arc, that Q is a dyadic cube, x ∈ Q, and

that diam(Q) ≤ t ≤ 2diam(Q). Let X = Γ ∩ 9Q and let Γj be a member of the

multi-resolution family containing X and having comparable diameter. Then

β(x, t) ≤ β(Γj) ·
crd(Γj)

t
. β(Γj),

since crd(Γj) ≃ t by the chord-arc condition. The integral in (B.2) is obtained by

summing all the integrals over product sets of the form Q× [diam(Q), 2diam(Q)], and

each such integral is bounded by β2(Γj)diam(Γj)
s for the corresponding Γj. Since Γj

can only hit bounded number of dyadic cubes with diam(Q) ≃ diam(Γj), we see that

each Γj is used only a bounded number of times, hence the sum bounds the integral.

Changing limits of integration: Recall that we have assumed diam(Γ) = 1. To

see that (B.2) is equivalent to

∫ diam(Γ)

0

∫∫

Rn

β2(x, t)
dxdt

tn+1−s
< ∞,(B.5)

we simply note that for any x ∈ Γ and t > diam(Γ), that β(x, t) ≤ 1
t
β(x, 1) and that

β(x, 1) ≃ β(y, 1) for any x, y ∈ Γ. Hence

∫ ∞

1

∫∫

Rn

β2(x, t)
dxdt

tn+1−s
. β2(x, 1)

∫ ∞

1

∫∫

D(x,2t)

dxdt

tn+3−s

. β2(x, 1)

∫ ∞

1

t−3+sdt

.

∫ 1

1/2

∫∫

Rn

β2(x, t)
dxdt

tn+1−s

.

∫ 1

0

∫∫

Rn

β2(x, t)
dxdt

tn+1−s

This is where we use the assumption s < 2, so that −3 + s < −1 and the integral

above converges. Thus truncating the integral cannot convert it from divergent to

convergent. A similar argument works for truncating the sum in (B.1) or the integral

in (B.3). �
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[13] Fausto Ferrari, Bruno Franchi, and Hervé Pajot. The geometric traveling salesman problem in
the Heisenberg group. Rev. Mat. Iberoam., 23(2):437–480, 2007.

[14] John B. Garnett and Donald E. Marshall. Harmonic measure, volume 2 of New Mathematical
Monographs. Cambridge University Press, Cambridge, 2008. Reprint of the 2005 original.

[15] Zheng-Xu He. The Euler-Lagrange equation and heat flow for the Möbius energy. Comm. Pure
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