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ORTHOGONAL FUNCTIONS IN H∞

CHRISTOPHER J. BISHOP

We construct examples of H∞ functions f on the unit disk such that the
push-forward of Lebesgue measure on the circle is a radially symmetric
measure µf in the plane, and we characterize which symmetric measures
can occur in this way. Such functions have the property that { f n} is orthog-
onal in H2, and provide counterexamples to a conjecture of W. Rudin, in-
dependently disproved by Carl Sundberg. Among the consequences is that
there is an f in the unit ball of H∞ such that the corresponding composition
operator maps the Bergman space isometrically into a closed subspace of
the Hardy space.

1. Introduction

Let H∞ denote the algebra of bounded holomorphic functions on the unit disk D,
let U be the closed unit ball of H∞ and let U0 ={ f ∈U : f (0)=0}. If f ∈ H∞ then
it has radial boundary values (which we also call f ) almost everywhere on the unit
circle T. We say that f is orthogonal if the sequence of powers { f n

: n = 0, 1, . . . }

is orthogonal, that is, if ∫
T

f n f̄ m dθ = 0

whenever n 6= m. In this paper we will characterize orthogonal functions in H∞

in terms of the Borel probability measure µf (E) = | f −1(E)|, where | · | denotes
Lebesgue measure on T, normalized to have mass 1. We will also determine exactly
which measures arise in this way. We say a measure is radial if µ(E) = µ(eiθ E)

for −∞ < θ < ∞ and every measurable set E . We will prove:

Theorem 1.1. If f ∈ U0 then { f n
: n = 0, 1, . . . } is an orthogonal sequence if

and only if µf is a radial probability measure supported in the closed unit disk and
satisfying ∫

|z|≤1
log

1
|z|

dµf (z) < ∞.(1–1)
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Moreover, given any measure µ satisfying these conditions there exists f ∈ U0

such that µ = µf .

The result is motivated by the observation that if f is an inner function (that is,
f ∈ H∞ and | f |= 1 almost everywhere on T) with f (0)= 0 then µf is normalized
Lebesgue measure on T (Lemma 2.3) and f is orthogonal since, if m > n,∫

T

f n f̄ mdθ =

∫
T

f n−mdθ = 2π f n−m(0) = 0.

At a 1988 MSRI conference Walter Rudin asked if the converse is true, that is, are
multiples of inner functions the only orthogonal bounded holomorphic functions
on the disk? In other words, is normalized Lebesgue measure on the circle the
only radial measure which can occur as a µf ? Our characterization shows that
many other symmetric measures can occur and hence provide counterexamples to
Rudin’s “orthogonality conjecture”. The conjecture was independently disproved
by Carl Sundberg [2003].

The simplest example of a measure satisfying Theorem 1.1 (other than Lebesgue
measure on a circle) is to take µ to be Lebesgue measure on the union of two circles{
z : |z| =

1
2

}
∪ {z : |z| = 1}, normalized to give each mass 1

2 . The corresponding
function f is orthogonal by the theorem, but is clearly not inner since | f | =

1
2 on

a subset of T of positive measure.
A more interesting example of a radial measure satisfying (1–1) is normalized

area measure on the disk. Thus there is an f ∈ U0 such that µf is normalized area
measure. We will show (Lemma 6.1) that for any holomorphic g on the disk, and
f ∈ U0 orthogonal,

‖g ◦ f ‖
p
H p =

∫
D

|g|
pdµf + µf (T)‖g‖

p
H p ,(1–2)

and hence:

Corollary 1.2. There is an f ∈ U0 such that for any analytic g on D, g is in the
Bergman space Ap, if and only if g ◦ f is in the Hardy space H p, and the norms
are equal.

Thus the subspace M f spanned by the powers of f in H 2 is isomorphic to the
Bergman space, and multiplication by f on M f is isomorphic to multiplication by
z on the Bergman space. Since both spaces are Hilbert spaces, of course one is
isomorphic to a subspace of the other, but it is perhaps a little surprising that this
isomorphism can be accomplished with a composition operator. Similar statements
can be made for Bergman spaces with respect to radial weights w dx dy = dµ of
finite mass which satisfy (1–1).

More generally, it would be interesting to know for which pair of spaces X, Y , of
analytic functions on D, there is an f ∈ U0 such that g ∈ X if and only if g◦ f ∈ Y ,
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and to characterize such f ’s when they exist. The latter problem is interesting
even when X = Y (for example, see [Cima and Hansen 1990]). In Corollary 6.3
we characterize orthogonal functions with this property when X = Y = H p (it is
true if and only if µf (T) > 0). In particular, all inner functions have this property
(as claimed in [Cima and Hansen 1990]).

Paul Bourdon has pointed out that (1–2) implies that orthogonal functions f
where µf (T) > 0 give examples of composition operators with closed range. See
[Cima et al. 1974/75] and [Zorboska 1994] for characterizations of such functions.

The radial symmetry of a “Rudin counterexample” has also been noted by Paul
Bourdon [1997a]. He showed that f is orthogonal if and only if the Nevanlinna
counting function,

N f (w) =

∑
f (z)=w

log 1
|z|

is almost everywhere constant on each circle centered on the origin. He also
showed that the answer to Rudin’s question is “yes” if f is univalent, and that
if f is orthogonal, the closure of the range of f is a disk (since the range of f
equals the set where N f is positive). The Nevanlinna function N f is related to µf

by the formula

N f (w) = log
1

|w|
−

∫
log

1
|z − w|

dµf (z)

(except possibly on a set of logarithmic capacity zero). This is due to W. Rudin
[1967] but we shall give a proof for completeness (Lemma 3.1).

Corollary 1.3. If f ∈ U0 is nonconstant and orthogonal then N f (w) = N (|w|) for
all w outside an exceptional set of zero logarithmic capacity, where

N (r) =

∫ 1

r

1 − µ(t)
t

dt

for some increasing function µ on [0, 1] such that µ(0) = 0 and µ(1) = 1, and∫ 1
0 µ(t) dt/t < ∞ (in fact, µ(r) = µf (D(0, r))). Moreover, for every such N there

is an f ∈ U0 such that N f (w) = N (|w|) except possibly on a set of logarithmic
capacity zero.

The ⇒ direction of this is due to Paul Bourdon [1997b]. The condition on N in The statement doesn’t seem to
be an equivalence, so what do
you mean by ‘the ⇒ direction
of this’?

the previous result has many equivalent formulations; for example, it holds if and
only if M(r)= N (er ) on (−∞, 0] is concave up, has M(0)= 0 and supr<0 M(r)+

r <∞, or if N (|z|) is subharmonic on D\{0} and N (|z|)+log |z| is bounded above.
The behavior of the composition operator C f : g → g◦ f can often be expressed in
terms of N f , for example, see [Shapiro 1987; Smith 1996; Smith and Yang 1998].
The result above provides radial examples with any desired rate of decay faster
than 1 − r as r → 1.
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If f is orthogonal, then f (0) = 2π
∫

f dθ = 0, so f cannot be an outer function.
However, our construction can be modified to give:

Corollary 1.4. There is an orthogonal f such that f (z)/z is a nonconstant outer
function.

Thus, not only are there orthogonal functions which are not inner, there are exam-
ples with only the most trivial possible inner factor. I do not know whether there
is an example where f (z)/z is bounded away from zero on D or which symmetric
measures µ are of the form µf with f (z)/z outer.

One can also construct examples with other properties. For example, f ∈ U0 is
said to be in the hyperbolic little Bloch class Bh

0 if

lim
|z|→1

(1 − |z|2)| f ′(z)|
1 − | f (z)|2

= 0.

(This is contained in the usual little Bloch space, where only the numerator is
required to go to zero.) We will show (Lemma 5.2) that if g is inner and f ∈ H∞

then µ f ◦g = µf . Thus taking g to be an inner function in the hyperbolic little
Bloch class (which exists by a result of Wayne Smith [1998] and independently of
Aleksandrov, Anderson and Nicolau [Aleksandrov et al. 1999]; also see [Cantón
1998]), we can deduce:

Corollary 1.5. Any of the measures in Theorem 1.1 is µf for some f ∈ Bh
0 .

Cima, Korenblum and Stessin [Cima et al. ≥ 2005] also identified symmetric
properties of orthogonal functions and showed the answer to Rudin’s question is
“yes” if f is Hölder of order α > 1

2 on T. I do not know if there exists any
(noninner) orthogonal function which is continuous up to the boundary, but expect
that it might be possible to build one by modifying the construction in this paper.
If there is a continuous orthogonal function, it would be very interesting to know
if the result of Cima, Korenblum and Stessin is sharp, and if not, what the best
modulus of continuity for such a function could be. What other natural conditions
on an orthogonal function imply that it is actually inner?

The remaining sections are organized as follows:

Section 2: We describe some elementary properties of µf and prove it is radial
if and only if f is orthogonal.

Section 3: We prove Corollary 1.3 (given Theorem 1.1).

Section 4: We prove some results concerning the convergence of µf .

Section 5: We prove Corollary 1.5 (given Theorem 1.1).

Section 6: We prove Corollary 1.2 (given Theorem 1.1).

Section 7: We construct a symmetric µf which is supported on two circles.
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Section 8: We construct all examples supported in
{ 1

2 ≤ |z| ≤ 1
}
.

Section 9: We complete the proof of Theorem 1.1.

Section 10: We prove Corollary 1.4.

2. Elementary properties of µf

We begin by recalling a few simple facts about analytic functions f and their
corresponding measures µf . Many of these are well known but we include them
for the convenience of the reader.

Lemma 2.1. If f ∈ H∞ then µf satisfies∫
log

1
|z|

dµf (z) < ∞.

Proof. If f has a zero of order n at the origin, then g(z) = f (z)/zn is holomorphic
on the unit disk and |g| = | f | on T, hence µg(A) = µf (A) for any annulus A =

{z : r1 ≤ |z| ≤ r2}. Thus ∫
ϕ(z) dµf (z) =

∫
ϕ(z) dµg(z)

for any radial function ϕ. Using Fatou’s lemma and the fact that log |g(z)|−1 is
superharmonic on the disk (see [Garnett 1981, page 35]), we deduce∫

log
1
|z|

dµf (z) =

∫
log

1
|z|

dµg(z) =
1

2π

∫
log |g(eiθ )|−1 dθ

=
1

2π

∫
lim
r→1

log |g(reiθ )|−1 dθ

≤
1

2π
lim
r→1

∫
log |g(reiθ )|−1 dθ ≤ log |g(0)|−1 < ∞. �

A similar estimate is true for other points, for example,∫
log

1
|z − a|

dµf (z) < ∞.

In particular, this implies the well-known fact that the set where f has radial limit
a must have measure zero.

Given an arc I ⊂ T we define the Carleson box with base I to be

Q = Q I = {z ∈ D : z/|z| ∈ I, 1 − |z| ≤ |I |}.

A positive measure µ is a Carleson measure if there exists a C < ∞ such that
µ(Q I ) ≤ C |I |, for every arc I ∈ D.
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Lemma 2.2. If f ∈ U0 then µf is a Carleson measure with constant independent
of f .

Proof. Define ϕ(z) = ω(z, Q, D \ Q) for z ∈ D \ Q and ϕ(z) = 1 for z ∈ Q. It is
easy to see that ω(z, I, D) ≥ M−1 > 0 for every z ∈ ∂ Q ∩ D and some M < ∞

(independent of I and z ∈ ∂ Q), so the maximal principle implies

ϕ(0) ≤ Mω(0, I, D) ≤ M |I |.

Let fr (z) = f (r z). Note that limr→1 ϕ( f (r x)) = ϕ( f (x)) for almost every x ∈ T,
because ϕ is continuous on the closed disk except at two points, and the set where
f has a radial limit equal to one of these has measure zero (by the remark following
Lemma 2.1). So by the Lebesgue dominated convergence theorem,

µf (Q) ≤

∫
ϕ dµf =

1
2π

∫
ϕ ◦ f dθ = lim

r→1

1
2π

∫
ϕ ◦ fr dθ.(2–1)

Since ϕ is superharmonic on D, it follows that ϕ ◦ f is too, so the right-hand side
of (2–1) is at most ϕ( f (0)) = ϕ(0) ≤ M |I |. �

If f (0) 6= 0 then µf is still a Carleson measure, but with norm depending on
| f (0)|.

One can think of the previous lemma as a weak version of the Littlewood subor-
dination principle: that if f is an analytic self-map of the disk then g ∈ H p implies
g ◦ f ∈ H p (with smaller or equal norm). Formally, this implies that if f (0) = 0,
then ∫

|g|
p dµf ≤

1
2π

∫
T

|g ◦ f |
p dθ = ‖g ◦ f ‖

p
H p ≤ ‖g‖

p
H p

for every g ∈ H p. This implies that dµf is a Carleson measure with norm inde-
pendent of f (see, for example, [Garnett 1981, Theorem I.5.6]).

The following result appears in many places (for example, [Löwner 1923; Nord-
gren 1968, Lemma 1; Rudin 1980, page 405; Tsuji 1959, Theorem VIII.30]) and
is sometimes called “Löwner’s lemma”. See [Fernández et al. 1996] and its refer-
ences for various generalizations.

Lemma 2.3. If f is an inner function such that f (0) = 0, then µf is normalized
Lebesgue measure on the unit circle.

Proof. It is enough to check that µf (I ) = |I | for arcs. Let I be an arc on the
unit circle and let ϕ(z) = ω(z, I, D). Then ϕ ◦ f is bounded and harmonic, and This sentence is ambiguous,

what do you mean?takes only radial boundary values 1 and 0 almost everywhere f has radial boundary
values in I or its complement respectively (since f is inner). Thus

|I | = ϕ(0) = ϕ( f (0)) =
1

2π

∫
f −1(I )

dθ = µf (I ). �
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As noted before, the following lemma is similar to results in [Bourdon 1997a]
and [Cima et al. ≥ 2005].

Lemma 2.4. Suppose f ∈ H∞. Then the measure µf is radial if and only if { f n
}

is orthogonal.

Proof. If µf is radial, it can be written so that∫
g(z) dµf (z) =

∫ 2π

0

∫
∞

0
g(reiθ ) dθ dν(r)

for every g ∈ Cc(R
2), the set of continuous functions of compact support defined

on R2, and for some measure ν on (0, ∞). Thus∫
T

f n f̄ m dθ =

∫
C

zn z̄m dµf (z) =

∫
∞

0

∫ 2π

0
rn+mei(n−m)θ dθ dν(r) = 0

if n 6= m, so f is orthogonal. Conversely, if f is orthogonal, then µf satisfies∫
C

zn z̄m dµf (z) =

∫ 2π

0

∫
∞

0
rn+mei(n−m)θ dµf (reiθ ) = 0

for n 6= m. Thus ∫
C

P(z, z̄) dµf (z) =

∫
D

∑
n

an,nr2n dµf (z)

for any polynomial P(z, z̄) =
∑

n,m an,mzn z̄m in z and z̄, and hence∫
C

P(λz, λ̄z̄) dµf (z) =

∫
C

P(z, z̄) dµf (z)

for any |λ| = 1. Since polynomials in z and z̄ are dense in the continuous functions
on the closed unit disk, we deduce that∫

D

g(z) dµf (z) =

∫
D

g(λz) dµf (z)

for any g ∈ Cc(R
2) and any |λ| = 1. This implies µf is radial. �

The following lemma greatly simplifies the construction of the basic example,
where µf is supported on two circles. It says that if we can construct an example
where µf is radial on the smaller circle, then it automatically looks like Lebesgue
measure on the larger one.

Lemma 2.5. Suppose f lies in U0, and µf is supported on the circles C1/2 ∪C1 ={
|z|= 1

2

}
∪{|z|=1}. If µf restricted to C1/2 is a multiple of Lebesgue 1-dimensional

measure, then so is µf restricted to C1.
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Proof. Suppose u is any bounded harmonic function on D. Then v(z) = u( f (z))
is also bounded and harmonic on D and u(0) = v(0). Thus

u(0) = v(0) =
1

2π

∫ 2π

0
u( f (eiθ )) dθ =

∫
u(z) dµf (z)

=

∫
C1/2

u(z) dµf (z) +

∫
C1

u(z) dµf (z)

= µf (C1/2)u(0) +

∫
C1

u(z) dµf (z).

Hence
∫

C1
u dµf = µf (C1)u(0) for any bounded harmonic function u on D. This

easily implies that µf restricted to C1 is a multiple of Lebesgue measure on C1. �

The same proof gives the following generalization of Lemma 2.5.

Lemma 2.6. Suppose f ∈ U0. Then µf restricted to the unit circle is of the form
1

2π
(1 − g(θ)) dθ , where g is the balayage of µf onto the circle, that is,

g(θ) =

∫
D

Pz(θ) dµf (z),

where Pz(θ) is the Poisson kernel for D with respect to the point z.

3. The Nevanlinna counting function

For f ∈ H∞, the Nevanlinna counting function is defined to be

N f (w) =

∑
f (z)=w

log
1
|z|

.

If f ∈ U0 then N f (w) ≤ log |w|
−1. Clearly this is just the Green’s function for

the Riemann surface associated to f (projected to the plane by summing over
sheets). Since µf is the projection of harmonic measure for the Riemann surface,
the following is analogous to the standard result for Green’s functions of planar
domains. Let 1 = ∂2

x +∂2
y denote the Laplacian and let δ0 be the Dirac mass at the

origin.

Lemma 3.1 [Rudin 1967]. If f ∈ U0 then 1N f = −δ0 + µf in the sense of
distributions, and

N f (w) = log
1

|w|
−

∫
log

1
|z − w|

dµf (z)(3–1)

for all w, except possibly for an exceptional set E of logarithmic capacity zero
where “<” holds.
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The exceptional set is required. For example, if f is the universal covering map
of D minus a compact set E of zero logarithmic capacity, f is an inner function,
µf is normalized Lebesgue measure on the circle and N f (z) = χD\E(z) log |z|−1.

Proof. For 0 < r < 1, let fr (z) = f (r z) and let γr = fr (T). If we choose r so
that f ′ never vanishes on the circle of radius r , then γr is a smooth curve and it
is easy to check using Green’s theorem that 1N fr = −δ0 + µ fr . To see that (3–1)
holds for µ fr , note that both sides of the equation have the same distributional
Laplacian, so they differ by a harmonic function. N fr vanishes outside the unit
disk by definition, and the right side of (3–1) vanishes there because µ fr evaluates
harmonic functions at 0. Hence the difference between the left and right sides is
the constant zero function.

For any smooth ϕ with compact support,∫
N fr 1ϕ dx dy = −ϕ(0) +

∫
ϕ dµ fr .

We shall see later that µ fr weakly converges to µf (Corollary 4.4), and clearly
N fr ↗ N f as r ↗ 1. Thus taking r → 1 and applying the monotone convergence
theorem we get ∫

N f 1ϕ dx dy = −ϕ(0) +

∫
ϕ dµ f .

This proves the first claim of the lemma. Next we verify (3–1).
We already know that if we replace f by fr then we have equality in (3–1) for

all z and as r → 1, and we know N fr (z) ↗ N f (z) for all z. Thus the question
reduces to whether

(3–2) Ur (w) → U1(w) as r → 1

for all w except a set E of logarithmic capacity zero, where

Ur (w) =

∫
log

1
|z − w|

dµ fr (z).

Note that Ur is decreasing in r , by the superharmonicity of log | f |
−1, and that U1

is bounded below by −log 2, since |z − w| < 2 for points in the unit disk.
To prove that (3–2) holds, we follow the proof of Frostman’s theorem (see

[Garnett 1981, Theorem II.6.4], for example). Suppose σ is a measure such that
V (z)=

∫
log |z−w|

−1 dσ(z) is bounded. It suffices to show σ(E)= 0. By Fatou’s
lemma

lim
r→1

∫
log

1
|z − w|

dµ fr (z) ≥

∫
log

1
|z − w|

dµf (z),
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so limr→1 Ur (w)≥U1(w) for all w. On the other hand, by Fatou’s lemma, Fubini’s
theorem and the Lebesgue dominated convergence theorem,∫

E
lim
r→1

Ur (w) dσ(w) ≤ lim
r→1

∫
E

Ur (w) dσ(w)

= lim
r→1

1
2π

∫ 2π

0
V ( f (reiθ )) dθ =

1
2π

∫ 2π

0
V ( f (eiθ )) dθ

=
1

2π

∫ 2π

0

∫
E

log
1

| f (eiθ )−w|
dσ(w) dθ =

∫
E

U1(z) dσ(w).

Thus we must have limr→1 Ur (w) = U1(w) except on a set of zero σ measure. �

Lemma 3.1 clearly implies that µf is radial if and only if N f is (except for the
exceptional set). Thus we see that { f n

} is an orthogonal sequence if and only if µf

is radial, if and only if N f is radial, except on a set of logarithmic capacity zero.
This gives an alternate approach to the results of Bourdon [1997a].

We can also compute exactly which radial functions can occur as N f for some
f ∈ U0. Note that

1
2π

∫ 2π

0
log

1
|reiθ − w|

dθ =

{
log(1/|w|) if r ≤ |w|,

log(1/r) if r ≥ |w|.

Thus if µf is radial and we set µ(r) = µf (D(0, r)), then

N f (w) = log
1

|w|
−

∫
log

1
|z − w|

dµf (z) =

∫ 1

|w|

1 − µ(r)

r
dr.

Moreover, the integral condition∫
D

log
1
|z|

dµ < ∞

becomes ∫ 1

0
µ(r)

dr
r

< ∞.

Thus Theorem 1.1 implies the following corollary.

Corollary 3.2. Suppose N (r) =
∫ 1

r (1−µ(t)) dt/t for some increasing function µ

such that
∫ 1

0 µ(r) dr/r < ∞, with µ(0) = 0 and µ(1) = 1. Then there is an f ∈ U0

such that N f (z) = N (|z|) except on a set of zero logarithmic capacity.

For example, if µf is normalized area measure on the unit disk then µ(r) = r2

and N f (z) = log 1/r − (1 − r) ≈ (1 − r)2 as r → 1.
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4. Weak* convergence of µf

We will obtain the functions f in Theorem 1.1 by a “cut and paste” construction
of the corresponding Riemann surface. What this means is that we shall build a
sequence of nested Riemann surfaces R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂

⋃
Rn = R by identi-

fying subdomains of the unit disk along common boundary arcs. The projection of
R into the unit disk is a bounded holomorphic function on R, and hence R must be
hyperbolic, that is, its universal covering space is the unit disk D. The desired map
will be the covering map f : D → R followed by the projection into the disk and
the corresponding measure µf is simply the harmonic measure for the surface R,
projected into the plane. In fact, we shall abuse notation and consider the covering
map f : D → R as actually mapping into the complex numbers (that is, we identify
the covering map and this map followed by the projection into the plane). By a
similar abuse we shall think of harmonic measure on R and the corresponding
projected measure µf as the same. Similarly, we will fix a point in R0 which
projects to 0 and call it 0 as well. All our covering maps will be chosen to map 0
in the disk to 0 on the surface. See [Bishop 1993] and [Stephenson 1988], where
a similar procedure has been used in different problems.

The main point we must be careful about is to show that the harmonic measure
for R is the limit of the measures for Rn . To see that there might be a problem in
general, consider what can happen when the surfaces are not nested. For example,
Rn is the unit disk minus the points

{
zk =

1
2 exp(i2πk2−n) : k = 1, . . . , 2n

}
. Then

the universal covering map fn : D → Rn is an inner function (the isolated boundary
points do not have any harmonic measure, so all the measure lives on the part of
the boundary above the unit circle) and hence µ fn is Lebesgue measure on the
unit circle. However, one can show (with some work) that fn(z) →

1
2 z uniformly

on compact sets of D, so that µf is Lebesgue measure on the circle of radius 1
2 .

However, if the Riemann surfaces are nested by (increasing) inclusion, then we
will show the corresponding measures converge weak*, that is,

lim
n→∞

∫
g dµn =

∫
g dµ

for any g ∈ Cc(R
2).

Lemma 4.1. Suppose ε > 0 and D(0, ε) = R0 ⊂ R1 ⊂ · · · are obtained by identi-
fying subdomains of the unit disk along boundary arcs. Let R =

⋃
∞

n=1 Rn . Choose
covering maps fn : D → Rn and f : D → R so that fn(0) = f (0) = 0. Then µ fn

converges weak* to µf on the closed unit disk.

The easiest way to see this is using Brownian motion; we shall first sketch such
a proof and then give a more classical proof without using Brownian motion.
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Let W be the Wiener space of continuous paths in C starting at the origin. If R
is a Riemann surface constructed as above then we can think of the paths as taking
values in R and for each path w ∈ W, we define the stopping time tw as the first
time t such that w(t) 6∈ R. Then w → tw is measurable and the harmonic measure
for R is simply the push-forward of Wiener measure on W under the map given by
w → w(tw). Given a sequence of nested surfaces R0 ⊂ R1 ⊂ · · · as in the lemma,
we get a corresponding sequence of maps gn : W → C. Moreover, if R =

⋃
n Rn

and g : W → C is the corresponding map, then g(w) = limn gn(w); this is because
the inclusions imply that for any continuous path in the plane, the first time it
leaves R is the limit of the first time it left Rn . Thus for any bounded, continuous
function ϕ on the plane, ϕ(gn(w))→ϕ(g(w)) for all w, so the Lebesgue dominated
convergence theorem implies that∫

W
ϕ(g(w)) dw = lim

n→∞

∫
W

ϕ(gn(w)) dw,

which is the desired weak* convergence.
The sketch above is simple and explains why the result is true, but uses the exis-

tence of Wiener measure and deep connections between it and harmonic measure.
It therefore seems desirable to provide a second proof which uses only function
theory. Moreover, we will need some corollaries of the following classical proof
for our applications to composition operators.

Let {Rn}, R, { fn} and f be as in the lemma and let �n = f −1(Rn) ⊂ D. Then
�0 ⊂ �1 ⊂ · · · and

⋃
n �n = D. Let ωn be the harmonic measure for �n with

respect to the origin and let ϕ be any continuous function on the plane. We want
to show that

lim
n→∞

∫
ϕ( f (z)) dωn(z) =

∫
T

ϕ( f (eiθ )) dθ/2π.

We start by proving the much easier fact that ωn converges weak* to normalized
Lebesgue measure on the circle. (Since f need not be continuous up to the bound-
ary, ϕ ◦ f need not be continuous either, so weak* convergence of ωn is not, by
itself, enough to prove weak* convergence of µ fn .)

Lemma 4.2. If {0} ∈ �0 ⊂ �1 ⊂ · · · is a sequence of subdomains such that⋃
n �n = D, and ωn = ω(0, · , �n) is the corresponding harmonic measure with

respect to the origin, then {ωn} converges weak* to (normalized) Lebesgue measure
on T. Moreover, the measures ωn are all Carleson with a uniform constant.

Proof. The Carleson condition follows from Lemma 2.2 applied to the covering
map onto �n , so we need only prove weak* convergence. Since

⋂
n

(
D\�n

)
= T,

there is a sequence {rn} ↗ 1 such that Dn = {z : |z| < rn} ⊂ �n ⊂ D. Suppose that
I ⊂T is an open arc and let Q ={z ∈D : z/|z|∈ I, 1−|z|≤ |I |} be the corresponding
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Carleson square. To show ωn converges weak* to normalized Lebesgue measure,
it is clearly enough to show that ωn(Q) → |I |.

Let Un = Dn ∪ Q and Vn = D \ (Q \ Dn). Then ω(0, I, Un) → |I |. To see this,
first note that ω(0, I, Un) ≤ |I | follows immediately from the maximum principle
applied to ω(z, I, Un) on Un . For the other direction, suppose that J ⊂ I is a proper
subinterval and note that

ω(0, I, Un) ≥ ω(0, J, Un) = |J | −

∫
∂Un\I

∫
J

Pz(θ) dθ dω(0, ·, Un),

and that
∫

J Pz(θ) dθ → 0 as n → ∞ for z ∈ ∂Un \ I . Thus the Lebesgue dominated
convergence theorem implies lim inf ω(0, I, Un) ≥ |J |. Since this holds for any
proper subinterval J , we see that ω(0, I, Un) → |I | as desired. A similar argument
shows that ω(0, Q ∩ Vn, Vn) → |I | as n → ∞.

Thus, by the monotonicity of harmonic measure,

ωn(Q) ≥ ω(0, ∂�n ∩ Q, Un) ≥ ω(0, I, Un) → |I |,

and so lim infn ωn(Q) ≥ |I |. On the other hand,

ωn(Q) ≤ ω(0, Q ∩ ∂Vn, Vn) → |I |,

which implies that ωn(Q) → |I |. This proves the lemma. �

Lemma 4.3. Suppose g is a bounded, continuous function on D which has nontan-
gential limit g(x) almost everywhere on T, and that νn is a sequence of probability
measures on D which converge weak* to (normalized) Lebesgue measure on the
circle and which are all Carleson measures with a uniform constant. Then

lim
n→∞

∫
D

g(z) dνn(z) =
1

2π

∫
T

g(eiθ ) dθ.

Proof. We may assume that ‖g‖∞ = 1. Fix some ε > 0. Since g has nontangential
limits almost everywhere, given almost any x ∈ T there is a δ(x) > 0 such that if
I is any interval containing x with length less than δ(x), then g is within ε/2 of
g(x) on the top half of the corresponding Carleson box Q. Fix a complex number
a, and a δ > 0, and assume that Ea = {x ∈ T : |g(x) − a| ≤ ε/2, δ(x) > δ} has
positive Lebesgue measure. Using the Lebesgue density theorem choose a dyadic
interval I of length less than δ so that |I ∩ Ea| ≥ (1 − ε)|I | and let Qk be the
collection of maximal dyadic subsquares with bases {Ik} ⊂ I , so that |g(z)−a| > ε Do you mean ‘such that

|g(z) − a|. . . ’ or ‘with the
result that . . . ’?

for some z in the top half of Qk . Let Q be the Carleson square with base I and let
W = Q \

⋃
Qk . Then g is within ε of a constant on W , and |∂W ∩ I | ≥ (1−ε)|I |.
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We claim that for these domains limn νn(W ) = |∂W ∩ T|. To prove this, we use
the weak* convergence of {νn} to deduce

lim
n→∞

∫
W

dνn = lim
n→∞

(
νn(Q) −

∑
k

νn(Qk)
)

= |I | − lim
n→∞

∑
k

νn(Qk)

= |I | −
∑

k

lim
n→∞

νn(Qk)

= |I | −
∑

|Ik |

= |∂W ∩ T|,

where we used the Lebesgue dominated convergence theorem on the sequence
space `1 to interchange the limit and the infinite sum (our assumption that the
measures are uniformly Carleson implies that νn(Qk) ≤ C |Ik |, independent of n;
this gives the `1 upper bound).

Moreover, the intervals I with these properties form a Vitali cover of T (see, for
example, [Wheeden and Zygmund 1977, Section 7.3]), so we can form a disjoint
cover of almost every point of T using such intervals. Thus we can construct a
finite number of disjoint domains W j = Q j \

⋃
k Q j

k , where

(1) Q j is a Carleson square with base I j and |∂W j ∩ I j | ≥ (1 − ε)|I j |,

(2) g is within ε of a constant c j on each W j ,

(3)
∑

j |∂W j ∩ T| ≥ 1 − ε.

Let W =
⋃

j W j be this finite union. The weak* convergence of {νn} implies that

lim sup
n→∞

νn(D \ W ) ≤ ε,

and so if ‖g‖∞ ≤ 1,∣∣∣∣ lim
n→∞

∫
g dνn −

∫
T

g dθ/2π

∣∣∣∣ ≤ lim
n→∞

∣∣∣∣∫
W

g dνn −
1

2π

∫
∂W∩T

g dθ

∣∣∣∣
+

∫
D\W

|g| dνn +
1

2π

∫
T\∂W

|g| dθ

≤ Cε
∑

j

|∂W j ∩ T| + 2|T \ ∪∂W j |

≤ Cε.

Letting ε → 0 proves Lemma 4.3 and thus completes our function-theoretic proof
of Lemma 4.1. �
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A very special (and easier) case of Lemma 4.3 is:

Corollary 4.4. Suppose f ∈U0 and let fr (z)= f (r z) for r <1. Then µ fr converges
weak* to µf as r → 1.

Corollary 4.5. If f is inner and f (0) = 0 then µ fr converges weak* to normalized
Lebesgue measure on T.

5. A change of variables

The following result was suggested by Paul Bourdon and simplifies certain argu-
ments from an earlier version of the paper.

Lemma 5.1. Suppose g is a positive, continuous function on D and has nontan-
gential boundary values almost everywhere on T. Then, for any f ∈ U,∫

g(z) dµf (z) =
1

2π

∫ 2π

0
g( f (eiθ )) dθ.

The integral on the left requires some interpretation since g is not necessarily
continuous on the support of µf . On the interior of the disk, g is continuous and
positive so the integral is well defined (possibly infinite). On the circle, µf is
absolutely continuous with respect to Lebesgue measure and the boundary values
of g are Borel, so the integral on the circle is also well defined.

Proof. Using the monotone convergence theorem we can reduce to the case when
g is bounded (just truncate and let the truncation tend to ∞). So assume g is
bounded by M . For any ε > 0 we can easily construct a sawtooth region W so that
|T ∩ ∂W | > 1 − ε and g extends continuously to the closure of W . Thus we can
write g = (g − h) + h where h is continuous, bounded by M and g − h is zero on
W . The lemma is true for continuous functions by the definition of µf , and∫

(g − h) dµf ≤ 2Mµf (D \ W ) ≤ 2MCε,

since µf is Carleson with a uniform constant. Similarly∫
(g − h) ◦ f (eiθ ) dθ ≤ 2MCε,

so taking ε → 0 proves the lemma. �

The following lemma is now immediate.

Lemma 5.2. If g ∈ H∞ and f is inner with f (0) = 0 then µg = µg◦ f .
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The hyperbolic little Bloch space, Bh
0 , is defined to be the space of those holo-

morphic maps f ∈ U such that

lim
|z|→1

(1 − |z|2)| f ′(z)|
1 − | f (z)|2

= 0,

and is contained in the usual little Bloch space, B0. Schwarz’s inequality implies
the left side is bounded by 1 for any analytic self-map of the disk, and from this it
is easy to verify that g and f are both holomorphic self-maps of the disk, and f is
hyperbolic little Bloch then so is g ◦ f . It is far from obvious that there is an inner
function in the hyperbolic little Bloch space, but they do exist (see [Aleksandrov
et al. 1999; Cantón 1998; Smith 1998]). This and Lemma 5.2 thus imply:

Corollary 5.3. If g ∈ U, then there is an f ∈ Bh
0 such that µf = µg.

Recall that the Hardy space, H p , is the set of holomorphic functions g such
that

‖g‖H p = lim
r→1

(
1

2π

∫ 2π

0
|g(reiθ )|p dθ

)1/p

< ∞.

Such a function has radial boundary values almost everywhere on T, which we
also denote by g. If we know g ∈ H p for p > 1, then the radial maximal function
of g is in L p and so on can use the dominated convergence theorem to deduce that

‖g‖H p =
1

2π

∫ 2π

0
|g(eiθ )|p dθ.

In general, however, the right-hand side might be finite but g might not be in H p

(there exist nonzero holomorphic functions on the disk that have radial value zero
almost everywhere, and hence are not in H p). If f ∈ U then µf restricted to T

is absolutely continuous with respect to Lebesgue measure, so
∫

D
|g|

p dµf makes
sense.

As another application of Lemma 5.1 we can show

Lemma 5.4. Suppose g ∈ H p on the unit disk and f ∈U0. Then for any 0< p <∞,

‖g ◦ f ‖
p
H p = lim

r→1

∫
D

|g|
p dµ fr =

∫
D

|g|
p dµf .

Proof. The first equality is the definition of the H p norm, so we only have to prove
the second. If g ∈ H p and f ∈ U0 then by a result of Ryff [1966], g ◦ f ∈ H p

with smaller or equal norm. Thus |g|
p is positive, continuous function on the disk

which has nontangential boundary values almost everywhere, so Lemma 5.1 shows
that ∫

|g(z)|p dµf =
1

2π

∫ 2π

0
|g( f (eiθ ))|p dθ,
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and since we already know g ◦ f ∈ H p, we can deduce that the right-hand side
equals ‖g ◦ f ‖H p . �

6. Mapping the Bergman space into the Hardy space

For our applications to composition operators, we need a version of Lemma 5.4 that
works without the assumption that g ∈ H p. The proof given above doesn’t work
in general because if g is not in H p we can’t say that ‖g‖H p =

∫ 2π

0 |g|
p dθ/2π . In

fact, we will not even assume g has boundary values on the circle, so this integral
is not necessarily defined.

Lemma 6.1. Suppose g is holomorphic on the open unit disk, f ∈ U0 and µf is
radial. Then, for any 0 < p < ∞,

‖g ◦ f ‖
p
H p = lim

r→1

∫
D

|g|
p dµ fr =

∫
D

|g|
p dµf + µf (T)‖g‖

p
H p .(6–1)

Proof. Let gs(z) = g(sz) for 0 < s < 1. First, we want to show that, for any
0 < p < ∞,

lim
s→1

∫
|g(sz)|p dµf =

∫
D

|g(z)|p dµf + µf (T)‖g‖
p
H p ,(6–2)

Since g is holomorphic, |g|
p is subharmonic for 0 < p < ∞ (see, for example,

[Garnett 1981, page 35]) and hence m(r) =
1

2π

∫
|g(reiθ )|p dθ, is defined on [0, 1)

and is an increasing function of r [Garnett 1981, Corollary I.6.6]. Therefore we
can extend it to be defined at r = 1 by ‖g‖

p
H p = m(1) = limr→1 m(r). Thus

ms(r) ≡ m(sr) increases to m(r) as s → 1 for all r ∈ [0, 1]. Let ν be the measure
on [0, 1] defined by ν(E) = µf ({z : |z| ∈ E}). Since µf is radial we have∫

ϕ dµf =
1

2π

∫ 1

0

∫ 2π

0
ϕ(reiθ ) dθ dν(r).

Thus by the monotone convergence theorem,

lim
s→1

∫
|gs |

p dµf = lim
s→1

∫
ms(r) dν =

∫
[0,1]

m(r) dν =

∫
D

|g|
p dµf +µf (T)m(1).

This is (6–2).
We will break the proof of (6–1) into three cases.

Case 1:
∫

D
|g|

p dµf = ∞.
For any M > 0 choose 0 < t < 1 so that

∫
|z|<t |g|

p dµf > 2M and write |g|
p
=

g1 +g2 where g1 and g2 are nonnegative, g1 = |g|
p on |z| < t , and g1 is continuous

and compactly supported in D. Then∫
|g|

p dµ fr ≥

∫
g1 dµ fr >

1
2

∫
g1 dµf ≥ M
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if r is close enough to 1. Thus
∫

|g|
p dµ fr → ∞ =

∫
|g|

p dµf .

Case 2:
∫

D
|g|

p dµf < ∞ and µf (T) = 0.
Since µ fr converges weak* to µf ,

lim
r→1

∫
|gs |

p dµ fr =

∫
|gs |

p dµf

for any fixed s < 1. Since gs( f (z)) is holomorphic on the open disk, |gs( f (z))|p

is subharmonic. Thus
∫

|gs |
p dµ fr is increasing in r , and hence∫
|gs |

p dµ fr ≤

∫
|gs |

p dµf .

Now take s → 1. For r fixed, µ fr is compactly supported in the disk, so |gs |
p

is uniformly bounded on its support and hence the left-hand side converges to∫
|g|

p dµ fr . Condition (6–2) implies the right-hand side converges to
∫

|g|
p dµf .

Thus ∫
|g|

p dµ fr ≤

∫
|g|

p dµf

for all r < 1.
Fix ε >0 and choose 0< t <1 so that

∫
t<|z|<1 |g|

p dµf <ε. Write |g|
p
= g1+g2

as in Case 1. Thus
∫

g2µf < ε. Also, if r is close enough to 1 then, by weak*
convergence, ∣∣∣∫ g1 dµf −

∫
g1 dµ fr

∣∣∣ < ε.

Thus ∫
g2 dµ fr ≤

∣∣∣∫ g1 dµf −

∫
g1 dµ fr

∣∣∣ + ∫
g2 dµf ≤ 2ε.

Hence∣∣∣∫ |g|
p dµf −

∫
|g|

p dµ fr

∣∣∣ ≤

∫
g2 dµ fr +

∣∣∣∫ g1 dµf −

∫
g1 dµ fr

∣∣∣ +∫
g2 dµf

≤ 4ε,

if r is close enough to 1.

Case 3:
∫

D
|g|

p dµf < ∞ and µf (T) > 0.
If limr→1

∫
|g|

p dµ fr = ∞ then by the subharmonicity of |g ◦ f |
p we see that∫

|g|
p dµf = ∞, so (6–1) holds. Thus we may assume that limr→1

∫
|g|

p dµ fr <

∞, that is, we may assume that g ◦ f ∈ H p, and hence that |g( f (z))|p has a
harmonic majorant u on D (see [Garnett 1981, Lemma II.1.1]).

First we show that g ∈ H p. For 0 < r < 1 let Dr = D(0, r). Let �r be
the component of f −1(Dr ) which contains the origin, and let ωr be the harmonic
measure on �r with respect to the origin. Let νr be the push-forward of ωr under
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the map f . Then clearly νr is supported on Dr and νr (E)≤µf (E) for any E ⊂ Dr .
By Lemma 2.6, νr on Cr = ∂ Dr must be 1

2π
dθ minus the balayage of νr restricted

to Dr . Since νr ≤ µf , this means that νr on Cr is at least 1
2π

dθ minus the balayage
of µf restricted to Dr . Since µf is radial, its balayage onto Cr is also radial, that is,
equal to 1

2π
µf (Dr ) dθ ≤

1
2π

(1−µf (T)) dθ . Thus νr ≥
1

2π
µf (T) dθ on Cr . Hence,

for any g holomorphic on D,

1
2π

∫ 2π

0
|g(reiθ )|p dθ ≤

1
µf (T)

∫
|g|

p dνr =
1

µf (T)

∫
|g ◦ f |

p dωr .

Thus, if u is a harmonic majorant of |g ◦ f |
p on D,

1
2π

∫ 2π

0
|g(reiθ )|p dθ ≤

1
µf (T)

∫
u dωr =

u(0)

µf (T)
< ∞.

In other words, g ∈ H p and thus (6–1) follows from Lemma 5.4. �

Recall that the Bergman space Ap is defined as the set of holomorphic functions
g on the disk D such that

‖g‖Ap =

( 1
π

∫
D

|g|
p dx dy

)1/p
< ∞.

Corollary 6.2. If f ∈ H∞ such that dµf =
1
π
χD dx dy, then any function g,

analytic on the disk, is in the Bergman space if and only if g ◦ f is in the Hardy
space, and ‖g‖Ap = ‖g ◦ f ‖H p , that is, the composition operator C f : Ap

→ H p

is an isometry.

Proof. Using Lemma 6.1 we see that

‖g ◦ f ‖H p = lim
r→1

( 1
2π

∫ 2π

0
|g( f (reiθ ))|p dθ

)1/p

= lim
r→1

(∫
|g|

p dµ fr

)1/p
=

(∫
|g|

p dµ f

)1/p
= ‖g‖Ap . �

This corollary may seem a little surprising, since functions in H p have nontan-
gential limits almost everywhere, whereas those in Ap need not, but since f has
almost all of its boundary values in the interior of the disk, this is not a contradic-
tion. Of course, it still remains to show (see Section 9) that there is an f ∈ H∞

such that µf is area measure.
Corollary 6.2 obviously holds for any weighted Bergman space where the weight

is a radial measure of finite mass satisfying the integral condition (1–1) in Theorem
1.1. If instead of an isometry, we merely want ‖g‖Ap ' ‖g ◦ f ‖H2 we could take a
much bigger class of functions f , for example, µf = w dx dy for some weight w

which is bounded above and below on an annulus {r < |z| < 1}. Constructing such
examples only needs the techniques of Section 8, not the full proof of Theorem 1.1.
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Similarly, by appropriate choices of µf one can construct composition operators
on H p which satisfy conditions like

‖C f (g)‖
p
H p =

1
2‖g‖

p
H p +

1
2‖g‖

p
Ap or ‖C f (g)‖

p
H p =

1
2‖g‖

p
H p +

1
2‖g1/2‖

p
H p .

In [Cima and Hansen 1990], a function f is said to have property (∗) relative to H p

if g ◦ f ∈ H p implies that g ∈ H p, for any holomorphic g on D. Paul Bourdon has
pointed out that for general f ∈ U, the condition µf (T) = 0 implies condition (∗),
which implies N f (z) = o(1 − |z|) which, by J. Shapiro’s theorem [1987], implies
that C f is compact and hence does not have a bounded right inverse. Since f is
nonconstant, C f is 1-to-1 and so does not have closed range (this is a consequence
of the open mapping theorem, for example [Rudin 1973, Corollary 2.12c]). Thus
C f does not have property (∗), since any function in C f (H p) \ C f (H p) is an
H p function without an H p preimage. Lemma 6.1 clearly implies the following
corollary.

Corollary 6.3. If f ∈ U0 is orthogonal, then f has property (∗) relative to H p if
and only if µf (T) > 0.

Proof. If µf (T) > 0 then the argument in Case 3 of the proof of Lemma 6.1 shows
that g ◦ f ∈ H p implies g ∈ H p. Thus f has property (∗) with respect to H p. �

A special case of Corollary 6.3 is when µf (T) = 1, that is, all inner functions
have property (∗). It would be very interesting to have a similar characterization
of property (∗) for general functions in U0.

7. An example of µf supported on two circles

In this section we will construct an f ∈ H∞ so that µf is supported on the union
of two circles C1/2 and C1 (where Cr = {z : |z| = r}) and is a multiple of Lebesgue
measure on each. This example suffices to disprove Rudin’s orthogonality conjec-
ture, and introduces the estimates and techniques needed for the general case of
Theorem 1.1. In the next section we will show that any radial probability measure
supported in {

1
2 ≤ |z| ≤ 1} can occur as a µf , and in Section 9 we will do the

general case of measures supported on D.
Based on Lemmas 4.1 and 2.5, it suffices to build an increasing sequence of

Riemann surfaces {Rn} so that the corresponding maps { fn} satisfy fn(0) = 0, that
µ fn is supported on the two circles C1/2 ∪ C1, and that µ fn restricted to C1/2 is of
the form 1

2π
gn(θ) dθ , where gn converges uniformly to a positive constant.

We start by taking f0(z) =
1
2 z, that is, f0 is the (trivial) Riemann mapping from

D to the disk R0 ={|z|< 1/2}. The corresponding measure µ0 =µ f0 is normalized
Lebesgue measure on the circle C1/2, that is, 1

2π
g0(θ) dθ where g0(θ) = 1.

Now we describe the idea of the construction of R1 (we will give the details
later). First we replace R0 with a slightly smaller disk, S1. We divide the boundary
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of S1 into a large number of alternating intervals which we call type I and type
J . Along each type I interval we attach a copy of a certain Riemann surface with
boundary over C1/2 (attaching different copies to different intervals) and along
each type J interval we attach copies of certain surfaces with boundary over C1.
This gives the surface R1. With appropriate choices of the parameters involved we
can show that, with high probability, the Brownian paths which first hit ∂S1 at a
type I interval go on to hit the part of ∂ R1 over C1/2 and the paths which hit the J
intervals go on to hit ∂ R1 over C1. Thus we have “rerouted” a certain fraction
of the harmonic measure on C1/2 out to C1. By choosing various parameters
correctly, we can make the harmonic measure over C1/2 in R1 be close to any
multiple of Lebesgue measure we want (as long as the total mass is less than 1).
The resulting measure may not be radial but, by iterating the construction with
variable size barriers, we can make harmonic measure as close to a multiple of
Lebesgue measure as we wish, obtaining a radial measure in the limit.

Now we give the construction of R1 in more detail. Choose δ1 very small and
let S1 = D(0, r1), where r1 =

1
2 − δ1. Obviously harmonic measure on S1 is just

normalized Lebesgue measure on its boundary. Choose a large integer m1 and
points {z j : j = 1, . . . , m1} equally spaced on the circle Cr1 . Choose a continuous
function 0 <η(x)< 1 on Cr1 , let I j be an arc of ∂S1 of angle measure η(z j )2π/m1

centered at z j , and let {J j } be the complementary arcs. For the first step of the
construction we can take η(x) = η1 to be a constant for simplicity, but in later
steps we will have to use nonconstant η’s.

Fix some 0 < τ1 < 1 and, for each arc of the form I j with endpoints {p, q},
choose a countable collection of points E = {w

j
k } ⊂ I j , accumulating only at the

endpoints of I j , so that for any z ∈ I j

(7–1) dist(z, E) ≤ τ1 dist(z, {p, q}).

Let the components of I j \ E be denoted {I j
k }. For each I j

k , consider the (infinitely
connected) planar domain D\E and the universal cover of the domain. Take a copy
of the arc I j

k in the universal cover; it is on the boundary of a simply connected
domain D in the universal cover which covers D(0, 1

2). The arc cuts the universal
cover into two components and we let R j

k denote the component which does not
contain D. For each interval I j

k , we attach a copy of R j
k to S1 along the arc I j

k .
For the intervals {J j } we follow the same procedure, defining a set E ⊂ J j

and sub intervals {J j
k }, but replacing D(0, 1

2) with D(0, 1). That is, we attach a
component of the universal cover of D(0, 1) \ E , cut along J j

k . Doing this for
all j and k gives the surface R1. The harmonic measure for R1 is now supported
on C1/2 ∪ C1, (the rest of the ideal boundary covers a countable set, so has zero
measure) so we only need to check that it is still close to radial on C1/2.
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Now we want to discuss the two main estimates for describing the harmonic
measure of R1. The first says that a continuous convolution of the Poisson kernel
is well approximated by a discrete version if the sample points are sufficiently close
together. The second says that the harmonic measure of I intervals is small when
viewed from a J interval, and vice versa.

Suppose D(0, r) is a disk and g is a continuous function on a smaller circle Cs ,
s < r . The balayage of g onto the circle Cr is

Bg(θ) =

∫ 2π

0
g(sei t)Psei t (θ) dt,

where Pz(θ) is the Poisson kernel for D(0, r) with respect to the point z.

Lemma 7.1. With the intervals {I j } defined as above, and F =
⋃

j I j , for any
continuous 0 < g < 1 on the circle Cs

B(gχF )(θ) =

∫
F

g(sei t)Psei t (θ) dt → B(gη)(θ),

uniformly as m1 → ∞.

Proof. Let K j be the interval on Cs , centered at z j , of angle measure 2π/m1

(choose them to be half-open, so that they form a disjoint cover of the circle).
Define piecewise constant functions a(x) and b(x) on Cr1 by

a(x) =

∑
j

χK j (x)η(z j ), b(x, θ) =

∑
j

χK j (x)g(z j )Pz j (θ),

and let

A(m1) = ‖η(z) − a(z)‖∞, B(m1) = ‖g(x)Px(θ) − b(x, θ)‖∞.

It is clear that, by uniform continuity, both quantities tend to zero as m1 → ∞.
Thus by using the fact that χF (x)−a(x) has mean value zero on each interval K j

where b(x, θ) is constant in x we get

|B(gχF )(θ) − B(gη)(θ)|

=

∣∣∣∫ 2π

0
(g(sei t)Psei t (θ) − b(sei t , θ)+ b(sei t , θ))(χF (sei t) − η(sei t)) dt

∣∣∣
≤ B(m1)

∫ 2π

0

∣∣(χF − η(sei t)
∣∣ dt +

∫ 2π

0
b(sei t , θ)

∣∣a(sei t) − η(sei t)
∣∣ dt

≤ 2π B(m1) + A(m1) max |b|.

This clearly tends to zero as m1 → ∞, as desired. �

Now for the second estimate. We want to show that the harmonic measure of
C1/2 is much larger than that of C1 with respect to a point z ∈ I j

k .
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Lemma 7.2. Suppose that z ∈ I j
k , and suppose that γ is a circular arc in S1 with

endpoints in the corresponding set E such that dist(γ, z) ' dist(z, {p, q}) (with
constants independent of τ1), and which separates z from all the J -intervals. Let
� be the component of R1 \ γ which contains z. Then ω(z, γ,�) → 0 as τ1 does.

Proof. Standard estimates of hyperbolic metric imply that γ is within a bounded
hyperbolic distance of a geodesic in R1, and that the hyperbolic distance from γ to
z is at least C log τ−1

1 . Lifted to the disk, this implies the harmonic measure of γ

with respect to z is ≤ exp(C log τ1) ≤ τα
1 , for some α > 0, as desired. Obviously,

the same estimate holds if we reverse the rôles of the I and J intervals. �

The previous result has a simple explanation in terms of Brownian motion. Con-
sider a Brownian motion on the Riemann surface started at z and run until it either
hits γ or leaves R1. The path will only hit γ if it stays on the correct sheet of R1,
but this is extremely unlikely because it will cross the arc I j many times and each
time it has a certain chance (which is large if τ is small) of becoming “tangled”
and ending up on the wrong sheet.

We can now show that the harmonic measure of R1 on the circle C1/2 can be
taken as close to a multiple of Lebesgue measure as we wish (depending on our
choices of m1, τ1 and η). The harmonic measure of R1 on the circle C1/2 will
be the balayage of the harmonic measure of S1 restricted to the I intervals, with
an error bounded by Cτα

1 . The harmonic measure is (normalized) angle measure
restricted to the I -intervals. Thus if m1 is large enough, the harmonic measure on
C1/2 will be of the form 1

2π
g1(x) dθ , with g1 as close to a constant as we wish.

Take 1
2 +

1
10 ≤ g1(x) ≤

1
2 +

3
10 , to be concrete.

Now suppose we have constructed Rn−1. To construct Rn , we follow the method
above. We start passing to a subsurface Sn ⊂ Rn−1 where the boundary circles over
C1/2 are replaced by boundaries over C1/2−δn . The parameter δn is chosen so small
that every component of Rn−1\Sn is a regular cover of the annulus

{ 1
2−δn < |z|< 1

2

}
(which will be possible by the construction of Rn−1) and so that harmonic measure
µSn on Sn is very close to harmonic measure on Rn−1, say

(7–2)
∣∣∣∫ ϕd(µSn − µRn−1)

∣∣∣ ≤ 2−n

for every smooth ϕ with gradient bounded by n.
As before we choose mn equally spaced points {zn

j } on Cn = C 1
2 −δn

and define
intervals {I n

j } of Cn , centered at these points, of angle measure 2πηn(zn
j )/mn ,

where
ηn(x) =

(1
2

+
2

10n

)
/gn−1(x).

The complementary intervals are denoted {J n
j }. We choose a very small τn and sets

E in each interval which satisfies (7–1) with τn . We then attach copies D(0, 1
2)\ E
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to the copies of the I intervals in ∂Sn and copies of D(0, 1) \ E to the J intervals.
Then if we choose δn and τn small enough and mn large enough, we can get the
harmonic measure of Rn over C1/2 to be gn(x) dθ/2π with gn as close to gn−1ηn

as we wish, say

1
2

+
1

10n ≤ gn ≤
1
2

+
3

10n .

Continuing in this way we can clearly construct a sequence {Rn} of Riemann sur-
faces so that the harmonic measures over C1/2 converge to a multiple of Lebesgue
measure. This almost finishes the proof, except that the surfaces {Rn} are not nested
by inclusion. However, the subsurfaces {Sn} constructed as part of the induction
are nested and their union is also R. Hence their harmonic measures converge to
that of R. By (7–2), the weak* limit for the measures on {Sn} and {Rn} must be
the same, so we are done.

The same proof shows that we can build an f ∈ H∞ so that µf |C1/2 =
1

2π
g dθ

for any continuous g with 0 ≤ g < 1 (or any g which is the decreasing limit of such
functions). Similarly, the circle can be replaced by any smooth curve γ , and g by
a continuous function such that g ds ≤ dω(0, · , D \ γ ).

The construction in this section clearly generalizes as follows.

Lemma 7.3. Suppose R is a Riemann surface built by attaching subdomains of
D along boundary arcs. Let 5 denote the corresponding projection of R into the
plane. Suppose 5(∂ R) hits Cr and there is a δ > 0 such that every component of
5−1(Cr ) in ∂ R is the boundary of a domain in R which is a regular cover of the
annulus {r − δ < |z| < r} (or {r < |z| < r + δ}). Suppose the harmonic measure
of R over Cr projects to a measure of the form 1

2π
g dθ on Cr , where 0 < g < 1.

Choose s < r (or s > r ) very close to r . Suppose we are given N functions {ηk}

such that 0 < ηk < 1. Choose a large integer m and choose m N equally spaced
points {zi } on Cs . Let I k

j be the interval of length 2πηk(zk+ j N )/m N centered at
zk+ j N . Let Ji denote the components of Cs \

⋃
j,k I k

j . Choose a small τ and choose
sets E satisfying (7–1) in every interval. For k = 0, . . . , N , choose sk < s < rk .
For each arc in ∂ R projecting to I k

j attach a copy of Ak \ E = {sk < |z| < rk} \ E .
To each arc projecting to a Ji attach a copy of A0 \ E = {s0 < |z| < r0} \ E . If s is
close enough to r , if m is large enough and if τ is small enough, then the projected
harmonic measure of the new surface S on ∂S \ R is as close to

∑
k Bk(ηk g) as we

wish, where Bk denotes balayage from Cs onto ∂ Ak .

For the proof of Theorem 1.1, we can always take sk = 0, that is, we can attach
disks instead of annuli. Only for the proof of Corollary 1.4 will we have to attach
proper annuli.
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8. Theorem 1.1 on an annulus

In this section we will show that any radial probability measure µ supported in the
annulus

{
z :

1
2 ≤ |z| ≤ 1

}
is of the form µf for some f ∈ U0, and in the next section

we will extend this to the general case.
First some notation. For 0 < r < s < 1 let A(r, s) = {z : r ≤ |z| < s}. When

s = 1, we let A(r, 1) = {z : r ≤ |z| ≤ 1}. For 0 < r < 1, let µ(r) = µ(A(0, r)).
Let r0

=
1
2 , let r1

0 =
1
2 , let r1

1 =
3
4 and, more generally, let rn

k =
1
2 + k2−n−1 for

k = 0, . . . , 2n
− 1. Let µn

k = µ
(

A
(
rn

k , rn
k+1

))
, and let Cn

k = Crn
k
.

By rescaling, we may assume that T ⊂ supp(µ) ⊂ D and hence that µn
2n−1 is

positive for all n.
We will construct a sequence R0 ⊂ R1 ⊂ · · · of Riemann surfaces, such that the

corresponding measure µn is supported on the union of 2n circles,
⋃2n

−1
k=0 Cn

k . On
Cn

k the measure µn will have the form 1
2π

gn
k dθ where

(8–1) µn
k < gn

k ≤ µn
k + εn

for k = 0, . . . , 2n
− 2 and any εn > 0 we choose, and for k = 2n

− 1 we have

(8–2) µn+1
2n+1−2 < gn

k ≤ µn
2n−1.

Recall that since µn is a probability measure, if it gives too much mass to the first
2n

− 1 annuli, then it must give too little to the last one. It is obvious that such
measures {µn} converge weak* to µ, so by the argument at the end of the previous
section, the µf corresponding to the limiting surface R =

⋃
n Rn must equal µ.

Thus it only remains to construct the surfaces. As in the previous section we
start with R0 = D

(
0, 1

2

)
. To construct R1, we will proceed exactly as in the previous

section, except that instead of redirecting harmonic measure to the unit circle, we
send it to the circle C3/4. The estimates are all the same so we can obtain a surface
R1 such that the corresponding µ1 is supported on C1/2 ∪ C3/4 and is of the form
1

2π
g1

0 dθ on C1
0 and 1

2π
g1

1 dθ on C1
1 where

µ1
0 < g1

0 < µ1
0 + ε1 and µ2

2 < g1
1 < µ1

1,

for any ε1 > 0 we choose.
To construct Rn+1 for n ≥ 1, we just make one small change. The mass on

the outermost circle Cn
2n−1 is redistributed to itself, Cn

2n−1 = Cn+1
2n+1−2, and to the

outermost circle of the next stage, Cn+1
2n+1−1. The mass of any other circle Cn

j is
redistributed to three circles; itself, Cn

j = Cn+1
2 j , the next circle out in the next

generation, Cn+1
2 j+1 and the outermost circle of the next generation, Cn+1

2n+1−1.
To do this we let C̃n

j be the circle of radius rn
j −δn , where δn < 2−n−10 is chosen

so small that the harmonic measure on Sn (the subsurface of Rn bounded by the lifts
of C̃n

j which contain 0 and hence contain Sn−1) is as close as we wish to harmonic
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measure on Rn−1, that is, it satisfies (7–2). We now just apply the construction of
Lemma 7.3, with N = 2, s0 = s1 = s2 = 0, r0 = rn+1

2 j , r1 = rn+1
2 j+1 and r2 = rn+1

2n+1−1.
More precisely, suppose that we have two continuous functions η1 and η2 defined
on C̃n

j , such that η1 + η2 < 2, together with mn equidistributed points {z j } on
∂Sn , and choose intervals centered at these points. However, instead of having two
types of intervals, we will have three: {I j } of angle measure 2πη1(θ)/mn centered
at z j for j even, {K j } of angle measure 2πη2(θ)/mn centered at z j for j odd, and You wrote ‘z − j for j odd’.

Did you mean ‘z j for j odd’
instead?

the remaining intervals {J j }. We choose a very small τn and a countable set E in
each interval which satisfies (7–1). Then along type I intervals we attach a copy
of the universal cover of D

(
0, rn

j

)
\ E , along the type K intervals we attach the

universal cover of D
(
0, rn+1

2 j+1

)
\ E , and along the type J intervals we attach that of

D
(
0, rn+1

2n+1−1

)
\ E . Then if we take mn large enough and δn and τn small enough,

the harmonic measure of the surface Rn+1 over Cn
j will be as close to the balayage

of η1gn
j onto Cn

j as we wish and the harmonic measure over Cn+1
2 j+1 will be as close

to the balayage of η2gn
j onto that circle as we wish, independent of what changes

we make at circles other than Cn
j .

Now do a similar construction around each circle Cn
j , for j = 0, . . . , 2n

− 2.
At the outermost circle Cn

2n−1, we redirect the measure to only two circles: itself
and the outermost circle of the next generation, Cn+1

2n+1−1. By construction, condi-
tion (8–1) holds with any constant εn we want. Then by Lemma 2.6, µn on the
outermost circle must be normalized Lebesgue measure minus the balayage of the
measures on the inner circles. Since these measures have total mass as close to,
but larger than,

µ
(

A
(1

2 , rn
2n−1

))
=

2n
−2∑

j=0

µn
j

r as we wish, the mass of the outermost circle is as close to, but smaller than,
µ

(
A
(
rn

2n−1, 1
))

= µn
2n−1. Moreover, since the measures on the inner circles are as

close to radial as we wish, so is their balayage onto the outermost circle and hence
so is µf restricted to the outermost circle (this condition defines our choice of εn).
This gives condition (8–2). The proof is completed by taking limits just as before.

9. Theorem 1.1 on the whole disk

To complete the proof of Theorem 1.1 we need to show how to obtain any measure
satisfying (1–1). As in the last section we can assume T ⊂ supp(µ) ⊂ D. We can
also simplify the situation slightly by observing that it is enough to assume that
most of the mass of µ lives away from the origin, that is,

(9–1)
∫

log
1
|z|

dµ ≤ δ.
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This is because for f ∈ H∞ the measure µ f d is the push-forward under z → zd of
the measure µf and so∫

log
1
|z|

dµ f =
1
d

∫
log

1
|z|

dµ f d .

By taking d large we can make the right-hand side as small as we wish. Thus for
any µ on the disk satisfying (1–1), it suffices to construct an f corresponding to
the pull-back of µ under zd , that is, it suffices to consider only measures satisfying
(9–1) for any δ > 0 we choose.

Start by taking R0 = D
(
0, 1

4

)
. Let rn = 2−n for n = 0, 1, 2, . . . and let µn =

µ(A(rn, rn−1)). Then

(9–2)
∑
n>2

(n − 1)(log 2)µn ≤

∫
log

1
|z|

dµ ≤ δ,

so

(9–3) µn ≤
δ

(log 2)(n − 1)
≤

δ′

n
,

where δ′ is as small as we wish.
We need two simple facts about harmonic measure on an annulus.

Lemma 9.1. Suppose A = {z : s < |z| < r} and s < t < r . Then ω(z, Cs, A) =

us,r (z) = (log |z| − log r)/(log s − log r) for any z with |z| = t .

Proof. This is immediate since the given function is harmonic in A, equals 1 on
Cs and equals 0 on Cr . �

Lemma 9.2. Suppose s, t, r and A are as in Lemma 9.1. Then if t ≥ 2s, there is an
M < ∞, independent of s, t and r , such that for |z| = t , ω(z, ·, A) restricted to Cs

has the form 1
2π

g dθ and g satisfies maxCs g ≤ M minCs g.

Proof. Recall that harmonic measure on ∂ A is the normal derivative of Green’s
function G with pole at z. Let t ′

=
2
3 t > s. By Harnack’s inequality there is an M

such that maxCt ′
G ≤ M minCt ′

G, and hence there is a constant C E such that Do you really mean C E here?

C(1 − us,t ′) ≤ G ≤ MC(1 − us,t ′),

on {s < |z| < t ′
}. Since the normal derivative of us,r ′ is constant on Cs (since u

is radial), this implies the normal derivative of G on Cs is trapped between two
constants A and M A, as desired. �

Consider the annulus An = {z : 2−n < |z| < 2−1, n = 3, 4, . . . } and a point
z such that |z| =

1
3 . The two previous results imply that there is a constant B

such that harmonic measure for A on the circle C2−n is of the form 1
2π

g dθ where
g ≥ B/n for n ≥ 3. By (9–2) we can assume µ is chosen so that

∑
n nµn ≤ (2B)−1.
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Thus
∑

n Bnµn ≤
1
2 , and hence it is possible to choose a collection of disjoint,

adjacent intervals {In : n = 2, 3, 4 . . . } on C1/4, of angle measure 4πnµn/B. In
each interval In choose a countable set En satisfying the “thickness” condition
(7–1) with some τn , and attach to In a copy of the universal cover of An+1 \ En .
The resulting Riemann surface has harmonic measures supported over the union of
circles

⋃
n C2−n for n = 1, 3, 4, 5, . . . and, moreover, if we choose τn → 0 quickly

enough, the harmonic measure of the circles corresponding to n = 3, 4, 5 . . . is of
the form 1

2π
gn dθ with gn > µn−1, but might not be close to radial.

For each such circle C2−n , choose I and J intervals in the usual way and attach
copies of D

(
0, 1

2

)
\ E and D

(
0, 2−n

)
\ E respectively. As we have seen before, we

can choose η, m and τ so that the harmonic measure 1
2π

gn dθ on C2−n is as close
to (but larger than) µn as we wish. Using Lemma 2.6, the harmonic measure of
C1/2 will be as close to (but less than) µ1 as we wish and, in particular, it is larger
than µ

({1
2 ≤ |z| < 3

4

})
(this is where we use the assumption that T is in the support

of µ).
The rest of the proof is now the same as the previous section. On each annulus

we redistribute the harmonic measure from the circle into the annulus, sending any
“extra” measure to the outermost circle, C1−2−n . In the limit, we obtain the desired
measure µ.

10. An example which is almost an outer function

In this section we will construct an orthogonal function f whose only inner factor
is the required zero at 0, that is, f (z)/z is outer. We will construct f so that 0 is
the only zero of f ; thus f (z)/z has no Blaschke factor. In order to prove it has
no singular inner factor, recall that if f (z)/z = gh with g outer and h a nontrivial
singular inner function, then

log | f |
−1

= log |g|
−1

+ log |h|
−1,

and that the first term on the right is the Poisson integral of its boundary values on
T, but that the second term is the Poisson integral of a singular measure on T and
has boundary value zero almost everywhere on T. Let

Hε = {z ∈ D : |h(z)| < ε} and Fε = {z ∈ D : | f (z)| < ε}.

Since log |h(0)|−1
= log(1/ε)ω(0, Hε, D \ Hε), we deduce that

ω(0, Hε, D \ Hε) ≥ C/ log(1/ε),

where C = log |h(0)|−1 and consequently, since Hε ⊂ Fε ,

(10–1) ω(0, Fε, D \ Fε) ≥ C/ log(1/ε).
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We will construct R so that the harmonic measure of {z ∈ R \ D(0, 1
2) : |z| ≤ 2−n

}

has harmonic measure (in R, with respect to 0) less than λn for some λ < 1. This
contradicts (10–1), so the covering map has no singular inner factor.

Since we have already seen several constructions of this type in great detail, I
will only sketch the construction. Start with R0 = D

(
0, 1

2

)
. Divide C1/2 into a finite

collection of intervals {In} and in each choose a set E satisfying (7–1). Along each
interval attach a copy of {

1
4 < |z| < 1} \ E . This gives R2.

Lemmas 9.1 and 9.2 imply that harmonic measure of R2 over C1/4 is of the form
1

2π
g dθ where the max of g is bounded by a universal constant times the minimum.

Thus there is a constant c < min(g) and a λ < 1 such that∫
(g − c) dθ ≤ λ

∫
g dθ.

In other words, we can truncate g to be a constant and still retain a fixed fraction
of the harmonic measure.

Now do the standard construction of I and J intervals on C 1
4 +δ, attaching copies

of
{ 1

8 < |z| < 1
}

and
{ 1

4 < |z| < 1
}

respectively, so that the new harmonic measure
on C1/4 is very close to radial (say within ε1 of constant) and has mass at least
(1 − λ) times the previous mass.

At the next stage we do the construction near both circles C1/4 and C1/8. At C1/8

we repeat the process of the previous paragraph, making the harmonic measure
above C1/8 as close to radial as we wish, while retaining at least (1 − λ) of the
total mass, transferring the excess to C1 and C1/16. On C1/4 we only make the
measure within ε2 of constant (while losing at most ε1 of the mass), the excess
being transferred to C1/8 and C1.

We now iterate the process in the obvious way. At stage n we have a surface Rn

which only covers the origin once, and such that the harmonic measure is supported
on the circles {C2−k }, with the k-th circle getting mass at most λk . Thus the same
is true for the limiting measure µ, and hence the harmonic measure of the set
{z ∈ R \ R0 : |z| < 2−n

} has harmonic measure less than Cλn in R. This proves that
f (z)/z is outer.
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