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Abstract We show that any compact, connected set K in the plane can be
approximated by the critical points of a polynomial with two critical values.
Equivalently, K can be approximated in the Hausdorff metric by a true tree
in the sense of Grothendieck’s dessins d’enfants.

Mathematics Subject Classification 30C62

1 Introduction

Polynomials with at most two critical values are called generalized Cheby-
shev polynomials or Shabat polynomials. If p is such a polynomial of degree
n with critical values in {±1}, then it is not hard to see that T = p−1([−1,1])
is a finite planar tree with n edges. We call a tree of this form a “true tree”
or the “true form” of the combinatorial planar tree T . True trees can have all
possible combinatorics, i.e., every finite planar tree has a true form and this
true form is unique up to orientation preserving Euclidean similarities (see
Sect. 2). Can true trees attain all possible “shapes”? More precisely, given a
continuum (i.e., a compact, connected set) in the plane, can we find a true
tree that approximates it as closely as we wish? The Hausdorff distance be-
tween two sets is the minimum ε > 0 so that each set is contained in an
ε-neighborhood of the other. In this note we prove:
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Theorem 1.1 For any compact, connected set K ⊂ C and any ε > 0 there is
a polynomial p(z) with critical values exactly ±1 so that T = p−1([−1,1])
approximates K to within ε in the Hausdorff metric. In other words, true trees
are dense in all planar continua.

True trees are a special case of Grothendieck’s theory of dessins d’enfants
in which a finite graph drawn on a compact topological surface X induces a
conformal structure on the surface and a Belyi map to the Riemann sphere
(i.e., a meromorphic map branched over three points). In the case of a tree
drawn on the plane, the compact surface is the Riemann sphere and the Belyi
map is a polynomial with two finite critical values (∞ is the third branch
point). These maps have close connections to algebraic number theory and
Galois theory, although we will not deal with those topics here. There is an
extensive literature on dessins d’enfants, true trees and Belyi functions, e.g.,
see [4, 8, 11–14, 17, 19, 20, 24] and their references.

Our approach to proving Theorem 1.1 is based on interpreting true trees
in terms of conformal maps. We will describe this alternate formulation and
reduce the theorem to a more geometric sounding statement.

Suppose T is a finite tree in the plane with n edges. Then the complement
Ω of T is the image of a conformal map f from D

∗ = {|z| > 1} to Ω with
f (∞) = ∞. We say that T is “conformally balanced” if every open edge of
the tree is the image under f of two disjoint open arcs of length π/n on ∂D∗,
and f (z) = f (w) implies f ′(z) = f ′(w) for almost every z,w ∈ T. Because
conformal maps preserve harmonic measure, the conformally balanced con-
dition can be restated in terms harmonic measure with respect to ∞ on T

(i.e., the first hitting distribution of Brownian motion on the sphere started at
∞ and run until it hits T ). On each edge of the tree, harmonic measure natu-
rally decomposes as the sum of two measures, one corresponding to each side
of the edge. The tree is conformally balanced if (1) every edge has the same
harmonic measure, and (2) when we decompose harmonic measure on each
edge into measures corresponding to the two sides, these two measures are
identical. Note that we mean that these measures give the same mass to ev-
ery measurable subset of the edge, not merely that the whole edge gets equal
harmonic measure from both sides.

To see that conformally balanced trees are exactly the same as the true
trees described above, suppose T is a conformally balanced tree and let f

be a conformal map from D
∗ = {|z| > 1} to Ω = C \ T , preserving ∞ and

such that 1 ∈ T = {|z| = 1} = ∂D∗ maps to a vertex. Let g(z) = 1
2(z + z−1).

This is called the Joukowsky map and is the conformal map from D
∗ to U =

C \ [−1,1] that fixes −1,1,∞. Each edge of T has two preimages under f

of length π/d on T. Under the map z → zd each interval is mapped to either
the upper or lower half-circle and pairs of intervals corresponding to the same
edge of the tree map to opposite half-circles. Points that are mapped by f to
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Fig. 1 For any tree T , the
composition of the
conformal map from
Ω = C \ T to {|z| > 1},
followed by zd , followed by
1
2 (z + 1

z ) is d-to-1 and
holomorphic off T . T is
conformally balanced (i.e., is
a true tree) iff this map
extends continuously across
T and hence defines a
polynomial with critical
values in {−1,1}

the same point are also identified by g. Thus the map g((f −1(z))d) defines a
d-to-1 holomorphic map from the complement of the tree to the complement
of [−1,1]. This map extends continuously to the whole plane and hence is a
d-to-1 entire function (see Lemma 2.4) and hence is a polynomial. The critical
points of p are the vertices of degree > 1 of the tree, the only critical values
are −1 and 1 and the tree itself is p−1([−1,1]). See Fig. 1. The argument can
be reversed, so we see that true trees are the same as conformally balanced
trees. Thus Theorem 1.1 can be rewritten as

Theorem 1.2 For any compact, connected set K and any ε > 0 there is a
conformally balanced tree T that is within ε of K in the Hausdorff metric.

Theorems 1.1 and 1.2 were conjectured by Alex Eremenko. I thank him for
the enlightening discussion of these problems during his visit to Stony Brook
in March 2011. I thank Lasse Rempe for his comments on an earlier draft of
this note. I also thank the referee for a careful reading of the manuscript and
numerous corrections and suggestions for improving the paper.

Kevin Pilgrim has observed that the results in this paper, combined with
his arguments in [18], prove that Julia sets of post-critically finite polynomials
are dense in all planar continua. The details will appear in [3]. A related result
was given using different methods by Kathryn Lindsey and William Thurston
in [15].

For the Shabat polynomials pn(z) = 2zn − 1, the only critical point is 0,
whereas the corresponding trees Tn = p−1

n ([−1,1]) become dense in the unit
disk as n increases. Thus it is possible for a sequence of true trees to approx-
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Fig. 2 Two true trees drawn by Marshall and Rohde’s program. The data on the left was a
randomly constructed tree with 75 edges. The tree edges are approximated by polygons so are
not highly accurate, but the vertices (i.e., the roots of the Shabat polynomials) can be computed
to over a 1000 digits of accuracy. The tree on the right has 1250 edges whose combinatorics
were chosen to match those of the Julia set of a certain quadratic polynomial and the resulting
true tree accurately matches the shape of the Julia set

imate a set K , but the corresponding sets of critical points not to approxi-
mate K . However, it will be clear from our construction that the set K in
the theorems is approximated by both a true tree and its corresponding set
of critical points (i.e., the vertices of T of degree > 1). Moreover, the trees
we construct will have a number of “bounded geomery” properties, e.g., the
maximum vertex degree is 4 and the edges are all analytic arcs with uniform
estimates (i.e., each edge is the image of I = [−1,1] under a map that is
conformal on a uniform neighborhood Ω of I ).

Don Marshall and Steffen Rohde have recently adapted Marshall’s con-
formal mapping program zipper to approximate the true form of a given
planar tree, [16]. The program can handle examples with thousands of edges
and is highly accurate. See Fig. 2 for some examples.

The paper [2] contains a generalization of Theorem 1.1 from polynomi-
als to entire functions. Given an infinite tree T in the plane satisfying certain
bounded geometry conditions, this paper gives a construction of an entire
function with only two critical values, so that f −1([−1,1]) approximates T

in a precise sense. Section 15 of [2] describes how Theorem 1.1 in this paper
can be deduced from the more intricate construction in that paper. Other ap-
plications are also given, e.g., the construction of Belyi functions on certain
non-compact surfaces and the existence of an entire function with bounded
singular set that has a wandering Fatou component (this is impossible for en-
tire functions with finite singular sets by a modification of Dennis Sullivan’s
“non-wandering” argument for rational functions. See [5, 6, 22]).

If we require the harmonic measures for the two sides of a tree edge to be
identical, but don’t require all edges to have the same harmonic measure, we
get what is called a minimal continuum. These sets arise as the continua of
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minimal capacity that connect a given finite set. Minimal continua are stud-
ied by Herbert Stahl in [21]; this authoritative paper contains extensive his-
tory and references for the topic. I thank Alex Eremenko for pointing out the
connection between balanced trees and minimal continua to me.

2 Basic properties of conformally balanced trees

In this paper, a finite plane tree T will be a connected compact set in C that
does not separate the plane and is a union of a finite collection of closed Jor-
dan arcs, any two of which are either disjoint or have exactly one endpoint in
common. The edges of the tree are the interiors of these arcs and the vertices
are the endpoints. We shall say that two finite trees in the plane are equiva-
lent if there is homeomorphism of the plane that takes one to the other. Note
that this is more restrictive than saying there is a homeomorphism from one
tree to the other since such a map can swap branches in a way that a planar
homeomorphism cannot. See Fig. 3.

A planar tree is locally connected, so a conformal map from D
∗ to Ω =

C \ T , extends continuously to T. We shall always assume that such a map
fixes ∞.

Let Rn ⊂ T be the set of nth roots of unity. A finite tree with n edges is
conformally balanced if there is a conformal map f : D∗ → Ω = C \ T so
that each component of T \ R2n is mapped 1-1 onto an edge of the tree and
if I, J are two distinct components that map to the same edge, then f −1 ◦ f

defines a length preserving, orientation reversing map from one component
to the other. This expresses precisely the idea that every edge has the same
harmonic measure and that harmonic measure on each edge is the sum of
harmonic measures corresponding to each side separately, and that these two
measures are identical.

An orientation preserving homeomorphism φ of the plane to itself is
called quasiconformal (or QC for short) if it is absolutely continuous on al-
most all vertical and horizontal lines and satisfies |fz| ≤ k|fz| almost every-
where for some k < 1. Such a map is also called K-quasiconformal where
K = (k + 1)/(k − 1) measures the eccentricity of image ellipses of infinitesi-
mal circles under f . The smallest such K is called the quasiconstant of f . The
collection of K-quasiconformal maps for a fixed K form a compact family

Fig. 3 Two planar trees that are homeomorphic but not equivalent (no homeomorphism of the
plane maps one to the other)
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with respect to uniform convergence on compact sets (assuming the maps are
normalized to fix ∞ and two finite points). See Alhfors’ book [1] for this and
other properties of such maps. The function μ = fz/fz is called the dilatation
of the map f and the size of |μ| measures how far f is from conformal; if
μ = 0 on an open set, then f is conformal on that set. There is a composition
law for dilatations that implies that if f and g have the same dilatation on an
open set, then f −1 ◦ g is conformal on that set. If f has zero dilatation on the
whole plane, then f is a conformal linear map, i.e., f (z) = az + b. A well
known quantitative version of this fact is:

Lemma 2.1 Given K < ∞ and ε > 0 there is a δ > 0 so the following holds.
If ψ is a K-quasiconformal map of the plane fixing 0,1,∞ and if its dilata-
tion is zero except on a measure δ subset of D, then |f (z) − z| < ε for every
z ∈ D.

Proof One can give more precise estimates, but this version is simply a com-
pactness argument. If δ ↘ 0, then the maps must converge on compact sets to
a conformal map fixing 0,1,∞, i.e., the identity. �

The measurable Riemann mapping theorem says that given any measur-
able μ on the plane with ‖μ‖∞ < 1, there is a quasiconformal map f with
dilatation μ. This is the key result about quasiconformal maps that we need,
as illustrated by the following definition and lemma.

A tree T is QC-balanced if there is a quasiconformal mapping φ : D∗ → Ω

so that components of T \ R2n are mapped to edges of T and when two com-
ponents are mapped to the same edge, φ−1 ◦ φ is length preserving and ori-
entation reversing between the components (this is the same the definition of
conformally balanced, except that we have replaced the conformal map by a
quasiconformal map).

Lemma 2.2 Suppose T is a QC-balanced tree. Then there is a quasiconfor-
mal map of the plane to itself sending T to a conformally balanced tree.

Proof Let φ : D∗ → Ω be the QC map in the definition of QC-balanced and
let μ be the dilatation of φ−1 on Ω . By the measurable Riemann mapping
theorem there is a quasiconformal ψ on the plane with the same dilatation
and thus ψ ◦ φ is conformal. Hence ψ(T ) is conformally balanced. �

To say this in a slightly different way, if we compose the QC map φ−1 :
Ω → D with zd and the Joukowsky map we get a locally QC map g from
Ω to U = C \ [−1,1] that extends continuously to the whole plane. Then
g is a d-to-1 quasiregular map with singular values ±1 and the measurable
Riemann mapping theorem implies there is a quasiconformal map φ so that
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f = g ◦φ−1 is a d-to-1 holomorphic map with the same singular values as g,
i.e., f is a Shabat polynomial.

Thus we can construct a conformally balanced tree by first constructing a
QC-balanced tree and “fixing it” with a QC map.

Lemma 2.3 Every finite tree in the plane can be mapped to a conformally
balanced tree by a homeomorphism of the plane.

Proof By the previous lemma, it suffices to map T to a QC-balanced tree.
Every planar tree is equivalent to one with straight segments for edges and
such a tree is clearly equivalent to one with smooth edges meeting with equal
angles at each vertex (i.e., at a degree three vertex the edges meet at angle
120◦). For such a tree the harmonic measures for two sides of any edge decay
at the same rate at each endpoints (the decay rate may be different at the two
endpoints of an edge if the endpoints have different degrees) and this means
the harmonic measures for the two sides of an edge are within a bounded
factor of each other (depending on the tree and the edge).

Let E be the preimages of the vertices under f . If T has n edges, there
are 2n points in E. The 2n components of T \ E are paired by the relation of
mapping to the same edge of T . Suppose I, J is such a pair. Then f −1 ◦ f :
I → J defines a biLipschitz map between such a pair of corresponding arcs
I, J . In what follows, f −1 ◦ f will always refer this type of map (between
different intervals), rather than the identity from an interval to itself.

Let L : J → I be the map that multiplies length by a factor of |I |/|J |
and reverses orientation. Define L on I to be the inverse of this map. Then
g = L ◦ f −1 ◦ f maps I to I , preserves orientation and is biLipschitz. Define
g : J → J to be the identity. Then define g and L on every other pair of
edge-arcs in the same way. The result is a biLipschitz, orientation preserving
map of the circle to itself so that f (g(x)) = f (L(x)) for every x ∈ T. Note
that g can be extended to a quasiconformal self-map φ of D∗. Let F = g(E).
Then there is a quasiconformal self-map h of D∗ that maps E to R2n (roots
of unity) and |h′| is constant on each complementary arc.

Consider the map Φ = f ◦ g−1 ◦ h−1. It is quasiconformal on D
∗, maps T

onto T , and sends R2n to the vertices. If two arcs of T \ R2n are mapped to
the same edge, then Φ−1 ◦ Φ is length preserving. Hence T is QC-balanced
and thus has a QC image that is conformally balanced. �

Lemma 2.4 A conformally balanced tree with n edges is of the form T =
p−1([−1,1]) for some polynomial p that has exactly two critical values at
{−1,1}. The vertices of degree > 1 of T are exactly the critical points of p

and the degree equals the order of the zero of p′ plus 1. The edges of T are
analytic curves.



440 C.J. Bishop

Proof The proof is essentially given in the introduction. The only step that
was not justified there was the statement that g(f (z)d) “extends continuously
to the whole plane and hence is entire and hence a polynomial”. This requires
some proof.

We have already seen that a conformally balanced tree T is the planar
quasiconformal image of a finite tree with smooth edges such that all angles
at vertices are non-zero. This means the complement of T is a John domain
and hence is removable for W 1,2 mappings (one derivative in L2; a QC map
raised to a power is in this class locally). See [9, 10]. Thus if g(f (z)d) is a
continuous function that is holomorphic off T , then it is entire. This finishes
the proof sketched in the introduction. �

Lemma 2.5 Two equivalent conformally balanced trees are the same up to a
conformal linear map.

Proof If two conformally balanced trees have the same topology, then there
is a conformal map between their complements that extends continuously
to the whole plane. Since the edges of balanced tree must be analytic, they
are removable for conformal maps, so the map is conformal everywhere and
hence is linear. �

Corollary 2.6 Every finite planar tree is equivalent to a conformally bal-
anced tree that is unique up to linear maps.

In particular, the number of conformally balanced trees with n vertices (up
to linear equivalence) is the same as the number of plane trees with n vertices.
These can be counted using Pólya’s enumeration method as in [7, 23].

3 The construction on T

The proof of Theorem 1.2 consists of constructing a tree T approximating K ,
pre-composing the conformal map f :D∗ → Ω = C \ T by a QC self-map φ

of D and finally post-composing f by a QC map ψ of Ω onto Ω ′ = C \ T ′
where T ′ is a QC-balanced tree containing T and is close to it in the Hausdorff
metric. The QC map ψ ◦ f ◦ φ associated to T ′ will have uniformly bounded
dilation and the support of the dilatation will have as small area as we wish,
so invoking the measurable Riemann mapping theorem and Lemma 2.1 gives
a conformally balanced tree that approximates K .

In this section we construct T and the pre-composition map φ of D∗. The
tree T ′ and the QC map ψ : Ω → Ω ′ will be constructed in the next section.

Suppose K is a compact connected set. Choose a large integer D and let
C be the collection of dyadic square of size 2−D that hit K . The corners and
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Fig. 4 A continua is covered by dyadic boxes and an approximated tree is formed from the
boxes’ edges. Some extra segments are added to make every degree 1 or 4 and every edge have
length 2−D or 2−D−2

edges of these squares form a finite graph in the plane and we take a spanning
tree for this graph. Then add segments of length 1

42−D to any vertices of
degree < 4 so that every vertex in the resulting tree T has degree 1 or 4,
every edge is still vertical or horizontal and every edge has length either 2−D

or 2−D−2. See Fig. 4. The tree T approximates K to within 2−D+1 in the
Hausdorff metric.

Why did we add the extra segments to make every degree 1 or 4? This is
more of a convenience than a necessity. The condition insures that for any
edge, the harmonic measures for the two sides have the same behavior as we
approach an endpoint, i.e., dω1

dω2
is bounded above and below on the whole

edge (in fact, this function extends to be analytic on a neighborhood of the
edge). The precise version of this fact that we will use is:

Lemma 3.1 Suppose e is an open edge of T , f : D∗ → Ω is a conformal
map onto the exterior of T and I, J ⊂ T are the two components of f −1(e).
The map g = f −1 ◦ f defined from I to J has an extension to a conformal
map from a neighborhood ΩI of I to a neighborhood ΩJ of J . Moreover,

dist(I, ∂ΩI ) ≥ C1|I |,
for some absolute C1 > 0. The same estimate holds for J and ΩJ . Also,

C−1
2 ≤ |g′| |I |

|J | ≤ C2

on I for some absolute C2 < ∞.

Proof This is just an application of the Schwarz reflection principle. We first
consider the case when the endpoints of e both have degree 4, as in Fig. 5. Let
e′ be the edge e with perpendicular segments of length 1

4 |e| added at either
end, so as to bound three sides of a rectangle R, whose preimage under f is
an open set Ω+

I in D
∗ with I in its boundary. This open set, together with its

boundary I ′ on T and its reflection across T will be the set ΩI .
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Fig. 5 Proof that g = f −1 ◦ f has a conformal extension to a neighborhood of I if the image
connects two vertices of degree 4

Fig. 6 Proof that
g = f −1 ◦ f has a
conformal extension to a
neighborhood of I if the
image connects a degree 1
and degree 4 vertex

Map Ω+
I to R by f , follow by a reflection across e to another rectangle,

map this to a set Ω+
J by f −1 and reflect this across T to the set Ω−

J . Let ΩJ

be the union of Ω+
J ,Ω−

J and the interior (in T) of their common boundary J ′.
This composition is made up of two conformal maps and two reflections,

so is a conformal map Ω+
I → Ω−

J and sends I ′ to J ′, so by the Schwarz
reflection principle, it extends to be a conformal map from ΩI to ΩJ .

Clearly the harmonic measure of e in Ω = C \ T from any point of the
opposite side of R is bounded uniformly away from one, so the same is true
of I in D

∗ from any point of ∂ΩI ∩D
∗. This implies ∂ΩI is at least distance

C1|I | from I for some absolute C1. The same applies to J and ΩJ . The
Koebe 1

4 -theorem now implies that g has derivative comparable to |J |/|I |
on I , again with absolute constants.

If e has one vertex of degree 1 and the other of degree 4, the argument is
very similar. In this case, the intervals I and J are adjacent and we take R as
shown in Fig. 6. Its preimage under f is the light gray region above the circle
that we will denote Ω+

IJ , and the darker region below the circle is its reflection
Ω−

IJ . As before, the composition of the four maps is conformal between these
domains, and hence it has a conformal extension from the obvious domain
ΩIJ to itself. The remaining conclusions follow just as before. �

So the restriction of the mapping g = f −1 ◦ f to any component of T \ E

has a conformal extension to a uniformly larger neighborhood (recall E are
the preimages under f of the vertices of T ), although the map itself may have
jump discontinuities at the points of E. This is not quite the same as “piece-
wise analytic” since this term usually includes continuity at the endpoints. We
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want to approximate g by a piecewise linear map on each component of T\E

by adding more points into the gaps between E and linearly interpolating the
values of g between these points.

Lemma 3.2 Suppose g is as above. Then there is a quasiconformal map φ

of D∗ to itself, and a finite set F ⊂ T so that φ(F ) contains E and so that
φ−1 ◦g◦φ is piecewise linear on each component of T\F . The quasiconstant
of φ is uniformly bounded and the dilatation μ of φ can be chosen to be
supported in any neighborhood of T that we want (depending on our choice
of F ). We let I denote the connected components of T \ F . The length of
each interval in I may be chosen to be of the form 2π2−n for some integer n

(possibly different n’s for different intervals), the lengths of adjacent intervals
are within a factor of 2 of each other and every interval has the same length
as at least one of its two neighbors. If two intervals in I are adjacent and
their common endpoint is mapped by f to a vertex of T , then they have the
same length.

Proof Consider a pair I, J of components of T\E that map to the same edge
of T . Subdivide I and on each subinterval, let φ be defined as g followed
by the linear map from J = g(I) back to I that inverts g at the endpoints.
On the interval J = g(I), φ is defined to be the identity. Since g is smooth,
φ is biLipschitz with constant as close to 1 as we want if the subdivision of
I is fine enough. We can therefore extend it to a quasiconformal map of the
Carleson region

QI = {
z ∈ D

∗ : z/|z| ∈ I, |z| − 1 < |I |},
to itself that is the identity on ∂QI \ I . Define φ on the rest of D

∗ as the
identity and define it in D by reflection. This map has the desired piecewise
linear property, but we still need to adjust the sizes of the intervals.

To make adjacent intervals have comparable length with a factor of 2, we
simply split the larger in 2 equal pieces whenever this fails; the shortest in-
terval will never be split and a shorter interval will never be produced, so the
process ends after a finite number of steps.

To make notation easier, we normalize arclength on the circle to be 1. To
make sure that the normalized interval lengths are powers of 2, cover the
circle by disjoint dyadic intervals that are at most 1/4 as long as any of the
intervals from the collection that they hit, and that are maximal with respect
to this property. Such a dyadic interval has at least 1

8 th of the length of the
shortest interval it hits, and is contained in the union of this interval and one
of its neighbors, which is at most twice as long. Thus each of our dyadic
intervals has length between 1

4 and 1
16 times the length of any interval in our

collection that it intersects.
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If we replace each interval I in I by the union of dyadic intervals in D
that are contained in I or contain I ’s left endpoint, the new interval I ′ has
comparable length and is a union of between 4 and 16 dyadic intervals. By
splitting some of the dyadic intervals in two, we can insure it is always a
union of 16 dyadic intervals.

If necessary, we can repeat the “split the larger neighbor” argument to in-
sure adjacent intervals have lengths within a factor of 2 of each other. We
end by splitting every interval into four equal subintervals to make sure every
interval has at least one equal sized neighbor. If I and J are both adjacent to
a point mapping to a vertex, but are not of equal length, then one is exactly
twice as long as the other. Subdivide the longer one and the adjacent interval
of the same length. Then the two segments adjacent to the vertex preimage
are equal and all the intervals still satisfy all the other requirements. This final
collection is the desired collection I . �

4 The construction on T

In this section, we define a tree T ′ containing T and a series of quasiconfor-
mal maps

C \ T = Ω → Ω0 → Ω1 → Ω2 → Ω3 → Ω4 = C \ T ′.

If we denote the composition by ψ , then our construction will have the prop-
erty that T ′ is a QC-balanced tree via the map ψ ◦ f ◦ φ : D∗ → C \ T ′.
Moreover, the dilatation of this map will be uniformly bounded and the sup-
port of its dilation is mapped into as small a neighborhood of T as we wish
(equivalently, the inverse map, which automatically has the same quasicon-
stant, has dilatation supported in an arbitrarily small neighborhood of T ).
Thus using Lemmas 2.1 and 2.2 will yield a conformally balanced tree that
approximates T , and hence K .

To simplify, we will rescale T to correspond to a unit grid (i.e., take
D = 0).

In order to draw simpler pictures, we want to avoid the corners in T created
by the vertices of degree 4. The first map ψ0 : Ω → Ω0 ⊂ Ω simply pulls the
domain way from these corners in a uniformly QC way. Choose 0 < δ � 1
to be a small power of 2 (how small will be determined during the course of
the construction) and for each degree 4 vertex in T remove the four δ × δ

subsquares of Ω that have this vertex as a corner. This gives Ω0. Let Ω ′ be Ω

with slits of length
√

2δ bisecting each corner of Ω removed (these are diag-
onals of the squares we just removed). There is a uniformly quasiconformal
map ψ0 : Ω ′ → Ω0 that is affine on each edge and equals the identity outside
a δ-neighborhood of T . See Fig. 7. (Note that ψ0 is not quasiconformal on
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Fig. 7 The map
ψ0 : Ω → Ω0. It pulls the
domain away from the
corners

Fig. 8 The map
ψ1 : Ω0 → Ω1

Ω because it is not continuous along the slits defining Ω ′, but we will fin-
ish the construction by composing with ψ−1

0 to “fill in” the corners and the
composed map will have a continuous, quasiconformal extension to all of Ω .)

Now we define Ω1 as the set of points z ∈ Ω0 such that

dist(z, T ) > δ or dist(z, T ) >
√

2dist(z,V1),

where V1 is the finite set of degree 1 vertices of T . Thus Ω1 is a polygon
where most of the edges are parallel to edges of T , except in a neighborhood
of each degree one vertex where the boundary slopes down to hit T at the
vertex. We can clearly map Ω0 → Ω1 by a uniformly QC map with dilatation
supported in a δ-neighborhood of T . See Fig. 8. If δ is small enough then any
interval of length δ with one endpoint at a degree 1 vertex of T is contained in
the image of the two I intervals on the circle that are adjacent to that vertex.
Assume δ has been chosen small enough to make this happen at every degree
1 vertex.

Let J denote the segments in T that are of the form ∂Ω0 ∩ e for some
edge e of T . Each edge e of T either connects two vertices of degree four or
connects a vertex of degree four to a vertex of degree one. In the first case,
segments in J consist of e with two intervals of length δ removed (one at each
endpoint), and in the second case we only remove an interval at the degree
four vertex.

The map ψ0 ◦ f ◦ φ−1 sends each element of I into some element of J .
Since each element of I has measure that is a power of 2, there is a smallest
and largest power that occur and we denote these by 2−n and 2N−n. Then
the measure of each element that occurs can be written as 2m2−n−N where
N ≤ m ≤ 2N . By taking N larger, if necessary, we can assume 2−n−N evenly
divides 1 − 2δ and 1

4 − δ (the two possible lengths of edges in J ). Thus each
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Fig. 9 We map
ψ2 : Ω1 → Ω2 by pushing
the boundary back
towards T . The map is the
identity for points more than
δ from T

element of J can be divided into an integer number of disjoint sub-segments
of length 2−n−N . This collection of subintervals is called K. Taking N larger,
if necessary, we may assume 2N2−n−N < δ.

Each element K ∈ K is associated to two elements of I whose images
contain K and that correspond to the two sides of K . If the measure of one
of these intervals is 2m2−n−N we call m one of the two “heights” associated
to K . Each height is associated to one side of K . Lemma 3.2 implies that
the heights of intervals in K do not change very quickly. In fact, that lemma
implies the following facts about intervals in K:

(1) adjacent intervals have heights differing by at most 1,
(2) every interval has the same height as at least one of its neighboring inter-

vals,
(3) given a degree 1 vertex v of T , every interval within distance δ of v has

the same height,
(4) given one of the δ × δ squares removed from Ω to form Ω0, the two

intervals adjacent to that square have the same height. They also have
the same heights as the neighboring intervals that are not adjacent to the
removed square.

Next we build Ω2. For each segment K ∈ K in ∂Ω0 we add a rectangle or
trapezoid to both sides as follows. First suppose K = [a, b] is within distance
δ of a degree 1 vertex v. This means that the heights of K for either side are
the same by Lemma 3.2 if δ has been chosen small enough (since intervals
adjacent to a vertex of the tree have equal measure). If m denotes the height
associated to K , and if

m|K| ≥ dist(K,v1) + |K|
then we add a rectangle of size |K| × m|K| to both sides of K . Otherwise we
add a trapezoid with one side K , two sides perpendicular to K and the fourth
side on ∂Ω1. See Fig. 9.

If K is more than distance δ from any degree one vertex then consider one
side of K and the two adjacent intervals. If all three intervals have the same
height m, then we add a |K|×m|K| rectangle with K as one side. Otherwise,
one of the adjacent intervals has the same height m as K and the other has
height m∗ differing by 1. We add a trapezoid with base K , and two parallel
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Fig. 10 The map ψ3 : Ω2 → Ω3 fills in rectangles and trapezoids and then ψ−1
0 “refills” the

corners. The composition ψ = ψ−1
0 ◦ ψ3 ◦ ψ2 ◦ ψ1 ◦ ψ0 has uniformly bounded dilatation, is

the identity outside a δ-neighborhood of T and has a continuous extension Ω → Ω4

sides that are perpendicular to K with side lengths m|K| and m∗|K|. The
fourth side of the trapezoid is opposite K and has length

√
2|K|.

If K has only one neighbor, it must be adjacent to one of the removed
“corner squares” of Ω0. As noted earlier, it must have the same height as its
immediate neighbor, as well as the other interval of K adjacent to the same
corner square.

Let W be the union of all these closed rectangles and trapezoids, together
with the closures of δ × δ squares removed from Ω to form Ω0. The union
is a closed connected set and the complement is the open set Ω2. Clearly Ω1
can be mapped to Ω2 by a quasiconformal map ψ2 that is piecewise affine,
has uniformly bounded quasiconstant and has dilatation supported in a δ-
neighborhood of T . See Fig. 9.

If we add all the open rectangles and trapezoids to Ω1, along with their
edge on ∂Ω2, we get an open set Ω3 containing Ω2. We define Ω4 =
ψ−1

0 (Ω3) and T ′ = ∂Ωr . Clearly this is a linear tree that contains T . See
Fig. 10.

The only object not yet defined is the quasiconformal map ψ3 : Ω2 → Ω3.
Again, the map is the identity far from T , and each connected component
of Ω3 \ Ω2 is a rectangle or a trapezoid (we will denote either type of re-
gion by R) and is the image under ψ3 of a square in Ω2 that shares a side
with R. See Fig. 11. There are three types of maps to describe: m-rectangle
maps, m-trapezoid maps and m-tip maps. Each of these maps takes a region
in Ω2 (either a triangle or square) with one boundary segment I on ∂Ω2 and
expands it into the component of Ω3 \ Ω2 attached along I (this component
is either a rectangle, a trapezoid or a triangle). See Fig. 11. Each map is the
identity on ∂R ∩ Ω2, so the map can be extended as the identity to the rest of
the plane. We will describe each type of map separately.

Rectangle maps An m-rectangle map sends a unit square S to a 1 × m rect-
angle R. We write R as a union of m adjacent unit squares R = ⋃

k=1m Sk with
S1 = S. The boundary values of the map are as follows. The map is the iden-
tity on ∂S ∩∂R (this is three sides of the square) and the fourth side is mapped
to the rest of R. starting at the endpoints, divide the fourth side symmetrically
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Fig. 11 The map
ψ3 : Ω2 → Ω3 is made up of
three types of maps that
expand a square or triangle
in Ω2 into a rectangle or
trapezoid in Ω3 \ Ω2

Fig. 12 This shows in more detail how the map in Fig. 11 expands Ω2 into Ω3. In each case
the domain is cut into decreasing, nested pieces and the pieces are expanded to shapes that fill
the image. The boundary expansion on the kth piece is 2k in a sense that is made precise in the
text. The details of each type of map are shown in Figs. 13, 14 and 15

into two intervals of lengths 4−k for k = 1, . . . ,m (the longest adjacent to the
endpoints, the shortest adjacent to the midpoint). For k = 1, . . .m intervals
of length 4−k are mapped affinely to the part of ∂Sk on the long sides of R.
The union of the two intervals of length 2−m is mapped affinely to the short
side of R on ∂Sk . That these boundary values can be attained by a uniformly
quasiconformal map is apparent from the diagrams in Figs. 12 and 13.

The first figure shows how to subdivide the square into m − 1 nested
polygonal regions P1, . . . ,Pm−1; P1 maps to a 1 × 2 sub-rectangle in R,
P2, . . . ,Pm−2 are all similar to each other and map to squares, and Pm−1 is a
square mapping to a square (but not in the obvious way, since one of its sides
must map to three sides in the image). These three maps are constructed in
Fig. 13 by showing compatible triangulations for domains and ranges (i.e., the
triangulations are in a 1-1 correspondence that preserves adjacency). Given
compatible triangulations of two regions we can define a quasiconformal map
between them by taking the obvious piecewise affine maps between triangles.
It is now an easy exercise to check that the mappings induced by the triangu-
lations have the boundary values described above.

Trapezoid maps A m-trapezoid map also maps into a 1 × m rectangle R as
above, but the domain of this map is now a right triangle that we may identify
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Fig. 13 The m-rectangle map sends a square to a 1 ×m rectangle. The map is composed from
three types of pieces: one each for mapping onto the “top” box (lighter shading in Fig. 12)
and “bottom” (darker) and another that is repeated in all the “middle” boxes (white). The
triangulations define piecewise affine maps between the polygons

Fig. 14 The m-trapezoid map sends the triangle to a 1 × m rectangle. The middle and bottom
maps are the same, after an affine stretching, to the middle and bottom maps of the rectangle
map, so we only show the construction for the top piece. Note that the image is not a simple
polygon; a piece of the boundary is folded onto itself to form a slit in the image. This is
necessary for the trapezoid map to match rectangle maps of different heights on either side

with one half of the top square cut by a diagonal. The boundary map is the
identity on the legs of this triangle. There is an asymmetry to the construction
and we assume the picture is as shown in Fig. 12, so that the domain of the
map is the upper right half of the top square. The hypotenuse of the triangle
is divided into pairs of intervals of size 4−k , k = 1, . . . as before and the left
half is mapped to the left side of the rectangle as before. On the right side
the rightmost interval has length 1

4 and is folded onto itself to form a slit of
length 1/8 in the rectangle; this slit is not in the image of the interior. The
remaining smaller intervals are mapped to the right side of the rectangle just
as before. Figure 14 shows how to divide the triangle into regions and map
these regions into the rectangle. We only show the details for the top piece; the
lower pieces are affinely stretched to be similar to the rectangle map pieces
and then mapped exactly as in the rectangle maps.
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Fig. 15 The m tip maps also fills in a trapezoid, but is different from a trapezoid map because
it has to match other tip maps, not two rectangle maps of different heights. Again, it is built
from three types of map: top, bottom and middle. Along its left side (for the orientation shown)
it matches a m-rectangle map or the right side of a (m + 1)-tip map and on the right it matches
the right side of a (m − 1)-tip map. The 1-tip map requires a special construction, as shown at
lower right

Note that m-trapezoid maps interpolate between m-rectangle maps and
(m − 1)-rectangle maps. The boundary segments of ∂Ω2 corresponding to
each map have measure 2m2−n−M . Dividing these segments into 2m+1 equal,
disjoint subsegments and applying the “filling map” partitions the sides and
bottom of the rectangular image into intervals. Whenever two rectangles or
trapezoids share a side, we want the partitions of these sides to be identi-
cal. Each piece of the partition is one edge of our QC-balanced tree and we
want them to have equal measure. Obviously two rectangles maps of the same
height match up and the definition of the m-trapezoid map is designed so that
it matches a m-rectangle map on one side and a (m − 1)-rectangle map on
the other. The top side of an (m − 1)-rectangle map has half the measure of
the top of a m-rectangle, so the trapezoid map matches up intervals of equal
measure.

Tip maps The third type of map is the m-tip map. The details are described
in Fig. 15. Each m-tip map is designed to match a (m + 1)-tip map (or a m-
rectangle map) on its longer vertical side and a (m− 1)-tip map on its shorter
vertical side. Once again the boundary map is the identity on the top three
sides of the domain, and maps the bottom side to the sides and bottom of the
image trapezoid. The bottom side of the domain square is again divided into
symmetric pairs of intervals of length 4−m. The leftmost and rightmost are
mapped to the unit segments of the trapezoids vertical sides, but since these
sides are different lengths, the images are displaced vertically with respect
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to each other, so they form the vertical sides of a parallelogram. Intervals of
length 4−k are mapped to vertical sides of the lower parallelograms. After
m steps, the parallelogram hits the bottom edge and the rest of the domain
square is mapped to the bottom triangle as illustrated in Fig. 15. The last
map, adjacent to the tip, is a special case that is illustrated in Fig. 15.

All the top intervals of the tip trapezoids have the same measure, so the tip
maps match intervals of the same measure along the vertical sides. Tip maps
for opposite sides of an interval K ∈ K are the same and such intervals have
the same measure from both sides, so the maps match here as well.

This completes the construction of the map ψ : Ω → Ω4 and the verifi-
cation that ψ ◦ f ◦ φ−1 makes T ′ a QC-balanced tree. The construction also
clearly shows this map is uniformly quasiconformal and is conformal except
on a small neighborhood of T . In particular, the quasiconstant is independent
of δ, and as δ → 0, the support of the dilatation is as small as we wish, so
that the “correction” map obtained from the measurable Riemann mapping
theorem is as close to the identity as we want. This completes the proof of
Theorem 1.2.
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